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Some modified theories of gravity are known to predict monopolar, in addition to the usual quadrupolar
and beyond, gravitational radiation in the form of “breathing”modes. For the same reason that octupole and
higher-multipole terms often contribute negligibly to the overall wave strain, monopole terms tend to
dominate. We investigate both monopolar and quadrupolar continuous gravitational radiation from neutron
stars deformed through internal magnetic stresses. We adopt the parametrized-post-Newtonian formalism
to write down equations describing the leading-order stellar properties in a theory-independent way, and
derive some exact solutions for stars with mixed poloidal-toroidal magnetic fields. We then turn to the
specific case of scalar-tensor theories to demonstrate how observational upper limits on the gravitational-
wave luminosity of certain neutron stars may be used to place constraints on modified gravity parameters,
most notably the Eddington parameter γ. For conservative, purely poloidal models with characteristic field
strength given by the spindown minimum, upper limits for the Vela pulsar yield 1 − γ ≲ 4.2 × 10−3. For
models containing a strong toroidal field housing ∼99% of the internal magnetic energy, we obtain the
bound 1 − γ ≲ 8.0 × 10−7. This latter bound is an order of magnitude tighter than those obtained from
current Solar System experiments, though applies to the strong-field regime.
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I. INTRODUCTION

Gravitational wave (GW) detectors, such as The Laser
Interferometer Gravitational-Wave Observatory (LIGO) [1],
are continually improving in sensitivity. It is therefore of
ever-increasing importance to better understand what we can
learn from further detections of GWs from astrophysical
bodies. To this end, GW astronomy has two major aims:
(i) to study the properties of bulk matter in astrophysical
environments (including at high redshifts) [2,3], and (ii) to
probe the theory of general relativity (GR) [4,5]. For objects
such as neutron stars, however, where extreme nuclear
matter and strong-gravity coexist, there is a fundamental
inseperability between these two aims [6–9]. For example, a
theoretical upper limit on the maximum mass of a neutron
star is set by the Tolman-Oppenheimer-Volkoff relations
[10,11], the particulars of which intimately involve the
equation of state of neutron matter [12] and the gravitational
action [13,14]. The observational existence of high mass
neutron stars, such as J0348þ 0432 ðM⋆ ¼ 2.01�
0.04 M⊙Þ [15], therefore challenges theories of gravity
which do not permit such a mass for realistic equations
of state [16,17] or which suffer from instabilities for M⋆ ≳
2 M⊙ [18]. More generally, to make full use of GWdata, it is
pertinent to identify what signatures, if any, a given theory of
gravity imprints on a GW signal.

It is well known that GWs are generated by a rotating,
biaxial object when the angle made between its angular
momentum and symmetry axis vectors (“wobble angle”) is
nonzero [19,20]. In a theory of gravity wherein Birkhoff’s
theorem does not hold [21], even stars pulsating [22,23] or
collapsing [24,25] spherically can emit GWs through the so-
called “breathing” mode [26]. In a scalar-tensor theory, for
example, energy can be dynamically exchanged between the
scalar and tensor sectors through Yukawa-like interactions
[27], leading to the excitation of a breathing mode, whose
contributions start at the post-Newtonian monopole level,
and to a modulation of the usual þ and × tensor modes,
whose contributions begin at the Newtonian quadrupole
level [28–31]. For a compact object with spin frequency ν
and radius R⋆, simple estimates show that the contribution to
the overall GW strain from each l-pole scales with
ðνR⋆=cÞl [32]. For a neutron star, this dimensionless ratio
is of the order νR⋆=c≲ 10−2 [12]; a testament to the
accuracy of the famous quadrupole formula. However, in
a theory of gravity which permits it, this same scaling
relationship implies that the monopole breathing mode may
dominate over the quadrupole-generated mode(s).
In any case, we focus here on magnetically deformed

neutron stars as potential continuous GW sources. The
equatorial magnetic field strength B⋆ of a neutron star

can be estimated from its spindown, viz. B⋆ ≈ 3.2 ×
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measurements of cyclotron resonant scattering lines [33]
and pulse fractions in surface X-ray emissions [34] suggest
that some neutron stars have local magnetic field strengths
well in excess (≳3 orders of magnitude in some cases, such
as 1E 1207.4-5209 [35]) of their spindown limits. Since
magnetic stresses are known to induce mass density
asymmetries within a star [36,37], magnetised neutron
stars are therefore expected, in principle, to be excellent
sources of continuous GWs [38,39]. In particular, these
density asymmetries naturally lead to the generation of
mass multipole moments, whose magnitude is proportional
to the magnetic energy [20,40,41]. However, the precise
relationship between the GW luminosity and the multipole
moments depends on the theory of gravity [32,42,43]. This
makes a general assessment of modified-gravity-related
consequences for GW emission from magnetically (or
otherwise) deformed neutron stars a challenging task.
Tomakeheadway in amannerwhich is, at least somewhat,

theory-independent, we introduce a novel approach based
on the parametrized-post-Newtonian (PPN) formalism
[44–47]. A natural generalization of the post-Newtonian
expansion [48–50], the PPN formalism provides a frame-
work to quantify the impact of modified gravity parameters
bybuilding agenericmetricwhich includes, to leadingorder,
all possible geometric responses tomaterial stresses [51,52].
In theories of gravity which abide by the (Einstein) equiv-
alence principle, wherein matter and otherwise nongravita-
tional fields couple only to the metric, ten such independent
terms can emerge [46,53]. Each of these constituent pieces
appear in a PPN “supermetric” with some coupling coef-
ficients (the PPNparameters),which are to be constrained by
experiment. These parameters take definitive values in a
given theory of gravity [47] (see also Sec. II B), though can
be treated as free so that one may probe multiple theories
simultaneously. For example, one of these coefficients is the
classical Eddington one, denoted γ, originally used to
parameterise the extent of light deflection by gravitational
sources as a means to test GR [54], which predicts γ ¼ 1
exactly. Incidentally, the parameter γ is also linked to the
possibility of monopolar radiation [55]; see Sec. V.
Applying the PPN theory to the magnetohydrodynamic

(MHD) study of neutron stars (Secs. II and III), their leading-
order properties can be described in terms of the PPN para-
meters (Sec. IV); see also Refs. [56,57]. This allows us to
investigate how modified gravity terms regulate the GW
luminosity (Sec. VA), which, upon comparison with LIGO
andVirgo upper limits, effectively allows for constraints to be
placed onmodified gravity and stellar parameters (Sec. V B).
We restrict our attention to axisymmetric stars with mixed
poloidal-toroidal, dipolar magnetic fields for simplicity,
though we present the formalism in a general manner.

II. STELLAR STRUCTURE

For a neutron star, the magnetic energy density is
≲10−6ðB⋆=1015 GÞ2 that of the gravitational binding

density. Therefore, even for anomalous X-ray pulsars or
soft gamma repeaters (“magnetars”) [58], we may treat the
(post-Newtonian) Lorentz force as a perturbation on a
background hydrostatic equilibrium [41,59,60]. Handling
magnetic forces as perturbations introduces nonbarotropic
features into the fluid, which are expected to emerge on
physical grounds; see Refs. [61,62]. As such, here we
describe the PPN formalism, both in general (Sec. II A) and
for specific modified theories of gravity (Sec. II B), and
write down the relevant equations of motion for an
unmagnetized star in equilibrium (Sec. II C). Magnetic
perturbations are then introduced in Sec. III.

A. Parametrized-post-Newtonian formalism

In most modern theories of gravity, the metric tensor is a
fundamental dynamical variable. For any given matter
source, the field equations determine the metric structure.
Because the theory space for modified gravity models is so
vast, techniques to decompose a general metric are useful
since they allow one to consider multiple classes of theories
at once. In this paper, we adopt the PPN formalism [46,47], a
review of which can be found in Ref. [53]. Different
approaches, such as Geroch-Hansen moment deconstruc-
tions [63–66] (which expand ametric as a sumovermoments
rather than post-Newtonian terms), require spacetime sym-
metries which will often not be present when generic matter
couplings are considered (e.g., nonstationary sources).
For our purposes, it is sufficient to note that the PPN

formalism allows one to expand the components of a
general1 metric tensor into powers of dimensionless quan-
tities such as v2=c2, where c is the speed of light and v ≪ c
is the velocity of the source, thus encapsulating the
dynamics of slow-motion sources up to some desired order.
This is similar to the post-Newtonian expansion of GR [49],
though applies to more general metric theories of gravity.
Once one has identified all possible terms which can appear
in the metric at post-Newtonian order, a “super metric” is
built which includes all such terms coupled to some
coefficients which are a priori arbitrary [51]. These
coefficients are, however, uniquely determined in any given
theory of gravity; see chapter 5 of Ref. [47].
In general, the PPN metric contains 10 coefficients2: γ

and β, which are the classical Eddington-Robertson-Schiff
parameters [54] quantifying spatial curvature due to unit
mass (e.g., light deflection), ζ and Σ, quantifying spatial

1Strictly speaking, the formalism applies to theories wherein
(i) the metric tensor is symmetric, (ii) test bodies follow Levi-
Civita geodesics, and (iii) special relativity describes nongravita-
tional physics in freely falling frames [47,51].

2Throughout this work, we adopt the notation first introduced
by Will in Ref. [51], which is slightly different to the standard
“alpha-zeta” notation, but is more compact; compare equations
(16) of [51] with those on page 31 of [47] to translate between the
two notations. Note that we have restored dimensional constants
in our expressions.

ARTHUR GEORGE SUVOROV PHYS. REV. D 98, 084026 (2018)

084026-2



curvature due to the radial and transverse components of
kinetic energy and stress (if different from unity, indicates
preferred-frame or Whitehead effects [67]), Δ1 and Δ2,
describing how much inertial frames are dragged by unit
momentum (if different from unity, indicates a violation of
conservation of angular momentum), and finally βi for
i ¼ 1, 2, 3, 4, quantifying spatial curvature due to unit
kinetic energy, unit gravitational potential, unit internal
energy, and unit pressure, respectively (if different from
unity, indicates a violation of conservation of linear momen-
tum). One can show that, under an appropriate gauge fixing,
the coefficient Σ is mathematically redundant [46]. Without
loss of generality, we henceforth set Σ ¼ 0. In GR, all
parameters have unit value except for ζ, which vanishes.
In general, the PPN metric reads

ds2 ¼ c2
�
1 −

2U
c2

þ β
2U2

c4
−
4Φ
c2

þ ζA
�
dt2

þ
�
7

2
Δ1Va þ

1

2
Δ2Wa

�
dtdxa

−
�
1þ 2γU

c2

�
δabdxadxb; ð1Þ

where U is the standard Newtonian gravitational potential
satisfying

∇2U ¼ −4πGρ; ð2Þ

∇ represents the usual flat space derivative operator, G is
Newton’s constant, ρ is the mass density, Φ is the
generalized “post-Newtonian potential,”

∇2Φ ¼ −4πGρ
�
β1

v2

c2
þ β2

U
c2

þ β3
Π
2
þ β4

3p
2c2ρ

�
; ð3Þ

for pressure p and internal energy density ρΠ, A is given
through the Green’s function expression

Aðx; tÞ ¼ G
c4

Z
dx0

ρðx0; tÞ½vðx0; tÞ · ðx − x0Þ�2
jx − x0j3 ; ð4Þ

and the vector potentials V andW are similarly defined via

Vðx; tÞ ¼ G
c2

Z
dx0

ρðx0; tÞvðx0; tÞ
jx − x0j ; ð5Þ

and

Wðx; tÞ ¼ G
c2

Z
dx0

ρðx0; tÞðx − x0Þ½vðx0; tÞ · ðx − x0Þ�
jx − x0j3 ;

ð6Þ

respectively.

B. PPN coefficients in modified gravity

In a general theory of gravity, the PPN coefficients are
not constant but vary as functions of the Ricci scalar R
or other curvature quantities [68–70]. For example, in
massive Brans-Dicke theories [71], the PPN parameters
scale inversely with the distance from compact sources
because the scalar field becomes suppressed in regions of
weak curvature through the Vainshtein [72] or other
mechanisms [73]. This is important because it implies that
Solar system constraints (see below) on the PPN param-
eters are not necessarily applicable to the neutron star
regime. Indeed, there are only a few strong field constraints
on the PPN parameters, which come from pulsar timing
[74–76]. Nevertheless, accurate measurements of P and its
derivatives from a pulsar system strongly constrains devia-
tions from momentum conservation (mainly β1 and β2) and
the existence of preferred frame effects (ζ) at high energies,
and somewhat constrains other parameters (though see
Ref. [77]). In theories where the PPN parameters are
everywhere constant (e.g., massless Brans-Dicke theory),
non-Einstein terms negligibly affect fluid behavior because
the PPN parameters are necessarily heavily constrained
from both the weak and strong field experiments [53].
To provide an explicit example of the above consider-

ations, it can be shown that for the fðRÞ theory of gravity
(see Ref. [78] for a review), the PPN parameters γ and β
take the form [79,80]

γ − 1 ¼ −
f00ðRÞ2

f0ðRÞ þ 2f00ðRÞ2 ; ð7Þ

and

β − 1 ¼ f0ðRÞf00ðRÞ
8f0ðRÞ þ 12f00ðRÞ2

dγ
dR

; ð8Þ

respectively. Note that, in the GR limit, fðRÞ ¼ R, the
above formulas yield γ ¼ β ¼ 1 exactly, as expected. The
Cassini spacecraft [81] and lunar laser ranging (Nordtvedt
effect) [82] experiments imply the constraints [53]

jγ0 − 1j ≤ 2.3 × 10−5; jβ0 − 1j ≤ 2.3 × 10−4; ð9Þ

where the subscripts indicate that the PPN parameters are
evaluated at the Solar system value of the Ricci scalar, R0 ≈
10−27 cm−2 [6]. Simple estimates, based on the fact that
R ∝ Gρ=c2 [83], show that the scalar curvature in a neutron
star core exceeds the Solar System value by many orders of
magnitude; RNS ≈ 10−12 cm−2.
In Fig. 1 we show the PPN parameters γ [Eq. (7), solid

curve] and β [Eq. (8), dashed curve] for an fðRÞ theory of
gravity given by
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fðRÞ ¼ λ −
1

4

Z
dR

�Z
dR

�
QðRÞ − 1

2QðRÞ − 1

�
1=2

�
2

; ð10Þ

where λ is an arbitrary (cosmological) constant and

QðRÞ ¼ 1 −
1

5
tanh

�
R

1013R0

�
: ð11Þ

Note that this choice for the function f (10) is not motivated
by observational considerations (though see Ref. [84]), but
is chosen to demonstrate that the PPN coefficients can take
values different from unity in a neutron star regime, even
when Solar System experiments (9) are accounted for and a
viable weak-field limit exists. Indeed, we see that the
constraints (9) are satisfied at R ∼ R0, while the parameter γ
departs from one when R ≫ R0, eventually saturating at
γ ¼ 0.8 for extreme scalar curvatures R≳ 10−2RNS ≫ R0.
The parameter β is everywhere less than one, though
departs negligibly from unity for R ∼ R0 and by≲1 percent
across all values of R. Similar behaviors for the PPN
parameters can occur in other theories of gravity, e.g.,
massive Brans-Dicke theories [71].

C. PPN hydrodynamics

Using expressions (1)–(6), one can derive3 the PPN-
continuity equation [51],

0 ¼ ∂ρ⋆
∂t þ∇ · ðρ⋆vÞ; ð12Þ

and the PPN-Euler equations,

0 ¼ ρ⋆ dv
dt

− ρ⋆∇U þ∇
�
p

�
1þ 3γU

c2

��
−
�
v2

2c2
þ Πþ p

c2ρ⋆

�
∇pþ ρ⋆ d

dt

�ð2γ þ 2ÞU
c2

v −
1

2
ð7Δ1 þ Δ2ÞV

�

− v

�
ρ⋆
c2

∂U
∂t −

∂p
∂t

�
−
1

2
Δ2ρ

⋆ ∂
∂t ðW − VÞ þ 1

2
ð7Δ1 þ Δ2Þρ⋆v ·∇V þ 1

2
ζρ⋆c2∇A

− 2ρ⋆∇Φ − ρ⋆
�
γv2 − ð2β − 2ÞU þ 3γp

ρ⋆
�∇U

c2
; ð13Þ

where d=dt ¼ ∂=∂tþ v ·∇ is the advective derivative, and
we have introduced the so-called “conserved density”

ρ⋆ ¼ ρ

�
1þ 1

2

v2

c2
þ 3γU

c2

�
: ð14Þ

Equations (12) and (13), subject to an equation of state
relating p to ρ and other thermodynamic variables, com-
pletely characterize the properties of a perfect fluid at first
post-Newtonian order in a metric theory of gravity (see also
Ref. [85]). Upon discarding terms of order Oðc−2Þ, one
recovers Newtonian hydrodynamics.

In order to simplify the calculations and subsequent
analysis, we use a static approximation for the star
wherein v ¼ 0 and ∂t ¼ 0. In this case, the continuity
equation (12) is identically satisfied, and the Euler
equation (13) is greatly simplified. We also ignore
thermodynamic contributions to the total density (e.g.,
compressional or thermal energies); Π ¼ 0. Ultimately,
this means that we need only consider four of the PPN
parameters, namely γ, β, β2, and β4, as the others do not
enter into the equations of motion. Including thermody-
namic and kinematic effects is, in principle, straightfor-
ward, but requires a more sophisticated numerical analysis
than is employed here (see Sec. IVA).

III. MAGNETIZED STELLAR STRUCTURE

The Lorentz force FL, to Oðc−2Þ in a metric theory of
gravity, is given by [52]

FIG. 1. Values of the PPN parameters γ (solid curve) and β
(dashed curve) as functions of the Ricci scalar R, evaluated
through (7) and (8), respectively, for a particular fðRÞ theory
(10). Approximate values of the scalar curvature in the Solar
system R0 ≈ 10−27 cm−2 and inside a neutron star core RNS ≈
10−12 cm−2 are shown by dotted vertical lines.

3In presenting these equations and throughout the rest of the
paper, we implicitly assume that the PPN coefficients vary slowly
over the length and energy scales associated with the star, i.e., we
assume ∇γ ≪ Oðc−2Þ and similarly for all other PPN parameters.

ARTHUR GEORGE SUVOROV PHYS. REV. D 98, 084026 (2018)

084026-4



FL ¼ 1

μ0
½∇ × ðφBÞ� × B; ð15Þ

where φ ¼ 1–2γU=c2, B is the magnetic field, and μ0
represents the permeability of free space. Throughout the
rest of this work we adopt spherical coordinates ðr; θ;ϕÞ.
We model a magnetised neutron star by introducing an

axisymmetric perturbation ρ → ρþ δρðr; θÞ and p → pþ
δpðr; θÞ into (13) such that the force (15) acts as the source
of the perturbation, as in Refs. [41,59,60]. We assume no
a priori relationship between δρ and δp (hence nonbaro-
tropic). We further ignore self-gravity corrections, i.e., we
impose the Cowling and “post-Cowling” conditions that
δU and δΦ vanish identically while ignoring the perturbed
versions of Eqs. (2) and (3). We obtain a simple set of
perturbation equations from (13)

0 ¼
�
1þ 3γU

c2

��
∇δp − δρ∇

�
U þ 2Φþ 1 − β

c2
U2

��

þ δp∇U
c2

�
1þ 3γU

c2

�
−1

− FL; ð16Þ

which reduce to the standard MHD perturbation equations
when terms of order Oðc−2Þ are discarded [41,59,60]. The
perturbed continuity equation (12) is identically satisfied.
Equation (16) describes the structure of a nonbarotropic,

magnetised star to leading order in the modified gravity
parameters γ, β, β2, and β4. Note that the magnetic field is
subject to the usual divergence free condition ∇ · B ¼ 0
even at post-Newtonian level [50].

A. Axisymmetric magnetic fields

In this paper, we consider axisymmetric magnetic fields
for simplicity. In this case, one can decompose the vector B
into a sum of poloidal and toroidal components [86],

B ¼ B0

�
∇ψ ×∇ϕþ

�
Ep

Et

1 − Λ
Λ

�
1=2

F∇ϕ

�
; ð17Þ

where B0 is the characteristic field strength, ψ ¼ ψðr; θÞ is
the scalar flux function, and F ¼ Fðr; θÞ describes the
spatial variation of the azimuthal (toroidal) component of
the field. In expression (17), we have introduced the
quantities

Ep ¼ B2
0

2μ0

Z
V
dV

��
1

r2 sin θ
∂ψ
∂θ

�
2

þ
�

1

r sin θ
∂ψ
∂r

�
2
�
; ð18Þ

and

Et ¼
B2
0

2μ0

Z
V
dV

F2

r2 sin2 θ
; ð19Þ

which represent the energies, stored within stellar volume
V, of the poloidal and toroidal components of the magnetic
field, respectively. In particular, the toroidal prefactor

ðEp

Et

1−Λ
Λ Þ1=2 in (17), where 0 < Λ ≤ 1, characterises the

relative strength between the poloidal and toroidal com-
ponents, i.e., Λ ¼ 0.1 gives a field for which 90% of
the magnetic energy is stored within the toroidal field,
Λ ¼ 0.5 gives a field which has an equal poloidal-to-
toroidal field strength ratio Ep ¼ Et, and Λ ¼ 1 gives a
purely poloidal field.
By virtue of axisymmetry, the azimuthal component

of the PPN-Lorentz force (15) must vanish. This can be
achieved only if the function F defined in (17) behaves in a
certain way. In ordinary MHD, this amounts to requiring
F ¼ FðψÞ [86]. In the PPN case, the ϕ-component of the
Lorentz force (15) reads

0 ¼ F
�∂φ
∂r

∂ψ
∂θ −

∂φ
∂θ

∂ψ
∂r

�
þ φ

�∂F
∂r

∂ψ
∂θ −

∂F
∂θ

∂ψ
∂r

�
: ð20Þ

Through a minor abuse of notation, we may solve (20) in
general to obtain

F ¼ FðψÞ
φðr; θÞ ; ð21Þ

which, upon discarding terms of order Oðc−2Þ, reduces to
the expected solution F ¼ FðψÞ. In accord with previous
works [41,59,60], we make the choice

FðψÞ ¼
� ðψ − ψcÞ2=R3⋆ for ψ ≥ ψc

0 otherwise;
ð22Þ

where ψc is the value of ψ that defines the last poloidal field
line that closes inside the star. The simple form (22) for F
ensures that the toroidal field is confined to the equatorial
torus which is bounded by the last closed poloidal field line.
To ensure a physically reasonable magnetic field, the

streamfunction ψ defining the magnetic field (17) is, in
general, subject to the following conditions [41,87].

(i) B is continuous with respect to a (force-free) dipole
field outside the star,

(ii) there are no surface currents;

J ≡ 1

μ0
½∇ × ðφBÞ� ¼ 0

at the stellar surface ∂V, and
(iii) the current density J is finite at the origin.

IV. EXPLICIT SOLUTIONS

In this section we present explicit solutions to the
perturbation equations (16).

A. Background profiles

Before solving the perturbation equations, we need to
select appropriate background profiles. Throughout this
work, we use the simple parabolic density profile
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ρðrÞ ¼ ρc

�
1 −

�
r
R⋆

�
2
�
; ð23Þ

where ρc ¼ 15M⋆=ð8πR3⋆Þ is the central density for stellar
mass M⋆. The density (23) decreases monotonically with
radius, finally decaying to zero at the stellar surface r ¼ R⋆,
and has vanishing derivative at the origin. The choice (23),
although simple, is therefore reasonably realistic, and has
been used in several previous works on magnetic defor-
mations of neutron stars [41,87,88]. Furthermore, it was
shown in Ref. [41] that GW-related observables associated
with magnetically deformed stars are largely independent,
at least to order Oðc0Þ, from the exact form of ρ; see Fig. 4
in Ref. [41].
For (23), the potential U can be solved for exactly from

the Poisson equation (2) to give

UðrÞ ¼ GM⋆
8R5⋆

r2ð3r2 − 10R2⋆Þ: ð24Þ

In general, the background pressure p and potentialΦ need
to be solved for numerically, primarily because of the β4
term which couples p to Φ through (3) and adds an
additional degree of nonlinearity to the Euler equation (13).
Note that the background hydrostatic star is spherically
symmetric, so p and Φ are necessarily functions of the
radial coordinate only. The boundary conditions to be
applied are the standard ones, namely that pðR⋆Þ ¼ 0
and Φð0Þ ¼ Φ0ð0Þ ¼ 0 [12,51]. Because of the polynomial
nature of ρ (23), we can readily solve the coupled ODEs (3)
and (13) subject to the aforementioned boundary conditions
using a straightforward orthogonal polynomial spectral
solver in Mathematica [89].

B. PPN-MHD solutions for dipolar magnetic field

As it turns out, regardless of the particulars of the
Lorentz force, the radial and angular components of the
perturbation equations (16) can be solved exactly to yield

δp ¼ c0ðrÞ þ r
R
dθFL

θ

1þ 3γU=c2
; ð25Þ

and

δρ ¼ c2
−c2FL

r þ c2δpdU
dr

ðc2þ3γUÞ þ ðc2 þ 3γUÞ ∂δp∂r
ðc2 þ 3γUÞf½c2 þ 2ðβ − 1ÞU� dUdr þ 2c2 dΦ

drg
; ð26Þ

where c0ðrÞ is an arbitrary function arising through
integration, chosen so as to ensure that δp is continuous
across the toroidal boundary ψ ¼ ψc.
For simplicity, in this paper we consider a dipolar

magnetic field [41], although an analysis involving more
general magnetic fields could be readily obtained using the
results of Refs. [59,60]. For a dipole field, the poloidal
stream function ψ takes the simple form

ψðr; θÞ ¼ κðrÞ sin2 θ; ð27Þ

for some function κ subjected to conditions (i)–(iii) pre-
sented in Sec. III A. In particular, since the toroidal field
(22) vanishes near the boundary and origin of the star, these
conditions are satisfied for a polynomial κ containing no
constant or linear terms, provided that

0 ¼ κ00ðR⋆Þ −
2γU0ðR⋆Þ

c2
κ0ðR⋆Þ −

2κðR⋆Þ
R2⋆

¼ 0; ð28Þ

κðR⋆Þ ¼ R2⋆, and κ0ðR⋆Þ ¼ −R⋆. Using (24), we find that a
suitable choice for κ satisfying the above requirements is

κðrÞ ¼ r2

8R4⋆

�
15r4 − 42r2R2⋆ þ 35R4⋆

þ γ
2GM⋆
c2R⋆

ðR2⋆ − r2Þ2
�
: ð29Þ

One will note that there are infinitely many solutions for κ
(cf. Appendix A of Ref. [59]), and we have merely chosen
one such possibility. However, our choice is unique in the
sense that it is only one that recovers the Newtonian results
of Ref. [41] when terms of order Oðc−2Þ are discarded.
For (27) with (29), we have ψc ¼ R2⋆. In our models, the
equatorial field strength is equal to B0, i.e., B⋆ ¼ B0.
We now have all the ingredients required to evaluate the

solutions (25) and (26) as functions of the magnetic field
parameters B0 andΛ, the stellar parametersM⋆ and R⋆, and
the PPN parameters γ, β, β2, and β4. In Fig. 2 we show
contours of the density perturbation (26) subject to the
Lorentz force (15) for the dipolar magnetic field (27) with
(29), where γ ¼ β ¼ β2 ¼ β4 ¼ 1 (GR values; left panel)
and γ ¼ 0.6, β ¼ 0.7, β2 ¼ 1, and β4 ¼ 1.2 (right panel),
where R⋆ ¼ 106 cm, M⋆ ¼ 1.4 M⊙, and Λ ¼ 0.7. The
perturbed density profiles are qualitatively similar, dis-
playing relatively large deformations of the order
≳10−9ðB0=5 × 1012 GÞ2ρc in the toroidal ðψ ≥ ψcÞ and
polar cap ðr≳ 0.9R⋆; θ ∼ 0; πÞ regions. Furthermore, δρ is
negative near the polar caps ðθ ∼ 0; πÞ and positive at the
edges of the equatorial belt ðθ ∼ π=2Þ in both cases,
indicating that the stars are oblate. This is expected because
the poloidal field is globally stronger than the toroidal field
for this simulation, i.e., Λ > 0.5 [41,59,60] (see also
Sec. V). The non-GR deformation is somewhat stronger
ð≈35%Þ than its GR counterpart in the toroidal regions
because the toroidal function F (21) scales with 1=φ≈
1þ 2γU=c2, which is larger in the non-GR case because
U ≤ 0. However, the non-GR deformation is weaker by a
factor ∼2 near the polar caps because the poloidal compo-
nents of the Lorentz force (15) have the opposite scaling;
FL
r;θ ∝ φ. In the core region ðr≲ 0.4R⋆Þ, the non-GR defor-

mation is slightly stronger ð≈10%Þ because the denomi-
nator in expression (26) is smaller for β < 1. The toroidal
geometry varies slightly with different values of γ because
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the function κ (29) depends on this parameter. However,
for the range of stellar masses and radii considered here,
the effect is small; the toroidal volume changes by ≲3%

between solutions with 0 ≤ γ ≤ 1.5 for R⋆ ∼ 106 cm
and M⋆ ∼ 1.4 M⊙.

V. GRAVITATIONAL WAVES

Here we estimate the GW luminosity as a function
of the PPN and stellar parameters for the stars described
in Sec. IV.

A. Multipolar radiation

Loosely speaking, the gravitational radiation emitted by a
source depends on the particulars of the ‘gravitational
energy-momentum’. This latter quantity can be defined
using the Landau-Lifshitz pseudotensor [90] and its non-
Einstein generalizations [43,91–93], or from quasilocal
Hamiltonian constructions [94,95]. In the former picture,
the pseudotensor, when summed together with the material
energy-momentum T, forms a conserved current τ, from
which one obtains a suitable definition of radiation energy.
If there are nonspin-2 fields within the theory which
couple nonminimally, they may also contribute to the total

energy-momentum (see below) [29,30,91]. In general, the
structure of the object τ depends on the specific form of the
gravitational action [32,43,47,90]. Therefore, the details of
both the radiation energy spectrum (namely τ) and the struc-
ture of magnetized stars [namely (25) and (26)] separately
depend on the PPN coefficients in nontrivial ways.
To make progress, we can consider a relatively simple

but representative example theory in order to get an idea for
how the radiation energy behaves for the stars described in
Sec. IV. To this end, we consider a scalar-tensor theory,
which, as previously mentioned, permits a breathing mode
[26,29]. That is, scalar-tensor theories allow for monopole
and higher-order terms to be nonzero when one performs a
multipole expansion for the radiation field. This can be
thought of as a consequence of dissipative Yukawa-like
interactions that are allowed to occur between the scalar
and tensor sectors [22,23,27]. Omitting the details (which
can be found in chapter 10.3 of Ref. [47] or Sec. 2.3 of
Ref. [96]), one can define the conserved currents discussed
above for scalar-tensor theories [30,91] and, upon keeping
leading-order4 terms (i.e., Newtonian terms up to quadru-
pole order and post-Newtonian terms up to monopole order
[32]), one finds that the GW power _EGW ≡ dEGW=dt for an
axisymmetric body reads5

_EST
GW ¼ 1536π6Gν2

c5

�
2ð1þ γÞ

15
ν4ϵ2I20 þ π2ð1 − γÞ

�Z
drdθδρðr; θÞr2 sin θ½r2ν2 þ ð6γ − 2ÞUðrÞ�

�
2
�
; ð30Þ

FIG. 2. Contours of the normalized density perturbation δρ=ρc, given through expression (26), for γ ¼ β ¼ β2 ¼ β4 ¼ 1 (GR values;
left panel) and γ ¼ 0.6, β ¼ 0.7, β2 ¼ 1, and β4 ¼ 1.2 (right panel), poloidal-to-toroidal field strength ratio Λ ¼ 0.7, stellar radius
R⋆ ¼ 106 cm and mass M⋆ ¼ 1.4 M⊙. The stellar surface r ¼ R⋆ is shown in red, while the toroidal boundaries ψ ¼ ψc are shown
in blue.

4In general, terms proportional to (β − 1) may appear within the multipole expansion of the radiation field, though are subleading in
our case because we have assumed throughout (see Footnote 3) that ∇γ ≪ Oðc−2Þ; cf. expression (8).

5For γ > 1, the radiation energy _EGW (30) can in fact be negative, entailing a scenario wherein negative energy is radiated away from
the star [55]. This feature is often excluded on stability grounds [47], so we consider γ ≤ 1 here.
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where I0 is the moment of inertia, and we have introduced
the gravitational ellipticity ϵ [41],

ϵ ¼ πI−10

Z
V
drdθδρðr; θÞr4 sin θð1 − 3 cos2 θÞ; ð31Þ

as a convenient proxy for the tensor quadrupole moment
contribution [19,20,97]. In expression (30), the first term
represents the tensor quadrupole contribution, which has
the same form as the leading term in GR modulo a
weighting by a 1þ γ term, which enters because the
scalar field couples to the stress-energy tensor [28]. The
remaining two terms are contributed by the scalar field
directly and represent the Newtonian quadrupole and post-
Newtonian monopole pieces, respectively. Clearly, for any
given source candidate,6 the major uncertainties in ex-
pression (30) are the magnitude of the density deformation
δρ [which is implicitly a function of the PPN and magnetic
field parameters through (26)] and the Eddington para-
meter γ. Note that since the monopole piece emerges at the
post-Newtonian level, _Emono

GW scales with the square of the
dimensionless compactness C ¼ GM=c2R⋆ of the star;
cf. C ≈ 0.2 for a neutron star while C ≲ 10−4 for a white

dwarf [12]. In general, the ratio of the monopole to
quadrupole contributions to (30) can be estimated as

_Emono
GW

_Equad
GW

∼ 1010ð1 − γÞ
�

C
0.2

�
2
�

ν

100 Hz

�
−4
�

R⋆
106 cm

�
−4
;

ð32Þ

implying that monopolar radiation is likely to dominate,
even for rapidly rotating stars ν≲ 1 kHz, unless 1 − γ is
sufficiently small.
In Fig. 3 we plot the GW power _EST

GW (30) as a function
of poloidal-to-toroidal field strength Λ for the dipolar
magnetic field configuration detailed in the previous
section for various values of γ (different curves). Note that
the star is prolate ðϵ < 0Þ for strongly toroidal ðΛ → 0Þ
fields and oblate ðϵ > 0Þ for strongly poloidal ðΛ → 1Þ
fields [20,41]. This prolate-oblate switch occurs because
integrals over δρ have a local minimum around Λ ≈ 0.38,
the exact location varying slightly as a function of the
PPN parameters (cf. Fig. 2). This sign-flip manifests as the
sharp dips in the values of _EGW that are seen around Λ ≈
0.38 in Fig. 3 across all values of γ. We see that the
monopole breathing mode dominates even when 1 − γ ∼
10−7 (dotdashed curve), as expected from expression (32).
Strong deviations from the GR prediction (solid curve) are
apparent; _EST

GW= _E
GR
GW ¼ 9.9 × 102 for Λ ¼ 1, 1 − γ ¼ 10−7,

and ν ¼ 100 Hz, for example.
Figs. 4–6 are similar to Fig. 3 except that the PPN

parameters β, β2, and β4, respectively, are varied instead of
γ, which is kept at its GR value. Since we set γ ¼ 1, there is
no monopole contribution to the radiation energy _EGW. As
such, Figs. 4–6 effectively illustrate how the gravitational
ellipticity (31) varies as a function of the non-γ PPN

FIG. 3. Power radiated in GWs _EGW as a function of Λ for 1 − γ ¼ 0 (GR value; solid curve), 1 − γ ¼ 10−7 (dotdashed curve),
1 − γ ¼ 10−4 (dotted curve), and 1 − γ ¼ 10−1 (dashed curve), with β ¼ β2 ¼ β4 ¼ 1 (GR values), spin frequency ν ¼ 100 Hz, stellar
radius R⋆ ¼ 106 cm and mass M⋆ ¼ 1.4 M⊙.

6From an experimental point of view, it is important to note
that there does not exist an orientation for an interferometer
relative to the source which is optimal for detection of both the
tensor and scalar modes simultaneously. In particular, the optimal
state for tensor mode detection is obtained when the wobble angle
is π=2 and the angle made between the angular momentum and
line of sight vectors, with respect to the observer, is zero [98]. For
this orientation, the detectability of scalar modes is effectively
weakened by a factor 2 [96,99]. Oscillation eigenfrequencies are
also dependent on the particulars of the scalar field [31]
(cf. Ref. [100]), which may affect the detectability of the source.
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parameters. We see that, even for Oð10−1Þ departures in
these parameters, the overall radiation energy is largely
unchanged; _EGWðβ¼1.2Þ= _EGWðβ¼0.8Þ¼1.26 for Λ ¼ 1

and _EGWðβ4 ¼ 0.8Þ= _EGWðβ4 ¼ 1.2Þ ¼ 1.19 for Λ ¼ 10−2,
for example. Small departures in _EGW even for significant
changes in β; β2, or β4 suggest that, aside from the
possibility of monopolar radiation, leading-order modified
gravity terms are unlikely to significantly affect the
detectability of a magnetically deformed neutron star from
a GW standpoint.

B. Pulsar constraints

As explored in the previous section, even fractional
departures from unity in the value of γ can dramatically
adjust the GW luminosity because of monopolar radiation
(32); see Fig. 3. This allows us to place Λ-dependent
constraints on γ in the strong field regime R ∼ RNS from the
observational upper limits of _EGW from various neutron
stars. Recently, the LIGO collaboration presented upper
limits for _EGW from the first science runs of Advanced
LIGO for a number of pulsars [97]. In this study, eleven
young pulsars were labeled as “high value” because of their
high spindown luminosities (which suggests significant
radiation, through GWs or otherwise). We consider these
eleven pulsars here.
Assuming the star acts as an orthogonal rotator, one can

estimate the equatorial magnetic field strength B⋆ for a
pulsar by bounding the electromagnetic braking energy by
the rotational kinetic energy loss (e.g., [12]), viz.

B⋆ ≳
				 3c

3I0
8π2R6⋆

_ν

ν3

				
1=2

: ð33Þ

By fixing the parameter B0 ¼ B⋆ in our models to be
the conservative lower limit of expression (33), we can
compare our calculations for _EGW (30) with the observa-
tional upper limits presented in Ref. [97]. The results are
shown in Table I. In particular, we place bounds on the
parameter γ by demanding that expression (30) takes a
value less than the experimental limits, assuming canonical
neutron star parameters M⋆ ¼ 1.4 M⊙ and R⋆ ¼ 106 cm.
We consider two field configurations, one which is purely
poloidal ðΛ ¼ 1Þ and another which is predominantly
toroidal ðΛ ¼ 10−2Þ.
We see that for the most conservative models wherein

toroidal field contributions are negligible, relatively weak
constraints are placed on the parameter γ; for the Vela and
Crab pulsars we obtain the bounds 1 − γ ≤ 4.2 × 10−3 and
1 − γ ≤ 8.4 × 10−3, respectively. We conclude therefore
that, from magnetic deformations by purely poloidal fields
with characteristic strength B⋆ given by the lower bound of
(33), constraints on modified gravity parameters are
modest. Note, however, that taking characteristic field
strengths B⋆ larger than the minimum permitted by (33)

FIG. 4. Power radiated in GWs _EGW as a function of Λ for
β ¼ 1 (GR value; solid curve), β ¼ 0.8 (dashed curve), and β ¼
1.2 (dotted curve), with γ ¼ β2 ¼ β4 ¼ 1 (GR values), spin
frequency ν ¼ 100 Hz, stellar radius R⋆ ¼ 106 cm and mass
M⋆ ¼ 1.4 M⊙.

FIG. 6. Power radiated in GWs _EGW as a function of Λ for
β4 ¼ 1 (GR value; solid curve), β4 ¼ 0.8 (dashed curve), and
β4 ¼ 1.2 (dotted curve), with γ ¼ β ¼ β2 ¼ 1 (GR values), spin
frequency ν ¼ 100 Hz, stellar radius R⋆ ¼ 106 cm and mass
M⋆ ¼ 1.4 M⊙.

FIG. 5. Power radiated in GWs _EGW as a function of Λ for
β2 ¼ 1 (GR value; solid curve), β2 ¼ 0.8 (dashed curve), and
β2 ¼ 1.2 (dotted curve), with γ ¼ β ¼ β4 ¼ 1 (GR values), spin
frequency ν ¼ 100 Hz, stellar radius R⋆ ¼ 106 cm and mass
M⋆ ¼ 1.4 M⊙.
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will place stronger constraints as _EGW ∝ δρ2 ∝ B4⋆. A more
compact stellar model with greater C or smaller radius
would also yield stronger constraints (32). Moreover,
models with a strong toroidal field ðΛ ¼ 10−2Þ allow us
to place constraints on γ that are competitive with Solar
System experiments (9), even for the lower limit (33). For
Vela, we find that 1 − γ ≤ 8.0 × 10−7 is necessary in order
for the theory to be consistent with observation, which is
stronger than (9) by over an order of magnitude and,
importantly, applies to the strong field regime R ∼ RNS;
cf. Fig. 1.
We close this section by recalling that, as mentioned in

the introduction, electromagnetic observations, such as
measurements of resonant cyclotron [33] or x-ray pulse
fraction [34] features, suggest that some neutron stars have
local magnetic field strengths much greater than the
“global” strengths inferred from their spin down limits
(33); ≳3 orders of magnitude discrepancies are found for
1E 1207.4-5209 [35], for example. It has been shown that
this contrariety can be naturally explained through strong
internal toroidal fields [101,102]. Stability and evolutionary
studies of neutron star magnetic fields [103,104], simu-
lations of core-collapse supernova [105], and models of
surface temperature anisotropies [106] further support the
suggestion that some neutron stars, especially young ones,
admit strong toroidal fields. As such, values Λ≲ 10−2 or
B0 ≫ B⋆ from (33) are perhaps not unrealistic in reality.

VI. DISCUSSION

In this paper we develop a formalism to study the
properties of magnetized, post-Newtonian stars in metric
theories of gravity which introduce modifications to GR in
the strong field regime. The formalism has the benefit that it

can, in principle, incorporate arbitrary magnetic field and
fluid configurations [41,59,60] and many (see Footnote 1)
metric theories of gravity [44–47] simultaneously. We
further estimate the power in GWs continuously radiated
by a magnetically deformed neutron star in terms of both
the PPN and magnetic field parameters; see Figs. 3–6. For
theories of gravity which permit it, we find that the
monopole contribution to the continuous GW luminosity
_EGW (30) can easily dominate over the usual quadrupole
contributions unless the Eddington parameter γ is small; see
expression (32). A comparison with observational upper
limits on _EGW for eleven pulsars from LIGO and Virgo data
is used to place constraints on the Eddington parameter γ;
see Table I.
For purely poloidal magnetic fields (Λ ¼ 1 in our

terminology), the obtained constraints are relatively weak;
we find 1 − γ ≤ 4.2 × 10−3 is necessary in order for
theoretical predictions to be consistent with observations
of the Vela pulsar [97]. However, supposing the star to
possess a strong toroidal field, as predicted from a variety
of stability and evolutionary scenarios [103–106], the
derived constraints are at least an order of magnitude
stronger than Solar system constraints (9) [81,82]. In
particular, for models where 99% of the magnetic energy
is contained within a toroidal field (Λ ¼ 10−2), we find that
limits on the GW luminosity of Vela require 1 − γ ≤
8.0 × 10−7. Furthermore, although the energy radiation
formula (30) that we use is particular to scalar-tensor
theories of gravity, the constraints presented in Table I
are relatively generic as they involve the Eddington
parameter γ, which is not scalar-tensor specific. Indeed,
any theory which predicts monopolar radiation will nec-
essarily have a coefficient scaling the monopole term which

TABLE I. Comparison of our models with observational limits of eleven selected pulsars. The characteristic magnetic field strength B0

is set by spindown, B0 ¼ B⋆, where B⋆ is estimated using (33) and the spin frequency data ðν; _νÞ given in Ref. [97]. The fourth column
shows the observational upper limits from a Bayesian analysis on _EGW from Ref. [97] at the 95% confidence level. The fifth and sixth
columns shows bounds on 1 − γ obtained by requiring that _EST

GW ≤ _E95%
GW , with _EST

GW calculated from (30) using (26) for stars with purely
poloidal ðΛ ¼ 1Þ and primarily toroidal ðΛ ¼ 10−2Þmagnetic fields, respectively. We have assumed that all PPN parameters except for γ
take their GR values in calculating these estimates; cf. Figs. 4–6. Note that a � � � indicates that even an Oð1Þ value for 1 − γ does not
allow _EST

GW > _E95%
GW. We set R⋆ ¼ 106 cm and M⋆ ¼ 1.4 M⊙.

Pulsar B⋆ ð1012 GÞ ν (Hz) Observational limit _E95%
GW ð1035 erg=sÞ 1 − γ ðΛ ¼ 1Þ 1 − γ ðΛ ¼ 10−2Þ

J0205þ 6449 3.60 15.2 17.2 ≤1.2 × 10−1 ≤1.3 × 10−5

J0534þ 2200 (Crab) 3.75 29.7 9.61 ≤8.4 × 10−3 ≤1.5 × 10−6

J0835 − 4510 (Vela) 3.62 11.2 0.617 ≤4.2 × 10−3 ≤8.0 × 10−7

J1302 − 6350 0.337 20.9 8.30 � � � ≤5.2 × 10−2

J1809 − 1917 1.46 12.1 110 � � � ≤4.7 × 10−3

J1813 − 1246 0.956 20.8 3.15 � � � ≤2.6 × 10−4

J1826 − 1256 3.74 9.05 161 � � � ≤3.4 × 10−4

J1928þ 1746 0.974 14.6 147 � � � ≤2.4 × 10−2

J1952þ 3252 (CTB 80) 0.472 25.3 7.66 � � � ≤2.1 × 10−2

J2043þ 2740 3.87 10.4 23.1 � � � ≤2.7 × 10−5

J2229þ 6114 2.03 19.4 5.12 � � � ≤2.3 × 10−5
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is proportional to some function of 1 − γ (and possibly
other PPN parameters) which tends to zero in the GR limit
[55]. Aside from monopolar radiation, however, we find
little departure from the GR value of _EGW even when the
other non-γ PPN parameters deviate significantly from
unity; see Figs. 4–6. This implies that, in the absence
of monopolar radiation, a detection of continuous GWs
from neutron stars would more likely teach us about the
properties of dense matter and not about strong gravity
because leading-order GR corrections have negligible
consequences as far as the GW power is concerned
(cf. Ref. [31]).
Even in the post-Newtonian theory, we find that density

perturbations are proportional to the magnetic energy, i.e.,
δρ ∝ B2

0. This implies that the relative deformation δρ=ρ
might be much larger in a magnetar than for the pulsars
discussed in Sec. V B [39,41,58]. However, expression (33)

implies a strong magnetic field exists precisely when the
star has a low spin frequency, i.e., B⋆ ∝ ν−3, which
generally implies, at least in GR, that the GW luminosity
of an older magnetar is relatively low. However, since
monopolar radiation is largely independent from the spin
frequency of the star, one would expect that modified
theories of gravity which permit breathing modes also
predict very large GW luminosities for magnetars, espe-
cially ones with strong toroidal fields Λ≲ 10−1. Future
searches for continuous GWs from magnetars may there-
fore allow one to place constraints on 1 − γ which are
considerably stronger than those presented in Table I.
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