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A spacetime consisting of parallel electric or magnetic fields held together by its own gravity in the
presence of a cosmological constant Λ is derived as a limit of the de Sitter or anti–de Sitter C-metric. The
limiting procedure is similar to the Λ ¼ 0 case where the Melvin universe is derived from the C-metric.
Under an appropriate coordinate transformation, we show that this solution is equivalent to the solution
obtained by Astorino. Some physical and geometrical properties of the solution are studied, as well as its
geodesics. For Λ < 0, the solution is asymptotically locally anti–de Sitter, and can be derived as a double-
Wick rotation of a charged anti–de Sitter black hole with a planar horizon.
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I. INTRODUCTION

TheMelvin universe [1–3] is an electro-vacuum solution to
the Einstein-Maxwell equations with a vanishing cosmologi-
cal constant. Physically, the metric describes a set of parallel
electric or magnetic fields held together by its own gravity.
The study of these spacetimes was initially motivated by
issues related to the gravitational stability of electro-magnetic
configurations [4], as well as the study of electro-magnetic
“geons” [5].1 Subsequently, magnetic spacetimes came
to more observational relevance as strong magnetic fields
are believed to be the mechanism behind various astrophysi-
cal and cosmological phenomena [7–9]. Specifically,
Refs. [10,11] investigated these phenomena using the frame-
work of a spacetime depicting a magnetized black hole.
Aside from directly solving the Einstein-Maxwell equa-

tions, one could derive the Melvin solution by magnetizing
the Minkowski spacetime. The electric solution is obtained
by taking the electro-magnetic dual of the result. The
magnetization procedure is achieved by applying the
Harrison transformation [12] on a seed metric. This trans-
formation exploits a symmetry in the Einstein-Maxwell
equations with a vanishing cosmological constant and can
be applied to various axisymmetric spacetimes, such as
black holes and the C-metric.
The second method is of more relevance to this paper,

namely by extracting the solution from the charged
C-metric [13–16]. The charged C-metric describes a pair
of causally-disconnected, charged black holes uniformly
accelerating apart. The intuition behind this limiting
procedure is straightforward: The black holes are pushed
far away, while simultaneously increasing their charges,
one expects that the electro-magnetic fields in the region at

the center of the two black holes will tend to a homo-
geneous configuration. Indeed, it was demonstrated by
Havrdová and Krtouš that the resulting limit is precisely
the Melvin spacetime [17]. Interestingly, a similar pro-
cedure was performed by Bičák et al. [18] on two pairs of
uniformly accelerated particles by pushing them apart
while simultaneously increasing their mass.
With the discovery of the accelerating expansion of the

Universe and interest in the AdS/CFT correspondence,
recent research in General Relativity is being increasingly
favored towards solutions involving a nonzero cosmologi-
cal constantΛ. Therefore it is natural to ask whether there is
an analogue to the Melvin solution with a cosmological
constant. However, many solution-generating methods are
not applicable to Einstein-Maxwell equations with Λ ≠ 0,
or that many of its useful symmetries are broken by the
presence of Λ. Nevertheless, Astorino [19] managed to
obtain the Melvin universe with a cosmological constant by
an appropriate generalization of the Ernst potential formal-
ism [20,21]. More recently, the Melvin universe with Λ ≠ 0
has been considered in the context of gyration solutions
[22], where the spacetime additionally includes spinning,
ultrarelativistic matter sources [23–25].
In this paper, we derive the electric or magnetic Melvin

universe with a nonzero cosmological constant by applying
Havrdová and Krtouš’s procedure to the charged de Sitter/
anti–de Sitter C-metric [26–30] [henceforth referred to
as the (A)dS C-metric]. This solution describes a pair of
charged black holes accelerating apart in a background de
Sitter (dS) or anti–de Sitter spacetime (AdS).2 We note that
Havrdová and Krtouš’s method was made possible due to

*yenkheng.lim@gmail.com
1For more references and a wider overview, see, e.g., [6].

2By “background” dS/AdS spacetime, we mean that the zero
mass and charge limit of the solution reduces to that of pure de
Sitter or anti–de Sitter spacetime, depending on the sign of the
cosmological constant.
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the fact that the charged C-metric was cast in a factorized
form. In particular, the gtt component of the metric takes
the form

gtt ∝ ðỹ2 − 1Þð1 − 2maỹþ e2a2y2Þ; ð1Þ
where a and m are the acceleration and mass parameters
respectively. Loosely speaking, ỹ is regarded as the inverse
radial coordinate, and the horizons of the C-metric are
given simply as the roots of the above equation.
Particularly, in the notation of [17]3 y ¼ −1 is the black
hole horizon and y ¼ þ1 is the acceleration horizon. Hence
a limiting procedure can be expressed in coordinates with a
simple form y ¼ 1þOðϵÞ. Recently, the factorized form of
the (A)dS C-metric was given in [31], thus allowing the
possibility to apply the same intuition of pushing the black
holes far away while simultaneously increasing the charge.
For convenience, we will denote the result as the dS Melvin
or AdS Melvin spacetimes. [Collectively, the (A)dS Melvin
spacetime.] As will be shown below, this solution is an
electro-vacuum spacetime consisting of parallel electric or
magnetic fields, though the metric may no longer be
cylindrically symmetric like the original Melvin universe.
This paper is organized as follows. In Sec. II, we review

some relevant features of the (A)dS C-metric before taking
the limit to the (A)dS Melvin solution. For the case of the
negative cosmological constant, we show that the AdS
magnetic Melvin solution can also be derived from the
charged version of the AdS soliton. Some physical and
geometrical properties of the (A)dS Melvin solution are
explored in Sec. III. In Sec. IV, we show that our (A)dS
Melvin solution is equivalent to Astorino’s by an appro-
priate coordinate transformation. We also show how the
familiar Λ ¼ 0 Melvin solution can be recovered, along
with other interesting limiting cases. Subsequently, the
motion of test particles in this solution is explored in Sec. V.
We briefly comment on the possibility of generalization to
higher dimensions in Sec. VI. This paper concludes with a
brief discussion in Sec. VII.

II. DERIVATION OF THE (A)dS MELVIN
SPACETIME

A. Review of the (A)dS C-metric

Let us establish the notation to be used in this paper and
briefly review some essential features of the (A)dS C-metric
that will be relevant for the derivation of the (A)dS Melvin
spacetime. Further details of the metric have been studied in
Ref. [31]. The (A)dS C-metric, along with the Melvin limit
and other spacetimes discussed in this paper4 are solutions to
the four-dimensional Einstein-Maxwell equations

Rμν ¼ Λgμν þ 2FμλFν
λ −

1

2
F2gμν; ð2aÞ

∇λFλν ¼ 0; ð2bÞ

where Fμν is the Maxwell tensor derived from the
gauge potential A by F ¼ dA. We have also denoted
F2 ¼ FμνFμν. In four dimensions, we shall use the (A)dS
scale l which is related to the cosmological constant by

Λ ¼ −
3

l2
: ð3Þ

Therefore, solutions with a positive cosmological constant
is understood to have l2 < 0 and those with a negative
cosmological constant accordingly has l2 > 0.
The (A)dS C-metric solution is given by [31]

ds2 ¼ −l2ða2 − 1Þðb2 − 1Þ
ðx − yÞ2

×

�
−QðyÞdt2 þ dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

PðxÞ ¼ ð1 − x2Þ½q2ðx − aÞðx − bÞ − ðaþ bÞðx − a − bÞ
− ab − 1�; ð4aÞ

QðyÞ ¼ ðy − aÞðy − bÞ½q2ðy2 − 1Þ − ðaþ bÞy − ab − 1�;
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ða2 − 1Þðb2 − 1Þ

q
ðeydt − gxdϕÞ; ð4bÞ

where e and g are the respectively electric and magnetic
charges satisfying e2 þ g2 ¼ q2. We will restrict our
parameter ranges such that −l2ða2 − 1Þðb2 − 1Þ > 0, so
that the metric will carry a Lorentzian signature ð−þþþÞ
in its static patch.
Some of the important physical properties of the metric

are encoded in the roots of the structure functions P andQ,

PðxÞ ¼ 0∶ x ¼ �1; and x�;

QðyÞ ¼ 0∶ y ¼ a; b; and y�; ð5Þ

where

x� ¼ 1

2q2

�
ð1þ q2Þðaþ bÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4ða − bÞ2 − 2q2ða2 þ b2 − 2Þ þ ðaþ bÞ2

q �
;

ð6aÞ

y� ¼ 1

2q2

�
ðaþ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q4 þ 4q2ð1þ abÞ þ ðaþ bÞ2

q �
:

ð6bÞ

3Note that this is will be different to the notation for the
C-metric used in [15] and the present paper, where y ¼ −ỹ below.

4With the exception of Sec. VI, which discusses the Einstein-
Maxwell equations in higher dimensions.
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By design, the metric is cast in the form (4a) so that (some
of) the roots of the structure functions take simple forms,
namely a, b, and �1 in (5). The ordering of the roots
determine the global properties of the spacetime, and they
depend on the sign of the cosmological constant:
(1) Positive cosmological constant, Λ > 0 (or l2 < 0):

y− < x− < xþ < a < b < −1 < þ1 < yþ: ð7Þ

(2) Negative cosmological constant, Λ < 0 (or l2 > 0):

x− < y− < a < xþ < −1 < b < yþ < þ1: ð8Þ

(3) Zero cosmological constant, Λ ¼ 0 (or l2 ¼ �∞):

y− ¼ x− < xþ ¼ a < b ¼ −1 < þ1 ¼ yþ: ð9Þ

These three cases are summarized in Fig. 1, where the
shaded regions indicate coordinates where the metric
carries a Lorentzian signature ð−þþþÞ. The darker
shades are regions of primary interest, where in addition
to having Lorentzian signature with t being timelike, the
coordinates lie within the range

−1 < x < 1; a < y < b; y − x < 0; ð10Þ

where x ¼ y indicates the conformal infinity of the metric.
Having established the root orderings of P and Q,

we have a more concrete interpretation of the coordinate
boundaries of Eq. (10). The black hole and acceleration
horizons are located at y ¼ a and y ¼ b, respectively. In the
dS case, Fig. 1(a) tells us that both horizons are compact,
starting from x ¼ −1 and terminating at x ¼ þ1, where x is
interpreted as the sine of a polar angle. In particular, the
compact acceleration horizon is reminiscent of an observer
in pure de Sitter space perceiving a cosmological horizon in
all directions, and that the horizon area is obtained by
integrating over the polar and azimuthal angles to give a
finite result. On the other hand, in the AdS case, the
acceleration horizon has infinite area, as can be seen in
Fig. 1(b) where the y ¼ b line intersects with the conformal
infinity x ¼ y. Loosely speaking, we say that the acceler-
ation horizon “extends to infinity.” However, the black hole
horizon is still finite, reflecting its S2 horizon topology.5

(a) (b)

(c)

FIG. 1. The Lorentzian domains of the charged C-metric for the cases (a) l2 < 0 (dS), (b) l2 > 0 (AdS), and (c) l2 → �∞ (zero
cosmological constant). In each diagram, the x-axis is in the horizontal direction, while the y-axis is in the vertical direction. The boxes
we are interested in are in the darker shade. The diagonal lines correspond to the conformal infinity x ¼ y.

5More precisely, the black hole horizon has the shape of a
deformed sphere. For details, see Ref. [32].
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B. The limit to the (A)dS-Melvin universe

To obtain the (A)dS Melvin spacetime, we apply the
method of Havrdová and Krtouš by staying within a region
close to the acceleration horizon and push the two charged
black holes away, while simultaneously increasing the
charge. This is achieved by scaling up an infinitesimal
neighborhood close to y ¼ b.
Towards this end, we reparametrize the roots and

coordinates by

a ¼ bþ ξ1ϵ; y− ¼ bþ ξ2ϵ;

y ¼ bþ ξ1ξ2ϵ
2q2ðb − yþÞu; t ¼ 2η

ξ1ξ2ϵ
2q2H2ðb − yþÞ

:

ð11Þ

First, let us see what happens to q under this limit.
Comparing the expressions of y− from (11) and (6b), in
the limit ϵ → 0, we have

e2 þ g2 ¼ q2 ¼ 3b2 þ 1

b2 − 1
: ð12Þ

This suggests a convenient parametrization of the electric
and magnetic charges by ψ as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 1

b2 − 1

s
cosψ ; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 1

b2 − 1

s
sinψ ; ð13Þ

explicating the U(1) symmetry of the Maxwell gauge field.
Taking ϵ → 0 for the metric, we find

ds2 ¼ −l2ðb2 − 1Þ2
ðx − bÞ2

�
1

q2H2ðb − yþÞ
�
−4udη2 þ du2

u

�

þ dx2

GðxÞ þ GðxÞdϕ2

�
: ð14Þ

the gηηdη2 þ guudu2 part of the metric is conformal to a
Ricci-flat spacetime in Rindler-type coordinates. We can
transform it into a more familiar Minkowski form by

u ¼ 1

4
q2H2ðb − yþÞð−τ̂2 þ ẑ2Þ; tanh η ¼ τ̂

ẑ
; ð15Þ

then the metric now becomes

ds2 ¼ −l2ðb2 − 1Þ2
ðx − bÞ2

�
−dτ̂ þ dẑ2 þ dx2

PðxÞ þ PðxÞdϕ2

�
;

ð16Þ

where

PðxÞ ¼ lim
a→b

PðxÞ ¼ 1 − x2

b2 − 1
½ð3b2 þ 1Þðx − bÞ2

− ðb2 − 1Þð2bðx − 2bÞ þ b2 þ 1Þ�: ð17Þ

Next we do the same for the Maxwell potential. Taking
Eq. (4b) and reparametrizing with (11), followed by (15),
we find, to leading order in ϵ,

A ¼ const
ϵ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 1

b2 − 1

s

×

�
1

2
cosψðẑdτ̂ − τ̂dẑÞ − x sinψdϕ

�
: ð18Þ

The term containing ϵ−2 will diverge if we take the limit
ϵ → 0. However, this term is constant and does not
physically contribute to the electro-magnetic field.
Therefore we shall ignore this term. Further invoking
gauge invariance to remove a term proportional to τ̂dẑ,
the potential now becomes

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ2ð3b2 þ 1Þ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 1

b2 − 1

s
ðẑ cosψdτ̂ − x sinψdϕÞ: ð19Þ

Finally, let us simplify the solution a little further by
rescaling,

τ̂→
ffiffiffiffiffiffiffiffiffiffiffiffi
b2−1

p
τ; ẑ→

ffiffiffiffiffiffiffiffiffiffiffiffi
b2−1

p
z; ϕ→ ðb2−1Þφ; ð20Þ

along with a redefinition GðxÞ≡ ðb2 − 1ÞPðxÞ. The metric
and gauge potential then become

ds2 ¼ −l2ðb2 − 1Þ3
ðx − bÞ2

�
−dτ2 þ dz2 þ dx2

GðxÞ þ GðxÞdφ2

�
;

ð21aÞ

GðxÞ ¼ ð1 − x2Þ½ð3b2 þ 1Þðx − bÞ2
− ðb2 − 1Þð2bðx − 2bÞ þ b2 þ 1Þ�; ð21bÞ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
ðz cosψdτ − x sinψdφÞ;

ð21cÞ

completing our derivation for the (A)dS Melvin spacetime.
It can be checked by direct calculation that (21) is still a

solution to the Einstein-Maxwell equations (2). We also
note that the coordinate ranges are slightly different for the
case of positive and negative cosmological constants. In the
former case, by Eq. (7) we have b < −1. Therefore when
l2 < 0, the range of x is
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−1 < x < 1; ðdS MelvinÞ: ð22Þ

In this range, the metric has two poles at x ¼ �1
where Gð�1Þ ¼ 0. Unlike the coordinate ρ ∈ ½0;∞Þ in
the Λ ¼ 0 Melvin spacetime, the coordinate x ∈ ½−1; 1� of
the dS Melvin solution is compact and should not be
interpreted a “radius” in a cylindrically-symmetric space-
time. Hearkening back to the dS C-metric from which this
solution is derived, x might be more suitably regarded as
the sine of a polar angle.
On the other hand, if the cosmological constant is

negative, (l2 > 0), the parameter b lies in −1 < b < 1.
By referring to the domain of the AdS C metric in Fig. 1(b),
our AdS Melvin limit is taken in the infinitesimal neigh-
borhood of y ¼ b, which is accessible only for

b < x < 1; ðAdS MelvinÞ; ð23Þ

where x ¼ b is the conformal boundary of the spacetime.
We shall hence take this as the coordinate range for the AdS
Melvin spacetime. From this we conclude that this space-
time has one pole at x ¼ 1, whereGð1Þ ¼ 0. Since x is able
to reach the conformal infinity in this case, it might be
reasonable to interpret it as kind of “radial” coordinate. In
fact, we shall show in the following section that this x can
be transformed into a form related to Poincaré coordinates
of AdS.

C. Derivation from the charged planar
AdS black hole

The magnetic AdS-Melvin spacetime with negative
cosmological constant can also be derived from the charged
AdS black hole with a planar horizon, which we shall refer
to as the planar Reissner-Nordström black hole in AdS, or
the RN-AdS black hole. The RN-AdS metric and its gauge
potential is given by [33]

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdy2 þ dz2Þ;

f ¼ r2

l2
−
μ

r
þ q2

r2
; ð24aÞ

A ¼ −
q
r
dt: ð24bÞ

This is a solution to (2) describing a charged black hole
with a planar horizon. Upon the following Wick rotations

t → iφ̃; y → iτ; q → iB; ð25Þ

the solution becomes

ds2 ¼ fdφ̃2 þ dr2

f
þ r2ð−dτ2 þ dz2Þ;

f ¼ r2

l2
−
μ

r
−
B2

r2
; ð26aÞ

A ¼ B
r
dφ̃: ð26bÞ

If we set B ¼ 0 above, we recover the familiar Horowitz-
Myers AdS soliton [34] in four dimensions.
This solution actually our AdS Melvin spacetime (21)

in different coordinates. To see this, we apply the trans-
formation

r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

p
x − b

; φ̃ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

q
φ; ð27Þ

along with the identification

μ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

q
bðb2 þ 1Þ;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
; ð28Þ

we recover the magnetic AdS Melvin solution (21).
Awell-known fact about the AdS soliton is that they are

regular spacetimes which are asymptotically locally AdS.
A conical singularity may potentially exist at r ¼ r0 where
fðr0Þ ¼ 0, but regularity can be ensured by appropriately
fixing the periodicity of φ̃. The location r ¼ r0 is called the
tip of the soliton. According to the transformation (27), this
tip corresponds to the root x ¼ 1 where Gðx ¼ 1Þ ¼ 0.
Superficially, it may appear that the Wick-rotated RN-

AdS solution has two free parameters μ and B, while the
solution given in Eq. (21) is only parametrized by a single
parameter b. Thus one might wonder if the latter is a special
case of the former. However the two solutions are equiv-
alent, since (21) are in coordinates where the pole is fixed
at x ¼ 1. On the other hand, the pole of the Wick-rotated
RN-AdS is located at r ¼ r0 where fðr0Þ ¼ 0, thus r0 is
determined in terms of μ and B by the implicit equation

μ ¼ r30
l2

−
B2

r0
: ð29Þ

One could, say, fix a coordinate system where r0 ¼ 1 so
that the pole is now located at r ¼ 1. The the solution is
then only parametrized by B, with μ ¼ l−2 − B2 via
Eq. (29).

III. SOME PHYSICAL AND GEOMETRICAL
PROPERTIES

Let us explore some physical properties of the solution as
found in Eq. (21). As mentioned in the previous section, the
coordinate range depends on the sign of the cosmological
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constant and thus determines the presence of conical
singularities in our spacetime region of interest. For a
positive cosmological constant (l2 < 0), the poles of the
metric are located at x ¼ �1, where gφφ ¼ 0. We check for
the presence of conical singularities at x ¼ �1 by calcu-
lating the circumference or radius ratios of infinitesimal
circles at the poles. We find

circumference
radius

����
x¼�1

¼ κ�Δφ; ð30Þ

where

κ� ¼ 2ðb ∓ 1Þ2ð3b2 þ 1� 2bÞ: ð31Þ

When the cosmological constant is positive, where both
x ¼ �1 are accessible, one can eliminate the conical
singularity at one of the poles by setting the periodicity
of the coordinate φ to be Δφ ¼ 2π=κþ, or Δφ ¼ 2π=κ−.
Since we have only the freedom to fix Δφ, both conical
singularities cannot be removed simultaneously. Thus the

dS-Melvin universe inherits the cosmic strut or string that is
responsible for the acceleration of the black hole.
On the other hand, when the cosmological constant is

negative, the coordinate range is b < x < þ1, where x ¼ b
is the AdS boundary. Then the sole conical singularity can
be removed by setting Δφ ¼ 2π=κþ, leaving us with a
regular metric in the Lorentzian region of the spacetime.
Furthermore, close to the boundary at x ∼ b, the metric is

ds2 ∼
l2ð1 − b2Þ3
ðx − bÞ2

�
−dτ2 þ dz2 þ dx2

ð1 − b2Þ3

þ ð1 − b2Þ3dφ2

�
: ð32Þ

Up to straightforward linear transformation of the coor-
dinates, this is the Poincaré section of AdS spacetime.
Taking note that φ is periodic, we conclude that the AdS
Melvin solution is asymptotically locally AdS at x ∼ b.
The Ricci scalar and Kretschmann invariant are

R ¼ −
12

l2
; ð33Þ

RμνσλRμνσλ ¼ 1

l4ðb2 − 1Þ6 ½56ð3b
2 þ 1Þ2x8 − 128bð9b2 þ 2Þð3b2 þ 1Þx7 þ 32b2ð13þ 321b4 þ 138b2Þx6

− 128b3ð9b2 þ 2Þð15b2 þ 1Þx5 þ 80b4ð15b2 þ 1Þ2x4 − 128b5ð2 − 3b2 þ 93b4Þx3
þ 32b6ð13 − 30b2 þ 153b4Þx2 − 128b7ð9b4 − 3b2 þ 2Þx − 192b10þ 144b12þ 416b8 þ 360b4

− 144b2 − 480b6�: ð34Þ

So we can see that both are regular and finite everywhere
within the coordinate range −1 < x < 1 or b < x < 1.
The electric (ΦE) and magnetic (ΦB) flux across a

constant τ and z surface can be calculated by ΦE ¼R
dσμνFμν and ΦB ¼ R

dσμνð�FÞμν where dσμν is a area
element of a 2-surface orthogonal to ξμ and nν, which are
respectively timelike and spacelike unit Killing vectors
along the t and z directions. Using dσμν ¼ −2ξ½μnν�

ffiffiffi
γ

p
d2y,

where γμν is the induced metric on the 2-surface, we have

ΦE ¼ 2

Z
dφdx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
cosψ ; ð35Þ

ΦB ¼ 2

Z
dφdx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
sinψ : ð36Þ

In these coordinates, the flux per unit area is constant,
lending favor to the notion that this spacetime carries a
“homogeneous” electric or magnetic field along the z
direction, at least in this naive coordinate-dependent
expression. An invariant value of the fluxes can be obtained
by integrating over φ and x. Taking note that the range
of x depends on the sign of the cosmological constant, the
total electric flux for positive and negative cosmological
constants are

dS; l2 < 0∶ ΦE ¼ 4Δφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
cosψ ; ð37Þ

AdS; l2 > 0∶ ΦE ¼ 2Δφð1 − bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
cosψ : ð38Þ

Similarly, the magnetic flux for the two cases of the cosmological constant are
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dS; l2 < 0∶ ΦB ¼ 4Δφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
sinψ ; ð39Þ

AdS; l2 > 0∶ ΦB ¼ 2Δφð1 − bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
sinψ : ð40Þ

IV. OTHER FORMS AND LIMITS

A. Transformation to Astorino’s form

To recover the form of the (A)dS Melvin solution as
presented by Astorino [19], we transform

x ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

p
1þ ρ2=4

; φ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

p φ̄;

ð41Þ

and identifying

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3ð3b2 þ 1Þ

q
;

k ¼ −16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2ðb2 − 1Þ3

q
bðb2 þ 1Þ; ð42Þ

the metric and gauge potential becomes

ds2¼WðρÞ2
�
−dτ2þdz2þρ2dρ2

HðρÞ
�
þHðρÞ2
WðρÞ2dφ̄

2; ð43aÞ

WðρÞ ¼ 1þ ρ2

4
; HðρÞ ¼ 4B2 þ kWðρÞ þ 4

l2
WðρÞ4;

ð43bÞ

A ¼ B

�
z cosψdτ þ 2 sinψ

WðρÞ dφ̄

�
: ð43cÞ

This is the form given by Astorino in [19]. More precisely,
Astornio’s form is explicitly a magnetic universe, which
corresponds to ψ ¼ π

2
in Eq. (43c) above.

B. The Λ= 0 limit

We can recover the usual Λ ¼ 0 Melvin universe from
(21) by taking the limit

l2 → �∞; b → −1; ð44Þ

while keeping l2ðb2 − 1Þ3 finite. In terms of Fig. 1, taking
this limit is equivalent to reshaping the darker-shade box so
that the top-left vertex touches the x ¼ y line, the result
would be the Λ ¼ 0 diagram as appears in Fig. 1(c). It
should follow that the infinitesimal neighborhood around
y ¼ b shall turn into the Λ ¼ 0 Melvin limit of Harvdová
and Krtouš [17].

To get this limit explicitly, let us first define

−l2ðb2 − 1Þ3 ¼ 64

B2
; ð45Þ

along with the rescalings

τ →
B
4
τ; z →

B
4
z; φ →

1

16
φ: ð46Þ

Taking the limit (44), we find

ds2 ¼
�
1þ B2ρ2

4

�
2

ð−dτ2 þ dz2 þ dρ2Þ

þ
�
1þ B2ρ2

4

�
−2
ρ2dφ2; ð47aÞ

A ¼ Bz cosψdτ −
Bρ2 sinψ

2ð1þ B2ρ2=4Þ dφ; ð47bÞ

which is the familiar Melvin universe with zero cosmo-
logical constant, particularly in the notation of [6].

C. The Plebański-Hacyan limit

For the case of positive cosmological constant (l2 < 0),
we can also obtain the limit to the Plebański-Hacyan [6,35]
solution by first rescaling the coordinates by

τ →
1ffiffiffi
6

p
b2

τ; z →
1ffiffiffi
6

p
b2

z; φ →
1

6b4
φ; ð48Þ

and taking the limit b → −∞. The solution then becomes

ds2 ¼ −
l2

6

�
−dτ2 þ dz2 þ dx2

1 − x2
þ ð1 − x2Þdφ2

�
; ð49Þ

A ¼
ffiffiffiffiffiffiffiffi
−l2

p

6
ðz cosψdτ þ x sinψdφÞ: ð50Þ

This is an electro-vacuum, direct-product metric of the
form M2 × S2 considered by Plebański and Hacyan [35].

V. GEODESICS

In this section we shall study the structure of the (A)dS
Melvin spacetime via its gravitational effects on test
particles within it, namely, its geodesics. The geodesics
in the spacetime (21) is described by a trajectory xμðσÞ,
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parametrized by σ. The trajectory is determined by the
Lagrangian L ¼ 1

2
gμν _xμ _xν, where overdots denote deriva-

tives with respect to σ. Given the metric (21), the
Lagrangian is

L ¼ 1

2

H̄
ðx − bÞ2

�
−_τ2 þ _z2 þ _x2

G
þ G _φ2

�
¼ ε

2
; ð51Þ

where H̄ ¼ −l2ðb2 − 1Þ3. Due to the fact that the inner
product of the four-velocities, gμν _xμ _xν ¼ ε should be
constant along the trajectory. Using the freedom to rescale
σ, the magnitude of ε can be rescaled to unity if it is
nonzero. Therefore we have

ε ¼
�−1; for timelike geodesics;

0; for null or lightlike geodesics:
ð52Þ

Since the coordinates t, z, and φ are cyclic in the
Lagrangian, we have the first integrals

_τ ¼ ðx − bÞ2
H̄

E; ð53Þ

_z ¼ ðx − bÞ2
H̄

p; ð54Þ

_φ ¼ ðx − bÞ2
H̄

L
G
; ð55Þ

where E, p, and L are conserved quantities which we may
interpret as the particle’s energy, linear z momentum, and
angular momentum, respectively. A second-order differ-
ential equation for x can be obtained from the Euler-
Lagrange equation d

dσ
∂L
∂ _x ¼ ∂L

∂x, though it is more convenient
to use the invariance of ε to obtain a first-order equation

H̄2

ðx − bÞ4
_x2

G
¼ E2 − V2

eff ; ð56Þ

where V2
eff is the effective potential

V2
eff ¼ p2 þ L2

G
−

H̄ε

ðx − bÞ2 : ð57Þ

From this effective potential, we can glean some qualitative
aspects on the gravitational effects on a neutral test particle
or photon in the (A)dS Melvin spacetime.
We start by considering null geodesics, where ε ¼ 0. In

this case, we see that the only interesting term in Eq. (57)
is L2=G. Similar to radial null geodesics in the Λ ¼ 0
Melvin universe, “radially” moving photons with L ¼ 0,
the effective potential is a trivial constant and the motion is
unbounded. On the other hand, if L is nonzero, the photon
encounters an infinite potential barrier when the denom-
inator G goes to zero, which is x ¼ �1 for the dS case and
x ¼ b and x ¼ 1 for the AdS case. Furthermore, we can
find “circular” orbits of constant x by finding the minima
of V2

eff . They are located at6

x ¼ −
2b

3b2 þ 1
: ð58Þ

This lies within the coordinate range −1 < x < 1 or
b < x < 1 as long as b is negative. Therefore, for b < 0,
circular photon orbits are possible for any nonzero cos-
mological constant.
For the case of timelike geodesics, there is now an

additional term H̄ε=ðx − bÞ2 where ε ¼ −1. If the cosmo-
logical constant is positive, b satisfies b < 1 < x and this
term does not diverge. If the angular momentum of the
particle is zero, the effective potential is finite everywhere.
So infinite potential barriers at x ¼ �1 only occur when
angular momentum is nonzero. Therefore such timelike
particles are in a potential well between −1 < x < 1. This
potential has a minima, though calculation of dðV2

effÞ=dx
results in a cumbersome expression. Nevertheless the
shapes of the potentials are shown in Fig. 2(a). For some

(a) (b)

FIG. 2. The plots of effective potentials for timelike particles with p ¼ 0, L ¼ 2 and various b for the case of (a) positive cosmological
constant and (b) negative cosmological constant.

6Another trivial or uninteresting solution for dðV2
effÞ=dr ¼ 0

is x ¼ b.
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fixed energy E, a particle may oscillate about x1 ≤ x ≤ x2
where x1;2 are solutions to the equation E2 ¼ V2

eff . If E
coincides with the minima of V2

eff , the particle would
execute a “circular motion” at constant x.
If the cosmological constant is negative, the range of b is

−1 < b < 1. Therefore the term H̄ε=ðx − bÞ2 is a potential
barrier when the particle approaches the conformal infinity
x ¼ b. From Fig. 2(b), we see that within b < x < 1, the
effective potential gets wider and deeper as b is decreased
from b ¼ 1 towards b ¼ −1. Accordingly, particles of
energy E would oscillate between the roots of E2 ¼ V2

eff ,
and will be in constant-x motion if the energy coincides
with the minima of the effective potential. Unlike the dS
case, the infinite barrier remains present for L ¼ 0. This is
reminiscent to the negative cosmological constant of AdS
acting as a confining box, keeping the particle from
escaping to infinity.

VI. HIGHER-DIMENSIONAL GENERALIZATION

Throughout this paper, we have so far considered the
(A)dS Melvin solution specifically in D ¼ 4 dimensional
Einstein-Maxwell gravity. Aside from the obvious reason
that this has the most observational or experimental
relevance, we have been constrained to this dimensionality
because of its derivation from the (A)dS C-metric, which is
a solution only known for D ¼ 4.7

The higher-dimensional magnetized spacetimes with
Λ ¼ 0 are readily obtained since the Harrison transforma-
tion is still applicable inD ≥ 4. Indeed, various magnetized
spacetimes with and without black holes have been found
[39]. In fact, further generalizations into Einstein-Maxwell-
dilaton gravity still hold [40–42]. For Λ ≠ 0, we do not
have the Harrison transformation, and thus one has to find
alternative methods to obtain the (A)dS Melvin solution.
For the case of a negative cosmological constant, an

obvious possibility comes to mind: We have shown in
Sec. II C how to derive the AdS Melvin universe starting
from the planar Reissner-Nordström-AdS solution, which
is readily extendible to higher dimensions. For dimensions
D ≥ 4, the metric and gauge potential is given by

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdy2 þ dx22 þ � � � þ dx2D−2Þ;

f ¼ r2

l2
−

μ

rD−3 þ
q2

r2ðD−3Þ ; ð59aÞ

A ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðD − 2ÞðD − 3Þ

r
q

rD−3 dt: ð59bÞ

It is a solution to the D-dimensional Einstein-Maxwell
equations

Rμν ¼
2Λ

D − 2
gμν þ 2FμλFν

λ −
1

D − 2
F2gμν; ð60Þ

∇λFλν ¼ 0: ð61Þ

Under the Wick rotations (25), the solution (59) becomes

ds2 ¼ fdφ̃2 þ f−1dr2 þ r2ηabdyadyb;

f ¼ r2

l2
−

μ

rD−3 −
B2

r2ðD−3Þ ; ð62aÞ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðD − 2ÞðD − 3Þ

r
B

rD−3 dφ̃; ð62bÞ

where ηabdyadyb ¼ −dτ2 þ dx22 þ � � � þ dx2D−2, which is a
(D − 2)-dimensional Minkowski spacetime.
Note that we can replace ηab in (62) with another Ricci-

flat metric and the result would still solve the Einstein-
Maxwell equations. For D > 5, this suggests a tempting
possibility to replace it with a Schwarzschild metric, thus
making it a type of black hole solution. This would be a
subject for another study beyond the scope of this paper,
though we shall comment briefly on this prospect in
Sec. VII.

VII. CONCLUSION

By taking an appropriate limit of the (A)dS C-metric, we
have extracted solution describing a electric or magnetic
universe which solves the Einstein-Maxwell equations
with a cosmological constant. This is a generalization of
Havrdová and Krtouš’s procedure for the derivation of the
Melvin universe from the Λ ¼ 0 C-metric, and supple-
ments Astorino’s solution which was derived from gener-
alized version of the Ernst formalism.
From the analysis of the electric or magnetic flux, we see

that this solution indeed carries homogeneous electric or
magnetic fields. If the cosmological constant is positive, the
spacetime necessarily carries a conical singularity at either
one of the poles x ¼ �1, depending on how we fix the
periodicity of the azimuthal coordinate φ. On the other
hand, if the cosmological constant is negative, the space-
time only has one pole, and fixing Δφ appropriately
removes the sole conical singularity at x ¼ þ1.
We have also studied some qualitative features of null

and timelike geodesics in the (A)dS Melvin universe.
Similar to the Λ ¼ 0 case, particles with nonzero angular
momentum would oscillate about the minimum of an
effective potential well. Circular null and timelike orbits
are possible if the energy is fixed to be equal to the minima
of the effective potential.
An issue that naturally springs into mind is whether it

is possible to add a black hole into the (A)dS Melvin
solution, which would be a generalization of the Ernst
spacetime [43] to include a cosmological constant.

7To the author’s knowledge, possible approaches to extending
the C-metric to higher dimensions have been discussed [36–38],
though an exact solution remains to be seen.
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The Ernst spacetime was obtained by applying the Harrison
transformation to the Schwarzschild black hole, which is a
procedure not available in the presence of a cosmological
constant. Instead, one could attempt to have an electrified
or magnetized (A)dS black hole by solving the Einstein-
Maxwell equations directly, though we naturally expect the
equations of motion to be complicated.
Meanwhile, we note that in the case of negative

cosmological constant, Secs. II and VI tells us that the
AdS Melvin spacetime can be viewed as a charged form of
an AdS soliton. As alluded to in Sec. VI, one could replace
ηab in Eq. (62) with any Ricci-flat metric and still solve the
Einstein-Maxwell equations. So one could easily replace
it with a (D − 2)-dimensional Schwarzschild metric, modi-
fying (62) to

ds2¼fdφ̃2þf−1dr2þr2ð−Vdτ2þV−1dR2þR2dΩ2
ðD−4ÞÞ;

ð63Þ

where V ¼ 1 − RD−5þ =RD−5. The solution would indeed be
of a black hole type with a horizon at R ¼ Rþ. Though we
probably should not view (63) as a Λ ≠ 0 analogue of the
Ernst solution, which describes an isolated black hole with
a compact horizon immersed in an external magnetic field.
The horizon in (63) is clearly not compact, as it is smeared
along the noncompact r direction. For the case of vanishing
electro-magnetic fields, Eq. (63) and similar solutions are
known as the AdS soliton string and has been studied by
Haehl in [44]. In light of this, a proper generalization of
the Ernst metric describing an isolated (A)dS black hole
immersed in an electric or magnetic field would be an
interesting avenue for further study.
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