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In this article, we investigate the motion of a spinning particle at a constant inclination, different from the
equatorial plane, around a Kerr black hole. We mainly explore the possibilities of stable circular orbits for
different spin supplementary conditions. The Mathisson-Papapetrou equations are extensively applied and
solved within the framework of linear spin approximation. We explicitly show that for a given spin vector of
the form Sa ¼ ð0; Sr; Sθ; 0Þ, there exists a unique circular orbit at (rc, θc) defined by the simultaneous
minima of energy, angular momentum, and Carter constant. This corresponds to the innermost stable
circular orbit (ISCO) which is located on a nonequatorial plane. We further establish that the location
(rc, θc) of the ISCO for a given spinning particle depends on the radial component of the spin vector (Sr)
as well as the angular momentum of the black hole (J). The implications of using different spin
supplementary conditions are investigated.
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I. INTRODUCTION

In this era of gravitational wave astronomy, modeling the
relativistic two body problem is of vital interest. Due to the
nonlinearity of the system, the relativistic two body
problem cannot be solved exactly within the framework
of Einstein’s equations and one has to rely on approxima-
tions or numerical solutions. Two of the well-known
approximations are the post-Newtonian approximation
[1] and the effective one body approach [2,3]. Even if
these methods are good enough to explain the system in the
linear region where the relativistic effects are small, in the
nonlinear domain these approximations break down. This is
when the numerical tools become inevitable. In recent
years, numerical relativity has become an essential part of
gravitational wave astronomy [4,5]. With the advance of
computational techniques, the numerical methods are
improving at a rapid rate and new physics emerges every
moment beyond analytic understandings [6]. Besides these
successes, numerical relativity has its fair share of limita-
tions. In particular, numerical relativity is not very efficient
when the mass ratios become extremely large or small in a
binary system [7]. In these scenarios, the approximate
techniques such as the effective one body formalism are
useful.
With these motivations, we study the motion of spinning

objects within the pole-dipole approximation in curved
spacetime. In actual astrophysical situations, this corre-
sponds to the orbiting of a compact object representing a

black hole or neutron star of mass M1 (∼ few solar mass)
around a massive black hole of massM2 (∼104 to 106 M⊙)
such that M2 ≫ M1. This is usually referred to as the
extreme mass ratio inspiral which is a promising source of
gravitational waves for proposed space-based detectors
such as LISA [8]. In these scenarios, the internal structures
of the orbiting body are approximated to a dipole and all
other higher moments are ignored. Even in this lowest order
approximation, pole-dipole particles can have striking
deviation from a geodesic trajectory. In curved spacetime,
the orbits of these particles are described by the Mathisson-
Papapetrou equations [9,10]. These equations have a long
and substantial history spanning a few decades, and an
extensive literature survey can be found in [11]. We also
refer our readers to [12–16] for further insights. Though the
exact solutions of these equations are extremely compli-
cated, there are several approaches for solving them with
suitable approximations. In the present article, we have
used the linear spin approximations in which we write the
Mathisson-Papapetrou equations up to the linear order in
spin and neglect higher order terms. With this approxima-
tion, one can solve the orbit equations for an arbitrary
inclination angle (θ) and investigate the possible existence
of circular orbits on θ ¼ constant planes. In passing, we
note that for a single-pole particle, there is no circular orbit,
either stable or unstable, that can exist in the Kerr spacetime
at a constant inclination angle except for θ ¼ π=2 [17].
In general, for binaries with unequal masses, especially

with extreme mass ratios, the system undergoes a preces-
sion and orbits start to wobble along the off-equatorial
planes whenever the angular momenta are not aligned with
each other. Here, we have shown that under specific

*sm13ip029@iiserkol.ac.in
†rajesh@iiserkol.ac.in

PHYSICAL REVIEW D 98, 084023 (2018)

2470-0010=2018=98(8)=084023(15) 084023-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.084023&domain=pdf&date_stamp=2018-10-15
https://doi.org/10.1103/PhysRevD.98.084023
https://doi.org/10.1103/PhysRevD.98.084023
https://doi.org/10.1103/PhysRevD.98.084023
https://doi.org/10.1103/PhysRevD.98.084023


conditions, it is possible to have orbits without any
wobbling. Apart from the wobbling in the off-equatorial
directions, relativistic orbits can precess while confined to a
particular orbital plane. This is usually known as the
periastron precession, and in our Solar System, it is called
perihelion precession [18,19]. As in the present context we
are only concentrating on the circular orbits, periastron
precession would identically vanish. What we consider are
families of stable circular orbits with an innermost stable
circular orbit (ISCO). We investigate the properties asso-
ciated with these orbits for different spin supplementary
conditions. The occurrence of such conditions is natural as
the motion of a spinning object depends on the choice of a
reference point and each choice would lead to a distinct
spin supplementary condition. In this article, we mainly
concentrate on the Mathisson-Pirani [20] or the Tulczyjew-
Dixon spin supplementary condition [21] and the Newton-
Wigner spin supplementary condition [22]. Even if the
Tulczyjew-Dixon and Mathisson-Pirani conditions are dis-
tinct from each other for the exact Mathisson-Papapetrou
equations, they both merge in the limit of linear spin
approximation.
The rest of the manuscript is organized as follows. In

Sec. II, we elaborately describe the motion of a spinning
particle for different spin supplementary conditions while
exclusively using the linear spin approximation. We then
introduce the conserved quantities for a spinning particle
such as energy, angular momentum, and the Carter con-
stant. Section III is devoted to the study of the motion of
spinning particles numerically and we discuss the existence
of circular orbits at constant altitude. In Sec. IV, we discuss
the stability of these circular orbits located in the non-
equatorial planes and further carry out detailed numerical
analysis to investigate any possible existence of the ISCO
for various rotation parameters of the black hole. Finally,
we close the article with a brief remark in Sec. V.
Notation and conventions: Throughout the paper, we

have used the (−, þ, þ, þ) signature with the fundamental
constants c ¼ 1 ¼ G. In addition, any four-vector Xμ

projected on the tetrad frame is given as XðμÞ ¼ eðμÞν Xν,

where eðμÞν is the tetrad field.

II. BASIC EQUATIONS FOR
A SPINNING PARTICLE

The trajectory of a single-pole test particle in a gravi-
tational field is given by the geodesic equation which is
obtained by setting the acceleration to zero. Unlike
Newtonian gravity, general relativity does not treat gravity
as a force, instead, it depicts it as an in-built manifestation
of the spacetime itself. This is, in fact, one of the very
basic postulates of Einstein’s gravity [23]. The motion
of a particle can deviate from geodesic trajectories in the
presence of a force. This force can be external or internal if
the particle has higher order mass multipoles. In a realistic

situation, the astrophysical objects are expected to have
complex internal structure. The first order correction to the
single-pole test particle would be to add a dipole moment
along with the monopole to incorporate the internal angular
momentum of the object. By dipole moment, we mean that
the center of mass of the spinning body in its rest frame
does not coincide with the observed center of mass in the
observer’s frame. This is because for a spinning particle in
curved spacetime, in general, the center of mass is observer
dependent [24]. The motion of these particles is described
by the Mathisson-Papapetrou equations and for a four-
momentum Pa and spin tensor Sab, these can be written as

DPa

dτ
¼ −

1

2
Ra

bcdUbScd and
DSab

dτ
¼ PaUb − PbUa:

ð1Þ

Here, Ua is the four-velocity of the particle and Ra
bcd is the

Riemann curvature tensor. For a limiting case of Sab → 0,
one gets back the geodesic equations, i.e., acceleration,
ai ¼ Ub∇bUi ¼ 0. The coupling of the spin tensor with
the background geometry contributes to an acceleration
and hence, the particle deviates from the usual geodesic
trajectory.
In the case of spinning particles, the four-momentum and

four-velocity are not proportional to each other. This will
lead to total of 14 unknown variables (four for each velocity
and momentum and six for antisymmetric spin tensor),
while we have only ten equations in hand. In order to solve
this set of equations consistently, we require an additional
four constraints. These are called the spin supplementary
condition and they are widely studied in the literature. Here
we briefly introduce some of these conditions and describe
their important features.

(i) The Papapetrou and Corinaldesi condition, S0i ¼ 0
[25]. This would simply imply that there is no
dipolar mass moment; i.e., the center of mass in
the particle’s frame coincides with the observed
center of mass in the chosen frame.

(ii) The Mathisson-Pirani supplementary condition,
SabUb ¼ 0 [20]. This condition is well studied up
to some extent, and the predicted orbits are with
helical structure. Initially it was believed to be
unphysical, while recently it is has been shown
that they have a physical interpretation [26,27].
The rest mass with respect to Ua is given as m ¼
−PaUa ¼ constant.

(iii) The Tulczyjew-Dixon supplementary condition
SabPb ¼ 0 [21] is extensively studied in several
works [28–31]. This gives an exact physical solution
of Mathisson-Papapetrou equations. In this case, the
dynamical mass μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−PaPa
p

is conserved.
(iv) The Newton-Wigner condition Sabωb ¼ 0 [22] gives

a Hamiltonian approach to the motion of spinning
particles [32] (an attempt to construct Hamiltonian
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formalism with different supplementary conditions
is given in Ref. [33]). The ωa is given as
ωa ¼ Pa=μþ ϕb, where ϕb is a timelike vector.
This would help to improve the phenomenological
approach to understand gravitational wave dynam-
ics. At the same time, it neither conserves total spin
nor mass of the test particle.

A detailed discussion on various spin supplementary
conditions and their connections to internal properties of
the spinning particles can be found in Ref. [34]. However,
in the present context, we start with the Tulczyjew-Dixon or
Mathisson-Pirani constraint and investigate various pos-
sibilities of circular orbits at constant altitudes. Following
this, we shall study the similar situations with the Newton-
Wigner spin supplementary condition and compare the
respective results.

A. Tulczyjew-Dixon or Mathisson-Pirani
spin supplementary condition

In this section, we shall briefly discuss the evolution
equations for a spinning particle in the Kerr spacetime
within the framework of linear spin approximation. We
explicitly use the Tulczyjew-Dixon or Mathisson-Pirani
condition which are the same in this limit. The difference
between the four-momentum and velocity are of higher
order in S, i.e., OðS2Þ. With these conditions, the
Mathisson-Papapetrou equations simplify to [35]

DUk

dτ
¼ −

1

2m
Rk

bcdUbScd þOðS2Þ;
DSab

dτ
¼ 0þOðS2Þ; and m ¼ μþOðS2Þ: ð2Þ

Now, for computational convenience we use the standard
spin four-vector Sa instead of the spin tensor Sab given by

Sa ¼ ϵabcd

2
ffiffiffiffiffiffi−gp UbScd; Sab ¼ 1ffiffiffiffiffiffi−gp ϵabcdUcSd; ð3Þ

where “g” is the determinant of the metric and is always
negative. The explicit form of the metric tensor in Boyer-
Lindquist coordinates (t, r, θ, ϕ) is given as

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ð−adtþ ðr2 þ a2ÞdϕÞ2: ð4Þ

Here, “Δ” and “Σ” have usual meanings, i.e., Δ ¼ r2 −
2Mrþ a2 and Σ ¼ r2 þ a2cos2θ. For further analysis, we
use the tetrad formalism [36] with the components of the
tetrads given by

eð0Þμ ¼
� ffiffiffiffi

Δ
Σ

r
; 0; 0;−asin2θ

ffiffiffiffi
Δ
Σ

r �
;

eð1Þμ ¼
�
0;

ffiffiffiffi
Σ
Δ

r
; 0; 0

�
;

eð2Þμ ¼ ð0; 0;
ffiffiffi
Σ

p
; 0Þ;

eð3Þμ ¼
�
−a sin θffiffiffi

Σ
p ; 0; 0;

r2 þ a2ffiffiffi
Σ

p sin θ

�
: ð5Þ

The inverse of the tetrad given in Eq. (5) can be easily
computed with the relation

eaðμÞ ¼ ηðμÞðνÞgabe
ðνÞ
b ; ð6Þ

where ηðμÞðνÞ is given as

2
6664
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775:

For a complete description of the evolution of the system,
we start with a spinning particle with the spin vector of the
form S≡ ðSt; Sr; Sθ; SϕÞ moving in a circular orbit
(_r ¼ ̈r ¼ 0) at a constant altitude (_θ ¼ θ̈ ¼ 0). Following
the Tulczyjew-Dixon supplementary condition, we get

Sð0ÞUð0Þ − Sð3ÞUð3Þ ¼ 0; ð7Þ

where “()” indicates any projection on the tetrad frame.
Using Eq. (2) and the conditions for circular orbits, it is
easy to establish that both the time and ϕ components of the
acceleration would identically vanish, i.e., DUð0Þ=dτ ¼
0 ¼ DUð3Þ=dτ. Furthermore, from the rhs of Eq. (2), we
must have Sð1Þð2Þ ¼ Sð3ÞUð0Þ − Sð0ÞUð3Þ ¼ 0 which contra-
dicts the constraint given in Eq. (7). Taking both of
these factors into account, we have two possibilities, either
Sð0Þ ¼ Sð3Þ or Sð0Þ ¼ Sð3Þ ¼ 0. For the first case, we get
Ω̄ ¼ Uð3Þ=Uð0Þ ¼ 1, which is only possible for a lightlike
trajectory. Thus, for timelike orbits, we could only have
Sð0Þ ¼ Sð3Þ ¼ 0 and the resulting spin vector follows
S≡ ð0; Sr; Sθ; 0Þ. In this case, the spin three-vector would
not be parallel or antiparallel to the rotational axis of the
black hole, instead it has a nonzero inclination with respect
to it.
Furthermore, the nonzero components correspond to the

radial and angular equations and can be reduced to

Λ1 þ Λ2Ω̄2 þ 2Λ3Ω̄

¼ −e1ð1Þ½3Rð1Þð3Þð1Þð3ÞΩ̄Sð2Þ þ Rð1Þð3Þð0Þð2ÞSð1Þð1þ Ω̄2Þ�;
ð8Þ
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Λ̃1 þ Λ̃2Ω̄2 þ 2Λ̃3Ω̄

¼ −e2ð2Þ½3Rð1Þð3Þð1Þð3ÞΩ̄Sð1Þ − Rð1Þð3Þð0Þð2ÞSð2Þð1þ Ω̄2Þ�;
ð9Þ

with

Λ1¼Γ1
33ðe3ð0ÞÞ2þΓ1

00ðe0ð0ÞÞ2þ2Γ1
03ðe3ð0Þe0ð0ÞÞ;

Λ2¼Γ1
33ðe3ð3ÞÞ2þΓ1

00ðe0ð3ÞÞ2þ2Γ1
03ðe3ð3Þe0ð3ÞÞ;

Λ3¼Γ1
33ðe3ð0Þe3ð3ÞÞþΓ1

00ðe0ð0Þe0ð3ÞÞþΓ1
03ðe3ð0Þe0ð3Þ þe3ð3Þe

0
ð0ÞÞ;

Λ̃1¼Γ2
33ðe3ð0ÞÞ2þΓ2

00ðe0ð0ÞÞ2þ2Γ2
03ðe3ð0Þe0ð0ÞÞ;

Λ̃2¼Γ2
33ðe3ð3ÞÞ2þΓ2

00ðe0ð3ÞÞ2þ2Γ2
03ðe3ð3Þe0ð3ÞÞ;

Λ̃3¼Γ2
33ðe3ð0Þe3ð3ÞÞþΓ2

00ðe0ð0Þe0ð3ÞÞþΓ2
03ðe3ð0Þe0ð3Þ þe3ð3Þe

0
ð0ÞÞ;
ð10Þ

where the Γ’s are the Christoffel symbols, Sð1Þ and Sð2Þ are
the projection of radial (Sr) and angular (Sθ) spin compo-
nents, respectively, on the tetrad fame, and we define Ω̄ ¼
Uð3Þ
Uð0Þ to be the angular velocity of the particle in the tetrad
frame. These equations describe the circular motion with
only one parameter, Ω̄. The extremal values of Ω̄ are
bounded by the angular velocity of photons, Ω̄ph ¼ �1.
Now in principle one can solve Eq. (8) for Ω̄ and substitute
in Eq. (9) and get the relation between r and θ for different
spin values,

Ω̄ ¼ Ω̄ðr; θ; Sð1Þ; Sð2Þ; aÞ;
θ ¼ θðr; Sð1Þ; Sð2Þ; aÞ: ð11Þ

We use the numerical approach to solve these equations in
the next section.

B. Newton-Wigner spin supplementary condition

In this section, we discuss the Newton-Wigner formalism
in detail and explicitly use it in the framework of linear spin
approximation while the background geometry is described
by a Kerr black hole. As already described earlier, we
define a timelike vector ωa such that

ωa ¼ Pa=μþ ϕa; ð12Þ

where ϕa is a unit timelike vector. In this case, the Newton-
Wigner constraint can be written in terms of ωa as

Sabωb ¼ Sabðνb þ ϕbÞ ¼ 0; ð13Þ

where νb defines the normalized momentum, Pb ¼ μνb. It
should noted that neither mass (μ orm) nor the total spin are
conserved in this formalism, while their differences appear
only in the OðS2Þ. In the present context, neglecting terms
containing OðS2Þ, we may consider them as conserved
quantities. In addition, we constrain ϕa to satisfy

νaνa ¼ −1; ϕaϕa ¼ −1; and νaϕa ¼ −k; ð14Þ

where k is a constant. We may now express the vectors in
the chosen tetrad given in Eq. (5),

νa ¼ a0eað0Þ þ a3eað3Þ;

ϕa ¼ c0eað0Þ þ c3eað3Þ: ð15Þ

Using Eq. (14) along with Eq. (15), we obtain

c0 ¼ a0kþ a3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
;

c3 ¼ a3kþ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
: ð16Þ

As in the previous case, here also we introduce a spin four-
vector to simplify the calculations. However, in this case,
the vector needs to be defined with respect to ωa instead of
the four-momentum (Pa) or velocity (Ua):

Sab ¼ ϵabcdωcSdffiffiffiffiffiffi−gp ð−ωmωmÞ
¼ ϵabcdωcSdffiffiffiffiffiffi−gp ð1þ kÞ : ð17Þ

The denominator of the above equation would contribute a
factor of 2 which has been incorporated in the spin vector.
The special case k ¼ 1 corresponds to a trivial case with
c0 ¼ a0 and c3 ¼ a3. In the present case, ωa plays the same
role as velocity or momentum does in the Tulczyjew-Dixon
condition. As is evident from Eq. (15), ωa would have the
specific form, ω≡ ð0;ωr;ωθ; 0Þ. Hereby, the spin vector
would obey the same structure as in Tulczyjew-Dixon spin
supplementary condition following the identical reason
given there. From Eqs. (16) and (17), we can write the
orbit equations as

Λ1 þ Λ2Ω̄2
NW þ 2Λ3Ω̄NW ¼ −e1ð1Þ½Rð1Þð3Þð1Þð3Þð3Ω̄NW þ α1ÞSð2Þ þ Rð1Þð3Þð0Þð2ÞSð1Þð1þ Ω̄2

NW þ βÞ�;
Λ̃1 þ Λ̃2Ω̄2

NW þ 2Λ̃3Ω̄NW ¼ −e2ð2Þ½Rð1Þð3Þð1Þð3Þð3Ω̄NW þ α2ÞSð1Þ − Rð1Þð3Þð0Þð2ÞSð2Þð1þ Ω̄2
NW þ βÞ�: ð18Þ

The α’s and β are given as
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α1 ¼
ffiffiffiffiffiffiffiffiffiffi
k−1

kþ1

r
f2þ Ω̄2

NWg; α2 ¼
ffiffiffiffiffiffiffiffiffiffi
k−1

kþ1

r
f1þ2Ω̄2

NWg;

and β¼ 2Ω̄NW

ffiffiffiffiffiffiffiffiffiffi
k−1

kþ1

r
: ð19Þ

As one can see, the general dependence of these equations

on k is weak as the prefactor goes as
ffiffiffiffiffiffi
k−1
kþ1

q
and for a large

value of k it is close to unity. Hence, the orbit equations in
both these formalisms would differ by a small amount. The
equations corresponding to the Tulczyjew-Dixon or
Mathisson-Pirani spin supplementary condition can be
easily obtained by setting α1, α2, and β to zero. Now we
may rewrite Eq. (18) similar to the previous case as in
Eq. (11) and numerically solve them to compute the
nonequatorial circular orbits:

Ω̄NW ¼ Ω̄NWðr; θ; Sð1Þ; Sð2Þ; aÞ;
θ ¼ θðr; Sð1Þ; Sð2Þ; aÞ: ð20Þ

Similar to the previous case, we shall solve these equations
in the next section.

C. Conserved quantities: Energy, momentum,
and Carter constant

The Killing vectors are closely connected with the
integrals of motion. For a geodesic motion, the scalar
product of the four-momentum with Killing vector is
conserved. In the case of spinning particles, the conserved
quantities get modified depending on the spin of the
particle. For a Killing vector field Ka, the corresponding
conserved quantity is written as [37,38]

C ¼ KaPa −
1

2
SabKa;b; ð21Þ

where the semicolon (;) is defined as the covariant
derivative. As the Kerr spacetime has two Killing vectors,
a timelike (ξa) and a spacelike (ηa), the corresponding
conserved quantities are given by

E ¼ −Ct ¼ −ξaPa þ
1

2
Sabξa;b and

Jz ¼ Cϕ ¼ ηaPa −
1

2
Sabηa;b: ð22Þ

Unlike the geodesics, neither energy (−ξaPa) nor the
angular momentum (ηaPa) is conserved in the case of a
spinning particle. Instead, we have the conserved quantities
−Ct and Cϕ and they become energy and angular momen-
tum only for specific case S ¼ 0.
In addition to the above conserved quantities, there is

another constant of motion related to the total angular
momentum of a particle. This is called the Carter constant
[39–41]. A general prescription to define the total angular
momentum is more involved in general relativity. In fact, it
did not receive much attention until Carter came up with
this nontrivial constant to describe the geodesic motion in a
Kerr black hole. It turns out that this constant is closely
related to the total angular momentum of a particle and for a
static spacetime it is exactly same as the square of the total
angular momentum [42–44]. The presence of this constant
makes the trajectories completely integrable in the Kerr
spacetime. Even though so far there is no general notion of
a Carter-like constant in the case of spinning particles, one
can establish an approximate formula for the Carter
constant valid only up to linear order in spin [45]. This
formula is evaluated in the framework of Einstein’s theory
of general relativity. It is explicitly used by Tanaka et al. to
demonstrate that the adiabatic approximation can be
applicable in the case of a spinning particle up to linear
order on the equatorial plane [46]. This is given by

Q
m2

¼ fðΣ½ðUð0ÞÞ2 − ðUð1ÞÞ2� − r2Þg − 2a sin θffiffiffi
Σ

p frðUð0ÞSð1Þð3Þ − 2Uð3ÞSð1Þð0Þ þ Uð1ÞSð3Þð0ÞÞ

þ a cos θUð3ÞSð2Þð3Þg − 2
ffiffiffiffi
Δ

p
ffiffiffi
Σ

p fa cos θð2Uð0ÞSð2Þð3Þ −Uð3ÞSð2Þð0Þ þ Uð2ÞSð3Þð0ÞÞ − rUð0ÞSð1Þð0Þg: ð23Þ

Before dealing with the more general case of a rotating
black hole, we first investigate the properties of the above
constant in a Schwarzschild black hole. By setting a ¼ 0,
Eq. (23) becomes

Q
m2

¼ r2fðUð2ÞÞ2 þ ðUð3ÞÞ2g þ 2
ffiffiffiffi
Δ

p
Uð0ÞSð1Þð0Þ: ð24Þ

The above equation can be further simplified to a familiar
form by using the explicit forms of the tetrads suggesting

the first term to be the square of the total angular
momentum (L), while the second term can be written in
terms of the spin vector

r2fðUð2ÞÞ2 þ ðUð3ÞÞ2g ¼ L2

m2
¼ ðUθÞ2 þ

ðUϕÞ2
sin2θ

: ð25Þ

So we may conclude,
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Q ¼ L2 þ 2m2Δr sin θUtUϕSθ: ð26Þ

It is interesting to see that the extra term is proportional to
the spin vector (Sθ) and for a limit S → 0,Q → L2. Now we
compute the total angular momentum (orbitalþ spin)
of a spinning test particle and explicitly show that this
matches Eq. (26).
We have already discussed how a Killing vector is useful

to exploit various symmetries in a geometry. Unlike a Kerr
black hole, Schwarzschild spacetime is endowed with

spherical symmetry and contains three spacelike Killing
vectors:

ηa1 ¼ x
∂
∂y − y

∂
∂x ; ηa2 ¼ y

∂
∂z − z

∂
∂y ;

and ηa3 ¼ z
∂
∂x − x

∂
∂z : ð27Þ

Now from Eq. (21), we write down each of the conserved
quantities explicitly:

Jx
m

¼ f− sinϕUθ − cot θ cosϕUϕg þ ðSrUt − StUrÞ
�
cosϕ cos 2θ

2 sin θ
−

cosϕ
2 sin θ

�

− r sin θ sinϕð1 − 2M=rÞðStUϕ − SϕUtÞ − r cos θ cosϕð1 − 2M=rÞðSθUt − StUθÞ;
Jy
m

¼ fcosϕUθ − cot θ sinϕUϕg þ ðSrUt − StUrÞ
�
sinϕ cos 2θ

2 sin θ
−

sinϕ
2 sin θ

�

þ r sin θ cosϕð1 − 2M=rÞðStUϕ − SϕUtÞ − r cos θ sinϕð1 − 2M=rÞðSθUt − StUθÞ;
Jz
m

¼ Uϕ þ ðr − 2MÞ sin θðUtSθ − UθStÞ þ cos θðStUr − SrUtÞ: ð28Þ

With the above equations, it is easy to show that

J2 ¼ J2x þ J2y þ J2z ¼ L2 þ 2m2Δr sin θUtUϕSθ

þOðS2Þ ≈Q: ð29Þ
So as we claimed earlier, the Carter constant for a spinning
particle with the linear spin approximation is similar to the
total angular momentum of the particle.
In the case of a rotating geometry, we shall describe

a new quantity as an effective Carter constant, Ks¼
Q−ðJz−aEÞ2. Note that this quantity would vanish in
the case of a geodesic trajectory on the equatorial plane. In
the present context, one can also compute Ks for circular
orbits of spinning particles lying close to the equatorial
plane. With a series expansion around θ ¼ π=2þ η, one
can accommodate the terms linear in η,

Ks ≈ 2aSz −
2Sð1Þ

r2
ffiffiffiffi
Δ

p fEJzr3 − 2aMðJz − aEÞ2gηþOðη2Þ:

ð30Þ

The first term is a coupling between the spin component of
the particle with the angular momentum of the black hole,
while the second term is related to the square of the
momenta. It is interesting to note that the second term is
proportional to both Sð1Þ and η. It should be noted that the
approximation θ ¼ π

2
þ η is used only to demonstrate the

properties of the Ks. However, the results deduced in the
article are valid for any arbitrary angle θ.
Before closing this section, we would like to remind the

readers about a significant departure of spinning particles

from the nonspinning trajectories. For geodesic orbits, the
Carter constant identically vanishes on the equatorial plane.
However, spinning particles with aligned spin, i.e., with
Sð1Þ to be zero, stay on the equatorial plane even if the
Carter constant is nonzero there [46].

III. NONEQUATORIAL ORBITS :
CONSTRAINING RADIAL (r) AND ANGULAR (θ)

COORDINATES

Before delving into the spinning particle, we first
investigate the possibilities of circular geodesics on the
nonequatorial plane of a Kerr black hole. We start with the
effective potential in the radial (Vr) and angular (Vθ)
directions [47,48]:

VðθÞ ¼ K − L2
zcot2θ þ a2ðE2 −m2Þcos2θ;

VðrÞ ¼ E2r4 − ðL2
z − a2E2Þr2 þ 2ðLz − aEÞ2r

− ðm2r2 þ KÞΔ; ð31Þ
where K is the effective Carter constant for a geodesic.
The necessary and sufficient conditions for a circular orbit

are given by VðrÞ ¼ 0 and dVðrÞ
dr ¼ 0. In addition to this,

a circular orbit at constant altitude also has to satisfy

VðθÞ ¼ 0 and dVðθÞ
dθ ¼ 0,

dVðθÞ
dθ

¼ 2cosθfL2
zcsc3θ−a2ðE2−m2Þsinθg¼ 0: ð32Þ

This immediately suggests either θ ¼ π=2 or L2
z ¼

a2ðE2 −m2Þsin4θ. In the first case with θ ¼ π=2, it is easy
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to show that VðθÞ vanishes only when K ¼ 0. Now one can
employ the radial potential VðrÞ to show that K ¼ 0 indeed
describes a circular orbit on the equatorial plane. On the other
hand, for L2

z ¼ a2ðE2 −m2Þsin4θ, bound circular orbits are
unlikely to appear as they consist with E2 −m2 < 0 and this
is inconsistent with L2

z > 0. Hence, one may conclude that
circular orbits for geodesic trajectories can only exist on the
equatorial plane of a Kerr black hole [17]. However, if one
relaxes the constraint of vanishing _θ, i.e., _θ ≠ 0, spherical
orbits are likely to appear in the Kerr background [49].
The situation is quite different in the case of a spinning

particle and nonequatorial circular orbits can be obtained
fromMathisson-Papapetrou equations.Nextwe shall discuss
these orbits for both the spin supplementary conditions.

A. Tulczyjew-Dixon or Mathisson-Pirani
spin supplementary condition

Here we numerically solve Eq. (11) and obtain (r, θ) for
a given value of the spin parameter. For each polar angle

“θ,” there is only one possible radial coordinate “r” that
satisfies the equation of motion. The plot for θ as a function
of r is shown in Fig. 1 for a given spin vector SðiÞ ¼
ð0; 0.015M;−0.01M; 0Þ and angular momentum a ¼
f0; 0.5M;Mg for both corotating and counterrotating
orbits. These orbits behave as a small perturbation from
the geodesic trajectories as they appear very close to the
equatorial plane. It is shown that the deviation from the
equatorial plane not only depends on the sign of the spin
vector but also on its direction of rotations. The counter-
rotating orbits shown in Fig. 1(b) cease to exist beyond
r ≈ 4M for a maximally rotating Kerr black hole (a ¼ M),
while corotating orbits continue to appear even close to the
horizon as shown Fig. 1(a). Let us now briefly discuss
the dependence of orbital inclination on the spin vector. The
corresponding slope for these orbits close to the equatorial
plane can be computed using the orbit equation. For
convenience, we set a ¼ M and then differentiate the
equation with respect to r. Afterwards, we evaluate
dθ=dr at θ ¼ π=2 and this is given as

dθ
dr

≈ −
12MSð1ÞΩ̄

M2rþ 2Mrðr −MÞΩ̄þ ðrM2 þ r3ÞΩ̄2 þ 6M2Sð2Þð1þ Ω̄2Þ : ð33Þ

(a) (b)

FIG. 1. Nonequatorial circular orbits are shown for spinning particles in a Kerr spacetime. In addition, we would also like to point
out that the innermost unstable circular orbits are slightly deviated from the geodesic limits due to the nonvanishing spin. For
example, with a ¼ 0.5M, the innermost direct and retrograde unstable circular orbits for a geodesic trajectory exist at rdirect ¼
2.3473M and rretro ¼ 3.53209M, respectively, while in our case it is shifted to rsdirect ¼ 2.36403M and rsretro ¼ 3.52603M. Similarly,
with a ¼ M, the limits for a geodesic are given as rdirect ¼ M and rretro ¼ 4M for direct and retrograde, respectively, and in our study
it becomes rsdirect ¼ 1.00001M and rsretro ¼ 4.00287M. The limit with the nonrotating case shifted to rsdirect ¼ 3.04916M and
rsretro ¼ 3.05118M, which is close to rdirect ¼ rretro ¼ 3M, defines the innermost unstable circular orbit in the Schwarzschild black
hole. (a) The corotating circular orbits are shown in the nonequatorial planes for different angular momentum of the black hole. For
a large angular momentum of the black hole, the orbits are dragged close to the horizon. The spin components are fixed at
SðiÞ ¼ ð0;−0.015M;−0.01M; 0Þ while the angular momentum “a” is shown in the inset. (b) The counterrotating circular orbits are
shown for SðiÞ ¼ ð0;−0.015M;−0.01M; 0Þ. They move away from the horizon as one increases the value of the black hole's angular
momentum. As the spinning particle moves close to the horizon, it gets more deviated from the equatorial plane. The black hole’s
momenta are shown in the inset.
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For a corotating trajectory with Sð1Þ < 0, the orbits get close
to the θ ¼ 0 axis while the behavior is completely opposite
for a counterrotating orbit. In addition, the polar angle
strongly depends on the spin component Sð1Þ while it has a
weak dependence on Sð2Þ. By substituting Sð1Þ with zero,
the slope would identically vanish and the particle would
reside in the equatorial plane. It is depicted in Fig. 2.
However, with Sð2Þ set to zero and Sð1Þ to nonzero, the
particle will have nonequatorial trajectories.

B. Newton-Wigner spin supplementary condition

In the Newton-Wigner condition, one has to solve
Eq. (20) along with Eq. (18) to compute the nonequatorial

orbits; these are shown in Fig. 3. It should be noted that the
dependence of these results on k is weak and almost

negligible. This is related to the prefactor
ffiffiffiffiffiffi
k−1
kþ1

q
which has a

maximum value of 1 as discussed earlier. The overall
behavior is similar to the previous case, while the numerical
values differ by a small amount, as shown in Fig. 4(a). The
difference between these two spin supplementary condi-
tions becomes significant only for larger values of spin as
shown in Fig. 4(b).
It is evident from Figs. 1 and 3 that the radial coordinate

(r) for each nonequatorial orbit is related to a specific
value of angular coordinate (θ). For a given spin value, if
one chooses to have a circular orbit at θ ¼ θs, the

(a) (b)

FIG. 3. Nonequatorial circular orbits, both corotating and counterrotating, are shown for spinning particles with the Newton-Wigner
constraint in a Kerr spacetime. The value of k is fixed at 2. Similar to the previous case, one can show that the innermost unstable circular
orbits are in fact within close proximity to the geodesic trajectories. For example, with a ¼ M, the innermost unstable circular orbits
for direct and retrograde directions are located at rsdirect ¼ 1.01865M and rsretro ¼ 4.0024M, respectively. (a) The above figure
shows the corotating circular orbits in nonequatorial planes with the spin vector remain similar to the previous case,
SðiÞ ¼ ð0;−0.015M;−0.01M; 0Þ. (b) The counterrotating circular orbits are shown with the Newton-Wigner condition.

(a) (b)

FIG. 2. Nonequatorial circular orbits for a spinning are shown in a maximally rotating Kerr black hole. For a vanishing Sð1Þ, all the
orbits reside in the equatorial plane. (a) The corotating circular orbits are shown for Sð2Þ ¼ −0.01M while Sð1Þ varies as shown in the
inset. (b) The counterrotating circular orbits for a spinning particle are shown in the above figure, Sð2Þ is fixed at −0.01M while Sð1Þ
changes accordingly.
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corresponding radial coordinate takes a particular value of
r ¼ rs. We can estimate the radius of such circular orbits at
constant altitude as Rs ¼ rs sin θs. As one gets closer to the
horizon, it deviates more from the equatorial plane, and
also the radius (Rs) starts to decrease. This can be better
explained in a graphical representation as shown in Fig. 5.

IV. CIRCULAR ORBITS AND
STABILITY ANALYSIS

In this section, we shall discuss the stability of the
nonequatorial circular orbits for a spinning particle.
Before investigating the spinning particle, we revisit the
stability properties of the geodesic trajectories around a
Schwarzschild and Kerr black hole. In this case, the energy
and angular momentum are easily derivable from the radial
potential:

E2
sbh ¼

1

r
ðr − 2MÞ2
ðr − 3MÞ and L2

sbh ¼
Mr2

ðr − 3MÞ ; ð34Þ

where M is the mass of the black hole. Both energy
and momentum reach simultaneous minima at r ¼ 6M,
which is precisely the ISCO for a timelike particle [50,51].
Beyond this limit, no stable circular orbit is possible
in a Schwarzschild spacetime. A similar situation appears
around a Kerr black hole with energy Ekbh and momentum
Lkbh. But in that case, the ISCO depends on the angular
momentum of the black hole. For example, at a ¼ 0.4M,
the ISCO for a corotating geodesic appears at r ¼ 4.614M.
A schematic diagram to demonstrate the ISCO is given
in Fig. 6.
In the case of a spinning particle, neither energy nor

momentum is a conserved quantity, instead, some spin-
dependent functions such as Ct, Cϕ, and Ks become
constants of motion. Even then, one can further ask whether
it is possible to have a simultaneous minima for these
conserved quantities similar to a nonspinning particle; i.e.,
can the existence of ISCO be extended for a spinning
particle as well? If possible, the conserved quantities have
to the satisfy the following equations at the ISCO located at
(rc, θc),

�∂Ct
∂r

�
r¼rc

¼ 0;

�∂Cϕ
∂r

�
r¼rc

¼ 0; and

�∂Ks

∂r
�

r¼rc

¼ 0;

ð35Þ
�∂Ct
∂θ

�
θ¼θc

¼ 0;

�∂Cϕ
∂θ

�
θ¼θc

¼ 0; and

�∂Ks

∂θ
�

θ¼θc

¼ 0:

ð36Þ

FIG. 5. The circular orbits are shown explicitly in the non-
equatorial planes. The origin is located at (0, 0, rs cos θs) while
the radius is Rs ¼ rs sin θs. The scale of rs cos θs is raised by the
square of the logarithmic to realize the difference properly.

(a) (b)

FIG. 4. Figure shows a comparative study of nonequatorial orbits for different spin supplementary conditions with the angular
momentum of the black hole fixed at a ¼ 0.8M. (a) The above figure shows the corotating circular orbits for SðiÞ ¼
ð0;−0.015M;−0.01M; 0Þ with two different spin supplementary conditions. Though the nature of the plots remain same as seen
from Figs. 1 and 3, they differ in a small scale. (b) The dependence of Mathisson-Papapetrou equations for different spin supplementary
conditions certainly increases with an increase of the spin parameters. A considerable amount of difference is achieved with
SðiÞ ¼ ð0;−0.05M;−0.045M; 0Þ.
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Or, it can be stated the other way around; i.e., if we could
establish that the above sets of equations are satisfied at
some (rc, θc), then it has to be the ISCO for a spinning
particle in the Kerr spacetime. But unfortunately, to find
any analytical solutions to the above equations is a
formidable task and one has to rely on some numerical
techniques which we shall carry out in this section. To
complete the task, we first introduce the velocity compo-
nents Uð0Þ and Uð3Þ as

Uð0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ω̄2

p and Uð3Þ ¼ Ω̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ω̄2

p : ð37Þ

Substituting the values of Ω̄, r, and θ, we plot the variation
of Ct, Cϕ, and Ks, as shown in Figs. 7 and 9. It can be noted
that all of them have a simultaneous minima in a non-
equatorial orbit. This corresponds to the ISCO for the
spinning particles and unlike geodesics, it appears in an off-
equatorial plane. The ISCO for the Newton-Wigner spin
supplementary condition is shown in Fig. 10 and the
comparison between two spin supplementary conditions
is depicted in Fig. 11. It is easy to notice that the difference
for different spin supplementary conditions is small in the
linear spin approximation. In addition, one may also
interpret from Fig. 7 that the behavior of both of these
conserved quantities is distinctly different for a ¼ M
compared to other values of a. To clarify this point, we
have shown Ct for different values of a in the range of
0.9 M to 1.0 M, as given in Fig. 8(a). Clearly for a ¼ M,
the familiar structure to find the ISCO from a graphical
representation is absent and the minimum value of Ct is
taken up to which the motion is described. This is a
consequence of the spacetime geometry and can be shown
to exist even for a geodesic trajectory, as it is depicted in
Fig. 8(b). Due to the existence of the horizon at r ¼ M for
an extremal black hole, the radial coordinate is not
extensible beyond r ¼ M and that is exactly where the
ISCO is located. This would essentially change the

behavior of the plots near the a ¼ M limit. A similar
outcome can be anticipated even for a spinning particle.
For a more rigorous proof, it is instructive to simulta-

neously solve Eqs. (35) and (36) and conclude that there
indeed exists a common solution (rc, θc) to these equations.
To complete this task, we have employed the technique
involving the Lagrangian multiplier which is useful to
compute any extrema of the function fðx; yÞ while x and y
further satisfy gðx; yÞ ¼ 0. Let us now define a new
function Lðx; yÞ such as

Lðx; yÞ ¼ fðx; yÞ − λgðx; yÞ ð38Þ
with λ is given as a constant which we indented to evaluate.
To find the respective minima in both x and y, the following
expressions have to be satisfied:

∂Lðx; yÞ
∂x ¼ ∂fðx; yÞ

∂x − λ
∂gðx; yÞ

∂x ¼ 0

and
∂Lðx; yÞ

∂y ¼ ∂fðx; yÞ
∂y − λ

∂gðx; yÞ
∂y ¼ 0: ð39Þ

Solving for λ, we may conclude the validity of the
following expression:

∂fðx; yÞ
∂x

∂gðx; yÞ
∂y −

∂fðx; yÞ
∂y

∂gðx; yÞ
∂x ¼ 0: ð40Þ

Therefore, it is easy to predict that whenever the above
equation along with gðx; yÞ ¼ 0 is satisfied, there exists a
minimum to the function fðx; yÞ at (xc, yc). We use this
technique in the present context with fðx; yÞ corresponding
to the conserved quantities and gðx; yÞ is the constraint
arriving from the orbit equation. These results are repro-
duced in Table I with respective mean and deviation for
different momenta of the black hole. It can be easily noticed
that there exists a common solution to Eqs. (35) and (36) at
rc and θc within a maximum error ofOð10−5Þ. The mean r̄c
used in Table I is given as r̄c ¼

P
3
i¼1

ric
3
and the deviation is

FIG. 6. Energy and angular momentum of a timelike geodesic is shown in a rotating as well as in a nonrotating gravitational field. The
ISCO always appears at a point where energy and angular momentum both simultaneously become minimum.
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(a) (b)

FIG. 8. The conserved quantity is shown for a nearly extremal Kerr black hole for both a spinning particle as well as a geodesic.
(a) Above figure shows Ct for a spinning particle with SðiÞ ¼ −0.015M and Sð2Þ ¼ −0.01M. Close to a ¼ M limit, the diagrams are
distinctly different compare to other values of the angular momentum. (b) The conserved energy is shown for a geodesic in the Kerr
black hole. For, a ¼ M the ISCO exists at r ¼ M for a corotating orbit. However, from the figure one can find that for a ¼ M, the curve
is sharply different from the rest.

FIG. 7. The conserved energy and total angular momentum is shown for corotating orbits with Sð1Þ ¼ −0.015M and Sð2Þ ¼ −0.01M in
the Tulczyjew-Dixon spin supplementary condition. The ISCO is shown as the minimum of energy and angular momentum, which is
placed in a nonequatorial plane. The variation of the ISCO is shown for different angular momenta of the black hole. The black hole’s
angular momentum is zero for the upper branch and a ¼ M for the lower branch. In between, a is increasing from top to bottom. It is
shown that for large values of a, the ISCO exists in a more deviated nonequatorial plane while for a → 0, the ISCO exists very close to
the equatorial plane.
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defined as hrci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

3
i¼1

ðr̄c−ricÞ2
3

q
, where ric corresponds to

different solutions obtained for various equations relating
E, Jz, and Ks. Similarly, one can estimate θ̄c and hθci and
show that the solutions coincide within an error bound
of Oð10−8Þ.

For a consistency check, it should be reminded that for
very small spin values, the ISCO should approximately
match with the usual geodesic trajectories on the equatorial
plane of a Kerr black hole. For example, with the spin
parameter S ¼ ð0;−1.5 × 10−4M;−1.0 × 10−4M; 0Þ and a
black hole with spin a ¼ 0.5M, if we conduct the similar

FIG. 10. The conserved quantities are shown in the Newton-Wigner spin supplementary condition. Similar to the previous case of
Tulczyjew-Dixon spin supplementary condition, the minima appear in a nonequatorial plane.

FIG. 9. The Carter constant is shown for Sð1Þ ¼ −0.015M and Sð2Þ ¼ −0.01M with the angular momentum of the geometry varied as
shown in the figure. Similar to the other constants such as energy and angular momentum, the Carter constant also reaches a minimum in
r and θ. It clearly suggests that the particle will eventually settle down in a nonequatorial orbit.
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prescription as stated above, we find r̄c ¼ 4.23315M and
θ̄c ¼ 1.57076 within the error bounds hrci ¼ 3.8 × 10−9M
and hθci ¼ 3.7 × 10−14, respectively. However, the esti-
mated radius of the innermost stable circular orbit for a
geodesic exists at risco ¼ 4.233M on the equatorial plane
of the black hole with rotation parameter a ¼ 0.5M.
This demonstrates that for a spinning particle with
S ≈Oð10−4MÞ, the innermost stable circular orbits exist
on a plane within a difference Oð10−5Þ from the equatorial
plane while the radial distance located within a difference of
Oð10−4Þ from the usual geodesic orbit. By further decrease

in the spin parameter, rc and θc would match even more
closely with the given ISCO for any geodesic trajectory.

V. DISCUSSION

The circular motion of spinning particles is discussed on
the θ ¼ constant plane in a Kerr background. We numeri-
cally solve the Mathisson-Papapetrou equations and explic-
itly show the existence of such orbits in a rotating geometry
for different spin supplementary conditions. The deviation
from the equatorial plane is proportional to the radial spin
component (Sr) of the particle as well as the angular

TABLE I. The solutions to Eqs. (35) and (36) are computed numerically for various momentum parameters of the black hole, and the
spin vector follows Sð1Þ ¼ −0.015M and Sð2Þ ¼ −0.01M.

Angular momentum of the black hole

Expressions a ¼ 0 a ¼ 0.3M a ¼ 0.5M a ¼ 0.7M a ¼ 0.9M

dCt=dr ¼ 0 rc ¼ 6.01632M rc ¼ 4.99410M rc ¼ 4.24766M rc ¼ 3.40649M rc ¼ 2.33143M
θðrcÞ ¼ 1.56831 θðrcÞ ¼ 1.56780 θðrcÞ ¼ 1.56727 θðrcÞ ¼ 1.56639 θðrcÞ ¼ 1.56432

dCϕ=dr ¼ 0 rc ¼ 6.01637M rc ¼ 4.99416M rc ¼ 4.24772M rc ¼ 3.40655M rc ¼ 2.33149M
θðrcÞ ¼ 1.56831 θðrcÞ ¼ 1.56780 θðrcÞ ¼ 1.56727 θðrcÞ ¼ 1.56639 θðrcÞ ¼ 1.56432

dKs=dr ¼ 0 rc ¼ 6.01631M rc ¼ 4.99408M rc ¼ 4.24763M rc ¼ 3.40645M rc ¼ 2.33137M
θðrcÞ ¼ 1.56831 θðrcÞ ¼ 1.56780 θðrcÞ ¼ 1.56727 θðrcÞ ¼ 1.56639 θðrcÞ ¼ 1.56432

dCt=dθ ¼ 0 θc ¼ 1.56831 θc ¼ 1.56780 θc ¼ 1.56727 θc ¼ 1.56639 θc ¼ 1.56430
rðθcÞ ¼ 6.01632M rðθcÞ ¼ 4.99410M rðθcÞ ¼ 4.24766M rðθcÞ ¼ 3.40649M rðθcÞ ¼ 2.33142M

dCϕ=dθ ¼ 0 θc ¼ 1.56831 θc ¼ 1.56780 θc ¼ 1.56727 θc ¼ 1.56639 θc ¼ 1.56430
rðθcÞ ¼ 6.01637M rðθcÞ ¼ 4.99416M rðθcÞ ¼ 4.24772M rðθcÞ ¼ 3.40655M rðθcÞ ¼ 2.33149M

dKs=dθ ¼ 0 θc ¼ 1.56831 θc ¼ 1.56780 θc ¼ 1.56727 θc ¼ 1.56639 θc ¼ 1.56430
rðθcÞ ¼ 6.01632M rðθcÞ ¼ 4.99408M rðθcÞ ¼ 4.24763M rðθcÞ ¼ 3.40644M rðθcÞ ¼ 2.33137M

Mean r̄c ¼ 6.01633M r̄c ¼ 4.99411M r̄c ¼ 4.24767M r̄c ¼ 3.4065M r̄c ¼ 2.33143M
θ̄c ¼ 1.56831 θ̄c ¼ 1.56780 θ̄c ¼ 1.56727 θ̄c ¼ 1.56639 θ̄c ¼ 1.56430

Deviation (in M−1 units) hrci ¼ 2.6 × 10−5 hrci ¼ 3.4 × 10−5 hrci ¼ 3.8 × 10−5 hrci ¼ 4.4 × 10−5 hrci ¼ 4.7 × 10−5

hθci ¼ 1.5 × 10−8 hθci ¼ 2.5 × 10−8 hθci ¼ 4 × 10−8 hθci ¼ 7.2 × 10−8 hθci ¼ 1.7 × 10−7

(a) (b)

FIG. 11. The innermost stable circular orbit s are shown for different spin supplementary conditions. (a) The radial coordinates for the
innermost stable circular orbits are shown in the above figure for different angular momenta of the black hole while the spin parameters
are fixed at Sð1Þ ¼ −0.015M and Sð2Þ ¼ −0.01M. (b) The difference of innermost stable circular orbits for different spin supplementary
conditions increases with the increase of spin parameters. In this case, we set Sð1Þ ¼ −0.05M and Sð2Þ ¼ −0.045M.
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momentum of the black hole, but the direction of the
deviation is related to the sign of Sð1ÞΩ̄. More precisely, as
shown in Fig. 1, for Sð1Þ < 0 the counterrotating orbits
deviate in the direction of θ ¼ π, while an opposite
phenomenon appears for corotating orbits. The study of
different spin supplementary conditions is carried out in the
linear spin framework. The nature of the plots remains
similar as shown in Figs. 1 and 3, and the difference is very
small for different spin supplementary conditions. We
provide a better understanding of the stabilities of these
circular orbits in terms of conserved quantities such as
energy, angular momentum, and Carter constant. Similar to
the geodesics, there exists a point (rc, θc) where all the
conserved quantities reach their respective minima simul-
taneously and this corresponds to the ISCO. This suggests
that spinning particles not only can move in the non-
equatorial circular orbits, they may even settle down in such
planes. Due to such interesting consequences it may be
possible to detect those orbits in a real astrophysical
domain. The motion of extended objects around the

supermassive black hole Sgr A* in our Galaxy [52,53]
or the extreme mass ratio binaries may serve as promising
candidates to witness any imprints of off-equatorial stable
circular orbits for a spinning particle. Furthermore, as the
complete analysis is carried out within the linear spin limit,
the results produced in the article could be easily employed
for any astrophysical event as long as the spin vector
satisfies S ≪ OðMÞ. However, it would be intriguing from
a theoretical perspective to search for any possibilities of
such orbits whenever the linear constraint is relaxed and
OðS2Þ is also considered.
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