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Exact d-dimensional Bardeen-de Sitter black holes and thermodynamics
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The Bardeen metric is the first spherically symmetric regular black hole solution of Einstein’s equations
coupled to nonlinear electrodynamics, which has an additional parameter (e) due to nonlinear charge apart from
mass (M). We find a d-dimensional Bardeen-de Sitter black hole and analyze its horizon structure and
thermodynamical properties. Interestingly, in each spacetime dimension d, there exists a critical mass parameter
1 = ug, which corresponds to an extremal black hole when Cauchy and event horizons coincide, which
for 4 > ug describes a nonextremal black hole with two horizons and no black hole for ¢ < up. We also
find that the extremal value yf is influenced by the spacetime dimension d. Owing to the nonlinear charge
corrected metric, the thermodynamic quantities of the black holes also get modified and a Hawking-Page-like
phase transition exists. The phase transition is characterized by a divergence of the heat capacity at a critical
radius r, = rﬁ, with the stable (unstable) branch for C, > (<)0. The Hawking evaporation of black holes
leads to a thermodynamically stable double-horizon black hole remnant with the vanishing temperature.
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I. INTRODUCTION

The gravitational collapse of a sufficiently massive star
(~3.5 M) necessarily forms a spacetime singularity—this
is a fact established by the famous theorem due to Hawking
and Penrose [1,2]. The existence of singularity by its very
definition means spacetime fails to exist and therefore
signaling a breakdown of physics laws. Sakharov [3] and
Gliner [4] suggest that singularities could be avoided by
matter with a de Sitter core. The first regular black hole
solution, based on this idea, was proposed by Bardeen [5]
with horizons but no singularity. The Bardeen black hole
was reinterpreted as an exact solution to Einstein equations
coupled to nonlinear electrodynamics [6]. Recently, the
spherically symmetric Bardeen-de Sitter black hole was
derived [7] whose metric reads

1
f(r)

where f(r) is a nonlinear metric function given by

ds* = —f(r)dt* + dr? + r*(d6* +sin* 0d¢*), (1)
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Here m represents black hole mass and e is the nonlinear

absence of cosmological constant A reveals the existence of
a critical e* such that f(r) has a double root if e = e*, two
roots if e < e* and no root if e > e*, with ¢* = 2m/3\/§.
These cases, respectively, correspond to an extreme black
hole with degenerate horizons, a black hole with Cauchy
and event horizons, and no black hole [8]. It can be seen
that the metric (1) asymptotically behaves as [7]
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The Bardeen-de Sitter metric, in the limit ¢ — 0, becomes
the Schwarzschild-de Sitter metric, and for small r
A
f(r)~1—Teﬂr2, for r~ 0, (3)
where A.p = A + 6m/e’. The Bardeen-de Sitter solution
is regular everywhere which can be realized from the
behavior of scalar invariant R = R*’R;, (R, is the Ricci

tensor) and the Kretschmann invariant K = R*“R_, .,
(Rupeq 18 the Riemann tensor) which are given by
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These invariants are well behaved everywhere including
at r = 0 [2,8—13]. Thus, the black hole does not result in a
singularity but develops a de Sitter region, eventually
settling with a regular center. Hence, it is a maximal
extension of Reissner-Nordstrom spacetime but with a
regular center [14,15].

It turns out that the subsequent analysis of all the regular
black hole solutions is based on Bardeen’s idea [6,16-18].
Hence, the Bardeen model is the most important regular
black hole which triggered a flurry of activities in regular
black hole research. The Bardeen solution is extended to
noncommutative inspired geometry [19] and the Bardeen-
de Sitter black holes is also obtained [7]. The Bardeen black
hole has received significant attention in the recent past,
e.g., the stability of the Bardeen black hole was performed
by Moreno and Sarbach [20]. The Keplerian disks orbiting
around the Bardeen black holes were discussed in [21] to
obtain profiled spectral lines. The quasinormal modes of
the Bardeen black holes have been studied by several
authors [22-24]. The antievaporation phenomenon of the
Bardeen-de Sitter black holes was investigated in [25].
Thermodynamic quantities of the Bardeen black holes were
studied by Man and Cheng [26]. The motion of a test
particle in the Bardeen black holes spacetime was studied
by Zhou et al. [27]. The rotating Bardeen black holes
were also discussed [9,12]. Over the past decade there has
been an increasing interest in the study of black holes,
and related objects, in higher dimensions, motivated to a
large extent by developments in string theory as it
requires higher dimensions. The first successful statistical
counting of black hole entropy was performed for a
higher dimensional black hole [28]. Also, the production
of higher-dimensional black holes at LHC becomes a
possibility in scenarios involving large extra dimensions
and TeV-scale gravity [29,30].

Hence, it is pertinent to consider the d-dimensional
analog of Bardeen-de Sitter black holes and discuss their
thermodynamical properties. To be precise, we analyze
an exact d-dimensional solution of the Einstein gravity
coupled with nonlinear electrodynamics thereby general-
izing those discussions on the Bardeen black holes. There is
growing evidence that the physics of higher-dimensional
black holes can be markedly different, and much richer than
its four-dimensional counterpart. As a consequence, there is
a considerable interest towards the understanding of the
black holes in higher dimensions, as the growing volume of
recent literature indicates. In particular, the Meyers-Perry
has found Schwarzschild, Reissner-Nordstrom and Kerr
solutions in asymptotically flat higher dimensional space-
times [31], which were extended by Dianyan [32] to find
charged-dS black holes and later by Liu and Sabra [33]
for d-dimensional charged black holes in (A)dS spaces.
The Bafiados-Teitelboim-Zanelli black holes have been
also extended to higher dimensions [34,35] and so are the
radiating black holes [36] (see also [37], for a review).

Other examples from the higher dimensional spacetime

include the gravitational collapse of different fluids [38—
41]. It is therefore interesting to find the Bardeen solution in
higher dimensional spacetimes.

The paper is organized as follows. In Sec. II, we obtain
an exact solution of the d-dimensional Bardeen-de Sitter
black holes considering a prototypical form of the Maxwell
tensor and the Lagrangian of a nonlinear electromagnetic
source of a charge. Section III discusses thermodynamics
associated with the black holes. We conclude the paper
in Sec. IV.

II. d-DIMENSIONAL STATIC SPHERICALLY
SYMMETRIC BARDEEN-DE SITTER
BLACK HOLE

The spherically symmetric Schwarzschild black holes
when generalized to d-dimensional spacetime, it results
into the Schwarzschild-Tangherlini black holes [42].
Here, we wish to derive static spherically symmetric
d-dimensional Bardeen-de Sitter black holes. The
Einstein-Hilbert action coupled to a nonlinear electrody-
namics source with a positive cosmological constant term
in d-dimensional spacetime [34,35] is given by

1

I = T6n dx\/=g((R = 2A) — 4L(F)), (5)

where d is the spacetime dimension, A is the cosmological
constant, R is the Ricci scalar and the Lagrangian £(F) is a
function of F [6,7], which has a form

F =F,F"/4, F,, =2V,Ay,
where F,, is the field strength tensor of the electromag-
netic field and A, is the gauge potential. To derive
Bardeen-de Sitter black holes in arbitrary d-dimensional

spacetime, we suitably modify the Lagrangian density
L(F) in [6,7] as

L(F) =

(d-2) { (V2EF) ] ©)

2 1+ V2eElF

dse

where

ed—3

= ( d— 1) ﬂ/d—B
On varying of action (5) yields the following field
equations [6,7]:

1
R;w - Eg/u/R + Ag/w = T/un (7)

V(LrpFw) =0,  V,(+F") =0, (8)
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where Ly = JL/OF and energy-momentum tensor T,
reads [7]

T;w = 2(£fF;24u - gﬂl/‘c)‘ (9)

We assume the spherically symmetric metric ansatz in
d-dimensional spacetime [31,32] as

2 2 dr? 2102
ds :—f(r)dt +m+rd9.d_2, (10)

where f(r) is a metric function to be determined by
solving the field equations and

d=2 i
d92_, = do} + [H sin29j_1] de> (1)

i=2 Lj=2

is the line element of a unit (d — 2)-dimensional sphere
[31,32]. For the consistent field equations with the charge
e included, we define the Maxwell field tensor [7,34,35]
in d-dimensions as

d—3 d—4
F/,w = 26‘3;17355]'172 id_4 sin 9(1_3 |:H Sinzej:| s (12)
=1
with F as
o2(d=3)
F= (13)

Substituting Eq. (13) into Eq. (6), one obtains

(d— 1)(d_2)’u/d—3€d—2

2d-3

E(f) - 4(rd_2 + ed_z) =

(14)

Next, the (¢, ) component of the field equations (7) can
be written as

_%[i’f/-i-(d—@(f_1>]+Agtt:_2£(’7:)g”' (15)

It is useful to introduce the mass function [36] as

fy=1-", (16)

which is a measure of mass contained within the radius r.
On using Egs. (14) and (16) in (15), we get

2A

i (d _ l)y/d_3€d_2 rd—2
e A —
d-2

o (rd—2+ed—2)% - (17

m'(r)

which can be easily integrated to

2A i1
_ -l
m(r)Jr(d_])(d_z)r +
1d=3 ,.d—1
S N A (18)

(2 4 od-2)5

where integration constant C can be fixed via

) 2A _ _
C = lim \m(r) = =" | =# (19)
Hence, one obtains
d-1 d—1
ur 2Ar
= , 20
") =Gy aE T amna-y @
and thus the metric function reads
2 2
ur 2Ar
=1- - , 21
) (rd‘2 + ed‘z)iﬁ (d=1)(d-2) (21)
1d-3

where the parameter y = u is an integration constant
related to the black hole Arnowitt-Deser-Misner mass,
via [31]

162M 275

T d-2)Q, &Y

Iz (22)

In summary, we have shown that the metric of the
d-dimensional Bardeen-de Sitter black holes has a form

2 2
ur 2Ar
ds*=—(1- - dr
' ( (724 B ([d-D)(d- 2>>
1
+ " e S dr Q. (23)
- (r1172+e[172>% T (d-1)(d-2)

i.e., we have found that Eq. (23) is the solution of field
equations (7) and (8) for the energy-momentum tensor (9).
Thus, the black hole interior does not terminate on a
singularity but crosses the Cauchy horizon and develops in
aregion that becomes more and more de-Sitter-like eventually
ending with a regular origin at r = 0 [8]. The metric function,
f(r) for large and small r, respectively, reads

u 2A7?
~ e, > 1,
S~ m -G ha-y
f(r) ~1=ALgr?, r~0, (24)
where Al reads as
,H 2A
At = g @-2) (25)

When d = 4, Eq. (23) goes over to the Bardeen-de Sitter
solution (2) and, in the limit, ¢ — 0, reduces to the usual
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d-dimensional Schwarzschild-Tangherlini-de Sitter black
hole [42]

u 2Ar?
ds* = —(1-——— dr?
’ ( <d—1><d—2>)
1
dr? +r2dQ>_,.  (26)
2 d—2
(1 =55 ~ @)

As shown by Tangherlini [42], the metric (26) is indeed Ricci
flat when A = 0. If the mass parameter < O then we get a
naked singularity, which is not physical. If z > 0, the black
|

hole horizon radius r, is obtained by solving ¢""(r,) =0,
which for A = 0 reads

1
16zM :| -3 (27)

" [m

However, unlike the Schwarzschild-Tangherlini-de Sitter
black hole, the Bardeen-de Sitter black hole is regular which
can be realized from the invariants, R and K:

[@= D™ 102 -2 8
R=———" )% F e 8
(ri=2 4 42y [e2d — (d =3)r"™] + d-2""
d—1)u?
K= ( )M 2(3d-5) [(d - 2)2(d - 3),,4(01—2) - 2(d — 1)(61 — 2)(d — 3)ed_2r3(d—2)

(42 4 -2

+ (d® +3d> — 23d + 27)e* @2 P21d=2) — 4(d — 3)e34=2) =2 4 2de*(4-2)]

1 8(12 — 9d + d?) Au
- A? — 2(d —2)(d = 3)r?ld-2)
(ed—z_i_rd—z){;’j (2—3d+d2)2 (d—l)(d—Z)[ ( )( )"
+ (5d% = 24d + 27)e?2r*2 4 (d*> — 9d + 12)e2<d—2>]] . (28)

It is easy to see that these invariants are regular everywhere
including at r = 0. Hence, the charge e removes the
curvature singularity which occurs in the Schwarzschild-
Tangherlini-de Sitter black hole.

A. Horizons

The horizons of a black hole, if it exists, are zeros of
g"" = f(r) = 0. Depending upon the choice of the param-
eters e and y, we have three distinct horizons, namely, the
smaller inner or Cauchy horizon (r_), the event horizon
(r, > r_), and the largest cosmological horizon (r, > r,)
such that

2 2

WUFs 2Ar;
1 - ! — ! =0, 29
R @-na-y

where r; ={r.,r.,r_}. The metric function f(r)
decreases first for r < rp;,, reaches a minimum at
¥ = Fmin» and then increases towards zero for rp;, < r <
r (cf. Fig. 2). Further, for r > r,, the function f(r)
increases and approaches a maximum at r = rp,,, and then
starts decreasing towards zero for r,, <r <r. The
Schwarzschild-Tangherlini-de Sitter black holes (26) con-
sist of only two horizons r, and r., which correspond,
respectively, to the event and cosmological horizons.
The behavior in between is easily found by requiring
f'(r=r,) =0, where r, reads [43]

[

(d=1)(d = 2)(d = 3)u]r
r. = [ 7y . (30)
The metric function starts increasing first for r > r,,
reaches a maximum at r = r,, and decreases towards zero
for r, < r < r.. Therefore, r, is easily found to correspond
to a global maximum.

A numerical analysis of the zeros of f(r,) = 0 of the
Bardeen-de Sitter black holes (23) on varying the values of
the parameters y, ¢ and A in different dimensions d reveals
a critical value of the mass parameter y = yup when the
Cauchy and event horizons coincide (cf. Fig. 1). Similarly,
the event and cosmological horizons coincide with a critical
value of the mass parameter y = u (cf. Fig. 3) such that
Eq. (29) admits three horizons when the mass parameter is
in the range pg < u < uc (cf. Fig. 2) which corresponds to
a nondegenerate de Sitter black hole [7]. The value y = pg
corresponds to the extremal black holes with degenerate
horizons r_ = r, = r§ (cf. Fig. 1) whereas the value y =
uc describes the degenerate black hole where r, = r, = r£
(cf. Fig. 3) as in the Narai solution [7]. Then for y = pc,
we have a regular d-dimensional Narai kind solution and
no black hole for u < py.

III. THERMODYNAMICS OF BLACK HOLE

In this section, we calculate the thermodynamical quan-
tities associated with the d-dimensional Bardeen-de Sitter
black holes (23). The black hole mass can be obtained in
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Plot showing the metric function f(r) vs r for e = 0.8 and A = 0.086. Here the mass parameter y = uj corresponds to an

extremal d-dimensional Bardeen-de Sitter black holes with degenerate horizons when Cauchy and event horizons coincide. For

u = 0.45(<ug) we have only the cosmological horizon.

terms of horizon radius r, by solving f(r,) =0 which
leads to

— _pqd=1
(d=2)Q, [r+ 7 + 2R — = fhgy

167 r

(31)

M, =

Obviously, when ¢ = 0 and A = 0, Eq. (31) reduces to the
mass of the d-dimensional Schwarzschild-Tangherlini
black hole [44]. The black hole has a Hawking temperature,
which can be obtained through the surface gravity given by

/1
K= _Evﬂél/vﬂéyi

where & is the Killing vector. The Killing vector & for
the static spherically symmetric spacetime has the form
& = 9/ corresponding to the time-translational symmetry.
The surface gravity of the black holes reads

(32)
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FIG. 2. Plot showing the metric function f(r) vs r for e = 0.8
and A = 0.086. For u = 2.2, we have three distinct horizons in

each dimension.

o 10v/=3g" g, _ 1df(r)
T2 or r—r, T2 dr r—r, (33)

Then, the Hawking temperature (7, = «/2z) of the
Bardeen-de Sitter black holes (23) reads

ed? 2 2
| [(d -3)-247- (ﬁ)Ar@

i+ .

T =
T 4ar,

When A =0, the temperature becomes zero, positive
and negative, respectively, when r, =ry, r, > ry, and
r, < ry, where ry is given by

(2%
ro—ed_g .

H=Hc
1.0 T T T

=4, po=2475

e d =5, ue=17.499
=6, o =233.123 ]
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FIG. 3. Plot showing the metric function f(r) vs r for e = 0.8
and A = 0.086. Here the mass parameter ;4 = u, corresponds to
an extremal d-dimensional Narai black holes with the degenerate
horizons when the event and cosmological horizons coincide.
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For e = 0 and A = 0, Eq. (34) reduces to the temperature
of the d-dimensional Schwarzschild-Tangherlini black
holes [44],

(d-3)

4nr

(36)

T, =

The temperature of the d-dimensional Schwarzschild-
Tangherilini black hole diverges when the horizon radius
shrinks to zero which puts a limit on the validity of the
Hawking evaporation process, whereas the temperature of
the d-dimensional Bardeen-de Sitter black holes does not
diverge at short distances comparable to the Planck scale
[45-47]. When d = 4 and A = 0, Eq. (34) reduces to the
temperature of the Bardeen black hole [48-50],

1 [r} -2
T, = - = | 37
+ 4nr, {ri + 62] (37)

The Hawking temperature of the d-dimensional Bardeen-
de Sitter black hole for different values e and A is depicted
in Fig. 4. The behavior of the temperature profile (cf. Fig. 4)
suggests that temperature no more diverges unlike the
Schwarzschild-Tangherlini black holes. The maxima of the
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temperature (34) cannot be obtained analytically for non-
zero A. However, if A = 0, the maximum of d-dimensional
Bardeen black holes occurs at

Ba+ /B4 8(d=3)|" -

2(d-3)

r+:e

Here and henceforth we use S, = d*> — 4d + 7. Figure 4
shows that the Hawking temperature of d-dimensional
Bardeen-de Sitter black holes exhibits a peak that decreases
and moves to the right when the charge e increases. In
Fig. 4 the peak in the temperature decreases and moves to
the left when we increase the dimension d at fixed e.

Wald [51] has shown that the entropy of the black hole in
any gravity must be a function of the horizon. In general
relativity, the black hole entropy obeys the so-called
horizon area formula, S = A, ,/4, where A, , is the
horizon area. Since a black hole is a thermodynamical
system, the entropy of the black hole can be determined
from the first law of thermodynamics [19,52,53]:

dM =T ,dS + ®de.
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FIG. 4. The Hawking temperature (7", ) vs the horizon radius r, in various dimensions for different values of e. The Schwarzschild
black hole (e = 0) shows a divergent phase in the final stage of black hole evaporation. Here we put A = 0.086.
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where @ is the potential conjugate to e. Thus, the entropy at
constant e reads

_[OM
S = /T+l <E>ed7‘+.
Substituting Eqgs. (31) and (34) into Eq. (39) and integrat-

ing, the entropy for d-dimensional Bardeen-de Sitter black
holes read

(39)

(d - Z)Qd—Z 1 ed_l .
S= - H th
4 d—1r 0 W
d-1 d-1 1 r -2
H: F - [ s [ k) 40
2 1{ d=2" d-=2" d-2" ¢ (40)

where ,F'| stands for the hypergeometric function of first
kind. The presence of parameter e in the solution affects the
entropy significantly and area law does not hold. For d = 4,
Eq. (40) reduces to [52,53]

S=— [(rJr2 —2e%) /1t + €
ry
+3e210g[r++\/e2+r+2”.

(41)

Notice that for e = 0, the entropy formulas (40) and (41) of
the Bardeen-de Sitter black holes respectively go over
to the entropy of the Schwarzschild-Tangherilini and
Schwarzschild black holes and they always obey the area
law [43].

A. Phase transition

Next, we focus our attention on the local thermodynam-
ical stability of d-dimensional Bardeen-de Sitter black
holes by calculating the heat capacity (C,) and discuss
the effect of the charge e. The condition for a change in the
sign of heat capacity determines the possible phase tran-
sition of the black hole [46]. When the heat capacity
C, > 0, the black hole is locally stable to thermal fluctua-
tions, whereas for C, < 0 it is locally unstable. The heat
capacity for constant e can be given by [44]

_(OM\ [Or,
Ce= (a&(ar)g

On using Eqgs. (31) and (34) in Eq. (42), the heat capacity of
d-dimensional Bardeen-de Sitter black holes turns out to be

(42)

(43)

-2 7243
o (d-20,, pd=2 [(d —3)-245- (ﬁ)Ari} [1 + %} 2
PR AR - =3 - (1 (- 1)) (AR

The heat capacity (43) is plotted in Figs. 5 and 6 for
different values of e in different dimensions. A numerical
analysis shows that the heat capacity changes from negative
infinity to positive infinity at the point where the temper-
ature reaches its maximum value, and is identified as the
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FIG. 5.
charge e. Here we put A = 0.86.

|

critical radius r, = rJCr, where the phase transition of the
black hole occurs (cf. Figs. 5 and 6), and is also known as
the Davies’ point [50,54,55]. The heat capacity becomes

positive when r, corresponds to r&f)

r(+2> is the point where both the temperature and heat

c
<ry; <rg, where
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The heat capacity C, vs the horizon radius r, for the Bardeen black hole in various dimensions for different values of the
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FIG. 6. The heat capacity C, vs the horizon radius r, for the
Bardeen black hole in various dimensions for e = 0.8 and
A = 0.86.

capacity becomes zero. It becomes negative in the regions

0<r,<r? and r. > rC. For A =0, Eq. (43) corre-

sponds, respectively, to the negative and positive heat
capacities of the black hole when

O0<ry<ry, and ry>r{, (44)
and

ro < ry < r¢*. (45)

Here, ri* is the critical radius for A = 0, which reads

oo [Pt yFit8a-3" o

Therefore, for A = 0, the black hole is thermodynamically
unstable and stable, respectively, when r, corresponds to
Egs. (44) and (45). The phase transition at r = rﬁ* repre-
sents that our black hole goes to an unstable phase from a
stable phase. Further, the value of r¢* increases with the
increase in the charge parameter e in all spacetime dimen-
sions. When C, = 0, we have the corresponding extremal
black hole configuration where the temperature also
becomes zero. In the limit e — 0 and for A = 0, we get [44]

€= ET P2 (47)

which is the heat capacity of the d-dimensional
Schwarzschild-Tangherlini black hole suggesting that
the black hole is thermodynamically unstable. The heat
capacity of the four-dimensional Bardeen black hole,
1.e., when d = 4, reads

c 27(r2 —2e%) (12 + €%)%?
¢ re(2e* + 7% — 1)

, (48)

which is exactly the same as obtained by [48-50].

The black hole remnant is an important consequence of
the Hawking evaporation process to resolve the information
loss puzzle [56,57]. The black hole loses its energy
continuously through Hawking radiation and, finally, we
are left with a stable remnant beyond which no further
evaporation is possible. For A =0, the remnant mass
corresponding to the extremal black hole with degenerate
horizon radius r, reads

(d=2)Q, ( 2 \=(d-1\= ,,
= . (49
167 \d—3 2 ) ¢ (49)

For M < M, no horizon exists and for M > M, there
exists two distinct horizons. When d = 4, the remnant mass
of the Bardeen black hole reduces to M, = (3v/3/4)e [48].
In the limit A — 0, both T, and C, approaches to zero
exactly at r, = r;, and we are left with a stable remnant.
Hence, the d-dimensional Bardeen black hole has a stable
remnant. In general, for A # 0, the black hole remnant is
obtained numerically.

M,

IV. CONCLUSION

General relativity with the parameter spacetime dimen-
sion d should lead to valuable insights into the nature of the
theory, in particular of the black holes, which has been
actively investigated for more than a decade. One of the
distinct aspects of the higher dimensional black hole is that
horizons can have nonspherical topologies, even in asymp-
totically flat spacetime [37] and the first concrete evidence
challenging the weak cosmic censorship conjecture can
occur in five dimensions [58]. In this paper, we obtain an
exact static spherically symmetric regular Bardeen-de
Sitter black hole in an arbitrary d-dimensional spacetimes
by solving Einstein equations coupled to nonlinear electro-
dynamics. We characterized the solution, calculating the
possible horizons, which could be at most three. Besides,
we confirmed the regular structure of the spacetime every-
where including at the origin by evaluating the quadratic
invariants viz. Ricci and Kretschmann scalars. We per-
formed a detailed thermodynamical analysis, focusing
mainly on the stability. In general relativity, the black hole
entropy satisfies the Bekenstein-Hawking area law,
whereas, for the Bardeen black hole, this area law is no
longer valid and should be corrected. Further, the thermo-
dynamical quantities such as the Hawking temperature and
heat capacity have been derived and plotted. The phase
transition is characterized by the divergence of heat
capacity at a critical radius r¢ which is changing with
spacetime dimension d. In particular, the black hole is
thermodynamically stable, with a positive heat capacity for
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the range r, < r$ and unstable for r > ¢ (cf. Figs. 5
and 6). It would be important to understand how
these black holes with positive heat capacity (C, > 0)
would emerge from thermal radiation through a phase
transition.

In the absence of charge (e = 0), our analysis goes
over to the Schwarzschild-Tangherlini-de Sitter black holes
[42], and for d = 4, we recover the results of the Bardeen-
de Sitter black hole [7]. The results presented here are
the generalization of previous discussions on the
Schwarzschild-Tangherlini-de ~ Sitter and Bardeen-de
Sitter black holes, and in a more general setting, the
stability of Bardeen-de Sitter black holes is an interesting
problem for future research. Our results may have

importance in the context of the string theory as the
dimensions of space has led to several developments in
string theory.
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