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For the first time, we construct an inspiral-merger-ringdown waveform model within the effective-one-
body formalism for spinning, nonprecessing binary black holes that includes gravitational modes beyond
the dominant (7, |m|) = (2,2) mode, specifically (7, |m|) = (2,1),(3,3),(4,4), (5,5). Our multipolar
waveform model incorporates recent (resummed) post-Newtonian results for the inspiral and information
from 157 numerical-relativity simulations, and 13 waveforms from black-hole perturbation theory for the
(plunge-)merger and ringdown. We quantify the improvement in accuracy when including higher-order
modes by computing the faithfulness of the waveform model against the numerical-relativity waveforms
used to construct the model. We define the faithfulness as the match maximized over time, phase of arrival,
gravitational-wave polarization and sky position of the waveform model, and averaged over binary
orientation, gravitational-wave polarization and sky position of the numerical-relativity waveform. When
the waveform model contains only the (2,2) mode, we find that the averaged faithfulness to numerical-
relativity waveforms containing all modes with £ < 5 ranges from 90% to 99.9% for binaries with total
mass 20-200 M, (using the Advanced LIGO’s design noise curve). By contrast, when the (2,1), (3.3),
(4,4), (5,5) modes are also included in the model, the faithfulness improves to 99% for all but four
configurations in the numerical-relativity catalog, for which the faithfulness is greater than 98.5%. Starting
from the complete inspiral-merger-ringdown model, we develop also a (stand-alone) waveform model for
the merger-ringdown signal, calibrated to numerical-relativity waveforms, which can be used to measure
multiple quasi-normal modes. The multipolar waveform model can be extended to include spin-
precessional effects, and will be employed in upcoming observing runs of Advanced LIGO and Virgo.

DOI: 10.1103/PhysRevD.98.084028

I. INTRODUCTION

The Advanced LIGO detectors [1] have reported, so far,
the observation of five gravitational-wave (GW) signals
from coalescing binary black holes (BBHs): GW150914
[2], GW151226 [3], GW170104 [4], GW170608 [5],
GW170814 [6] (observed also by the Virgo detector
[7]), and one GW signal from a coalescing binary neutron
star (BNS) [8]. The modeled search for GWs from binary
systems and the extraction of binary parameters, such as the
masses and spins, are based on the matched-filtering
technique [9-14], which requires accurate knowledge of
the waveform of the incoming signal. During the first two
observing runs (Ol and O2), the Advanced LIGO and
Virgo modeled-search pipelines employed, for binary total
masses below 4 M, templates [15] built within the post-
Newtonian (PN) approach [16-19], and, for binary total
masses in the range 4-200 M, templates developed using
the effective-one-body (EOB) formalism -calibrated to
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numerical-relativity (NR) simulations [20-27]. For param-
eter-estimation analyses [8,10,28,29] and tests of general
relativity (GR) [30], PN [16-18], EOBNR [25,27,31,32]
and also inspiral-merger-ringdown phenomenological
(IMRPhenom) waveform models [33-35] were used.

The -2 spin-weighted spherical harmonics comprise
a convenient basis into which one can decompose the
two polarizations of GWs. The spinning, nonprecessing
EOBNR waveform model [27] employed in searches
and parameter-estimation studies during the O2 run
(henceforth, SEOBNRv4 model), only used the dominant
(¢,|m]) = (2,2) mode to build the gravitational polar-
izations. This approximation was accurate enough for
detecting and inferring astrophysical information of the
sources observed during O2 (and also O1), as discussed in
Refs. [36-44].

Because of the expected increase in sensitivity during the
third observing run (O3), which is planned to start in the
Fall of 2018, some GW signals are expected to have much
larger signal-to-noise ratio (SNR) with respect to the past,
and may lie in regions of parameter space so far unexplored

© 2018 American Physical Society
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(e.g., more massive and/or higher mass-ratio systems than
observed in O1 and O2). This poses an excellent oppor-
tunity to improve our knowledge of astrophysical and
gravitational properties of the sources, but it also requires
more accurate waveform models to be able to take full
advantage of the discovery and inference potential. More
accurate waveform models would be useful, as well, from
the detection point of view to further increase the effective
volume reached by the search, in particular for regions of
the parameter space where the approximation of restricting
to the (2,2) mode starts to degrade [37-39]. Following these
motivations, we build here an improved version of the
SEOBNRv4 waveform model that includes the modes
(¢,|m]) = (2,1),(3,3),(4,4),(5,5) beyond the dominant
(2,2) mode (henceforth, SEOBNRv4HM model). Similar
work was done for the nonspinning case for the EOBNR
waveform model of Ref. [45] (henceforth, EOBNRv2HM
model), and for the nonspinning and spinning, nonprecess-
ing IMRPhenom models in Refs. [46,47].

In building the SEOBNRv4HM model we incorporate
new informations from PN calculations [48,49], from
NR simulations (produced with the (pseudo) Spectral
Einstein code (SPEC) [50] of the Simulating eXtreme
Spacetimes (sXs) project and the EINSTEIN TOOLKIT code
[51,52]), and also from merger-ringdown waveforms com-
puted in BH perturbation theory solving the Teukolsky
equation [53,54]. The NR waveforms are described in
Refs. [27,50,55-60], and summarized in Appendix F. They
were also employed to build the SEOBNRv4 waveform
model in Ref. [27] (see Sec. III therein). However, here, we
do not use the BAM simulation BAMg8s85s85 [61,62],
because the higher-order modes are not available to us.
Thus, for the same binary configuration, we produce a new
NR simulation using the EINSTEIN TOOLKIT code and
extract higher-order modes (henceforth, ET: AET: 0004).

As by product of the SEOBNRv4HM model, we obtain a
(stand-alone) merger-ringdown model [27,63—-67], tuned to
the NR and Teukolsky-equation waveforms, which can be
employed to extract multiple quasi-normal modes from
GW signals, and test general relativity [68—71].

The paper is organized as follows. In Sec. II we use the
NR waveforms at our disposal to quantify the importance
of higher harmonics in presence of spins. In Sec. III we
determine, taking also into account the error in NR wave-
forms, which gravitational modes are crucial to achieve at
least ~99% accuracy. In Sec. IV we develop the multipolar
EOB waveform model, and describe how to enhance its
performance by including information from NR simula-
tions and BH perturbation theory. We also highlight the
construction and use of the multipolar (stand-alone)
merger-ringdown model. In Sec. V we compare the newly
developed SEOBNRv4HM model to 157 NR waveforms. In
Sec. VI we summarize our main conclusions, and outline
possible future work. Finally, in Appendices A-C we
provide interested readers with explicit expressions of all

quantities entering the higher-order modes of the
SEOBNRvV4HM model, and point out the presence of
numerical artifacts in the (4,4) and (5,5) modes of some
NR simulations. For convenience, we summarize in
Appendix F the NR waveforms used in this paper. In
Appendix G we also compare the model SEOBNRv4HM
with the nonspinning EOBNRv2HM waveform model,
developed in 2011 [45]. Finally in Appendix H we
compare the SEOBNRv4HM model with an NR waveform
in time domain.

In this paper we adopt the geometric units G = ¢ = 1.

II. MOTIVATIONS TO MODEL HIGHER-ORDER
MODES FOR BINARY BLACK HOLES

In this section we describe the spherical-mode decom-
position of the gravitational polarizations and discuss the
motivations for building an inspiral-merger-ringdown
waveform model (SEOBNRv4HM) with higher harmonics
for spinning BHs.

Henceforth, we denote the binary’s total mass with
M = my 4+ m,, and choose the body’s masses m; and
m, such that the mass ratio ¢ = m;/m, > 1. Since we
consider only spinning, nonprecessing BHs (i.e., spins
aligned or antialigned with the direction perpendicular to
the orbital plane L), we only have one (dimensionless) spin

parameter for each BH, y, ,, defined as S, =Z1,2mi21:,
where S, , are the BH’s spins (=1 < y;, < 1).
The observer-frame’s gravitational polarizations read

o 4

ho (1, @o3t) — i (1, @0 1) = Z Z Y em (1, 00) R (1),

=2 m=—¢
2.1)

where we denote with 1 the inclination angle (computed with
respect to the direction perpendicular to the orbital plane), ¢
the azimuthal direction to the observer, and _,Y,, (1, ¢g)’s
the -2 spin-weighted spherical harmonics. For spinning,
nonprecessing BHs” we have hg,, = (=1)*h}_, . Thus,
without loss of generality, we restrict the discussion to
(£, m) modes with m > 0.

As we shall discuss below, for face-on/face-off binary
configurations, the dominant mode is the (¢, m) = (2,2)
mode. For generic binary orientations the modes (£, m) #
(2,2) could be comparable to the (2,2) mode. Nevertheless,
we will loosely refer to (£,m) # (2,2) as subdominant
modes; sometime we also refer to them as higher-order
modes or higher harmonics, even if they include the
(2,1) mode.

Several authors in the literature have investigated the
impact of neglecting higher-order modes for detection and
parameter estimation. From the detection perspective,
Refs. [37,38,40,72] showed that neglecting higher-order
modes in nonspinning gravitational waveforms can cause a
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FIG. 1. Amplitude ratio between the (¢,m) mode and the

dominant (2,2) mode, both evaluated at their peak, as function of
the mass ratio. We use only nonspinning NR waveforms. (Note
that the markers represent the NR data, and we connect them by a
line). We note that the importance of a given higher-order mode
with respect to the dominant one is not controlled only by the
amplitude ratio between the two, but also by the -2 spin-weighted
spherical harmonic associated to the mode [see Eq. (2.1)].

loss in detection volume bigger than 10% when the mass
ratio g > 4 and total mass M > 100 M. To overcome this
issue, Ref. [39] suggested a new method to search for GW
signals with templates that include higher modes, increas-
ing the search sensitivity up to a factor of 2 in volume for
high mass-ratio, and high total-mass binaries. While those
works consider only nonspinning systems, the authors of
Ref. [73] show that for spinning systems, the loss in
detection volume due to neglecting higher-order modes
is smaller with respect to the nonspinning case. This
happens because the spin parameters provide an additional
degree of freedom that templates with only the dominant

q=3
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(2,2) mode can employ to better match signals containing
higher-order modes.

From the parameter-estimation perspective, as discussed
in Ref. [40], for nonspinning systems with mass ratio ¢ > 4
and total masses M > 150 M, the systematic error due to
neglecting higher-order modes is larger than the 1o stat-
istical error for signals with signal-to-noise ratio (SNR)
of 8. Signals with a larger SNR yield smaller statistical
errors and, the constraints discussed before become more
stringent [36]. Indeed even for equal-mass systems, where
the higher-order modes are expected to be negligible, if the
signal has an SNR of 48, the systematic error from
neglecting higher-order modes can be bigger than the
statistical error [36]. (The SNRs above refer to Advanced
LIGO’s “zero-detuned high-power” design sensitivity
curve [74]).

Here we briefly review known results, and highlight
some features that will be exploited below when building
the SEOBNRv4HM waveform model.

In Fig. 1 we show the ratio between the largest subdomi-
nant (¢, m) modes and the (2,2) mode amplitudes, evaluated
at their peak, £, and 122, , respectively, as function of mass
ratio for all the nonspinning waveforms in our NR catalog.
We note that the well-known mode hierarchy (¢,m)=
(2,2),(3,3),(2,1),(4,4),(3,2),(5,5),(4,3) changes when
approaching the equal-mass (equal-spin) limit (see, e.g.,
Ref. [75]). Indeed, in this limit all modes with odd m have to
vanish in order to enforce the binary’s symmetry under
rotation ¢y — ¢o + 7. Thus, when v — 1/4 (y; = y»), the
(3,2) and (4,4) modes become the most important subdomi-
nant modes. In Fig. 2 we show how the modes’ hierarchy in
the nonspinning case (see Fig. 1) changes when BH’s spins
are included. In particular, in the left panel of Fig. 2 we fix
the mass ratio to ¢ = 8 and plot the relative amplitude of the
modes as function of the spin of the more massive BH. Note
that for ¢ = 8 all NR waveforms in our catalog (with the

qg=1

0.16 5

¥ (3,3
- (2,1
—e— (5,5

—%— 4,3)
—— 4,4

0.14 7 —— (3,2)

0.12 4

0.10 4

0.08

|/ lhaa(122,0)|

% 0.06

m

0.04

‘hlm(té

0.02

0.00 5

T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Xs (even m modes) x4 (odd m modes)

FIG.2. Amplitude ratio between the (#, m) mode and the dominant (2,2) mode, both evaluated at their peak. In the left (right) panel we
plot these quantities for mass ratio ¢ = 8 versus the spin of the heavier BH (¢ = 1 versus y, = (¥, — y»)/2 for modes with odd m, and
xs = (x1 +x»)/2 for modes with even m). The markers represent the NR data, and we connect them by a line.
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exception of ET: AEI: 0004, g = 8,y =y, = 0.85) have
the spin only on the more massive BH. We see that the
relative amplitude of the modes (3,3), (4,4), (3,2), (5,5), (4,3)
depends weakly on the spins, except for the (2,1) mode.
Indeed, for y; = 0.5, the (2,1) mode becomes smaller than
the (4,4) mode and for y; = 0.75 is as small as the modes
(3,2), (5,5). On the other side, for y; < —0.25 the mode (2,1)
is larger than the (3,3) mode. We find that for smaller mass
ratios the effect of y, (i.e., the spin of the lighter BH),
becomes more important. In particular, for a fixed value of y;

the amplitude ratio |hy,, (107, )|/|ha2(£32,)] for the modes

(3,3), (4,4), (5,5) decreases with increasing y,, while the
ratio increases for the modes (2,1), (3,2), (4,3).

The special case of equal-mass systems, g =1, is
discussed in the right panel of Fig. 2. Here we show the
amplitude ratio between the (£,m) mode and the
dominant (2,2) mode, both evaluated at their peak, as
function of ¥4 = (¥ — x»)/2 for modes with odd m and
as function of yg = (y; + y»)/2 for modes with even m.
As discussed before, the modes with odd m vanish for
equal-mass, equal-spins configurations (y4 = 0) from
symmetry arguments and, the amplitude ratio grows
proportionally to |y,| for these modes. In particular, we
note that in this case the (2,1) mode behaves differently
from the other modes, undergoing a much more sig-
nificant growth in the amplitude ratio. Regarding the
modes with even m, we notice that whereas the (4,4)
mode is nearly constant as function of yg in the spin
range considered, the (3,2) mode increases as a function
of yg in the same range. The amplitude of the (2,1)
mode has a stronger dependence on the spins with
respect to the other modes because in its PN expansion
the spin term enters at a lower relative order (see
Eqgs. (382)—(381) in Ref. [76]). A similar spin-depend-
ence was found in Ref. [77] for the amplitudes ratio
(Ag/Ay) of the quasinormal mode oscillations.

Finally, it is worth emphasizing that in understanding
the relevance of subdominant modes for the observer,
it is important to take into account the -2 spin-
weighted spherical-harmonic factor _,Y,, (1, ¢o) that
enters Eq. (2.1), notably its dependence on the angles
(1, ¢p). Indeed, the -2 spin-weighted spherical harmonic
associated to the dominant mode starts from a maximum
in the face-on orientation (1 =0) and decreases to a
minimum at edge-on (1 = z/2). On the other hand, the
spherical harmonics favor the higher-order modes
with respect to the dominant one in orientations close
to edge-on where | _,Y,, (1= 7/2)|/| .Y, (1= 7/2)|> 1.
Furthermore, a direct inspection of the harmonic factor
shows that the modes (3,2), (4,3) are suppressed (i.e.,
|_>Y 2 (1)]/]_,Y5,(2)| < 1) for a larger region in ¢ than for
the modes (3,3), (2,1), (4,4), (5,5). For this reason the
contribution of the former to the gravitational polariza-
tions is limited to a smaller number of orientations with
respect to the latter.

III. SELECTING THE MOST-IMPORTANT
HIGHER-ORDER MODES FOR MODELING

In this section we first introduce the faithfulness function
as a tool to assess the closeness of two waveforms
when higher-order modes are included. Then, we use it
to estimate how many gravitational modes we need to
model in order not to lose more than 10% in event rates
when restricting to the binary’s configurations in the NR
catalog at our disposal. We also determine the loss in
faithfulness of the NR waveforms due to numerical error.

The GW signal measured from a spinning, nonprecess-
ing and noneccentric BBH is characterized by 11 param-
eters, namely the masses of the two bodies m; and m,,
the (constant) projection of the spins in the direction
perpendicular to the orbital plane, y; and y,, the angular
position of the line of sight measured in the source’s frame
(1,¢0) [see Eq. (2.1)], the sky location of the source in the
detector frame (0, ¢), the polarization angle v, the lumi-
nosity distance of the source D; and the time of arrival 7.
The signal measured by the detector takes the form:

h= F+(0’ ¢7 l//)th(l’ Do DL’ gv tc; t)
_'_ F>< (9’ ¢’ W)hx(la (pOa DL7 éa tc’ t)?
where for convenience we introduce &= (m, my, 1, x»)-

The functions F_ (0, ¢, w) and F, (6, ¢, y) are the antenna
patterns [15,78]:

(3.1)

H_C#OSZ@ cos(2¢) cos(2y )+

— cos(0) sin(2¢) sin(2y),

F (0.¢,w) =
(3.2)

Hcfoszw)cos(zqs) sin(2y)

+ cos(0) sin(2¢) cos(2yr).

F (0.¢,y) =
(3.3)

Equation (3.1) can be rewritten as:

h= A0, ¢)[cos k(0. ¢, w)h (1,0, Dv. & 1c51)

+ sink(6, ¢ w)hy (1.4, Dy, &. 13 1)) (3:4)

where k(0, ¢, y) is the effective polarization [38] defined in
the region [0, 27) as:

ik(Op) — F (0,¢,y)+iF,(0,¢,y)
VF2(0.h.w) + FX(0. . w)

while A(0, ¢) reads:

. (3.5)

AO.9) = \[F20.0.9) + F2(0.0.9).  (36)

We stress that .A(6, ¢) does not depend on y despite the
fact F, and F, depend on it. Henceforth, to simplify the
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notation we suppress the dependence of x on (6, ¢,y).
Given a GW signal hg and a template waveform A, we
define the faithfulness as [38,79]

hg, h
f(lSv Poss KS) = max #
e\ @oisKy (hs, hs)(ht’ ht)

], (3.7)
&=k
where parameters with the subscript “s” (“t”) refer to

the signal (template) waveform. The inner product is
defined as [15,78]:

(a,b) = 4Re/fh dfw’

AR 38

where a tilde indicates the Fourier transform, a star the
complex conjugate and S,(f) is the one-sided power
spectral density (PSD) of the detector noise, and we employ
the Advanced LIGO’s “zero-detuned high-power” design
sensitivity curve [74]. The integral is evaluated between the
frequencies f; = 20 Hz and f};, = 3 kHz. When the signal
is an NR waveform that starts (ends) at a higher (lower)
frequency than f; (f},), we choose the starting (ending)
frequency of the NR waveform. Note that the dependence
on the luminosity distance D; disappears in Eq. (3.7)
because template and signal are normalized in that expres-
sion. In principle, we could define the faithfulness in
Eq. (3.7) maximizing also over the inclination angle .

This would certainly increase the faithfulness. However,
as we have discussed in the previous section, the inclina-
tion angle 1 affects considerably how higher-order modes
impact the signal, thus we find more appropriate to
investigate the waveform model in the worst situation in
which we do not allow any bias in the measurement of the
inclination angle.

The maximizations over f. and ¢ in Eq. (3.7) are
computed numerically, while the maximization over x; is
done analytically following the procedure described in
Ref. [38] (see Appendix A). When &, does not include
higher-order modes, the maximization over the effective
polarization «; in Eq. (3.7) becomes degenerate with the
maximization over ¢, and we recover the usual definition
of faithfulness.

The faithfulness given in Eq. (3.7) depends on the signal
parameters (i, @5, K ). To understand how the faithfulness
varies as function of those parameters, we introduce the
minimum, maximum, average and average weighted with
the SNR unfaithfulness [l — F (i, @, k)] over these
parameters, namely [38,79,80]:

min (1 —F)=1- max F(i, @o. k), (3.9)
L5505 K L5505 K
max (1 —F)=1- min F(i, @os, k), (3.10)
Is:Q0s:Ks Is:Q0s:Ks
|
1 2 1 2n
<1 - F>lb,(p05.l€g =1 _W/ sz/ d(COS ls)/ d(pOSf(lw ¢057Ks)’ (311)
= Jo -1 0
(3.12)

I5:90s-Ks

(1 _]:->SNRweighted —1_; Jo7 dr [1; d(cos i) [57 dposF (5. os. K)SNR? (i, @os. &)
amdi [1) d(costy) [37 dposSNR? (1, @, k) ’

where the SNR(i,, @, 05, @, ks, Dy s, &, 1) is defined as:

SNR(ls’ (005’65’ ¢S7KS’ DLS9‘§51 tcs) =V (hsv h%) (313)

We note that for the average unfaithfulness weighted with
the SNR in Eq. (3.12), we drop in the SNR the explicit
dependence on .A(0, ¢) and Dy, because they cancel out. It
is important to highlight that the unfaithfulness weighted
with the cube of the SNR is a conservative upper limit of
the fraction of detection volume lost. Indeed, weighting the
unfaithfulness with the SNR takes into account that, at a
fixed distance, configurations closer to an edge-on orien-
tation have a smaller SNR with respect to configurations
closer to a face-on orientation, therefore they are less likely
to be observed. The definitions of minimum, maximum and
averaged unfaithfulness in Eqs. (3.9)—(3.11) are similar to
those in Ref. [32], with the difference that in the latter they

|
minimize, maximize and average also over the source
orientation z,. The average weighted with the SNR in
Eq. (3.12) was introduced in Ref. [80] and used for a
similar purpose also in Ref. [79].

In the following we shall show results where all the
averages are computed assuming an isotropic distribution
for the source orientation and sky position.

Using the aforementioned definitions (3.9)—(3.12), we
compute the unfaithfulness assuming that the signal is an
NR waveform with modes (£ <5, m # O),] and the tem-
plate is either an NR waveform or a SEOBNRv4 waveform
with only the (2,2) mode.

'Since the nonoscillating m = 0 modes are not well repro-
duced by NR simulations and their contribution is small, we do
not include them in these calculations. We find that the con-
tribution of the modes with £ > 6 is negligible.
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curves) which in practice correspond to edge-on and minimized over the other two angles. The vertical dotted-dashed black line is the
smallest mass for which the (¢, m) = (2,1) mode is entirerly in the Advanced LIGO band. The (Z,|m’|) mode is entirerly in the
Advanced LIGO band starting from a mass m' times the mass associated with the (#, m) = (2, 1) mode. The horizontal dotted-dashed

black lines represent the values of 1% and 3% unfaithfulness.

In the left panel of Fig. 3 we show results for the simula-
tion SXS:BBH:0610 having g=1.2,y;=-0.5,y,=-0.5.
Given the small mass ratio, we do not expect the higher-
modes to play an important role. Indeed both the NR
with only the dominant mode and the SEOBNRv4 model
have averaged unfaithfulness <1% in the mass range
20 Mg <M <200 Mg. In both cases the unfaithfulness
is maximum for an edge-on orientation and is <3%.
Conversely the minima of the unfaithfulness occur for a
face-on configuration and they are always much smaller than
1%. The situation is very different in the right panel of Fig. 3
where we consider the simulation ET : AEI : 0004 that has
larger mass ratio and spins: g = 8, y; = y, = 0.85. In this
case the minima of the unfaithfulness correspond to a face-on
orientation where the higher-order modes are negligible and
for this reason both NR with only the dominant mode and the
SEOBNRv4 model have unfaithfulness smaller than 1%. By
contrast, the results for the maximum of the unfaithfulness
correspond to an edge-on orientation and they are equally
large for the NR with only the dominant mode and for the
SEOBNRv4 model. They have unfaithfulness in the range
[10%, 20%] for masses 20 My < M <200 My. In this
case also the averaged unfaithfulness are large, in the range
[5%, 15%] and [3%, 8%] for the weighted averages.

Thus, for this high mass-ratio configuration the error
from neglecting higher-order modes supersedes the mod-
eling error of the dominant mode when the orientation is far

from face-on/face-off. This is not surprising because the
SEOBNRv4 waveform model was constructed requiring
1% of maximum unfaithfulness against the NR waveforms
when only the (2,2) mode was included [27].

Only by properly including the largest subdominant
modes can one hope to achieve an unfaithfulness of the
waveform model below 1%.> Which subdominant modes
should we include to achieve such an accuracy? To address
this question, we compute the faithfulness between NR
waveforms including the modes (2,2), (2,1), (3,3), (4,4),
(5,5) and NR waveforms including only the (£ < 5, m # 0)
modes. We find that the unfaithfulness averaged over the
three angles (ing, @onr.Knr) ranges between 0.01% 3
(1 —F) 5 0.5% for the total mass interval 20 Moy <M <
200 M. Thus, we conclude that the modes (2,2), (2,1),
(3,3), (4,4), (5,5) are sufficient to model the full GW signal
if we want to achieve an average unfaithfulness smaller
than 1%. Furthermore, we note that these modes are not
enough to ensure that the maximum of the unfaithfulness is
smaller than 1%. In fact, for some of the configurations
with higher mass ratio, the unfaithfulness is slightly larger

*We notice that using a waveform model with unfaithfulness
smaller than 3% (or 1% depending on the features of the template
bank) is a sufficient condition for a template bank to have a loss in
event rates due to modeling error and discreteness of the template
bank smaller than 10% (e.g., see Ref. [17]).
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NR (¢,m) = [(2,2),(3,3),(2,1),(4,4),(5,5)] vs NR (£ < 5, m # 0)
Imm 5<4<10 m 2<g<5 ey

1072

1-F

max
INR>PONR>KNR

._
S
w

20 40 60 80 100 120 140 160 180 200

MM

FIG. 4. Maximum of unfaithfulness (1 —F) over the three
angles (inr, @onr.> Knr) @S @ function of the total mass, in the
range 20 My < M <200 M, of the NR waveform with (2,2),
(2,1), (3,3), (4,4), (5,5) modes against NR waveform with (¢ <
5,m #0) modes. The maximum unfaithfulness is typically
reached for edge-on orientations. The jaggedness of the curves
is caused by the numerical noise present in higher-order modes
that are less resolved in the NR simulations. We find that this
feature is not present when these noisy modes are removed from
the calculation of the faithfulness.

than 1% in the mass range 20 Mo, <M <200 M, as it is
clear from the plot in Fig. 4. The maximum unfaithfulness
decreases, almost reaching the requirement of being below
1% for all the waveforms in the catalog, if we add also the
more subdominant modes (3,2), (4,3). However, given that
the overall improvement in the maximum of unfaithfulness
when including also the modes (3,2), (4,3) is small (of the
order of a few 0.1%) with respect to the results obtained
using only the (2,2), (2,1), (3,3), (4,4), (5,5) modes, it is
worth comparing this improvement with the estimation of
the maximum of the unfaithfulness due to the numerical
error of the NR waveforms. The numerical errors we
consider are numerical truncation error [57,81] and wave-
form extrapolation error [57,81,82]. For our NR catalog, we
estimate the numerical truncation error computing the
maximum of the unfaithfulness between the same NR
waveforms with the same modes [i.e., (2,2), (2,1), (3,3),
4,4), (5,5)], but with different resolutions, notably the
highest (maximum) resolution and the second highest.
The waveform extrapolation error is estimated in the same
way, but employing different extrapolation orders (i.e., N =
2 and N = 3). We find that the contribution of each of these
errors to the maximum of the unfaithfulness is in the range
[0.1%, 1%] for the total mass interval 20M 5 <M <200 M @.3

The unfaithfulness averaged over the three angles (INR> PONR>
Kknr ) due to numerical errors is much smaller than 1%. The reason is
that the main contribution to this average unfaithfulness is the
numerical error of the dominant mode. The latter is much smaller
than 1%, as well. This conclusion is in agreement with Ref. [57]
where the authors studied the numerical errors of the dominant mode
for a subset of the waveforms in our NR catalog.

Since adding the modes (3,2), (4,3) is a non trivial task
because of the mode mixing between spherical and
spheroidal harmonics [65,83-85], and considering that
their contribution is at the same level of the numerical
error of the NR waveforms, we decide not to include them
in the SEOBNRv4HM model. The results of the maximum
of the unfaithfulness due to the numerical errors suggest
that in order to use NR waveforms to build an EOBNR
model having maximum unfaithfulness against NR smaller
than 1% it would be necessary to have more accurate
higher-order modes from NR simulations.

IV. EFFECTIVE-ONE-BODY MULTIPOLAR
WAVEFORMS FOR NONPRECESSING
BINARY BLACK HOLES

In this section we describe the main ingredients
used to build the multipolar spinning, nonprecessing
SEOBNRvV4HM waveform model. We start briefly describ-
ing the dynamics in Sec. IVA, and then focus on the
structure of the gravitational modes in Sec. IV B.

In the EOB formalism the real dynamics of two bodies
with masses m, , and spins S, , is mapped into the effective
dynamics of a test particle with mass y and spin S, moving
in a deformed Kerr metric with mass M = m; + m, and
spin S (for details see Ref. [86]). As discussed above,
here we limit to nonprecessing spins S; , and introduce the

dimensionless spin parameters y , defined as S; = ;(imizﬁ,
with —1 <y, < 1.

A. Effective-one-body dynamics

The EOB conservative orbital dynamics is obtained from
the resummed EOB Hamiltonian through the energy
mapping [20]

H
HEOB :M\/1+21/< eff_1>’
H

where y = mym,/(m; +m,) is the reduced mass of
the BBH and v =pu/M is the symmetric mass ratio.
When spins are nonprecessing the motion is constrained
to a plane. Thus, the dynamical variables entering the
Hamiltionian are the orbital phase $.," the radial separation
r (normalized to M) and their conjugate momenta p, and
p, (normalized to u). The explicit form of H. that we
adopt here was derived in Refs. [24,86], based on the linear-
in-spin Hamiltonian for spinning test particles of Ref. [87].
The radial potential entering the 00-component of the
EOB deformed metric, which also enters the effective
Hamiltonian H., is explicitly given in Egs. (2.2) and

(4.1)

*Abusing notation, we indicate the orbital phase with ¢, which
we use to denote the azimuthal angle describing the sky location
of the source in the detector frame. It will be clear from the
context which of the two angles we refer to.
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(2.3) in Ref. [27]. The Hamiltonian H; depends also on
the calibration parameters (K, dso, dss Arz,,), which were

determined in Ref. [27] by requiring agreement against a
large set of NR simulations (see Eqgs. (4.12)—(4.15) therein).
Here, we adopt the same values for these calibration
parameters.

The dissipative dynamics in the EOB formalism is
described by the radiation-reaction force given in
Eq. (2.9) in Ref. [27]. We notice that in this paper we
do not change the dissipative and conservative dynamics of
the SEOBNRv4 model, and that the SEOBNRv4HM wave-
form models share the same two-body dynamics of
SEOBNRv4. Here, we improve the accuracy of the gravi-
tational modes with (£, m) # (2,2), and use them in the
gravitational waveform, but we do not employ these more
accurate version of the modes in the radiation-reaction
force. Furthermore, we note that the gravitational modes
with (£, m) # (2,2) are present in the radiation-reaction
force, but they do not include the NQCs corrections [see
Eq. (4.13)]. As discussed also in Ref. [45], the latter modify
the amplitude of the already subdominant higher-order
modes (see Fig. 1) by ~10% close to merger, where the
effect of the radiation reaction is not very important for the
plunging dynamics.

B. Effective-one-body gravitational modes

As usual in the EOB formalism [21], the gravitational
modes entering Eq. (2.1) are composed of two main parts:
inspiral and plunge, and merger and ringdown. We can
write the generic mode as:

hinsp—plunge 1), t < tfm
hfm(t) = ir;lrger—RD( ) ?amh (42)
hfm (t)’ 1> tm’;ltch’
where £/ . is defined as:
o Bk (¢,m)=(2,2),(3,3),(2,1),(4,4)
match
: 2, —10M, (£,m)=(5.5).
(4.3)
with 22, being the peak of the amplitude of the (2,2) mode.

By construction the amplitude and phase of h,,, () are C' at
t = 2" .. In the following we shall discuss in more detail
how these two parts of the gravitational modes are built
and why we choose a different matching point for the
mode (5,5). We note again that the mode (2,2) in the
SEOBNRV4HM model is the same as in the SEOBNRv4
model, and for this reason below we focus on the higher-

order modes (3,3), (2,1), (4,4), (5,5).

C. Effective-one-body waveform modes:
Inspiral-plunge

The inspiral-plunge EOB modes are expressed in the
following multiplicative form:
PP = BE N g, (4.4)
where hE  is the factorized form of the PN GW modes
[16,88] for quasicircular orbits, aimed at capturing strong-
field effects, as discussed in the test-mass limit [76,89,90].
The factor N, in Eq. (4.4) is the nonquasicircular (NQC)
term, which includes possible radial effects that are no
longer negligible during the late inspiral and plunge, and
that are not captured by the rest of the waveform. More
explicitly, the factorized term reads:

1,y = I SEIT f e, (4.5)

where € is the parity of the multipolar waveform, defined as

0, 7+ miseven
= { " (4.6)

1, Z+ misodd.

(N.€)

The Newtonian term h,,~ reads:

€ Mv (e a— O
= penter v (5.0). @)

where Dy is the distance from the source, Y*" (6, ¢) are the
scalar spherical harmonics and the expression of the
functions n% and ¢, .(v) are given in Appendix A.

The function Vf; is defined as:

‘+e
Vi = v;) ) = MQro, (4.8)
where
OH b, p,=0,pys)] 3
ro = |: EOB(r ¢ p p/)) 3, (49)

Q = d¢/dt being the angular frequency. We also define

vg = (MQ)'/3. The term 3 in Eq. (4.5) is an effective
source term:

Al Heff(’f’pr*vp( )’ e=0
(© { ! (4.10)

Sor = 1
o Lefr = py(MQ)s, e=1

The function T, in (4.5) is a resummation of the leading-
order logarithms of tail effects:
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;L6411 2iHgopQ)
o L +1)
x exp[2imQHgop log(2mry)],

exp[rmQHgog]

(4.11)

where ry = 2M/+/e.

The functions f,,, and e*n in Eq. (4.5) contain terms
such that when expanding in PN order A%, one recovers
hEN (i.e., the PN expansion of the (¢, m) mode up to the PN
order at which ALY is known today). In the SEOBNRv4HM
model the expression for f,,, and &,, are mostly taken
from the SEOBNRv4 model [27] with the addition of some
newly computed PN terms (for more details and explicit
expressions of f,, and &,, see Appendix A). For the
modes (2,1) and (5,5), f,, includes also the calibration
term cg, Uf{ ", where f,,, denotes the first-order term at
which the PN series of /g, is not known today with its
complete dependence on mass ratio and spins [see
Egs. (All) and (A12)]. The calibration parameter c,,, is
evaluated to satisfy the condition:

e
L ()| = 10T ST e f (€ m) | imien

for (¢,m) = (2,1),(5,5),
(4.12)

= [ (1)

where |ANR(z/m )| is the amplitude of the NR modes
at the matching point 75 . . The latter are given as fitting
formulas for every point of the parameter space (v, y1,x>)
in Appendix B. We need to include the calibration
parameter c,,, for the modes (Z,m) = (2,1),(5,5) for
reasons that we explain below in Sec. IV D.

Finally, the term N, in Eq. (4.4) is the NQC correction:

2 hem hem
pr* R a2 a3
e (4 + 5+ )

3
X exp |:l <blffm i)_grz + bgfm %)] ,

which is used to reproduce the shape of the NR modes close
to the matching point /74" As done in the past [25,27],
the 5 constants (a},ahe, avm, b, bhem) are fixed by
requiring that:
(i) The amplitude of the EOB modes is the same as that
of the NR modes at the matching point 2

match*

me: |:1+

(4.13)

| hi;;p»plunge ( £m

match)' - |h1;r];([fm )l’

match

(4.14)

‘We notice that this condition is different from that in
Eq. (4.12) because it affects AP (#£m ) and
not h];m(tﬁlgtch)‘

(i) The first derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the

matching point "

AREEG| RO s
dt l:tfm dt t:t(’m ’ '

match match

(iii) The second derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the

. . f .
matching point 77 . :

AP ()|
dr?

()
t=tt’m dt2

match

; (4.16)
t=tt’m

match

(iv) The frequency of the EOB modes is the same as that
of the NR modes at the matching point 12

match*

insp-plunge / .#m _ _NR(m .
wfm (tmatch) - wfm([match)’

(4.17)
(v) The first derivative of the frequency of the EOB
modes is the same as that of the NR modes at the

. . f .
matching point 727 .

dayg, (5| delii(n)
= . (4.18)
dt t=tim dt t=tm

match match

where the RHS of Egs. (4.14)—(4.18) (usually called
“input values”), are given as fitting formulas for every
point of the parameter space (v,y,x,) in Appendix B.
These fits are produced using the NR catalog and
BH-perturbation-theory waveforms, as described in
Appendix F.

As we discuss in Appendices B and C, we find that for
several binary configurations in the NR catalog, the
numerical error is quite large for the mode (5,5) close to
merger. To minimize the impact of the numerical error on
the fits of the input values, we are obliged to choose the
matching point for this mode earlier than for other modes,
as indicated in Eq. (4.3).

D. Minima in (2,1), (5,5)-modes’ amplitude
and c,,,’s calibration parameters

We want now to come back to the motivation of
introducing the c,,,’s calibration parameters in Eq. (4.12)
for the modes (2,1) and (5,5). We note that those parameters
are determined and included in the waveform before
applying the NQC conditions (4.14)—(4.18). We introduce
the c,,,’s to “cure” the behaviour of the modes (2,1), (5,5)
close to the matching point for a particular region of the
parameter space. Indeed, we find that the factorized expres-
sion of the amplitude |h%, ()| starts to decrease toward
plunge and merger, approaching minimum values close to
zero for ¢ ~ 2% when the binary parameters have ¢ ~ 1 and
large |y4| = |(x1 —x2)|/2. Although the term f,, in

084028-9



ROBERTO COTESTA et al.

PHYS. REV. D 98, 084028 (2018)

(g, 21, %) =(1.1,-0.4, -0.7)

107! ;
1072 é
E 1073 ;
= 3
1074 =
10-3 é
ATTY‘YTT‘YYT‘YYY{TYY‘TTY‘TTT‘Y
—3000 —2500 —2000 —1500 —1000 —500 0
t/M
——— (6,m)=(2,2) ——-- (6,m) =(5,5) = (L,m) =(4, 4)
------- (6,m) =@3,3) = (Lym) =(4,3) —— (£,m) =(3,2)
— (Lm) =2, 1)
FIG. 5. Amplitude of the (2,2), (2,1), (3,3), (4,4), (5,5), (3,2),

(4,3) modes versus time for the NR simulation SXS:BBH:1377
with parameters ¢ = 1.1,y; = =04, y, = —0.7. We produce
such simulation to check if the analytical prediction that the
(2,1)-mode’s amplitude would have a nonmonotonic behavior
toward merger holds. We choose as origin of time the peak of the
(2,2) mode.

Eq. (4.5) is responsible of the zeros in the amplitude, we find
that this unexpected behaviour is also present in the PN-
expanded form of the mode, and persist in other mode
resummations, like those suggested in Ref. [76] [see Eq. (2)
therein] and in Refs. [91,92].

Quite interestingly, in the case of the (5,5) mode, we do
not find such a nonmonotonic behavior toward merger in the
NR simulations at our disposal, but we do find it for the (2,1)
mode in the same region of parameter space predicted by the
analytical computation. In particular, we notice minima
toward merger in SXS:BBH:0612 with (¢g=1.6,y;=
0.5,y,=-0.5),SXS:SXS:BBH: 0614 (¢ =2,y = 0.75,
1> =—0.5), SXS:BBH: 0254 (g = 2,4 = 0.6,
x> = —0.6). We also produce a new NR simulation
SXS:BBH:1377 with ¢ = 1.1,y = -04,y, = 0.7 to
check the presence of a minimum in the amplitude mode.
Figure 5 shows indeed the presence of such a minimum in
the (2,1) mode amplitude for SXS:BBH:1377.

The minima (or zeros) of the (2,1), (5,5) modes can
sometime occur at times ¢ ~ t%”h, that is close to the times
where we impose the NQC conditions (4.14)—(4.18). When
that happens, the enforcement of such conditions yield a
waveform which contains unwanted features.’ Considering

5Q: insp-plunge /_#m . . I .
Since |hy,, (¢ )] ~0, imposing the condition in

Eq. (4.14) with [hXR(#2™ )| # O forces the function [N ,,|, hence

match

the amplitude | 2P (1|, to assume unphysically large values

‘m
for t < £ ..

that for the mode (5,5) the minima are absent in the NR
simulations, thus they are likely an artefact of the analytical
waveform, and that for the mode (2,1) the minima are
present only in the region of parameter space where the
(2,1) mode is much smaller than the other modes (i.e., when
g~ 1land |ys| = |(x1 —x2)|/2 is large, see also Fig. 5), we
decide to remove the minima from the (2,1) and (5,5) EOB
modes. We achieve this by introducing the calibration
parameter c,,, which enforces the condition that the EOB
amplitude at /23" i3 equal to the NR amplitude [see
Eq. (4.12)]. Note that the latter is imposed before the NQC
conditions and removes the minima only when they appear
for t ~ tﬁl’:wh. Modeling the minima in the (2,1) modes
could be considered in the future, when more accurate
waveforms would be needed at higher SNRs.

Henceforth, we attempt to describe why the analytical
modes (both in the PN and factorized form) present minima
or zeros for the (2,1) and (5,5) cases when g ~ 1 and |y, | =
|(x1 — x2)|/2 is large. Readers who might not be interested
in this technical discussion, could skip the rest of this
section and move to Sec. IV E.

As discussed in Sec. II, because of binary symmetry
under rotation (¢pg — ¢y + 7) the modes with odd m vanish
for equal-mass and equal-spins configurations. Thus, the
nonspinning terms in those modes are proportional to 6m =
(m; —m,)/M while the spinning terms are an antisym-
metric combination of ém, y, and ys = (y; +x2)/2 (e.g.,
;(A,Zsém,)(ﬁém), see e.g., Egs. (382)—(38i) in Ref. [76]. In
the limit g ~ 1 all the nonspinning and spinning terms
proportional to 6m are suppressed, and the leading spinning
terms are proportional to y,. For large values of y, and
small values of 6m (very unequal spins, almost equal mass)
a cancellation between the leading-order spin correction
and the dominant nonspinning PN term (which despite
being of lower PN order is suppressed by dm) can occur at
some given frequency. The higher the difference in PN
orders between these two leading spinning and nonspin-
ning contributions, the higher the frequency at which the
cancellation happens. For the (2,1) mode, there is only a
half PN order difference between these terms (see Eq. (38b)
in Ref. [76]), so the cancellation arises at sufficiently low
frequencies where this PN analysis based on two leading
terms can be reliable, and, indeed, we do observe these
minima in the NR simulations. In Table I we list the
configurations in our NR catalog where the minimum
happens and its orbital frequency as measured in the NR
simulation® and as predicted by PN modeling at 3PN order
[19,48,88]. As expected, the lower the frequency, the more
accurate the PN prediction. We note that the last row shows
results of a NR simulation that we specifically produce to
confirm the presence of the minimum in the mode (see also
Fig. 5). We note that for the binary’s configuration listed in

®We estimate the orbital frequency in the NR simulation as half
of the gravitational frequency of the (2,2) mode.
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TABLE I. For each NR simulation, binary’s parameters and
values of the orbital frequencies MQYR and MQEN at which the
minimum of the (2,1) mode occurs.

NR name q X1 Ve MpR MO
SXS:BBH:0254 2 0.6 -0.6 0.17 n/a

SXS:BBH:0614 2 075 =05 0.082 0.057
SXS:BBH:0612 1.6 0.5 -0.5 0.068 0.047
SXS:BBH:1377 1.1 -04 -0.7 0.033 0.029

the first row of Table I, the NR simulation shows a high-
frequency minimum, which is not reproduced by PN
calculations, confirming that this analysis becomes less
reliable in the high-frequency regime.

Lastly, as already pointed out above, for the (5,5) mode we
do not observe any minimum in the NR simulations at our
disposal. The most likely explanation is that the cancellation
of the leading terms happens at frequencies high enough that
the higher-order PN corrections would change the result
(i.e., they completely remove the minimum or push it at
frequency higher than the merger frequency).

E. Effective-one-body waveform modes:
Merger-ringdown

We build the merger-ringdown EOB waveforms follow-
ing Refs. [27,63,64,66], notably the implementation in
Ref. [27]. The merger-ringdown mode reads:

HSER (1) = g, (1) Bent o), (4.19)

where 6,4, is the (complex) frequency of the least-damped
QNM of the final BH. We denote 6%, = J(04,,0) < 0 and
oy, = —NR(6m0). For each mode (¢, m), we employ the
frequency values tabulated in Refs. [69,93] as functions of
the BH’s mass and spin. We compute the remnant-BH’s
mass using the same fitting formula in Ref. [25], which is
based on the phenomenological formula in Ref. [94], but
we replace its equal-mass limit (see Eq. (11) in Ref. [94])
with the fit in Ref. [95] (see Eq. (9) of Ref. [95]). The
remnant-BH’s spin is computed using the spin formula in
Ref. [96] (see Eq. (7) in Ref. [96]).

For the two functions A, (1) and ¢y, (), we use the
ansitze [27]:

Agn(t) = cfl tanhle{h(r = i) + 5] + e, (4.20)

a7y (=)

1+dje

7 f) = fr’n _dfml
bem(t) match — ¢1,c 108 1+ d;’;

. (421)

where 452;’“:}1 is the phase of the inspiral-plunge mode

(¢.m) at t = ;" . The coefficients d{" and c{™’ with

9

7 . . .
The subscript “c” means “constrained” while “f” stands for
free”.

i =1, 2 are fixed by imposing that the functions A, ()
and ¢, (1) in Eq. (4.2) are of class C' at t ="

match*
Those constraints allow us to express ¢/” in terms of

A [ G | AT vt A S
1 insp-pl
cit = —= [0z, " ()|
oy
= Rl P () leosh?(e57). (422)
hinsp—plunge tfm 1 -
egp = - en— Ukl g it )
v cipy
—_— _
= o ulhgn " (then )] cosh(c5'}) sinh(c57).
(4.23)
and d{" in terms of d{".d§". oY, . ot P (14 ) as
dém — [gmspplunge cifm [ 1+ dgf;l" 4.24
l.e — [a)fm (tmatch) - Gfm] dfmdfm ' ( : )
Lf72.f
Let us emphasize again that the
values of [ PPUE (rn )| Oy WP (16 )| and

@SPPnEe(im ) are fixed by the NQCs conditions in

Egs. (4.14), (4.15), and (4.17) to be the same as the NR
insp-pl

values |18 (00 )| O, Y (17 p) | and g PP e (ri )

which are given in Appendix B as function of v and a

combination of the spins y; and y,. Thus, we are left with

only two free parameters in the amplitude ¢/ 7 and in the

phase df 7. To obtain those parameters we first extract them

applying a least-square fit in each point of the parameter
space (v,x1,yx,) for which we have NR and Teukolsky-
equation-based waveforms. Then, we interpolate those
values in the rest of the parameter space using polynomial
fits in v and a combination of y; and y», as given explicitly in
Appendix C.

Regarding the accuracy of our merger-ringdown model,
for the modes (2,1) and (3,3) the average fractional
difference in the amplitude between the model and the
NR waveform is of the order of percent, while the average
phase difference is <0.1 radians. For the modes (4,4) and
(5,5) we are unable to determine a similar average error,
because those modes are affected by numerical error at
merger and during ringdown, as we discuss in Appendix C.
We find that the average fractional difference in the
amplitude (phase) between the model and the NR simu-
lation can be in some cases on the order of 10% (<0.3 rad),
but this can be comparable to the difference between NR
waveforms at different extraction radius (see Fig. 13 in
Appendix C). We notice that although the errors in those
modes are not as small as those of the modes (2,1) and
(3,3), they are still acceptable considering the relatively
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FIG. 6. Faithfulness F(cos(ing ), @onrs kng = 0) for the configuration (¢ =3,M =200 Mg,y =0.85,y, =0.85):NR (¢ < 5,m #0)
vs SEOBNRv4 (left panel), NR (£ < 5,m # 0) vs SEOBNRv4HM (right panel). We plot the faithfulness for a fixed kg because we have

noted that F (ixg, @onr, knr) is mildly dependent on this variable.

small amplitude of the modes (4,4) and (5,5) with respect to
the (2,1) and (3,3).

In summary, given a binary configuration (m,
mo, x1,x>), the merger-ringdown model that we have
developed is uniquely determined by the following param-
eters  (my,my, 1, yo, 50 4o P50 1 0L 6% ), the latter
being a function of the remnant-BH’s mass and spin
determined by the NR fits. It is possible to use this
merger-ringdown model as a stand-alone model (i.e.,
independently from the inspiral-plunge part), if we also
provide equations relating ¢ . [i.e., the phase of the mode
(¢, m)at " 1with @22, , . Indeed even if a global time and
phase shift is possible, the relations between the phases of
different modes are fixed. The latter are given as a fit for
every point of the parameter space (v, y1, y») in Appendix D.
We note that in this stand-alone merger-ringdown
model, one can also treat ¢, and 6%, as free parameters
(i.e., we do not compute them from Refs. [69,93]). In this
case the merger-ringdown model is a function of
(ml s Mo Y15 X25 tér:tchv Qgtch» Glfmv Gl;m» Mfinal) where Mfinal
is the remnant-BH’s, which is used only to rescale o,

R
and o,,,.

V. PERFORMANCE OF THE MULTIPOLAR
EFFECTIVE-ONE-BODY WAVEFORM MODEL

We study the accuracy of the multipolar waveform
model SEOBNRvV4HM by computing its faithfulness against
waveforms in the NR catalog at our disposal. In Secs. VA
and V B, we perform a detailed comparison against three NR
simulations, notably a moderate—mass-ratio configuration,
SXS:BBH:0293 (¢ =3,y = 0.85,y, = 0.85), and two
high-mass-ratio configurations, SXS:BBH:0065 (¢ =
8,1 =05,4,=0) and ET:AEI:0004 (¢g=38,y, =
0.85,y, = 0.85). We also compare the results above

with those obtained when the (2,2)-waveform-model
SEOBNRv4 is employed. Finally, in Sec. V C we summarize
the agreement of the SEOBRNv4HM model against the entire
NR catalog composed of 157 simulations.

A. Moderate mass ratio: SXS:BBH:0293

In the left panel of Fig. 6 we show a contour plot of the
faithfulness 7 (cos(ing ), Pong» KNR) | —0 Detween the NR
waveform SXS:BBH:0293 with modes (£ <5, m #0),
and the waveform generated with SEOBNRv4, for a total
mass of M =200 M. In order to reduce the dimension-
ality of the plot, we fix the value of kyg. However, we find
that the dependence of the faithfulness on this variable is
mild. We can see that the faithfulness depends mainly on
the inclination angle i\g and degrades when we move from
a face-on {F(cos(ing) = 0) ~99%} to an edge-on orien-
tation { F(cos(iyg) = 1) ~ 92%}. This situation is different
if we include the higher-order modes in the model [i.e., (3,3),
(2,1), (4,4), (5,5)], as can be seen in the right panel of Fig. 6
where we use the SEOBNRv4HM waveform model. In this
case the faithfulness degrades much less if we go from a
face-on (F ~99.7%) to an edge-on (F ~ 98.5%) orienta-
tion. The small residual degradation is due to the fact that the
dominant mode is still better modeled than the higher-order
modes and for this reason for a face-on orientation (where
the signal is dominated by the dominant mode) the faithful-
ness is larger than for an edge-on orientation where the
higher-order modes contribute the most. Another contribu-
tion to the residual degradation in an edge-on orientation
stems from the fact that in the SEOBNRv4HM model we still
miss some subdominant higher-order modes, which instead
we have included in the NR waveform.

As done in Sec. III we summarize the results of the
faithfulness calculation in Fig. 7, where we show the
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FIG. 7. Unfaithfulness (1 —F) for the configuration (¢ =
3,71 =y2 = 0.85) in the mass range 20 My < M <200 M.
Dashed (plain) curves refer to results for SEOBNRv4
(SEOBNRv4HM). The minima of the unfaithfulness for the two
models (blue curves), lie on top of each other because they are
reached for a face-on orientation, where the higher modes
contribution is zero. The unfaithfulness averaged over the three
angles ing, @onr> KNg are obtained assuming an isotropic dis-
tribution for the source orientation, homogeneous distribution in
GW polarization and isotropic distribution in sky position (green
curves and orange curves for the average weighted with the
SNR). The minimum of the unfaithfulness (red curves) in practice
correspond to an edge-on orientation, minimized over the other
two angles. The vertical dotted-dashed black line is the smallest
mass at which the (2,1) mode is entirely in the Advanced LIGO
band. The (¢, m’) mode is entirely in the Advanced LIGO band
starting from a mass m’ times the mass associated with the (2,1)
mode. The horizontal dotted-dashed black lines represent the
values of 1% and 3% unfaithfulness.

minimum and maximum of the unfaithfulness over the NR
orientations, GW polarization and sky position, respec-
tively indicated as min, , . (1 —=F) (blue) and
max, ., x (1 = F) (red); the average of the unfaithful-
ness over these three angles (1 - F), . (green), and
the average of the unfaithfulness weighted with the cube of

the SNR: (1 — F)phRweighted (yange). All the averages are
computed assuming an isotropic distribution for the source
orientation, homogeneous distribution in GW polarization
and isotropic distribution in sky position. All these quan-
tities are shown as a function of the total mass of the
system. In the plots the plain curves are the results of the
unfaithfulness between the NR and SEOBNRv4HM wave-
forms, while dashed curves are the results of the unfaithful-
ness between NR and SEOBNRv4 waveforms. In this case,
the maximum and the averaged values of the unfaithfulness
for the SEOBNRv4 model are one order of magnitude

larger than the ones with the SEOBNRv4HM model. The
minimum of the unfaithfulness is the same for both models
(blue curves lying on top of each other) because it is
reached for a face-on orientation, where the contribution of
the higher-order modes used for SEOBNRv4HM is zero.
Indeed the -2 spin-weighted spherical harmonics associated
to these higher-order modes go to zero for face-on
orientations. We note also that in SEOBNRv4, as expected,
the disagreement grows strongly with the total mass of the
system, because higher-order modes are more important
toward merger and ringdown.

B. High mass ratios: SXS:BBH:0065
and ET:AEI: 0004

More striking conclusions about the improvement
of the waveform model due to the inclusion of higher-
order modes can be drawn looking at the comparison
with the two NR simulations SXS:BBH:0065 and ET:
AET : 0004, for which higher-order modes are expected to
be more important, because of the higher mass ratio. For the
first configuration (¢q=8,M =200My,y; =0.5,y,=0)
we see in Fig. 8 that the faithfulness between the NR (£ <
5,m#0) and the SEOBNRv4 waveforms (left panel)
degrades much faster than before as a function of the
inclination angle iyg, reaching F < 90% already for values
of cos(ing) ~ 0.7 (ing ~ 45°), being very large for the edge-
on inclination F ~ 80%. Similarly to what happens for the
example discussed in Sec. VA, the situation is much better
if we include in the model the higher modes, as can be seen
in Fig. 8 (right panel). Now, the degradation as a function of
ing 18 much weaker and for edge-on orientations the
faithfulness reaches values close to F ~98%. Similar
conclusions can be drawn by looking at Fig. 9, which refers
to the simulation ET:AEI:0004 (¢g=8M=200M,,
21=0.85,7,=0.85). The only relevant difference with
respect to the aforementioned case is that in this case the
faithfulness of the SEOBNRv4HM waveform is a little
bit smaller and it goes down to F ~ 97.7% in the edge-
on orientations. At a fixed binary orientation, the faithful-
ness of the (2,2)-waveform-model SEOBNRv4 against
the NR waveform for the configuration (¢ =8, M =
200 Mg,y = 0.85 = y, = 0.85) is always larger than that
for the configuration (g =8 M =200 Mg,y =0.5,
x> =0). This can be explained considering that, as dis-
cussed in Sec. II, for a fixed mass ratio the (2,1) mode is
increasingly suppressed when the spin of the heavier BH
grows, while the other higher-order modes are mostly
constant as a function of the spins. Since in the first case
1, that is the spin of the heavier BH, is larger than in the
second case, the (2,1) mode is more suppressed in the first
case than in the second one. For this reason the faithfulness
with the SEOBNRv4 model, including only the dominant
mode, is higher for the first configuration.

As for the previous configuration, in Fig. 10, we show
the summary of the faithfulness results as maximum,
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FIG. 10. Unfaithfulness (1 —F) in the mass range 20 My < M < 200 M, for the configuration (¢ = 8,y; = 0.5,, = 0) (left
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Unfaithfulness (1 — F) averaged over the three angles (ing,®@onr,Knr) @S @ function of the total mass, in the range

20 Mg < M <200 Mg. Left panel NR (7 <5,m #0) vs SEOBNRv4, right panel NR (£ <5,m #0) vs SEOBNRv4HM. The
horizontal dotted-dashed black lines represent the values of 1% and 3% unfaithfulness.

minimum and averages of the unfaithfulness, respectively
for SXS:BBH:0065 (left panel) and ET:AEI:0004
(right panel). For these binary configurations, even if the
maxima of the unfaithfulness have larger values with
respect to the case discussed in the previous section
(~2% for SXS:BBH:0065 and ~2.7% for ET:
AETI:0004 at a total mass of M =200 My), we still
have acceptable values of the unfaithfulness averaged
over the orientations, sky position and polarizations:
respectively ~1% and ~1.6% for a total mass of
M =200 M. This is a big improvement with respect to
the SEOBNRv4 model, which gives averaged values of
the unfaithfulness larger than 10% for both configurations
and the same total mass. For the configuration with
q = 8,y; = 0.85 = y, = 0.85, the unfaithfulness against
the NR simulation was also computed for the multipolar
waveform model developed in Ref. [47], and found to be
around ~5% for 1, = z/2, when averaging over the angles
ks and ¢, for a total mass M = 100 M. In our model the
maximum of the unfaithfulness (i.e., max, , . (1 —F))
over the angles 1, ¢y and k, is around 1.5% at
M =100 Mg. The reason for the better accuracy of
SEOBNRv4HM model with respect to the waveform model
in Ref. [47] for this “extreme” binary configuration might
be due to the fact that the simple scaling argument used
there to build the higher-order modes is not very accurate
for high-mass ratio and high-spin binary systems. We leave
to the future a direct, comprehensive comparison between
the two waveform models.

As discussed in Sec. III, an important quantity to assess
the improvement that SEOBNRv4HM could yield for
detecting BBHs is the average unfaithfulness weighted
with the cube of the SNR. For this quantity our model
yields values of ~0.7% for SXS:BBH: 0065 and ~1% for
ET:AEI:0004 at a total mass of M = 200 M, compared
to values around ~7% returned by the SEOBNRv4 model.

C. Comparison with entire numerical-relativity catalog

Having studied in detail some particular configurations,
we can now examine how the model works over the entire
NR waveform catalog at our disposal. In Fig. 11 we plot the
angle-averaged unfaithfulness as a function of the total mass
of the system, computed between the NR waveforms with
modes (£ <5,m #0) and the SEOBNRv4 model (left
panel), SEOBNRv4HM model (right panel). Comparing
the two panels, we can see that SEOBNRv4HM yields
unfaithfulnesses one order of magnitude smaller than those
of the SEOBNRv4 model. In the plots different colors
correspond to different ranges of mass ratios, and from
the left panel it is visible that in the case of the SEOBNRv4
model, there is a clear hierarchy for which configurations
with higher mass ratios have also larger unfaithfulness.
This effect is removed in the SEOBNRv4HM model, as
visible in the right panel of the same figure. In general for all
of NR simulations the averaged unfaithfulness against
SEOBNRvV4HM is always smaller than 1% in the mass range
20 My <M <200 M with the exception of few simula-
tions for which the unfaithfulness reaches values <1.5%
for a total mass of M =200 My: SXS:BBH:0202
(¢=7,01=0.6,y,=0), ET:AEI:0004 (¢=38,y,=0.85,
¥>»=0.85),ET:AEI:0001 (¢ =5,y; =0.8,y, =0) and
SXS:BBH:0061 (¢ =5,y =0.5,y, = 0). These are the
configurations in the NR catalog having the most extreme
values of mass ratio and spins. The results of this analysis
does not change considerably if we include in the NR
waveforms only the modes used in the SEOBNRv4HM
model, because, when looking at averaged unfaithfulness,
the error is dominated by the imperfect modeling of the (2,1),
(3,3), (44), (5,5 modes, and not by neglecting other
subdominant higher modes, as discussed in Sec. IIL.

The comparison between the unfaithfulness averaged
over the three angles (ing,@onr,Knr) and weighted by
the cube of the SNR of two waveform models against NR
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FIG. 12. Maximum of unfaithfulness (1 — F) over the three angles (ixg, @onr,knr) @S @ function of the total mass, in the range
20 Mg < M <200 Mg. Left panel NR (7 <5,m #0) vs SEOBNRv4, right panel NR (£ <5,m # 0) vs SEOBNRv4HM. The
horizontal dotted-dashed black lines represent the values of 1% and 3% unfaithfulness. The jaggedness of the curves in the plot (right
panel) is caused by the numerical noise present in the NR higher-order modes, which are not very well resolved. We find that this feature
is not present when these noisy modes are removed from the calculation of the faithfulness.

waveforms displays similar features, with the only difference
of having overall smaller values of the unfaithfulness
(always <1% for the SEOBNRv4HM model). This happens
because weighting with the SNR favors orientations closer to
face-on for which the best modeled (2,2) mode is dominant.

Finally, in the right panel of Fig. 12 we show the
maximum of the unfaithfulness over the three angles
(inR,> PoNR, KNR) Detween the SEOBNRv4HM model and
the NR waveforms with the modes (£ < 5,m # 0). In the
left panel of the same figure we show the same comparison
but this time using the SEOBNRv4 model. Here we see that
the SEOBNRv4HM waveforms have unfaithfulness smaller
than 3% in the mass range considered for all the NR
simulations with the exception of one case, namely SXS:
BBH:0621 (¢=17,y, =-0.8,y, =0) for which the
unfaithfulness at M =200 Mg is (1 — F) ~ 3.1%.

In general, over the NR simulations of our catalog, the
maximum of the unfaithfulness is always smaller than 1% in
the total mass range 20 My < M <200 M, for nonspin-
ning configurations up to mass ratio ¢ = 8. Nonspinning
cases with ¢ > 8 and configurations with high spins and
mass ratios g > 5 have maximum unfaithfulness in the range
1% < (1 = F) <3%. For the former the unfaithfulness
decreases to values smaller than 1% when the comparison
is done including only the modes (2,2), (2,1), (3,3), (4,4),
(5,5) in the NR waveforms [i.e., excluding smaller higher-
order modes like (3,2), (4,3)]. This is not true for high-spin,
high—mass-ratio configurations where the unfaithfulness
due to a nonperfect modeling dominates over that due to
neglecting smaller higher-order modes. It is important to
stress that, as discussed in Sec. III, the maximum unfaithful-
ness due to the numerical error in the NR waveforms of our
catalog is in the range [0.1%, 1%]. This means that when
comparing the NR waveforms with the SEOBNRv4HM
model a fraction of the maximum unfaithfulness as large

as 1% could be due to numerical error. Given that maximum
unfaithfulness are reached for edge-on configurations where
the higher-order modes are more relevant, NR waveforms
with better resolved higher-order modes would be needed in
order to attempt to build a model with maximum unfaithful-
ness smaller than 1%.

VI. CONCLUSIONS

We have worked within the spinning EOB framework
and have built a multipolar waveform model for BBHs with
nonprecessing spins that includes the higher-order modes
(¢,m) =(2,1),(3,3),(4,4),(5,5), besides the dominant
(2,2) mode. In order to improve the agreement with the NR
results we included recently computed PN corrections
[48,49,97] in the resummed GW modes, and also used
nonperturbative informations from NR waveforms in the
NQCs corrections of the higher-order modes, and in the
calibration parameters c,,,’s [the latter only for the modes
(2,1), (5,5)]. We also extended to higher-order modes the
phenomenological ansatz for the merger-ringdown signal
that was originally proposed in Refs. [27,63,64,66] for the
dominant (2,2) mode.

We have found that the unfaithfulness averaged over
orientations, polarizations and sky positions between the
SEOBNR4HM model and NR waveforms of the catalog at our
disposal, is always smaller than 1% with the exception of
four configurations for which the unfaithfulness is smaller
than 1.5%. Moreover, the unfaithfulness are one order of
magnitude smaller than those obtained with the SEOBNRv4
model [27], which only contains the (2,2) mode. The
maximum unfaithfulness over orientations, polarizations
and sky positions between SEOBNR4HM and NR waveforms
is always smaller than 3% with the exception of one
configuration for which the faithfulness is smaller than
3.1%. Also for the maximum unfaithfulness the results are
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one order of magnitude smaller than those obtained with the
SEOBNRv4 model [27]. We have also found that, in the
nonspinning limit, the SEOBNRv4HM model returns values
of the unfaithfulness smaller than its (nonspinning) prede-
cessor waveform model, that is EOBNRv2HM [45] (see
Appendix G).

Other studies are needed to fully assess the accuracy of
SEOBNRv4HM for GW astronomy. In particular it will be
important to understand if unfaithfulnesses below 1% can
affect the recovery of binary parameters, and if so which
parameters will be mainly biased, for which SNR and in
which region of the parameter space. In particular, we expect
that the multipolar SEOBNRv4HM model will be more
precise than the SEOBNRv4 model for recovering the
binary’s inclination angle and the distance from the source.
Indeed, those parameters are degenerate with each other
when only the (2,2) mode is present, and the inclusion of
higher-order modes can help in disentangle them (e.g., see
Ref. [98]). We postpone this kind of studies to the future
because for computational reasons, we would need to
develop a reduced-order-model (ROM) [26] version of the
SEOBNRv4HM model. Another important test for the future
would be the comparison between SEOBNRv4HM model and
other multipolar, inspiral-merger-ringdown in the literature,
such as the IMRPhenom models proposed in Refs. [46,47].
It will be relevant to compare those models especially outside
the range of binary configurations where the NR waveforms
are available, in order to identify if there are regions where the
two models predict significantly different waveforms.

We also expect that the multipolar spinning, nonprecess-
ing waveform model developed here will be a more accurate
model to carry out parameterized tests of general relativity
[30] when BBHs with high mass-ratio, high total mass and in
a non face-on orientation will be detected. Furthermore, the
SEOBNRv4HM model can be employed to search for more
than one gravitational quasi-normal mode in the ringdown
portion of the signal, coherently with multiple detections
[68—71]. In fact, those studies can also be performed with
our multipolar, stand-alone merger-ringdown model.

The SEOBNRv4HM waveform model employs the same
conservative and dissipative dynamics of the SEOBNRv4
model, which was calibrated to NR simulations by requir-
ing very good agreement with the NR (2,2) GW mode.
Further improvements of the SEOBNRv4 waveform model
could be achieved in the future by recalibrating the two-
body dynamics. Such calibration would require the pro-
duction of a new set of NR waveforms (with more accurate
higher-order modes) in the region of high mass-ratios, say
q >4, and high spins, say y;, > 0.6 where few NR
simulations are currently available and where the disagree-
ment between current analytical inspiral-merger-ringdown
waveforms is the worst (e.g., see Figs. 5 and 6 in Ref. [27]).
Those NR waveforms would need to be sufficiently long to
make the calibration procedure sufficiently robust (see
Sec. VI, and Figs. 7 and 8 in Ref. [27]).

In the near future our priority is to include the next largest
modes in the SEOBNRHM model, notably the (3,2), (4,3)

modes. The work would need to take into account the mixing
between spherical-harmonic and spheroidal harmonics dur-
ing the merger-ringdown stage, as observed in Refs. [83,84],
and investigated more recently in Refs. [65,85]. Insights
might need to be gained also from merger-ringdown wave-
forms in the test-particle limit [99-101]. However, to
develop a more accurate multipolar model, one would also
need to reduce the numerical error in NR waveforms around
merger and during ringdown, in particular for the modes
(4,4) and (5,5). Another important and timely application of
this work, is its extension to the spinning, precessing case,
thus improving, the current SEOBNRv3 model [31,32,102],
which only contains the (2,2) and (2,1) modes.
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APPENDIX A: EXPLICIT EXPRESSIONS OF
HIGHER-ORDER FACTORIZED MODES

Here we list expressions needed to build the /,,,’s of the
SEOBNRvV4HM model.

The functions nifrl and ¢, .(v) used in Eq. (4.7) are
defined as (see Ref. [103]):

87 (f+1)(f+2)

(0) — (i 4 Al
n(()) — _(im) f 1677.'1 (22 +1 (f—|—2)(f2—m )
‘m (22 +1 -1+ 1) -1)°
(A2)
and
1 1 +e—1
Crie(V) <2—2V 1 —41/)
1 1 +e—1
+ ( 1)f+€(§+— 1- y> (A3)
We define also the function
eulerlog(m, vg) =y + log(2mug), (A4)

which is used in the expression of the factorized modes.
Here y is the Euler constant.
The quantity f,,, in Eq. (4.5) is:

£
f{ _ {pfm’
m =
(0on)” + fom:

Ziseven,

A5
Zis odd. (A3)

084028-17



ROBERTO COTESTA et al.

PHYS. REV. D 98, 084028 (2018)

The functions py,,, p25, f3,, are defined below; the super-

script “NS” stands for nonspinning, and the superscript “S”
indicates spinning. Below, we also list the phase terms dy,,,.
The quantities f,, and &, for the SEOBNRv4HM model
are mostly taken from the SEOBNRv4 model in Ref. [27]
with the additions of several new terms:
(i) 3PN nonspinning terms in p}y from Ref. [97];
(i) 5PN test-mass, nonspinning terms in p}y from
Ref. [49];
(iii) 5PN test-mass, nonspinning terms in pd> from
Ref. [49];
(iv) 2PN and 2.5PN spinning terms in p44 from Ref. [48];
(v) 3PN, 4PN and 5PN test-mass, nonspinning terms in
p52 from Ref. [49];
(vi) 2PN, 2.5PN and 3PN spinning terms in f3;
from Ref. [48];
(vii) 2PN, 2.5PN and 3PN spinning terms in f5,
from Ref. [48];
|

2v 6719 1861y 1492

7
NS _— 1 _ =) ,2 — —
£33 +< 6+3>”9+< 3960 990 330)”Q

27462112

(viii) 1.5SPN and 2PN
from Ref. [48];
(ix) 3PN and 4.5PN test-mass, nonspinning terms in dss
from Ref. [49].
Furthermore, we find that resummations of the f,
function for the (3,3), (2,1), (4,4), (5,5) modes of the kind
proposed in Refs. [91,92] [see Eqgs. (47) and (48) in the
latter] do not always improve the agreement with the NR
waveforms of our catalog. For this reason we decide not to
implement those resummations when building the
SEOBNRv4HM model. It is worthwhile to mention that
whereas in our model the resummed expressions are com-
puted as a function of vg = (MQ)'/3, in Refs. [91,92] they
are expressed as a function of v, defined in Eq. (69) of
Ref. [104]. While the two variables are very similar at low
frequency, they can differ toward merger where the afore-
mentioned resummation may be more effective.

spinning  terms in  fi

3203101567 | (129509 41
227026800 25740 192 )"

( 57566572157 13

i B 8 _
8562153600 3 culerlog(3. ”9)) Yot < 30566888352000

59 23 47009
A =1+ <——+—) v+ <

56 ' 84 56448 14112 ' 4704

T 154440 T
903823148417327

—eulerlog(3, vg)

120113 26
46332 7 Yo

10993y 6171/2)

87347eulerlog(3, UQ))

13860 v (A6)

(7613 184941 107

— 22 eulerlog(1 6
2607897600 1051108 ’”9)> )
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[e)

Q

911303737344 5880
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1168617463883 6313eulerlog(1 8 63735873771463 + 14061362165760eulerlog( 1

16569158860800 ’
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1320(-1+3v)
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14210377
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32485357y 140114912
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s 487 6490 25612 L, 33537470}
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We notice that f§; is a complex quantity because it contains an imaginary term recently computed in

PN theory [48]
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where with the superscript “S” we indicate the spin
dependence. The term proportional to y,/ém seems to
diverge when o6m — 0, but this divergence is apparent
because, as it happens for all the functions f3, , it is
removed by the factor m that appears in the function
csye(V) [see Eq. (A3)] at Newtonian order [see Eq. (4.7)]. If
one includes the term &3; in the resummation with the
complex exponential, one obtains the expression e!(%+3)
which is not well-behaved in the limit 6m — 0. For this
reason we do not include this new PN term in the

resummation f33¢/®3+%) but, instead, we compute the
latter quantity excluding this term (i.e., f33€'®3) and we
then add the new complex term to the real amplitude f;.
We can do so because €3i53; = i53; + O(Q?), where the
latter is a PN correction at higher order with respect to the
order at which we currently know PN terms.

We remember also that the modes (2,1), (5,5) contain the
calibration parameters ¢, and c¢s5 computed imposing the
condition in Eq. (4.12).

APPENDIX B: FITS OF NONQUASICIRCULAR
INPUT VALUES

We build the fits of the nonquasicircular (NQC) input
values using NR waveforms with the highest level of
resolution available and the extrapolation order N = 2.
Depending on the mode, the fits use a different number of
NR waveforms, because for some binary configurations the
large numerical error prevents us to use some NR modes.
For each mode, in order to choose which NR simulations to
use for the fits, we first remove all the NR simulations
showing clearly unphysical features (e.g., strong oscilla-
tions in the post-merger stage that are not consistent among
waveforms at different resolution and extrapolation order).
For the modes (3,3) and (2,1) all the NR waveforms
pass this selection, while for the modes (4,4) and (5,5)
we remove respectively 10 and 42 NR simulations.
For each NQC input value (i.e., amplitude and its first

|

and second derivative, and frequency and its first deriva-
tive) we weight the value extracted by a given NR
simulation with the inverse of the NR error. The latter is

estimated as 4/ (6neC)? + (hQC)2, where OngC is the
difference between the NQC input values extracted from

the NR waveform with the same extrapolation order
(N =2) and different resolutions (i.e., the highest and

second highest resolution). The quantity 52{% is instead the
difference between the NQC input values extracted from
the NR waveform with the same resolution level (the
highest) and different extrapolation order (i.e., N =2
and N = 3).

We find it convenient to define a few variables that enter
the fits below:

X33 = XsOm + x4, (B1)
Xs

=—=>_9 , B2

X214 = T3, 0M T A (B2)

Yaaa = (1 =50)xs + x40, (B3)
XS

- X5 B4

X21p = 7 _2y5m +Xa (B4)

Xap = (1 =TV)xs + x4, (B5)

om
X=Xst a5 (B6)

1-2v

We notice that the variables y33, ¥214. ¥21p are by definition
zero in the equal-mass, equal-spin limit. They are used for
the fits of the amplitude (and its derivative) to guarantee
that in this limit the modes with m odd vanish, since they
have to satisfy the symmetry under rotation ¢y — ¢, + 7.

1. Amplitude’s fits

|55 (o) | 2
133 Umae)! _ 1(0.101092 — 0.4704100 + 1.07354612 )3
v
+ 5m(0.563658 —0.054609v + 2.3093700% + 0.029813)(%3 - 0.09688101/)(%3) , (B7)
ISR (1 hien)| 2 2 2
11 Umateh ] |5 (~0.428179 + 0.113789w — 0.7736770% — 0.010195 1514 + 0.047004143, , — 0.0932613)2, ,0)
v
4 1214(0.292567 — 0.1971030) + 6m0.0168769,3,, . (BS)
IR (Tt 2 2
14 Vmach)| 0 264658 + 00675842445 + 0.0292511%,, + (=0.565825 — 0.866746y444 + 0.00523419%2, )
v
+ (=2.50083 + 6.8807T44p — 10234752, )0* + (7.69745 — 16.5515x441 )07 (B9)

Bl

s (tmaen) | _ 10.1286218m — 0.4742018mw + 1.08336mu? + 0.0322784y3; — 0.13451 Ly + 009902025522 (B10)
14
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2. Amplitude—first-derivative’s fits

1 d|hSR (¢
Ldhss (1) = 5m(—0.00309944 + 0.01007650)2,
v dt tzt?rfalch
+ 0.00163096\/5m2(8.81166 + 104.4780) + 5m(—5.35204 + 49.68620)y 33 + 125 (B11)
1d|r5F (o)

- = 5m(0.00714753 — 0.03564400) 4 0.00801714| — 5m(0.787561 + 1.61127w + 11.3060612) + y21p|
14 =721

match

+ 6m(—0.00877851 + 0.03054670)y1p. (B12)

Ld|hig(1)]
v dt P

match

=0.00434759 = 0.00146122y44p, — 0.0024280572, , + (0.0233207 — 0.0224068 44 +0.01142712, v

+(=0.460545 4 0.43352 7y 4up )V* + (1.27963 — 1.24001 y 44 )1, (B13)

1d|h$5 (1)]
v dt (=155

match

= 6m(—0.0083898 + 0.0467835v) + 6m(—0.00136056 + 0.00430271v)y33

+ 6m(=0.00114121 + 0.001859041)y2; + 0.000294422|6m (37.1113 — 157.7990) + ys5|.  (B14)

3. Amplitude—second-derivative’s fits

12|155 (1)]

5 = 6m(0.000960569 — 0.000190807v)y33
14 dt (=3

—0.000156238|6m(4.67666 + 79.2019v — 1097.411% + 6512.960° — 13263.40*) + y33

. (BIS)

1 Q2R (¢
—%()' — 0.0003713228m — |5m(—=0.000365087 — 0.003054171) + 6m(—0.000630623 — 0.0008680484
v t:t?r}alch

+0.022306202)2, p + 0.000340243)3, , + 0.0002839855m12,p . (B16)
1 2R (¢
_% — —0.000301723 + 00003215957 + (0.00628305 + 0.00115988y )u
v t:tﬁi’nch

4 (~0.0814352 — 0.0138195;)22 + (0.226849 + 003275757 )07, (B17)
1 2R (¢
—% — 6m(0.000127272 + 0.0003211670) + 5m(—0.0000662168 + 0.0003288554 )33
v [:tjnfalch

+ (=0.0000582462 + 0.0001394430)2;. (B18)

4. Frequency and frequency-derivative fits
R (3 ) = 0.397395 + 0.164193y + 0.1635537> + 0.0614016° + (0.699506 — 0.362674y — 0.977547,>)
4 (—0.345533 1 0319523 + 1.93342;2).2, (B19)
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t21

YR (2L ) = 0.174319 + 0.0535087y + 0.0302288y> + (0.193894 — 0.184602y — 0.112222%)v

+ (0.167006 + 0.218731y)1>

oR(14 ) = 0.538936 + 0.166352y + 0.2075392 + 0.152681;°

+ (0.76174 + 0.00958786y — 1.3023>
— 4.895381°,

l‘55

oNR (133 ) = 0.643755 + 0.223155y + 0.295689%> + 0.173278y°

+ (=0.470178 — 0.392901y — 2.26534y>

ONR(133 ) = 0.0103372 — 0.00530678> — 0.005087933

ONR(£2L ) = 0.00709874 — 0.00177519y — 0.00356273>

M

o R (2 ) =0.0139979 — 0.00511782y — 0.00738743y* + (0.0528489 + 0.016323y + 0.0253907;>)v

(B20)
—0.55627573)v + (0.967515 — 0.220593y + 2.6781;%)1>

(B21)

—0.5513,%)v + (2.31148 + 0.882934y + 5.817672)12.  (B22)

+(0.0277356 + 0.0188642y + 0.0217545,% + 0.01785487%)v + (0.0180842 — 0.0820427y)12,  (B23)

—0.0019021y°

+ (0.0248168 + 0.00424406y + 0.01471812)v + (—0.050429 — 0.0319965y )1 (B24)
(B25)

+ (=0.0652999 + 0.0578289y 1>

@R(£3 1) = 0.0176343 — 0.000249257y — 0.0092404y> — 0.00790783°
+ (=0.13660 + 0.0561378y + 0.164063y> + 0.0773623y*)v + (0.987589 — 0.313921y — 0.592615y% )1

—1.694335.°.

APPENDIX C: FITS FOR AMPLITUDE AND
PHASE OF MERGER-RINGDOWN MODEL

For these fits we apply the same selection of the NR
waveforms discussed for the fits of the input values for
the NQC. In particular, in performing the fits for the
amplitude (phase) of the merger-ringdown signal, we
weigh the contribution of the values extracted from every
NR waveform with the same weight used for the NQC
input value of the amplitude (frequency). It should be
noted that in some cases, especially in the ringdown, the
NR error in the (4,4) and (5,5) modes limits our ability
to accurately model this part of the waveform (see
Fig. 13).

e °»=0.0763873 +0.2543450 - 1. 089271% —0.0309934y
+0.251688uy —0.7980911%y, (C1)

c§3f = —0.832529 + 2.76799v — 7.028151% — 0.59888y
+5.90437uvy — 18.23261°y, (C2)

ok ¢ = 0.0778033 +0.24091v — 0. 7456331 — 0.0507064y
+ 0.3858261y — 0.9695531%y, (C3)

(B26)

,lf = —1.24519 + 6.1342v — 14.67251% — 1.19579y

+15.667uy — 44.41981%, (C4)
0.012 74 . — Fit
17 TN ~==- NR (Res = max, N = 2)
0.010 ] \‘}:"‘\ == NR (Res = max, N = 3)

------ NR (Res = max-1, N = 2)

( malch) / M

FIG. 13. Amplitudes of the (5,5) NR mode of the simulation
SXS:BBH:0065 (¢ =8,y = 0.5, y, = 0) for extraction order
N = 2 and highest resolution (dashed orange), extraction order
N =3 and highest resolution (dotted-dashed blue), extraction
order N =2 and second highest resolution (dotted green). In
solid black we show the result of the fit of the merger-ringdown
signal used in the SEOBNRv4HM model.
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¢t = —0.0639271 +0.3451950 — 1764352  0.0364617y
+1.27774uy — 14825302y +40.67141%, (CS)

czf =0.781328 — 5.1869v + 14.02641* + 0.80947 1y
—5.38343uy + 0.1051631%y + 46.978413y, (C6)

¢} = —0.0670461 — 0247549y + 0.7588041>
+0.0219059y — 0.094377 1wy + 0.4357771%,
(C7)

czf = 1.67634 — 5.60456v + 16.75131* + 0.49257y

- 6.2091yy + 16.77851%y. (C8)

d?3f = 0.110853 + 0.99998v — 3.398331% + 0.0189591y

—0.72915uy + 2.51920%y, (C9)
d%3f = 2.78252 — 7.84474y + 27.1811% + 2.87968y
—34.76Tuy + 127.139%. (C10)

&', = 0.156014 + 0.0233469v + 0.1532661> + 0.1022
—0.94353 1y + 1.79791:2%. (C11)

d%lf = 2.78863 — 0.814541v + 5.549341% + 4.2929y
—15.938yy + 12.64981%y, (C12)

d‘l‘f‘f =0.11499 + 1.61265v — 6.25591* + 0.00838952y
—0.806998vy +7.595650%y —19.323713y,  (C13)

d‘zv} =3.11182 + 15.8853v — 79.64931% + 5.39934y
—87.9242uy + 657.7161%y — 155530y,  (Cl14)

d?sf =0.164654 —0.191845v +0.3332841> — 0.0265748y
—0.0551962uy +0.31942712y, (C15)

d3’ = 11.1024 - 58.6058 + 176.6061> + 6.0151 1y
— 81.6803uy + 266.4731%. (C16)

APPENDIX D: FITS FOR THE PHASE
DIFFERENCE BETWEEN HIGHER-ORDER
MODES AND (2,2) MODE AT THE

MATCHING POINT #£™

match

The relations betwe;n ¢m . [i.e., the phase of the (£, m)
m

22
modes computed at ¢ ] and ¢, are

3

AP 3 2 (¢12112atch —z) (modn),

match match

(D1)

1

Agbmatch - match 5 ( rznzatch - 7[) (mOd ”)’ (Dz)

A fn4alch = malch <2¢match ) (m0d2 0 )’ (D3)
1

A 15115atch = fnsatch - ( mdtch - ) (mOd T )* (D4)

where the RHS is the scaling of the phase at leading PN
order, and the LHS is the deviation from the Ilatter,

computed at 5" .. The term AgZ™ , is extracted from

each NR and Teukolsky—equation-based waveforms in our
catalog and then fitted as a function of (v,y). We find
AP, =3.20275—1.47295v/6m+1.210216m—0.203442y
+6m?(—0.0284949—0.217949y )y (mod ),
(Ds)

A h = 2.28855 + 0.2008956m — 0.0403123y
+ 6m?*(—0.0331133 — 0.0424056y

—0.02441545)  (mod ),

mdtc

(D6)

AgH 4 = 5.89306 + 1*(—36.7321 — 21.9229y)
—0.499652y — 0.292006>
13(160.102 + 67.0793y)
+1(2.48143 4 3.26618y + 1.38065y2)

(mod2 ), (D7)

APSS . = 3.61933 — 1.526716m — 0.172907y
+ 6m2(0.72564 — 0.44462y — 0.528597,2)

(D8)

matc

(mod 7).

The error on the phase of each mode caused by the fit of
Agim . is on average of the order of 0.05 rad.
APPENDIX E: FITS FOR TIME DIFFERENCE
BETWEEN MODES’ AMPLITUDE PEAKS

As originally observed in Refs. [45,53], gravitational
modes peak at different times (¢ eak) with respect to the
dominant (2,2) mode. Using the NR catalog at our disposal,

we fit the times shifts Az, = 17, — 2, as function of v

and yer = (myyy + maoy,)/M. We find

Atyy = 4.20646 + 42155 + 2.1248742,
+ (~=10.9615 + 5.207584a)v

+ (53.3674 — 65.0849a)1? (El)
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FIG. 14. Amplitudes of different modes for the SEOBNRv4HM
(dashed) and NR (solid) waveforms with (¢ =38,y =
—0.5,y, = 0) (SXS:BBH:0064) versus time. The time origin
corresponds to the (2,2) mode’s peak.

Aty = 12.892 + 1.14433y ¢ + 1.12146)2,
+ (—61.1508 — 96.0301 . — 85.4386x2%;)v

+ (144.497 + 366.374 . + 322.06 )1,  (E2)

Aty = 749641 + 6.72457 ¢ + 3.1161872%;
+ (—48.5578 — 78.807 Tyeqr — 92.16087 % )v

+ (91.483 + 231.917y; + 388.074y2, )12, (E3)

Atss = 10.031 + 5.80884y
+ (~103.252 — 75.8935) ¢ )v

+ (366.57 + 282.552y .45 )°. (E4)

The above expressions could be employed in building
phenomenological models for the ringdown signal when
multipole modes are present [65]. We notice that these
fits are not used for building SEOBNRv4HM waveforms,
whose merger-ringdown model is constructed through
Eqs. (4.19)~(4.21), starting from " , in Eq. (4.3). The
merger-ringdown SEOBNRv4HM waveforms reproduce
the time shifts At,,, between the NR modes’ amplitude
peaks by construction, as it can be seen in Fig. 14 for a
particular binary configuration.

We emphasize that while in the EOBNRv2HM model [45]
the merger-ringdown attachment was done at each modes’
peak time, in SEOBNRv4HM we do it at the (2,2) mode’s
peak for all modes except the (5,5) mode. We make this
change here because typically At,, = 0 — 22, > 0, and
at these late times we find that for some binary configu-
rations either the EOB dynamics becomes unreliable or the
error in the NR waveforms is too large and prevents us to
accurately extract the input values for the NQC conditions

[i.e., Egs. (4.14)-(4.18)].

APPENDIX F: NUMERICAL-RELATIVITY
CATALOG

In the tables below we list the binary configurations of
the NR simulations used to build and test the
SEOBNRvV4HM waveform model. The NR waveforms were
produced with the (pseudo) Spectral Einstein code (SPEC)
of the Simulating eXtreme Spacetimes (SXS) project and
the EINSTEIN TOOLKIT (ET) code. In particular, we list the
mass ratio g, the dimensionless spins y ,, the eccentricity
e, the initial frequency w,, of the dominant (7, m) = (2,2)
mode and the number of orbits N, up to the wave-
form peak.

In Fig. 15 we show the coverage of NR and BH-
perturbation-theory waveforms when projected on the
binary’s parameters v and y.; = (y1m; + yom,)/M. We
highlight four regions. In the first region 1 < g < 3 there
is a large number of configurations with both BHs
carrying spin. The spins magnitude are as high as y;, =
0.99 in the equal-mass limit, while they are limited to
X12 = 0.85 for g =3. The second region is between
3 < g <8, and most of the simulations have spins only
on the heavier BH. The values of the spin of the heavier
BH span in the region —0.8 < y; <0.85. The third
region is between 8 < g <10 and it includes only
nonspinning waveforms. Finally, the fourth region cov-
ers 13 waveforms computed solving the Teukolsky
equation in the framework of BH perturbation theory
[53,54]. They have g = 10° and dimensionless spins
values in the range —0.99 < y < 0.99.

B *x 1<q<3
1.0 | I Vv 3<g<8 N f §
1 = ® 8<¢<10 I
A S v *
B =10 * *
05— = v v ko
A v
] v : g
i * x i
5 00 m MOIVYVYVV V V * * i :*
X 3 *
1 * * i
* *
4 v v v *
05— = v * :
4 * *
= v v *
1m v N . %
—10- 1 *
E { T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘
0.00 0.05 0.10 0.15 0.20 0.25
\4
FIG. 15. 2D projection of the 3D parameter space of

the NR and BH-perturbation-theory waveforms used to
build the SEOBNRv4HM model. The x-axis is v and the
y-axis is the effective spin yop = (y1m; + yom,)/M. In the
legend we highlight four different regions of coverage, as
discussed in the text.
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1. SXS and ET waveform produced for testing
SEOBNRv4 (Ref. [27])

ID

q

X1

X2

e

Mwy,  Nog

SXS:BBH:0610
SXS:BBH:0611
SXS:BBH:0612
SXS:BBH:0613
SXS:BBH:0614
SXS:BBH:0615
SXS:BBH:0616
SXS:BBH:0617
SXS:BBH:0618
SXS:BBH:0620
SXS:BBH:0621
SXS:BBH:0619
ET:AEIL:0001

ET:AEIL:0002

ET:AEIL:0004

1.2
1.4
1.6
1.8
2.0
2.0
2.0
2.0
2.0
5.0
7.0
2.0
5.0
7.0
8.0

-0.50
-0.50
-+0.50
+0.50
+0.75
+0.75
+0.75
+0.50
+0.80
—-0.80
-0.80
-+0.90
+0.80
-+0.80
+0.85

-0.50
+0.50
-0.50
+0.50
-0.50
-+0.00
+0.50
+0.75
+0.80
-+0.00
+0.00
-+0.90
+0.00
-+0.00
+0.85

7.4 x 1073
6.0 x 1074
3.7 x 107*
1.8 x 1074
6.7 x 1074
7.0 x 1074
8.0x 104
7.8 x 1074
59 x 107
34 %1073
3.2x 1073
2.9 x 1074
9.2x 1074
6.1 x 1074
3.0x 1073

0.01872
0.02033
0.02156
0.02383
0.02355
0.02401
0.02475
0.02342
0.02578
0.02527
0.02784
0.02520
0.03077
0.03503
0.04368

12.1
12.5
12.8
13.1
13.1
13.3
13.3
13.1
13.4
8.2

7.1

13.5
10.5
10.4
14

2. SXS waveforms from Ref. [60]

ID

q

X1

X2

e

Mawy, Ny

SXS:BBH:0004
SXS:BBH:0005
SXS:BBH:0007
SXS:BBH:0013
SXS:BBH:0016
SXS:BBH:0019
SXS:BBH:0025
SXS:BBH:0030
SXS:BBH:0036
SXS:BBH:0045
SXS:BBH:0046
SXS:BBH:0047
SXS:BBH:0056
SXS:BBH:0060
SXS:BBH:0061
SXS:BBH:0063
SXS:BBH:0064
SXS:BBH:0065
SXS:BBH:0148
SXS:BBH:0149
SXS:BBH:0150
SXS:BBH:0151
SXS:BBH:0152
SXS:BBH:0153
SXS:BBH:0154
SXS:BBH:0155
SXS:BBH:0156
SXS:BBH:0157
SXS:BBH:0158
SXS:BBH:0159

1.0
1.0
1.5
1.5
1.5
1.5
1.5
3.0
3.0
3.0
3.0
3.0
5.0
5.0
5.0
8.0
8.0
8.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

-0.50
+0.50
+0.00
-+0.50
-0.50
—-0.50
-+0.50
+0.00
-0.50
-+0.50
-0.50
-+0.50
+0.00
—-0.50
+0.50
-+0.00
-0.50
+0.50
—0.44
-0.20
+0.20
—-0.60
+0.60
+0.85
—-0.80
-+0.80
-0.95
+0.95
+0.97
—-0.90

+0.00
-+0.00
+0.00
-+0.00
+0.00
-+0.50
—-0.50
—+0.00
+0.00
—-0.50
-0.50
-+0.50
+0.00
-+0.00
+0.00
-+0.00
—+0.00
+0.00
—0.44
-0.20
+0.20
—0.60
+0.60
+0.85
-0.80
-+0.80
-0.95
+0.95
+0.97
—-0.90

3.7 x 107*
25x%x 1074
42 x 1074
1.4 x 107
42 x 1074
7.6 x 1073
7.6 x 1073
2.0x 1073
51x 104
6.4 x 1074
2.6 x 107
4.7 % 107
4.9 x 107
34 %1073
42 %1073
2.8x107*
49 x 10~
3.7 x 1073
2.0x 107
1.8 x 107*
29x 1074
2.5x%x 107
43 % 107
8.3x 10
3.3 x 1074
4.7 % 107
54 x 107
1.4 x 107
7.9 x 1074
5.6 x 107*

0.01151
0.01227
0.01229
0.01444
0.01149
0.01460
0.01456
0.01775
0.01226
0.01748
0.01771
0.01743
0.01589
0.01608
0.01578
0.01938
0.01968
0.01887
0.01634
0.01614
0.01591
0.01575
0.01553
0.01539
0.01605
0.01543
0.01643
0.01535
0.01565
0.01588

30.2
30.2
29.1
23.8
30.7
20.4
224
18.2
31.7
21.0
14.4
227
28.8
232
345
25.8
19.2
34.0
15.5
17.1
19.8
14.5
22.6
24.5
13.2
24.1
12.4
252
253
12.7

(Continued)

D q Mawy,

N, orb

SXS:BBH:0160 1.0
SXS:BBH:0166 6.0
SXS:BBH:0167 4.0
SXS:BBH:0169 2.0
SXS:BBH:0170 1.0
SXS:BBH:0172 1.0
SXS:BBH:0174 3.0
SXS:BBH:0180 1.0

+0.90
-+0.00
-+0.00
—+0.00
+0.44
+0.98
+0.50
-+0.00

+0.90
-+0.00
-+0.00
—+0.00
+0.44
+0.98
+0.00
-+0.00

0.01538
0.01940
0.02054
0.01799
0.00842
0.01540
0.01337
0.01227

42 x 1074
4.4 %107
9.9 x 1073
1.2x 1074
1.3x 107
7.8 x 1074
29x 1074
5.1 x 1075

24.8
21.6
15.6
15.7
15.5
25.4
355
28.2

3. SXS waveforms from Refs. [57-59]

ID q9 X X2 e Mawy,

N orb

SXS:BBH:0177 1.0
SXS:BBH:0178 1.0
SXS:BBH:0202 7.0
SXS:BBH:0203 7.0
SXS:BBH:0204 7.0
SXS:BBH:0205 7.0
SXS:BBH:0206 7.0
SXS:BBH:0207 7.0
SXS:BBH:0306 1.3

0.01543
0.01570
0.01324
0.01322
0.01044
0.01325
0.01037
0.01423
0.02098

+0.99 1.3 x 1073
+0.99 8.6 x 10~*
+0.00 9.0 x 1073
+0.00 1.4 x 1073
+0.00 1.7 x 1074
+0.00 7.0 x 1073
+0.00 1.6 x 104
+0.00 1.7 x 10~*
-0.90 1.5%x 1073

+0.99
+0.99
-+0.60
+0.40
-+0.40
-0.40
-0.40
—-0.60
+0.96

254
254
62.1
58.5
88.4
44.9
73.2
36.1
12.6

4. SXS waveforms from Ref. [50]

ID 9 x X2 e Mawy,

N orb

SXS:BBH:0290 3.0
SXS:BBH:0291 3.0
SXS:BBH:0289 3.0
SXS:BBH:0285 3.0
SXS:BBH:0261 3.0
SXS:BBH:0293 3.0
SXS:BBH:0280 3.0
SXS:BBH:0257 2.0
SXS:BBH:0279 3.0
SXS:BBH:0274 3.0
SXS:BBH:0258 2.0
SXS:BBH:0248 2.0
SXS:BBH:0232 1.0
SXS:BBH:0229 1.0
SXS:BBH:0231 1.0
SXS:BBH:0239 2.0
SXS:BBH:0252 2.0
SXS:BBH:0219 1.0
SXS:BBH:0211 1.0
SXS:BBH:0233 2.0
SXS:BBH:0243 2.0
SXS:BBH:0214 1.0
SXS:BBH:0209 1.0

-+0.60
-+0.60
-+0.60
+0.40
-0.73
+0.85
+0.27
+0.85
+0.23
-0.23
+0.87
+0.13
+0.90
+0.65
+0.90
-0.37
+0.37
-0.50
-0.90
-0.87
-0.13
-0.62
-0.90

0.01758
0.01764
0.01711
0.01732
0.01490
0.01813
0.01707
0.01633
0.01629
0.01603
0.01612
0.01552
0.01558
0.01488
0.01487
0.01478
0.01488
0.01484
0.01411
0.01423
0.01378
0.01264
0.01137

+0.40 9.0 x 1073
+0.60 5.0 x 1073
+0.00 2.3 x 107
+0.60 1.6 x 1074
+0.85 1.0 x 10~*
+0.85 9.0 x 1073
+0.85 9.7 x 1073
+0.85 1.1x10™*
—0.85 6.0 x 1073
+0.85 1.6 x 107*
—0.85 1.8 x 107*
+0.85 7.0 x 107°
+0.50 2.8 x 10~*
+0.25 3.1 x 10™*
+0.00 1.0 x 10~*
+0.85 9.1 x 1073
—0.85 3.8 x 107
+0.90 3.3 x 107
+0.90 2.6 x 1074
+0.85 6.0 x 107°
-0.85 1.8 x 104
-0.25 1.9x10™*
-0.50 1.7x 104

24.2
245
23.8
23.8
21.5
25.6
23.6
24.8
22.6
224
22.8
232
239
23.1
23.1
222
225
224
223
22.0
233
24.4
27.0

(Table continued)

(Table continued)

084028-25



ROBERTO COTESTA et al.

PHYS. REV. D 98, 084028 (2018)

(Continued) (Continued)
ID q 1 X2 e Mwy, Ny, 1D g9 X X2 e Mawy N,
SXS:BBH:0226 1.0 +0.50 —0.90 2.4 x 10~* 0.01340 22.9 SXS:BBH:0212 1.0 —-0.80 —0.80 2.4 x 10~* 0.01087 28.6
SXS:BBH:0286 3.0 +0.50 +0.50 8.0 x 1073 0.01693 24.1 SXS:BBH:0303 10.0 +0.00 +0.00 5.1 x 10> 0.02395 19.3
SXS:BBH:0253 2.0 +0.50 +0.50 6.7 x 1075 0.01397 28.8 SXS:BBH:0300 8.5 +0.00 +0.00 5.7 x 10=> 0.02311 18.7
SXS:BBH:0267 3.0 —0.50 —0.50 5.6 x 1075 0.01410 23.4 SXS:BBH:0299 7.5 +0.00 4+0.00 5.9 x 107> 0.02152 20.1
SXS:BBH:0218 1.0 —0.50 +0.50 7.8 x 10> 0.01217 29.1 SXS:BBH:0298 7.0 +0.00 +0.00 6.1 x 10~ 0.02130 19.7
SXS:BBH:0238 2.0 —0.50 —0.50 6.9 x 10™5 0.01126 32.0 SXS:BBH:0297 6.5 +0.00 +0.00 6.4 x 10~ 0.02082 19.7
SXS:BBH:0288 3.0 +0.60 —0.40 1.9 x 10~* 0.01729 23.5 SXS:BBH:0296 5.5 +0.00 +0.00 5.2 x 10~ 0.01668 27.9
SXS:BBH:0287 3.0 +0.60 —0.60 7.0 x 10™5 0.01684 23.5 SXS:BBH:0295 4.5 +0.00 +0.00 5.2 x 10~ 0.01577 27.8
SXS:BBH:0283 3.0 +0.30 +0.30 7.6 x 107> 0.01646 23.5 SXS:BBH:0259 2.5 +0.00 +0.00 5.9 x 10~ 0.01346 28.6
SXS:BBH:0282 3.0 +0.30 +0.00 7.5 x 1075 0.01629 23.3 SXS:BBH:0292 3.0 +0.73 —0.85 1.8 x 10~* 0.01749 23.9
SXS:BBH:0281 3.0 +0.30 —0.30 6.7 x 1075 0.01618 23.2 SXS:BBH:0268 3.0 —0.40 —0.60 1.7 x 10~* 0.01473 22.9
SXS:BBH:0277 3.0 +0.00 +0.30 7.0 x 107> 0.01595 22.9 SXS:BBH:0234 2.0 —-0.85 —0.85 1.4 x 10~* 0.01147 27.8
SXS:BBH:0284 3.0 +0.40 —0.60 1.5x 10~* 0.01656 22.8 SXS:BBH:0273 3.0 —0.27 —0.85 2.0 x 10~* 0.01487 22.9
SXS:BBH:0278 3.0 +0.00 +0.60 2.1 x 10~* 0.01623 22.8 SXS:BBH:0210 1.0 —0.90 +0.00 1.8 x 10~* 0.01248 24.3
SXS:BBH:0256 2.0 +0.60 +0.60 7.8 x 107> 0.01598 23.9 SXS:BBH:0260 3.0 —0.85 —0.85 3.5x 10~* 0.01285 25.8
SXS:BBH:0230 1.0 +0.80 +0.80 1.3 x 10~* 0.01542 24.2 SXS:BBH:0302 9.5 +0.00 +0.00 6.0 x 10™> 0.02366 19.1
SXS:BBH:0255 2.0 +0.60 +0.00 4.0 x 107> 0.01580 23.3 SXS:BBH:0301 9.0 +0.00 +0.00 5.5 x 10~ 0.02338 18.9
SXS:BBH:0276 3.0 +0.00 —0.30 6.7 x 10~> 0.01559 23.0 SXS:BBH:0272 3.0 —0.30 +0.30 6.4 x 10> 0.01521 22.7
SXS:BBH:0251 2.0 +0.30 +0.30 7.5 x 107> 0.01514 23.5 SXS:BBH:0246 2.0 +0.00 +0.30 7.2 x 10~ 0.01514 22.9
SXS:BBH:0250 2.0 +0.30 +0.00 7.5 x 107> 0.01503 23.2
SXS:BBH:0271 3.0 —-0.30 +0.00 6.3 x 107> 0.01508 22.5
SXS:BBH:0249 2.0 +0.30 —0.30 7.2 x 10> 0.01478 23.2
SXS:BBH:0275 3.0 +0.00 —0.60 1.2 x 10~* 0.01569 22.6 APPENDIX G: COMPARING THE NONSPINNING
SXS:BBH:0254 2.0 +0.60 —0.60 6.0 x 105 0.01541 22.9 SEOBNRv4HM AND EOBNRv2EM MODELS
SXS:BBH:0269 3.0 —0.40 +0.60 1.2 x 10~* 0.01563 22.3
SXS:BBH:0225 1.0 +0.40 4+0.80 3.5 x 10~* 0.01536 23.5 Herewecomparethenonspinning limit of SEOBNRv4HM
SXS:BBH:0270 3.0 —0.30 —0.30 62 x 10-5 0.01482 22.8  to its predecessor, the EOBNRv2HM model developed
SXS:BBH:0245 2.0 +0.00 —0.30 6.8 x 10~5 0.01441 23.0  in 2011 [45], which is available in the LIGO Algorithm
SXS:BBH:0242 2.0 —0.30 +0.30 6.7 x 10-5 0.01417 23.1  Library (LAL) and it has been used in Refs. [38,41,79] to
SXS:BBH:0223 1.0 +0.30 +0.00 6.7 x 10-5 0.01402 23.3 assess the importance of higher-order modes in Advanced
SXS:BBH:0241 2.0 —0.30 +0.00 6.6 x 105 0.01394 23.1 LIGO searches and parameter estimation. The model
SXS:BBH:0240 2.0 —0.30 —0.30 6.4 x 107> 0.01359 23.5 EOBNRV2HM was also used to search for intermediate
SXS:BBH:0222 1.0 —0.30 +0.00 7.4 x 1075 0.01324 23.6 binary black holes [105-108]). The EOBNRv2HM model
SXS:BBH:0228 1.0 +0.60 +0.60 3.2 x 10~* 0.01543 23.5 includes the same higher-order modes as SEOBNRv4HM,
SXS:BBH:0247 2.0 +0.00 +0.60 1.0 x 10+ 0.01530 22.6  that is (2,2), (2,1), (3,3), (4,4), (5,5). Given that the
SXS:BBH:0263 3.0 —0.60 +0.60 1.9 x 10™* 0.01526 22.0 =~ EOBNRv2HM model was calibrated against NR waveforms
SXS:BBH:0266 3.0 —0.60 +0.40 1.8 x 10~* 0.01488 22.0  up to mass ratio ¢ = 6, we decide to compare first the two
SXS:BBH:0227 1.0 +0.60 +0.00 3.1 x 10 0.01452 23.1  models for a configuration with this mass ratio (SXS:
SXS:BBH:0221 1.0 -0.40 +0.80 2.7 x 10 0.01440 22.7  BBH:0166). In Fig. 16 we show the unfaithfulness results
SXS:BBH:0237 2.0 -0.60 +0.60 6.1 x 107> 0.01433 22.6  for maximum, minimum, average and SNR-weighted aver-
SXS:BBH:0244 2.0 +0.00 —0.60 7.5x 10~ 0.01422 232 age with respect to the angles g, Poxg. kg Of the models
SXS:BBH:0217 1.0 —0.60 +0.60 1.5x 10~* 0.01421 22.7 against NR waveforms with the modes (£ < 5,m # 0). The
SXS:BBH:0215 1.0 —-0.60 —0.60 1.8x 10~ 0.01189 258  ypfaithfulness is shown as a function of total mass. The
SXS:BBH:0262 3.0 —0.60 +0.00 2.0 x 10~* 0.01473 22.5 dashed (solid) lines represent the results for EOBNRv2HM
SXS:BBH:0213 1.0 —0.80 +0.80 1.4 x 10_4 0.01435 22.3 (SEOBNRV4HM) The minimum of the unfaithfulness,
SXS:BBH:0265 3.0 -0.60 —0.40 9.0 x 10_2 0.01422 23.4 reached for a face-on orientation, is different for the two
:igggﬁg;gj i’g ;828 _828 igx }g: . 881‘3%(1) ;33 models and it is smaller for the SEOBNRv4HM model. Since,
. . . . —U. DX B . . . .
SXS:BBH:0216 1.0 —0.60 +0.00 2.6 x 10+ 0.01300 23.6 the spherical h ics. this diff .y Iv due to a bett
SXS:BBH:0235 2.0 —0.60 —0.60 6.1 x 10~ 0.01274 25.1 phetical armonics, this Quierence 1s on’y cue toabeuer
SXS-BBH:0220 10 —040 —0.80 1.0 10~ 0.01195 257 ~ Mmedeling of the dominant (#.m) = (2.2) mode. This

(Table continued)

difference is very small and both models yield a minimum
of the unfaithfulness much smaller than 1% in the total mass
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(¢, x1,.x2)= (6.00,0.00,0.00)

O -
10 3 Dashed: NR w/HM vs EOBNRv2HM
] Solid: NR w/HM vs SEOBNRv4HM
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FIG. 16. Unfaithfulness (1 — F) in the mass range 20 Mg <
M <200 M for the configuration (g =6,y; =y, =0).
Dashed (plain) curves refer to results for EOBNRv2HM
(SEOBNRv4HM). Plotted data as in Fig. 7.

range 20 My < M <200 M. The mostimportant quantity
to compare is the maximum of the unfaithfulness which
is reached for an edge-on orientation, where the higher-
order modes are more relevant. Also in this case the
SEOBNRv4HM model has a lower unfaithfulness against
the NR waveform with respect to the EOBNRv2HM model. In
particular at a total mass of M =200 M, EOBNRvV2HM
returns a maximum unfaithfulness (1 — F) ~ 2%, while the
SEOBNRv4HM model only (1 —F) ~0.6%. This means
that also the higher-order modes are better modeled in
SEOBNRV4HM with respect to EOBNRv2HM.

We find that the model SEOBNRv4HM returns smaller
values of the unfaithfulness against the NR waveforms than
the EOBNRv2HM model for every nonspinning configuration
inour NR catalog with g < 6. A comparison between the two
models for mass ratio higher than ¢ = 6 is unfair because
EOBNRvV2HM is not calibrated in this region. However it is
worth mentioning that for the numerical simulation with the
largest mass ratio at our disposal (¢ = 10) the average
unfaithfulness of EOBNRv2HM is larger than that of
SEOBNRv4HM, but still smaller than 1% in the mass range
considered. For this configuration the value of the maximum
of the unfaithfulness is (1 — F) ~ 3.5% for EOBNRv2HM at
M =200 M, while is (1 — F) ~ 2% for SEOBNRv4HM.

@=8x1=05x2=0,t=n/2, oo =1.2)

— NR === SEOBNRv4HM - SEOBNRv4

6200 6400 6600 6800
t/M

7000 7200 7400 7600

—— NR (¢,m) = (2,2) vs SEOBNRv4
"""" NR (¢,m) = (2,2),(3,3),(2,1),(4,4),(5,5) vs SEOBNRv4
----- NR (¢,m) = (2,2),(3,3),(2,1),(4,4),(5,5) vs SEOBNRv4HM

6200 6400 6600 6800
t/M

FIG. 17. Comparison between NR (solid black), SEOBNRv4HM (dashed green) and SEOBNRv4 (dotted yellow) waveforms in an
edge-on orientation (1 = 7/2, ¢y = 1.2) for the NR simulation SXS:BBH: 0065 (¢ = 8, = 0.5, y, = 0). In the top panel is plotted
the real part of the observer-frame’s gravitational strain i (1, @o; 1) — ih, (1, ¢g; t), while in the bottom panel the dephasing with the NR
waveform A¢),.The dotted-dashed red horizontal line in the bottom panel indicates zero dephasing with the NR waveform. Both
SEOBNRv4 and SEOBNRv4HM waveforms are phase aligned and time shifted at low frequency using as alignment window f,; =

1000M and t5, = 3000M.
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APPENDIX H: COMPARING SEOBNRv4HM AND
NUMERICAL-RELATIVITY WAVEFORMS IN
TIME DOMAIN

The improvement in waveform modeling obtained by
including higher-order modes, can also be seen from a
direct comparison of NR waveforms to SEOBNRv4 and
SEOBNRv4HM waveforms in time domain. We present
this comparison in Fig. 17 for the simulation SXS:
BBH:0065. We show the NR waveform with (2,2),
2,), (3,3, 44, (5,5 modes (solid black), the
SEOBNRV4HM (dashed green) and SEOBNRv4 (dotted
yellow) waveforms in an edge-on orientation. The effect
of neglecting higher-order modes results in an oscillatory
phase difference (dotted yellow curve of the bottom panel
in Fig. 17) around the mean dephasing due to the

dominant (2,2) mode (solid black curve of the same
panel). These oscillations in the dephasing are almost
totally removed up to merger when we include higher-
order modes (dashed green of the bottom panel in Fig. 17)
where now the phase difference with the NR waveform is
dominated again by the discrepancy of the (2,2) mode.
The residual oscillations of the dashed green curve around
the dephasing of the dominant (2,2) mode is due to the
superposition of the different dephasing of the various
higher-order modes. The effect of the inclusion of higher-
order modes can be seen also in the amplitude of the
waveform, in particular in the last five cycle of the
waveform there is an evident amplitude difference
between SEOBNRv4 and NR waveforms, which is not
present when the SEOBNRv4HM waveform is used.
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