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We find stealth Schwarzschild solutions with a nontrivial profile of the scalar field regular on the horizon
in the Einstein gravity coupled to the scalar field with the k-essence and/or generalized cubic Galileon
terms, which is a subclass of the Horndeski theory breaking the shift symmetry, where the propagation
speed of gravitational waves coincides with the speed of light. After deriving sufficient conditions for the
shift symmetry breaking theory to allow a general Ricci-flat metric solution with a nontrivial scalar field
profile, we focus on the stealth Schwarzschild solution with the scalar field with or without time
dependence. For the profile ϕ ¼ ϕ0ðrÞ, we explicitly obtain two types of stealth Schwarzschild solutions,
one of which is regular on the event horizon. The linear perturbation analysis clarifies that the kinetic term
of the scalar mode identically vanishes, indicating that the scalar mode is strongly coupled. The absence of
the kinetic term of the scalar mode in the quadratic action would inevitably arise for the stealth
Schwarzschild solutions in the theory with a general scalar field profile depending only on the spatial
coordinates. On the other hand, for the time-dependent scalar field profile, we clarify that there does not
exist a stealth Schwarzschild solution in the shift symmetry breaking theories.
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I. INTRODUCTION

The recent data of gravitational waves (GWs) measured
by the LIGO and Virgo Collaborations from binary black
hole (BH) mergers [1,2] and a binary neutron star merger
[3] with its optical counterparts [4] were highly consistent
with the prediction of general relativity (GR). With the
latter data, the propagation speed of GWs traveling over
cosmological distance was shown to coincide with the
speed of light down to the accuracy of order 10−15 [5]. The
future measurements of GWs with unprecedented accura-
cies would be able to test modified gravity theories from
different aspects.
Theories of modified gravity as an alternative to GR have

attracted a lot of attention and been extensively studied as a
model to explain the late-time acceleration of the Universe
[6–8]. The framework of scalar-tensor theories which
involve many representative modified gravity theories
has been extended to the Horndeski theory [9–14] and
even beyond it [15–24]. The constraint on the propagation
speed of GWs has ruled out some of these theories as the
origin of the late-time acceleration [25–28] (see also
Refs. [29,30]). In the context of the Horndeski theory,
the theory which satisfies this bound is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G4ðϕÞRþG2ðϕ;XÞ−G3ðϕ;XÞ□ϕ�; ð1Þ

where the indices μ; ν; � � � run the four-dimensional space-
time, gμν is the metric, g ¼ detðgμνÞ, R is the scalar
curvature associated with gμν, ϕ is the scalar field, X ≔
−ð1=2Þgμνϕμϕν is the canonical kinetic term of the scalar
field, ϕμν���α ≔ ∇α � � �∇ν∇μϕ is the covariant derivative(s)
of the scalar field with respect to gμν, G4ðϕÞ is the function
of ϕ, and Giðϕ; XÞ (i ¼ 2, 3) are arbitrary functions of both
ϕ and X.
The models given by Eq. (1) also admit the propagation

of the degrees of freedom of GWs, i.e., the odd-parity mode
and one of the even-parity modes, with the speed of light in
the vicinity of static and spherically symmetric BHs
[31,32]. In general, in the Horndeski theory, the propaga-
tion speed of GWs would also be modified in the vicinity of
localized gravitational sources if the scalar field exists
around them. Thus, even if the scalar field is not the direct
origin of the cosmic acceleration of today, the propagation
speed of GWs may be modified when they pass in the
vicinity of them, unless one considers the theory (1).
Therefore, the theory (1) corresponds to the most
conservative choice within the Horndeski theory which
sufficiently satisfies the current bound on the propagation
speed of GWs, assuming that the scalar field exists some-
where in the Universe. These models will be the subject for
the future strong field tests on gravitation [7].
In GR, the Schwarzschild and Kerr BH solutions which

are solely determined by measuring the mass and angular
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momentum [33–35] are known as the unique vacuum static
and stationary solutions, respectively. On the other hand, in
general scalar-tensor theories may possess BH solutions
different from the GR ones [36–56]. These theories admit
static or stationary BH solutions different from the GR
solutions with nonconstant profiles of the scalar field [57],
for instance, in the Einstein-scalar-Gauss-Bonnet theories
[38,40,42,47,50,58–61] and in the Einstein-complex scalar
theories [49]. However, it does not mean all the theories of
modified gravity possess BH solutions different from GR.
There exist a particular class of theories whose equations of
motion allow GR solutions with a constant profile of the
scalar field [62]. Furthermore, in some of these theories
the no-hair theorem was established; i.e., they admit only
the static and stationary BH solutions in GR with a constant
profile of the scalar field [63–70].
In the shift-symmetric Horndeski and beyond

Horndeski theories, the key assumptions that ensure
the uniqueness of the GR BH solutions [54,68] are that
(i) the spacetime is static, spherically symmetric, and
asymptotically flat, (ii) the scalar field respects the
symmetry of spacetime, i.e., solely the function of the
radial coordinate for the case of the Schwarzschild
solution, (iii) the coupling functions and their derivatives
are regular in the limit of the vanishing canonical kinetic
term, and (iv) the canonical kinetic term dominates the
other kinetic couplings in the equations of motion at the
spatial infinity. The violation of (ii) by the scalar field
linearly depending on time yields the so-called stealth
Schwarzschild solution with the nontrivial scalar field
[45]. The violation of (iv) by the absence of the canonical
kinetic term gives the Kerr solution in the purely quartic
Horndeski theory [54].
On the other hand, the studies of the no-hair theorem and

the stealth Schwarzschild solution in the shift-symmetry
breaking Horndeski and beyond Horndeski theories are still
in the premature phase, since once the shift symmetry is
abandoned all the coupling functions can be arbitrary
functions of both the scalar field and the canonical kinetic
term, which makes the analysis involved. While general
theories that allow GR solutions with a constant profile of
the scalar field has been clarified [62], the no-hair theorem
has not been established, except for the particular cases,
such as theories with the canonical kinetic term [64,66], the
noncanonical kinetic terms [69], and the nonminimal
coupling to the scalar curvature [67,70]. To be more
specific, we focus on the Horndeski theory described by
the action (1), which satisfy the recent bound on the
propagation speed of GWs, derive the sufficient conditions
that allow the Ricci-flat metric solutions with the nontrivial
profile for the scalar field, and apply them to obtain the
stealth Schwarzschild solutions in the shift-symmetry
breaking theories.
The paper is organized as follows: In Sec. II, we review

the scalar-tensor theory (1) and derive the equations of

motion. In Sec. III, we covariantly derive the conditions for
the theory (1) to allow general Ricci-flat solutions with
the nontrivial profile of the scalar field. In Sec. IV, we focus
on the Schwarzschild metric and derive the stealth
Schwarzschild solutions for the Ansatz where the scalar
field is a function of the radial coordinate, ϕ ¼ ϕ0ðrÞ. We
present two types of stealth Schwarzschild solutions, and
show that, for the first solution, the scalar field is regular on
the event horizon. We then study the linear perturbation
analysis about the solution, and clarify that the kinetic term
of the scalar perturbation in the second order action
vanishes, indicating that the scalar mode is strongly
coupled. We also argue that stealth Schwarzschild solution
with more general time-independent scalar field generically
exhibits the same nature. In Sec. V, we consider time
dependent scalar field, and also argue the nonexistence of
stealth Schwarzschild solution. We explicitly show it for
sum and product separable Ansätze on the scalar field
profile. Finally, Sec. VI is devoted to a brief summary and
conclusion.

II. SETUP

A. Equations of motion

We consider the class of the Horndeski theory (1). Here,
we do not assume the shift-symmetry in the scalar sector,
and in general G2 and G3 explicitly depend on the scalar
field ϕ as well as X. Note that in the theory (1) the
propagation speed of GWs in the cosmological background
coincides with the speed of light.
Varying the action (1) with respect to the metric gμν, we

obtain the gravitational equations of motion

0 ¼ Eμν ≔ −
1

2
G2Xϕμϕν −

1

2
G2gμν þ

1

2
G3Xϕμϕν□ϕ

þ ϕðμ∇νÞG3 −
1

2
gμνϕλ∇λG3;

þG4Gμν þ gμνðG4ϕ□ϕ − 2XG4ϕϕÞ
−G4ϕϕμν − G4ϕϕϕμϕν; ð2Þ

where Gμν is the Einstein tensor associated with respect to
gμν, Giϕ and GiX are partial derivatives of Giðϕ; XÞ with
respect to ϕ and X, respectively, and AðμνÞ≔ ðAμνþAνμÞ=2.
Varying the action (1) with respect to the scalar field ϕ,

we obtain the scalar field equations of motion

0 ¼ S ≔ ∇μð−G2Xϕμ þ G3Xϕμ□ϕþ∇μG3Þ
− ðG2ϕ −G3ϕ□ϕþ G4ϕRÞ: ð3Þ

These equations are not all independent, but constrained by

∇νEν
μ ¼

S
2
∇μϕ; ð4Þ
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which is obtained by the Bianchi identity. Thus, the scalar
field equation does not need to be considered separately. As
we shall see below, once one obtains the conditions that
ensure the gravitational equations of motion Eμν ¼ 0 to be
satisfied, one also obtains ∇νEν

μ ¼ 0 if the conditions are
conserved along the solution (see Sec. II B), and then the
scalar field equation of motion S ¼ 0 is automatically
satisfied via Eq. (4).

B. Ricci-flat solutions

First, we consider the general spacetimes satisfying the
Ricci-flat condition

Rμν½gαβ� ¼ 0: ð5Þ

They correspond to the vacuum solutions in GR including
the Schwarzschild and Kerr solutions under the certain
symmetries. In Sec. III, we will derive the conditions on
coupling functions for the existence of the nontrivial profile
of the scalar field ϕ ¼ ϕ0ðxμÞ with

X0 ¼ −
1

2
gμνϕ0μϕ0ν: ð6Þ

In the following, for any function A ¼ Aðϕ; XÞ,
∂μAjϕ→ϕ0;X→X0

represents that

∂μAjϕ→ϕ0;X→X0
≔ ðAϕϕμÞjϕ→ϕ0;X→X0

þ ðAX∂μXÞjϕ→ϕ0;X→X0

¼ Aϕðϕ0; X0Þϕ0μ þ AXðϕ0; X0Þ∂μX0; ð7Þ

where Aϕ ≔ ∂A=∂ϕ and AX ≔ ∂A=∂X. If the condition
Aðϕ0; X0Þ ¼ const is satisfied on a trajectory ðϕ; XÞ ¼
ðϕ0; X0Þ,

∂μAjϕ→ϕ0;X→X0
¼ 0; ð8Þ

also has to be satisfied as the consistency condition.
Moreover, we focus on the case of the minimal coupling

of the scalar field to gravity,

G4 ¼
M2

Pl

2
; ð9Þ

where M2
Pl ≔ ð8πGÞ−1=2 is the reduced Planck mass

squared and G is the gravitational constant. Note that in
this paper we set the speed of light and the Planck constant
to unity, i.e., c ¼ ℏ ¼ 1. As we will see later, what is more
important for obtaining a stealth Ricci-flat solution is the
existence of the nontrivial functions G2ðϕ; XÞ and
G3ðϕ; XÞ, and no stealth Ricci-flat solution can be obtained
only from the nontrivial G4ðϕÞ. Thus, the restriction to the
case of Eq. (9) does not spoil the essence for the existence
of a stealth Ricci-flat solution.

Let us remark on the conformal and disformal trans-
formations. Under the transformation

gμν → αðϕÞgμν þ βðϕÞ∂μϕ∂νϕ; ð10Þ

with α ¼ αðϕÞ and β ¼ βðϕÞ, the structure of the
Horndeski Lagrangian does not change. Thus, one may
expect that the theory (1) with Eq. (9) may be conformally
or disformally transformed to GR. However, this is not the
case, as starting from the Einstein frame with Eq. (9) the
conformal transformation with α ¼ αðϕÞ and β ¼ 0 yields
G4 ¼ G4ðϕÞ, and the disformal transformation with α ¼ 1
and β ¼ βðϕÞ yields G4 ¼ G4ðϕ; XÞ in the new frame.
Furthermore, if a Ricci-flat solution exists in the original
frame with Eq. (9), the corresponding solution in the new
frame would be given by a BH hairy solution with a non-
Ricci-flat metric and a nontrivial profile of the scalar field.

C. Static and spherically symmetric spacetime

After covariantly analyzing general conditions for the
Ricci-flat solutions (5) in Sec. III, we shall focus on a static
and spherically symmetric spacetime

gμνdxμdxν ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

ð11Þ

where t, r, a ¼ ðθ;φÞ are the time, radial and angular
coordinates, respectively. The f and h are the functions
of r. Because of the uniqueness theorem, the static,
spherically symmetric, and asymptotically flat solutions
satisfying the vacuum Einstein equation (5) is only the
Schwarzschild solution

f ¼ h ¼ 1 −
2M
r

: ð12Þ

Below we shall derive conditions on the coupling functions
for the existence of the nontrivial profile of the scalar field.
On the Schwarzschild background (12), we will focus on
the following two cases:
(1) The scalar field is solely the function of r, ϕ ¼

ϕðrÞ (Sec. IV),
(2) The scalar field can also depend on the time and

other spatial coordinates, ϕ ¼ ϕðt; r; θ;φÞ (Sec. V).

III. CONDITIONS FOR THE STEALTH
RICCI-FLAT SOLUTIONS

In this section, we provide the covariant analysis.
Generalizing the strategy adopted in [62] for a constant
scalar field, we clarify conditions on G2ðϕ; XÞ and
G3ðϕ; XÞ for the equations of motion to allow general
Ricci-flat solutions with nontrivial scalar field profile.
We stress that the analysis in this section applies general
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Ricci-flat solutions including Schwarzschild and Kerr
solutions. We shall show that breaking the shift symmetry
is crucial for the following analysis, and that with shift
symmetry one would not obtain nontrivial solution.

A. The model with G3(ϕ;X)= 0

First, we consider the action (1) with Eq. (9) and

G2ðϕ; XÞ ≠ 0; G3ðϕ; XÞ ¼ 0; ð13Þ

which corresponds to the Einstein gravity coupled to the
k-essence-type scalar field.
In the model (13), if we impose the Ricci-flat condition

(5) for the metric and assume the existence of nontrivial
profile of the scalar field ϕ ¼ ϕ0ðxμÞ, the gravitational and
scalar field equations of motion, i.e., (2) and (3), respec-
tively, reduce to

0 ¼ Eμν ¼ −
1

2
G2Xϕ0μϕ0ν −

1

2
G2gμν; ð14Þ

0 ¼ S ¼ −ϕ0μ∇μG2X −G2X□ϕ0 −G2ϕ: ð15Þ

Note that G2 and its derivatives in the right-hand
sides are evaluated on ðϕ; XÞ ¼ ðϕ0; X0Þ, and □ϕ0 ≔
□ϕjϕ→ϕ0;X→X0

. Assuming the existence of the nontrivial
scalar field ϕ ¼ ϕ0ðxμÞ with ϕ0μ ≠ 0 and X0 ≠ 0, the trace
of Eq. (14), Eμ

μ ¼ 0, gives

G2Xðϕ0; X0Þ ¼
2G2ðϕ0; X0Þ

X0

: ð16Þ

Substituting it back into Eq. (14), we obtain

Eμν ¼ −
1

2
G2ðϕ0; X0Þ

�
2ϕ0μϕ0ν

X0

þ gμν

�
; ð17Þ

which yields the condition

G2ðϕ0; X0Þ ¼ 0: ð18Þ

Substituting Eq. (18) into Eq. (16), we obtain

G2Xðϕ0; X0Þ ¼ 0: ð19Þ

As we mentioned in (8), for (18) to be satisfied on the
trajectory ðϕ; XÞ ¼ ðϕ0; X0Þ, the consistency condition
∂μG2jϕ→ϕ0;X→X0

¼ 0 should be satisfied. Combining it with
(19), we obtain

0 ¼ ∂μG2jϕ→ϕ0;X→X0
¼ G2ϕðϕ0; X0Þϕ0μ

þG2Xðϕ0; X0Þ∂μX0

¼ G2ϕðϕ0; X0Þϕ0μ ¼ 0; ð20Þ

which leads to

G2ϕðϕ0; X0Þ ¼ 0: ð21Þ

Likewise, the consistency conditions for Eqs. (18) and (19)
are given by

∂μG2ϕjϕ→ϕ0;X→X0
¼ 0; ∂μG2Xjϕ→ϕ0;X→X0

¼ 0: ð22Þ

With Eqs. (19), (21), and (22), the scalar field equation of
motion (15) is satisfied.
It is worthwhile to note here that it is impossible to obtain

nontrivial model that satisfies these requirements. Indeed, if
one focuses on the shift-symmetric model with G2 ¼
G2ðXÞ, the condition (22) reduce to ∂μG2XðX0Þ ¼ 0.
Considering its consistency condition with ∂μX0 ≠ 0, we
obtain G2XXðX0Þ ¼ 0. In such a way, we successively
obtain G2XðX0Þ¼G2XXðX0Þ¼G2XXXðX0Þ¼���¼0. Con-
sequently, the only possible option is the trivial
model G2ðXÞ ¼ 0.
On the contrary, in the model without the shift symmetry

G2 ¼ G2ðϕ; XÞ, the condition (22) generates

�
G2ϕϕ G2ϕX

G2ϕX G2XX

��
ϕ0μ

∂μX0

�
¼ 0; ð23Þ

where the arguments of the matrix are evaluated at
ðϕ; XÞ ¼ ðϕ0; X0Þ. In order for (23) to be compatible with
a nontrivial solution with ðϕ0μ; ∂μX0Þ ≠ 0, the necessary
and sufficient condition is the degeneracy of the matrix, i.e.,

G2ϕϕðϕ0; X0ÞG2XXðϕ0; X0Þ − G2Xϕðϕ0; X0Þ2 ¼ 0: ð24Þ

We assume that G2ðϕ; XÞ is given by

G2 ¼ f2½g2ðϕ; XÞ�; ð25Þ

where f2ðyÞ is a regular function of y, and g2ðϕ; XÞ is a
regular function of (ϕ, X). The existence of stealth Ricci-
flat solution on the trajectory g2ðϕ0; X0Þ ¼ c2, where c2 is a
constant, requires the conditions (18), (19), and (21), which
yield f2 ¼ f02 ¼ 0 at g2ðϕ0; X0Þ ¼ c2, where Eq. (24) is
also satisfied. Since f2 is a regular function, it can be
written as a series expansion with respect to (g2ðϕ; XÞ − c2)
consisting of terms of more than the second order:

G2ðϕ; XÞ ¼ M4
2

X∞
n¼2

γ2;n½g2ðϕ; XÞ − c2�n; ð26Þ

where γ2;n (n ≥ 2) is a dimensionless constant, andM2 is a
constant of mass dimension one. To be more specific, we
focus on the case where g2 is a linear function of ϕ and X
and set c2 ¼ 0 without loss of generality,
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G2ðϕ; XÞ ¼ M4
2

X∞
n¼2

γ2;n

�
m2ϕ

M2
2

þ X
M4

2

�
n
; ð27Þ

where m2 is a constant of mass dimension one. In this
model, the stealth scalar field satisfies

X0 ¼ −m2M2
2ϕ0: ð28Þ

It can be solved as a differential equation for ϕ0ðxμÞ for a
specific case. We will provide an analytic solution with
specific Ansatz on the metric and scalar field in Sec. IV.

B. The model with G2(ϕ;X)= 0

Next, let us consider the action (1) with (9) and

G2ðϕ; XÞ ¼ 0; G3ðϕ; XÞ ≠ 0; ð29Þ

which corresponds to the Einstein gravity coupled to the
generalized Galileon.
In the model (29), if we impose the Ricci-flat condition

(5) for the metric and assume the existence of nontrivial
profile of the scalar field ϕ ¼ ϕ0ðxμÞ, the gravitational and
scalar field equations of motion, (2) and (3), respectively,
reduce to

0¼ Eμν ¼
1

2
ϕ0μϕ0νG3X□ϕ0 þϕ0ðμ∇νÞG3 −

1

2
gμνϕ0λ∇λG3;

ð30Þ

0 ¼ S ¼ ∇μðϕ0μG3X□ϕ0 þ∇μG3Þ þG3ϕ□ϕ0: ð31Þ

The trace of Eq. (30), Eμ
μ ¼ 0, gives the condition

ϕλ∇λG3jϕ→ϕ0;X→X0
¼ −X0G3Xðϕ0; X0Þ□ϕ0: ð32Þ

Plugging (32) back into Eq. (30), we obtain

0 ¼ Eμν ¼ −
1

2

�
ϕ0μϕ0ν

X0

þ gμν

�
ϕλ∇λG3jϕ→ϕ0;X→X0

þ ϕðμ∇νÞG3jϕ→ϕ0;X→X0
; ð33Þ

which is satisfied if

∂μG3jϕ→ϕ0;X→X0
¼ 0: ð34Þ

Parallel to Sec. III A, we can see that (34) implies that
only models breaking the shift symmetry can generate a
nontrivial solution. Indeed, for G3 ¼ G3ðXÞ, the condition
(34) reduces to G3XðX0Þ ¼ 0, and from the consistency
condition with ∂μX0 ≠ 0, one successively obtains
G3XXðX0Þ ¼ G3XXXðX0Þ ¼ � � � ¼ 0, leaving the trivial
model G3ðXÞ ¼ 0. Hence, below we consider models
breaking the shift symmetry:G3 ¼ G3ðϕ; XÞwithG3ϕ ≠ 0.

Plugging (34) into (32), so long as X0 ≠ 0, we obtain

G3Xðϕ0; X0Þ□ϕ0 ¼ 0: ð35Þ

The consistency conditions for (34) and (35) yield
□G3 ¼ 0 and ∂μðG3X□ϕ0Þ ¼ 0, which guarantees that
the first term of the scalar field equation of motion (31)
vanishing, and the remaining term is G3ϕ□ϕ0. We can
check that the remaining term is also vanishing for each
branch of (35):

1Þ □ϕ0 ¼ 0; ð36Þ

2Þ G3Xðϕ0; X0Þ ¼ 0: ð37Þ

1. Case 1

Case 1 constrains the scalar field profile, and there are
no further constraints for the functional form of G3 rather
than (34). The scalar field profile is then determined by
solving the differential equation (36) with specific Ansatz
on the metric and scalar field.

2. Case 2

In case 2, from Eqs. (34) and (37), we obtain

G3ϕðϕ0; X0Þ ¼ 0; ð38Þ

which guarantees the remaining term G3ϕ□ϕ0 in the scalar
field equation of motion (31) vanishing. The conditions
(34), (37), and (38) are sufficient to have the stealth Ricci-
flat solutions with ϕ0μ ≠ 0 and ∂μX0 ≠ 0.
The following process is then parallel to Sec. III A. The

consistency conditions of (37) and (38) provide

�
G3ϕϕ G3ϕX

G3ϕX G3XX

��
ϕ0μ

∂μX0

�
¼ 0; ð39Þ

which implies that nontrivial solution with ðϕ0μ; ∂μX0Þ ≠ 0

exists if and only if the condition

G3ϕϕðϕ0; X0ÞG3XXðϕ0; X0Þ − G3Xϕðϕ0; X0Þ2 ¼ 0; ð40Þ

is satisfied. As for the case (13), a general model satisfying
Eqs. (37), (38), and (40) is given by

G3ðϕ; XÞ ¼ M3

X∞
n¼2

γ3;n½g3ðϕ; XÞ − c3�n; ð41Þ

whereM3 is a constant of mass dimension one. The stealth
Ricci-flat solution exists for the trajectory g3ðϕ0; X0Þ ¼ c3,
where c3 is a constant. We focus on the case where g3 is a
linear function of ϕ and X and set c3 ¼ 0,
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G3ðϕ; XÞ ¼ M3

X∞
n¼2

γ3;n

�
m3ϕ

M2
3

þ X
M4

3

�
n
; ð42Þ

where γ3;n (n ≥ 2) is a dimensionless constant, and m3 is a
constant of mass dimension one. In this model, the stealth
scalar field satisfies

X0 ¼ −m3M2
3ϕ0: ð43Þ

C. The model with G2(ϕ;X) ≠ 0 and G3(ϕ;X) ≠ 0

Finally, we consider the model with

G2ðϕ; XÞ ≠ 0; G3ðϕ; XÞ ≠ 0: ð44Þ

If we impose the Ricci-flat condition (5) for the metric
and assume the existence of nontrivial profile of the scalar
field ϕ ¼ ϕ0ðxμÞ, the gravitational and scalar field equa-
tions of motion, (2) and (3), respectively, reduce to

0 ¼ Eμν ¼ −
1

2
ϕ0μϕ0νG2X −

1

2
G2gμν þ

1

2
ϕ0μϕ0νG3X□ϕ0

þ ϕ0ðμ∇νÞG3 −
1

2
gμνϕ0λ∇λG3; ð45Þ

0 ¼ S ¼ ∇μð−ϕ0μG2X þ ϕ0μG3X□ϕ0 þ∇μG3Þ
− G2ϕ þG3ϕ□ϕ0; ð46Þ

respectively.
The trace of Eq. (45), Eμ

μ ¼ 0, is given by

ðG2Xðϕ0; X0Þ − G3Xðϕ0; X0Þ□ϕ0ÞX0

¼ 2G2ðϕ0; X0Þ þ ϕλ∇λG3jϕ→ϕ0;X→X0
: ð47Þ

Substituting Eq. (47) into Eq. (45), we obtain

0 ¼ Eμν ¼ −ðG2 þ ϕλ∇λG3Þ
�
ϕ0μϕ0ν

X0

þ 1

2
gμν

�

þG3X

2

�
ϕ0μϕ0νϕ0λ∇λX0

X0

þ 2ϕ0ðμ∇νÞX0

�
;

ð48Þ

which is satisfied if

G2ðϕ0; X0Þ þ ϕλ∇λG3jϕ→ϕ0;X→X0
¼ 0; ð49Þ

G3Xðϕ0; X0Þ ¼ 0: ð50Þ

From Eqs. (49) and (50),

G2ðϕ0; X0Þ − 2X0G3ϕðϕ0; X0Þ ¼ 0: ð51Þ

From Eqs. (47), (49), and (50), then

G2Xðϕ0; X0Þ − 2G3ϕðϕ0; X0Þ ¼ 0: ð52Þ

The consistency condition for Eqs. (50)–(52) yield

∂μG3Xjϕ→ϕ0;X→X0
¼ 0;

∂μðG2X − 2G3ϕÞjϕ→ϕ0;X→X0
¼ 0;

∂μðG2 − XG2XÞjϕ→ϕ0;X→X0
¼ 0: ð53Þ

Note that we arranged the third equation for a later
convenience. With Eqs. (50)–(53), the scalar field equation
of motion (46) is also satisfied.
As for the previous models, a general model satisfying

the requirement is then given by

G2ðϕ; XÞ ¼ M4
0

X∞
n¼2

γ2;n½g0ðϕ; XÞ − c0�n;

G3ðϕ; XÞ ¼ M0

X∞
n¼2

γ3;n½g0ðϕ; XÞ − c0�n; ð54Þ

where γ2;n and γ3;n are dimensionless constants, M0 is a
constant of mass dimension one, and the solution
g0ðϕ0; X0Þ ¼ c0 gives the stealth Ricci-flat solution. We
focus on the case where g0 is a linear function of ϕ and X
and set c0 ¼ 0,

G2ðϕ; XÞ ¼ M4
0

X∞
n¼2

γ2;n

�
m0ϕ

M2
0

þ X
M4

0

�
n
;

G3ðϕ; XÞ ¼ M0

X∞
n¼2

γ3;n

�
m0ϕ

M2
0

þ X
M4

0

�
n
; ð55Þ

where γ2;n and γ3;n are dimensionless constants, and m0 is
constant of mass dimension one. In the model, the stealth
scalar field in the model (55) obeys

X0 ¼ −m0M2
0ϕ0: ð56Þ

IV. STEALTH SCHWARZSCHILD SOLUTION
WITH ϕ0 =ϕ0(r)

In Secs. IV and V, we assume that the metric is given by
the Schwarzschild solution (11) with (12) and derive the
conditions for the existence of a nontrivial profile of the
scalar field. In this section, we adopt the Ansatz ϕ ¼ ϕ0ðrÞ,
where X0 ¼ −ðh=2Þϕ0

0ðrÞ2. We shall derive a nontrivial
solution of ϕ ¼ ϕ0ðrÞ, which is unique for theory breaking
the shift symmetry.

A. The model with G3(ϕ;X)= 0

First, we focus on the model (13). A concrete model
that satisfies all the conditions is given by Eq. (27), for
which the stealth scalar field satisfies Eq. (28). For the
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Schwarzschild spacetime with the Ansatz ϕ ¼ ϕ0ðrÞ,
Eq. (28) reads

ϕ02
0 ¼ 2m2M2

2

1 − 2M=r
ϕ0: ð57Þ

The solution of the scalar field is then found to be

ϕ0ðrÞ¼2m2M2
2M

2½ ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffi
x−1

p
þ lnð ffiffiffi

x
p þ

ffiffiffiffiffiffiffiffiffiffi
x−1

p
Þ−C2�2;

ð58Þ

where x ≔ r=ð2MÞ, and C2 is a dimensionless integration
constant. At the vicinity of the event horizon r ¼ 2M, the
scalar field behaves as

ϕ0ðrÞ
2m2M2

2M
2
¼ ½ ffiffiffi

x
p ffiffiffiffiffiffiffiffiffiffiffi

x − 1
p

þ lnð ffiffiffi
x

p þ
ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
Þ�2

− 2C2½
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
þ lnð ffiffiffi

x
p þ

ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
Þ� þ C2

2

¼ 4ðx − 1Þ þ 4

3
ðx − 1Þ2 − 4

45
ðx − 1Þ3

þ � � � þ C2

ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p �
−4 −

2

3
ðx − 1Þ

þ 1

10
ðx − 1Þ2 − � � �

�
þ C2

2: ð59Þ

We see that for C2 ¼ 0 all the terms with the half-integer
powers of (x − 1) vanish, and hence ϕ0

0ðrÞ;ϕ00
0ðrÞ; � � � are

regular on the event horizon.
The solution (58) is different from the stealth

Schwarzschild solution [45,51] in shift symmetric theories
from several aspects. In the case of the stealth
Schwarzschild solution in the shift symmetric Horndeski
theories, the crucial point is that the scalar field has a
different coordinate dependence than the metric, i.e., while
the metric is Schwarzschild spacetime depending only on r,
the scalar field has the linear time dependence as ϕ0 ¼
qtþ ψðrÞ with q ¼ const. This is compatible with the
equations of motion since the time dependence does not
show up in the equations of motion, which is a natural
consequence of the Lagrangian depending only on r with
the shift symmetry. Consequently, only the parameter q
enters the equations of motion and one can derive analytic
solution for ψðrÞ ¼ qFðrÞ þ const, which is constant for
the limit q → 0. Therefore, the shift symmetry and the
linear time dependence play a crucial role to support the
stealth Schwarzschild solution in shift symmetric theories.
On the other hand, the solution (58) only exists for

theories breaking the shift symmetry as we clarified in
Sec. III, and the scalar field does share the same symmetry
with the metric [see also Sec. V for the case ϕ0 ¼ ϕ0ðt; rÞ].
The effect of the nontrivial scalar profile to the metric sector
is hidden in a nontrivial way and the metric remains the
Schwarzschild solution at the background level. Thus, the

difference from GR would show up only at the level of
perturbations. We shall address the linear perturbation
analysis in Sec. IV D.

B. The model with G2(ϕ;X)= 0

Second, we focus on the model (29). Equation (34)
provides the condition

∂rG3jϕ→ϕ0;X→X0
¼ G3ϕðϕ0; X0Þϕ0

0 þ G3Xðϕ0; X0ÞX0
0 ¼ 0;

ð60Þ

and hence

G3ðϕ0; X0Þ ¼ const: ð61Þ

Then, Eq. (32) reduces to G3Xðϕ0; X0Þ□ϕ0 ¼ 0 which
leads to

½rðr − 2MÞϕ00
0 þ 2ðr −MÞϕ0

0�G3Xðϕ0; X0Þ ¼ 0; ð62Þ

which provides case 1 and case 2 as discussed in Sec. III B.

1. Case 1

In case 1,

rðr − 2MÞϕ00
0 þ 2ðr −MÞϕ0

0 ¼ 0: ð63Þ

The solution of ϕ0 is given by

ϕ0ðrÞ ¼ PþQ ln

�
1 −

2M
r

�
; ð64Þ

where P and Q are integration constants. In this case,
G3ðϕ; XÞ is not be specified except that it satisfies (60).
Unlike the solution (58), the solution (64) is not regular
at the event horizon, unless Q ¼ 0 where the scalar field is
trivial.

2. Case 2

In case 2, a concrete model is given by Eq. (42).
The solution for the scalar field ϕ0ðrÞ is given by the
same solution as Eq. (58) with the replacement
ðM2; m2; C2Þ → ðM3; m3; C3Þ, where C3 is an integration
constant, and the regularity of ϕ0

0ðrÞ on the event horizon
requires C3 ¼ 0.

C. The model with G2 ≠ 0 and G3 ≠ 0

Finally, we consider the model (44). In the case of
ϕ0 ¼ ϕ0ðrÞ, Eqs. (47) and (49) have to be imposed.
However, since the combination inside the round bracket
of the second term in the right-hand side of (48) trivially
vanishes for all the components, in general G3Xðϕ0; X0Þ ¼
0 does not need to be imposed.

STEALTH SCHWARZSCHILD SOLUTION IN SHIFT … PHYS. REV. D 98, 084027 (2018)

084027-7



If Eq. (50) is imposed by hand, since Eqs. (51) and (52)
are also satisfied, a concrete model is given by Eq. (55).
The scalar field ϕ0 is given by Eq. (58) with the replace-
ment of ðM2; m2; C2Þ → ðM0; m0; C0Þ, where C0 is an
integration constant, and the regularity of ϕ0

0ðrÞ, ϕ00
0ðrÞ,

� � � on the event horizon requires C0 ¼ 0.

D. Linear perturbations and the absence
of the kinetic term

Before closing this section, let us mention the linear
perturbations about the stealth Schwarzschild solutions
(58) and (64), and their stability. In Refs. [31,32], the
odd- and even-parity perturbation analyses about general
static and spherically symmetric BH solutions including
Schwarzschild solution in the full Horndeski theory with
the scalar field profile ϕ ¼ ϕðrÞ were formulated, and the
conditions for the stability and the propagation speeds were
derived. For the odd-parity mode, the conditions to evade
ghost and gradient instabilities are

F > 0; G > 0; H > 0; ð65Þ

and the sound speed is given by

c2odd ¼
G
F
; ð66Þ

where F , G, H are defined by Eqs. (17)–(19) in Ref. [31].
The odd mode is nonvanishing only for l ≥ 2. For the
even-parity modes, the no-ghost condition is given by

lðlþ 1ÞP1 − F > 0; 2P1 − F > 0; ð67Þ

where l ≥ 2, and the sound speeds are given by

c2even;1 ¼
G
F
; c2even;2 ¼

ð2r2ΓH−GΞÞΞϕ02− 4r4ΣH2=h
ð2rHþΞϕ0Þ2ð2P1 −F Þ ;

ð68Þ

where

P1 ¼
1

2

r2H2

2rHþ Ξϕ0
d
dr

�
ln
f
h

�
þ d
dr

�
r2H2

2rHþ Ξϕ0

�
; ð69Þ

and Ξ, Γ, Σ are defined by Eqs. (36), (42), and (45) in
Ref. [32], respectively. The first even-parity mode is
nonvanishing only for l ≥ 2, whereas the second even-
parity mode exists for all l unless 2P1 − F ¼ 0. Note also
that the first condition of (67) for l ≥ 2 is always satisfied
if the second condition of (67) is satisfied, while the
opposite is not the case. The numerator of c2even;2 also
needs to be positive to evade gradient instability. Among
the one odd-parity mode and two even-parity modes, the
odd-parity mode and the first even-parity mode for l ≥ 2

correspond to the tensor perturbations with respect to the
three-dimensional space, i.e., they describe GWs. On the
other hand, the second even-parity mode, which exists for
all the l modes unless 2P1 − F ¼ 0, corresponds to the
scalar perturbation. This mode highlights the deviation
from GR most crucially. For the Schwarzschild solution
(12), the first term of (69) vanishes and we only need to
look at F , H, Ξ, ϕ0 to evaluate 2P1 − F . The class of the
Horndeski theory in which G3Xðϕ0; X0Þ ¼ 0 where (ϕ0,
X0) denotes the solution for the scalar field [see Eqs. (37)
and (50)] and G4 and G5 are constant yields 2P1 − F ¼ 0
about the Schwarzschild background (see Sec. IV D 1). On
the other hand, the second even-parity mode would be
propagating on the Schwarzschild background in the
Horndeski theory other than this class. Thus, the kinetic
coupling of the scalar field to the spacetime curvature due
to the nontrivial X-dependent G4ðϕ; XÞ and G5ðϕ; XÞ is
crucial for the second even-parity mode on the
Schwarzschild background to propagate.
For the theory (1), the functions are given by

F ¼ G¼H¼M2
Pl; Γ¼ −4XG3X; Ξ¼ −2r2XG3X;

Σ¼ X

�
G2X þ 2XG2XX − hϕ0

�
4

r
þ f0

f

�
ðXG3XÞX

− 2ðG3ϕ þ 2XG3ϕXÞ
�
; ð70Þ

where the functions in the right-hand sides are evaluated at
ðϕ; XÞ ¼ ðϕ0; X0Þ and hence take different values for each
stealth Schwarzschild solution. First, let us focus on the
GWmodes, namely, the odd-parity mode and the first even-
parity mode. From (66), (68), and (70), it is clear that in the
theory (1) GWs propagate with the speed of light, i.e.,
c2odd ¼ c2even;1 ¼ 1, the same as those in GR, which satisfies
the stringent observational constraint. On the other hand,
the scalar perturbation, namely, the second even-parity
mode behaves differently for each stealth Schwarzschild
solution. As for the stability conditions, while the condition
(65) for the odd mode is always satisfied for the theory (1),
the condition (67) and c2even;2 > 0 for the even-parity modes
need to be studied separately for each stealth Schwarzschild
solution.
We emphasize that the argument for obtaining the stealth

Ricci-flat solution in Sec. III does not apply to the
Horndeski theory with nontrivial G4ðϕ; XÞ and G5ðϕ; XÞ,
since due to the kinetic coupling of the scalar field to the
spacetime curvature the gravitational equations of motion
also depend on the Riemann tensor and hence the con-
ditions for the stealth Ricci-flat solution cannot be specified
only within the scalar field sector. However, as argued
in Sec. I, the kinetic coupling in the Horndeski theory
with nontrivial X-dependent G4ðϕ; XÞ and G5ðϕ; XÞ would
modify the propagation speed of gravitational waves
on cosmological backgrounds which was significantly
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constrained by the latest measurements of a binary neutron
star merger and its associated short gamma-ray burst. Also,
by using the conformal transformation, theories with non-
trivial G4ðϕÞ can be recast into the Einstein frame action.
Thus, our analysis applies to the Horndeski subclass (1),
and the analysis of the Horndeski theory with nontrivial X-
dependent G4ðϕ; XÞ and G5ðϕ; XÞ will have to be done
separately.
We also emphasize that even if the kinetic term of the

second even-parity mode is generically nonvanishing in a
class of the Horndeski theory, it might vanish at some
radius. Then, the strong coupling problem arises again.
Of course, since this would depend on the choice of
the coupling functions in the Horndeski theory and back-
ground solution, we also leave the further analysis for our
future work.

1. Solution (58)

First, let us check the perturbations about the first stealth
Schwarzschild solution (58). For this background, we
obtain Γ ¼ Ξ ¼ 0 and P1 ¼ 1=2 as G3Xðϕ0; X0Þ ¼ 0 for
the cases considered in Secs. IV B, IV C, or G3 itself
vanishes entirely for the case considered in Sec. IVA. We
see that the first condition of (67) is satisfied, whereas the
second condition is not, as 2P1 − F ¼ 0. Thus, the kinetic
term of the scalar perturbation in the second order action
vanishes, indicating that the scalar mode is strongly
coupled in the stealth Schwarzschild solution (58). For
such a solution, higher order corrections are inevitably
significant, and the linear perturbation theory loses the
predictability.
One might think that the absence of the kinetic term

of the scalar mode in the quadratic action might be
avoidable, if one introduces a new time coordinate of
the Schwarzschild solution, for instance, the Eddington-
Finkelstein or Gullstrand-Painlevé coordinates [71], where
the metric tensor contains an off-diagonal component of the
time and space, and hence the Lagrangian would contain
the nonzero kinetic term for the linear perturbations.
Moreover, in such a coordinate system, the solution for
the scalar field (58) with C2 ¼ 0 can be analytically
extended to the region inside the (future) event horizon.
However, the characteristic curves of this solution coincide
with the t ¼ const. surfaces originated from the bifurcation
point of the Schwarzschild spacetime, which are spacelike
outside the horizon and timelike inside the horizon. Hence,
we cannot find a Cauchy surface which can intersect all the
characteristic curves, and the initial value problem is still
ill-defined at the liner perturbation level. Indeed, the ill-
posedness of the initial value problem is diffeomorphism
invariant. This situation is analogous to the case of a
specific self-accelerating solution in nonlinear massive
gravity [72]. In such a solution, even though the absence
of the kinetic term in the quadratic action may be avoided
by an alternative choice of the time coordinate, the linear

perturbation analysis about the solution still loses the
predictability.
One might also think that the absence of the kinetic term

of the scalar mode in the quadratic action arises because of
the specific choice of the models (27), (42), and (55).
However, we expect that it also arises in any model Eq. (13)
satisfying the conditions Eqs. (18), (19), (21), and (24).
Considering a small perturbation in the scalar field sector,
ϕ ¼ ϕ0ðrÞ þ δϕ, and neglecting the perturbation of the
metric, since the time derivative term in X becomes
X ⊃ X0 þ _δϕ2=ð2fÞ, where a ‘dot’ denotes the derivative
with respect to the time t, the leading order kinetic term is
given by

G2ðϕ0 þ δϕ; X0 þ δXÞ

¼ 1

2G2ϕϕ
ðG2ϕϕδϕþG2XϕδXÞ2

þOðδϕ3; δϕ2δX; δϕδX2; δX3Þ ⊃ G2Xϕ

2f
δϕ _δϕ2: ð71Þ

Hence, the kinetic term for the linear perturbation vanishes
at the quadratic level for more general model with ϕ0 ¼
ϕ0ðrÞ. Similar arguments also apply to the other models
(29) and (44). Furthermore, following the same argument,
we expect that the kinetic term for the scalar mode vanishes
at the quadratic level in stealth Schwarzschild solution with
more general time independent profile of the stealth scalar
field, ϕ0 ¼ ϕ0ðr; θ;φÞ. Thus, the absence of the kinetic
term of the scalar mode in the quadratic action would be
generic feature for stealth Schwarzschild solution with any
time independent scalar field. The possibility of stealth
Schwarzschild solution with time dependent profile of the
scalar field will be discussed in Sec. V.

2. Solution (64)

Finally, we consider the second stealth Schwarzschild
solution (64). For this background, since G3Xðϕ0; X0Þ ≠ 0,
in general we have 2P1 − F ≠ 0 and c2even;2 does not blow
up. However, since the concrete form of G3ðϕ; XÞ cannot
be uniquely specified from our conditions, we cannot
determine whether the condition (67) and c2even;2 > 0 are
satisfied. Thus, for the second stealth Schwarzschild
solution (64), the stability about the even-parity modes
depends on the specific form of G3ðϕ; XÞ.
More specifically, the nonzero kinetic term of the

second even-parity mode for the solution (64) arises, since
the term Ξϕ0 in the denominator of the second term in
the right-hand side of Eq. (69) is generically nonvanishing.
In the large distance region r ≫ 2M, where the metric
approaches that of the flat spacetime, from Eq. (64) we
find that the leading order behavior is ϕ0 ∼ P − 2MQ=r
and X0∼−ϕ02

0 =2∼1=r4, and consequently Ξϕ0
0=ð2rHÞ ¼

−rG3XX0ϕ
0
0=M

2
Pl ∼G3X=r5. Hence, at least for the models
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with G3X which is not growing faster than r5, in the large
distance region r ≫ 2M, Ξϕ0

0 becomes negligible to 2rH
and from Eqs. (69) and (70), 2P1 − F approaches 0. Thus,
the kinetic term of the second even-parity mode vanishes
asymptotically at the spatial infinity. This is consistent with
our intuition that the kinetic term of the scalar field
perturbation should vanish in the flat spacetime where
the background scalar field vanishes, since the scalar and
metric perturbations should be decoupled in the flat
spacetime.

V. STEALTH SCHWARZSCHILD SOLUTION
WITH TIME DEPENDENT SCALAR FIELD

In this section, we argue the nonexistence of stealth
Schwarzschild solution with the time dependent scalar
field. For the most general Ansatz of the stealth scalar
field, ϕ ¼ ϕ0ðt; r; θ;φÞ, for which

X0 ¼
1

2

�
1

f
_ϕ2
0 − fϕ02

0 −
1

r2
ϕ2
0;θ −

1

r2sin2θ
ϕ2
0;φ

�
: ð72Þ

We mainly focus on the model (13), but the same
conclusion holds for the models (29) and (44). For the
model (13), we impose the conditions (18), (19), and (21),
and in addition the conditions (22) reduce to

G2ϕϕðϕ0; X0Þ
G2Xϕðϕ0; X0Þ

¼ G2Xϕðϕ0; X0Þ
G2XXðϕ0; X0Þ

¼ −
_X0

_ϕ0

¼ −
X0
0

ϕ0
0

¼ −
∂θX0

ϕ0;θ
¼ −

∂φX0

ϕ0;φ
: ð73Þ

Moreover, in the model (26), the stealth scalar field satisfies
the equation g2ðϕ0; X0Þ ¼ c2, and from Eq. (73) we obtain

_X0 ¼ −
g2ϕðϕ0; X0Þ
g2Xðϕ0; X0Þ

_ϕ0; ð74Þ

X0
0 ¼ −

g2ϕðϕ0; X0Þ
g2Xðϕ0; X0Þ

ϕ0
0; ð75Þ

∂θX0 ¼ −
g2ϕðϕ0; X0Þ
g2Xðϕ0; X0Þ

ϕ0;θ; ð76Þ

∂φX0 ¼ −
g2ϕðϕ0; X0Þ
g2Xðϕ0; X0Þ

ϕ0;φ: ð77Þ

Thus, a single scalar variable ϕ0 ¼ ϕ0ðt; r; θ;φÞ has to
satisfy the four independent conditions Eqs. (74)–(77),
which already indicates that in general there is no con-
sistent solution for the stealth scalar field, except for the no-
hair Schwarzschild solution ϕ0 ¼ 0.
In the rest of this section, focusing further on the specific

model (27), we will present the cases for which we can

explicitly see the nonexistence of stealth Schwarzschild
solution.

A. Case ϕ0 =ϕ0(t; θ;φ)

Among the time dependent profile of the stealth scalar
field, the obvious example for the nonexistence of stealth
solution is given by ϕ0 ¼ ϕ0ðt; θ;φÞ. In this case, Eq. (28)
reduces to

1

fðrÞ
_ϕ2
0 −

1

r2
ϕ2
0;θ −

1

r2sin2θ
ϕ2
0;φ ¼ −2m2M2

2ϕ0: ð78Þ

Even if Eq. (78) is satisfied for a particular value of
rð> 2MÞ, it fails to be satisfied for a different value of
r. Thus, there is no solution of the stealth scalar field ϕ0 for
any r, except for the no-hair solution ϕ0 ¼ 0. The similar
argument applies to the other particular models (42) and
(55). The same conclusion can be deduced for the restricted
assumptions, ϕ ¼ ϕ0ðtÞ, ϕ0ðt; θÞ, and ϕ0ðt;φÞ.
For the other profiles of the stealth scalar field,

ϕ ¼ ϕ0ðt; rÞ, ϕ0ðt; r; θÞ, ϕ0ðt; r;φÞ, and ϕ0ðt; r; θ;φÞ, we
need the further restrictions for the dependence on the
variables.

B. Case ϕ0 =ϕ0(t; r)

Next, we consider the scalar field profile ϕ0 ¼ ϕ0ðt; rÞ.
If we focus on the model (27), only Eqs. (74) and (75) are
nontrivial.

1. Case ϕ0(t; r)= χ(t)+ψ(r)

First, we assume the sum separable Ansatz for the scalar
field ϕ0 ¼ χðtÞ þ ψðrÞ, for which Eq. (74) reads

χ̈ðtÞ ¼ −m2M2
2fðrÞ; ð79Þ

which does not allow a consistent nontrivial solution. Thus
in this model, there is no stealth Schwarzschild solution
with the Ansatz ϕ0 ¼ χðtÞ þ ψðrÞ.

2. Case ϕ0(t; r)= χ(t)ψ(r)

Second, we consider the product separable Ansatz
ϕ0 ¼ χðtÞψðrÞ, for which Eq. (74) reads

χ̈ ¼ f2ψ 02

ψ2
χ −

m2M2
2f

ψ
: ð80Þ

Since the left-hand side is independent on r, the right-hand
side should be also independent of r. In order for the
right-hand side to be independent of r, both fψ 0=ψ and f=ψ
have to be constant in r. However, they give ψ ∝ f and
ψ 0 ¼ const. Clearly, these two requirements are not be
compatible with fðrÞ ¼ 1 − 2M=r for M ≠ 0. Thus, there
is no stealth Schwarzschild solution for the product
separable case.
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C. Case ϕ0 =ϕ0(t; r; θ;φ)

We then extend the analysis to more general cases
ϕ0 ¼ ϕ0ðt; r; θ;φÞ. Since the equations are partial differ-
ential equations, it is difficult to handle them explicitly. In
the rest, we list the particular cases where the stealth
solutions cannot be obtained for the model (27). The same
conclusions can also be obtained for the models (42)
and (55).

1. Sum separable Ansatz

First, we consider more general sum separable Ansatz.
Following the discussion in Sec. V B 1, the analysis for the
Ansatz ϕ0 ¼ χðtÞ þ ψðr; θ;φÞ gives rise to no stealth
Schwarzschild solution.
For the Ansatz ϕ0 ¼ ΦðφÞ þ ψðt; r; θÞ, Eq. (77) yields

Φ00ðφÞ ¼ m2M2
2r

2sin2θ: ð81Þ

which cannot be consistently satisfied, when it is viewed as
the equation forΦ. Thus, from the beginning we have to set
Φ ¼ 0, and then the remaining Eqs. (74)–(76) should be
satisfied for a single function ψ , and the consistent solution
is only ψ ¼ 0, namely the no-hair solution.
Similarly, for the Ansatz ϕ0 ¼ ΘðθÞ þ ψðt; r;φÞ Eq. (76)

yields

Θ00ðθÞ ¼ m2M2
2r

2 þ 1

tan θsin2θΘ0ðθÞψ
2
φ; ð82Þ

which also cannot be satisfied, when it is viewed as the
equation for Θ. Thus, from the beginning we have to set
Θ ¼ 0, and then the remaining Eqs. (74), (75), and (77)
should be satisfied for a single function ψ , and the
consistent solution is only the no-hair solution ψ ¼ 0.
Finally, for the Ansatz ϕ0 ¼ RðrÞ þ ψðt; θ;φÞ, Eqs. (74),

(76), and (77) do not depend on R and its derivatives.
Hence, the equations become those for ψðt; θ;φÞ with
r-dependent coefficients, for which the method of separa-
tion of variables does not work and hence they cannot be
consistently satisfied unless ψ ¼ 0, to which the analysis in
Sec. IV D 1 applies.
Therefore, there is no stealth Schwarzschild solution for

the sum separable Ansatz about single coordinate. Even for
the sum separable cases about two coordinates, such as
ϕ0 ¼ ψ1ðt; rÞ þ ψ2ðθ;φÞ and ϕ0 ¼ ψ1ðt;φÞ þ ψ2ðr; θÞ, in
general the four independent conditions (74)–(77) cannot
be consistently satisfied unless ψ1 ¼ ψ2 ¼ 0. Hence, we
end up with the no-hair solution.

2. Product separable Ansatz

Let us consider the product separable Ansatz for the
stealth scalar field. First, we consider the product separable
Ansatz for a single coordinate. For instance, if we consider

the Ansatz of the scalar field ϕ0 ¼ χðtÞψðr; θ;φÞ.
Equation (74) becomes

ψ2χ̈ − f2ψ 02χ −
fψ2

θχ

r2
−

fψ2
θχ

r2sin2θ
þm2M2

2ψ

f
¼ 0: ð83Þ

If Eq. (83) is viewed as an equation for χðtÞ, it cannot be
satisfied unless ψ ¼ 0, since otherwise the coefficients
depend on the other coordinates. Similarly, for the Ansätze
ϕ0 ¼ RðrÞψðt; θ;φÞ, ϕ0 ¼ ΘðθÞψðt; r;φÞ, and ϕ0 ¼
ΦðφÞψðt; r; θÞ, the equations R, Θ, and Φ cannot be
satisfied unless ψ ¼ 0, respectively. Thus, these product
separable Ansatz give the no-hair Schwarzschild solution.
Therefore, for these product separable Ansätze about

single coordinate, there is no stealth Schwarzschild sol-
ution. Even for the product separable cases about two
coordinates, such as ϕ0 ¼ ψ1ðt; rÞψ2ðθ;φÞ and ϕ0 ¼
ψ1ðt;φÞψ2ðr; θÞ, the four independent conditions (74)–
(77) cannot be consistently satisfied, unless ψ1 ¼ ψ2 ¼ 0.
Hence we end up with the no-hair solution.

VI. CONCLUSIONS

In the present paper, we have found stealth
Schwarzschild solutions in the class of the shift symmetry
breaking Horndeski theory (1) withG4 ¼ M2

Pl=2, where the
propagation speed of gravitational waves coincide with the
speed of light. Interestingly enough, these solutions exist
only for shift-symmetry breaking theories, and one cannot
obtain them for shift symmetric theories.
In Sec. III, we have derived the sufficient conditions for

G2ðϕ; XÞ and G3ðϕ; XÞ to allow the Ricci-flat metric
solutions and the stealth scalar field profile that does not
affect the metric sector. The covariant analysis in Sec. III
applies any general Ricci-flat metric including the
Schwarzschild and Kerr solutions, and a general scalar
field profile. The crucial point is that the analysis requires
that the shift symmetry is broken in the scalar field sector,
otherwise one would not obtain a nontrivial solution. We
provided (26), (41), and (54) as general example theories
satisfying the sufficient conditions.
In Secs. IVand V, we have applied the analysis of Sec. III

to the Schwarzschild solution, and considered the nontrivial
scalar field profiles; ϕ ¼ ϕ0ðrÞ which shares the symmetry
with the metric functions, and ϕ ¼ ϕ0ðt; r; θ;φÞ which
does not share the symmetry with the metric functions,
respectively. For the former case with ϕ ¼ ϕ0ðrÞ in Sec. IV,
we derived two types of stealth Schwarzschild solutions
(58) and (64). The solution (58) is regular at the event
horizon and exists for theories (27), (42), and (55), whereas
the solution (64) is not regular at the event horizon and
exists for the case G2ðϕ; XÞ ¼ 0 and G3ðϕ; XÞ ≠ 0, for
which the conditions do not identify the specific form of
G3ðϕ; XÞ. Moreover, we investigated the linear perturba-
tions about the solution (58) and found that the kinetic term
of the scalar mode identically vanishes. We also argued that
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this nature is universal for any stealth Schwarzschild
solution with time independent scalar field. On the other
hand, we clarified in Sec. V that there is no stealth
Schwarzschild solution for time dependent scalar field.
While the absence of the kinetic term of the scalarmode in

the quadratic action indicates the strong coupling in the
stealth Schwarzschild solution (58) and requires nonlinear
analysis, it is worthwhile to remark that the statement about
the scalar mode is not about the theories (27), (42), and (55)
themselves, but about the particular solutions (58). Indeed,
since the theories satisfy the sufficient condition for the GR
solution [62], they also allow the Schwarzschild solution
with constant scalar field profile, for which the analysis in
Sec. IV D does not apply and independent analysis with
ϕ ¼ const is required (see Sec. IV D and footnote 2 in [32]).
It is very interesting to consider other stealth Ricci-flat

solutions, especially stealth Kerr solution, which is more
relevant for astrophysical applications. We speculate that
the absence of the kinetic term of the scalar mode in the
quadratic action crucially depends on the character of the
scalar field. If ∂μϕ is spacelike, there would be a choice of
time coordinate in which the kinetic term of the linear
perturbations in the second order action vanishes on the

constant time hypersurface, and the Cauchy problem is ill-
posed. As argued in Ref. [72], even though the kinetic term
in the second order action does not vanish for an alternative
choice of the time coordinate, the spacelike Cauchy surface
that intersects with all the characteristic curves does not
exist, as the ill-posedness of the Cauchy problem is
diffeomorphism invariant. On the other hand, if ∂μϕ is
timelike, the scalar mode about the solution would have the
kinetic term at the quadratic order. The existence of an
explicit stealth Ricci-flat solution would depend on the
choice of the metric solution and Ansatz for the scalar field,
which is left for future work.
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