PHYSICAL REVIEW D 98, 084019 (2018)

Imperfect fluid description of modified gravities

Valerio Faraoni"” and Jeremy Coté

N 2

lDeparl‘menz of Physics and Astronomy and STAR Research Cluster, Bishop’s University,
2600 College Street, Sherbrooke, Québec, Canada JIM 1727
2Department of Physics and Astronomy, Bishop’s University, 2600 College Street,
Sherbrooke, Québec, Canada JIM 1Z7

® (Received 13 August 2018; published 12 October 2018)

The Brans-Dicke-like field of scalar-tensor gravity can be described as an imperfect fluid in an approach
in which the field equations are regarded as effective Einstein equations. After completing this approach,
we recover, as a special case, the known effective fluid for a scalar coupled nonminimally to the Ricci
curvature, and we describe the imperfect fluid equivalent of f(R) gravity. A symmetry of electrovacuum
Brans-Dicke gravity is translated into a symmetry of the corresponding effective fluid. The discussion is

valid for any spacetime geometry.
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I. INTRODUCTION

The 1998 discovery of the present acceleration of the
Universe with type la supernovae requires a theoretical
explanation. The standard cosmological model based on
general relativity (GR), i.e., the A cold dark matter model,
requires either an incredibly small cosmological constant A
or a dark energy with very negative pressure introduced
completely ad hoc [1]. As an alternative to dark energy,
many researchers have turned to modifying gravity on
cosmological scales. This option is far from unrealistic
because GR has been tested only in a small range of
regimes [2]. While many such possibilities exist [3], the
class of f(R) theories of gravity [4] seems by far the most
popular. Although this class is nothing but old scalar-tensor
gravity [5,6] in disguise, many of its features, related or
unrelated to cosmology, were only understood in the last
decade [7].

Independent motivation for modifying Einstein’s theory
of gravity comes from high-energy physics. Virtually every
attempt to quantize GR introduces deviations from this
theory in the form of extra degrees of freedom, higher order
derivatives in the field equations, higher powers of the
curvature in the action, or nonlocal terms. For example, the
low-energy limit of the simplest string theory, the bosonic
string theory, yields Brans-Dicke gravity [5] with Brans-
Dicke coupling parameter @ = —1 [8].

In many areas of research, especially in cosmology
and in models of neutron star and white dwarf interiors,
it is common to use fluids as the matter source of the
Einstein equations. In alternative theories of gravity, the
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more complicated field equations are often recast as
effective Einstein equations by moving geometric terms
other than those entering the Einstein tensor G, = R, —
9apR/2 (where R, and R = g°*R,, are the Ricci tensor
and the Ricci scalar, respectively) to the right-hand side and
by regarding them as an effective energy-momentum
tensor. This approach has proven very useful in reducing
problems of alternative gravity to known problems of GR
(e.g., Ref. [9]). But how should one interpret the right-hand
side of these field equations? In this approach, it makes
sense to ask whether this effective stress-energy tensor can
be formally regarded as a fluid, given that a fluid is used so
often as the matter source in relativistic physics. It is not
obvious that this will work, given the stress-energy tensor’s
origin and the fact that it is merely an effective stress-energy
tensor. However, it turns out to be true [10]. In Einstein’s
theory, an effective perfect fluid description can be given
for a canonical, minimally coupled scalar field ¢ [11-15],
and this fact is well known for special spacetimes, such
as the Friedmann-Lemaitre-Robertson-Walker (FLRW)
spaces used in cosmology. Roughly speaking, fixing the
scalar field potential V(¢) corresponds to prescribing the
equation of state of the fluid, but this is not a one-to-one
correspondence [12,16-19]. The effective fluid description
of more general theories containing a scalar field, such as
k-essence and special cases of Horndeski gravity, has been
worked out in detail with respect to cosmological pertur-
bations or to general spacetimes [18-21]. In the case of
general spacetimes, the description of a theory containing a
scalar (to which we restrict ourselves) as an effective fluid
should not be taken for granted. A very interesting
nonstandard scenario is the one of Ref. [22] in which
scalar field-fluid elements move along timelike geodesics
but the pressure is not vanishing, thanks to a second scalar
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field acting as a Lagrange multiplier. Another possibility is
the higher derivative mimetic dark matter scenario con-
taining an effective imperfect fluid which is generated by a
scalar field [23]. Similar to our paper, this effective fluid
has an energy flow, but contrary to our case, it also has
vorticity [23].

Here, we focus on relatively simple scalar field theories,
for which the effective fluid description is not yet complete.
Among all possible alternatives to GR, it is natural to first
consider scalar-tensor gravity [5,6], which only adds a
(usually massive) scalar degree of freedom, the Brans-
Dicke-like scalar ¢, to the two massless, spin-2 polar-
izations contained in the metric tensor g, and familiar
from GR. The correspondence between the effective stress-
energy tensor of ¢ and a fluid has been worked out
explicitly, first for the case of a nonminimally coupled
scalar field [11] and then for general scalar-tensor gravity
[10]. In general, the corresponding fluid is an imperfect
fluid, contrary to the case of a minimally coupled scalar,
which can always be described as a perfect fluid when the
scalar field gradient is timelike. However, in special
spacetimes endowed with symmetries, it may be possible
to recover the perfect fluid behavior also for nonminimally
coupled scalars [24,25].

Here, we extend and complete the correspondence
between an (imperfect) effective fluid and the Brans-
Dicke-like field, we show how a symmetry of Brans-
Dicke gravity translates into a symmetry of this fluid,
and we apply the discussion to f(R) gravity. We do not
restrict to special situations such as cosmology or black
holes, and our discussion is valid for general spacetime
geometries.

Scalar-tensor gravity is described by the Jordan frame
action (we follow the notation of Ref. [26], and we use
units in which Newton’s constant G and the speed of light ¢
are unity)

o(¢9)

1
S = 165 [ x| oR =LY - V(o)

+ §m), (1.1)

where ¢ > 0 is the Brans-Dicke scalar (approximately
equivalent to the inverse of the effective gravitational
coupling strength), the function w(¢) (which was a strictly
constant parameter in the original Brans-Dicke theory [5])
is the “Brans-Dicke coupling,” V(¢) is a scalar field
potential (absent in the original Brans-Dicke theory),
whereas §(") = d4x\/_ L") describes the matter sector.
Since our task here regards only the gravitational sector, we
will not need to specify this ordinary matter.

The (Jordan frame) field equations obtained by varying
the action (1.1) with respect to the inverse metric ¢g*” and to
the scalar ¢ are [5,6]

1 8 m
Ry _EgabR = (ZT( )+ e ( Vi — gabv A ¢)
\%
¢ (v vb¢ gabD¢> ¢gab’ (12)
1 8aT(m >
(1.3)

where T = gebT fl';” is the trace of the matter stress-

energy tensor Ti’Z). The matter energy-momentum tensor

and the effective stress-energy tensor of the scalar ¢ are
covariantly conserved separately. Let us proceed to exam-
ine the effective fluid description of these field equations
and their implications.

II. KINEMATICS OF THE SCALAR
FIELD FLUID

In this section, we identify the kinematic quantities
which describe the effective fluid associated with the
Brans-Dicke-like scalar field. The ¢-fluid correspondence
is possible when the gradient V#¢ is timelike; then, one can
introduce the fluid 4-velocity

va
R (2.1)
V _ve(ﬁve(ﬁ
which is clearly normalized, u‘u, = —1. This timelike

vector field determines the 3 4 1 splitting of spacetime
into the three-dimensional space “seen” by the comoving
observers of the fluid and their time direction u“. This
3-space is endowed with the Riemannian metric

hab = Gap T+ UgUp, (22)
while £, is the usual projection operator on this 3-space
and satisfies

haput = hgu® =0, (2.3)
heyht . = he., h¢, = 3. (2.4)

The fluid 4-acceleration
1t = ubVyut (2.5)

is orthogonal to the 4-velocity, u“u, = 0.
The (double) projection of the V610C1ty gradient onto the
3-space orthogonal to u€ is the purely spatial tensor
Vab = hachbdvduw (26)
which is decomposed into its symmetric and antisymmetric
parts, while the symmetric part is further decomposed into
its trace-free and pure trace parts,
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0
Vab = gab +wu, =04 + _hab + Wyp, (27)

3
where the expansion tensor 0,, = V) is the symmetric
part of V,, 0 = 6°. = V¢u, is its trace, the vorticity tensor
gy = Viqp) 18 its antisymmetric part, and the shear tensor

0

Oup = gah - ghah (28)

is the trace-free part of ,,. Like h,, and V,,, expansion,
vorticity, and shear are purely spatial tensors,

Opu = 0,,u’ = wput = 0 u’ = out = ou’ =0,

(2.9)

and 6%, = w, = 0 by definition. The shear scalar ¢ and
the vorticity scalar @ (not to be confused with the Brans-
Dicke coupling) are defined by

625

a0, (2.10)

N =

w2

1
zwabwab, (211)

and they are both non-negative. In general, we have [27]
|

I;ta = (_ve¢ve¢)_2vb¢[<_ve¢ve¢)vavb¢ + Vc¢vbvc¢va¢]’

Wiy, = (=VPV )P [=VPV PV, pVIGVIVPV NV o + (VPV PV, V1),

0
vbua =04 T _hab + Wy — I:taub = Vab - ’;‘aub' (212)

3

The projection of this equation onto the time direction
produces i, while the projection onto the 3-space orthogo-
nal to u“ gives V.

Let us specialize these general definitions [26,27] to our
particular case. Contrary to the effective stress-energy
tensor, the corresponding kinematic quantities for the
effective fluid were not given in Ref. [10], which only
discussed the equivalence of a Brans-Dicke field with
a fluid.

The definition (2.1) of u“ gives

o va¢vb¢
hab = Yab v6¢ve¢ (213)
and the velocity gradient
1 va¢vc¢vhvc¢)
V,u, 9 —— |-
N A < TN
(2.14)

The acceleration, its norm u%i,, and its divergence
V, u¢ are

(2.15)

(2.16)

va’:‘a = (_Ve(pve(p)—l [_ve¢ve¢vb¢m(vb¢) + vc¢va¢vb¢vbvavc¢]
+ (_Ve¢ve¢)—3[(Ve¢ve¢)2vavb¢vavb¢ - Ve¢ve¢vb¢vc¢vbvc¢|:|¢

—4(VPV )V PV, YV pVIVD + A(VPVP PV, V 1)),

Using Egs. (2.15) and (2.1), it is straightforward to check
explicitly that it,.u“ = 0. The timelike worldlines of the
fluid elements, with 4-tangents u“, are geodesics if and only
if r, =0, or

ve¢v[e¢va]v,,¢vh¢ =0 (2.18)

and the tensor V,, defined by Eq. (2.6) reduces to

vavhd)
(_ve¢ve¢) 12
(va¢vbvc¢ + vb¢vavc¢)vc¢
(_Ve¢ve¢)3/2
ViV pVepVie
B

Va =

(2.19)

(2.17)

|
The vorticity tensor w,, = V|, vanishes identically,
together with the vorticity scalar because the fluid
4-velocity u® originates from a gradient (this fact is,
of course, consistent with the general statement that @ =
0 if and only if w,, =0 [27]). Then, we have, for the
¢-fluid,

Vab = 6ab7 vb“a = eab - ’:taulﬂ (220)

and the vector field u“ is hypersurface-orthogonal, and the
line element can be diagonalized in an appropriate coor-
dinate system. There exists a family of three-dimensional
hypersurfaces ¥ with Riemannian metric /,, which are
orthogonal to the 4-velocity field u“ and coincide with the
3-spaces seen by observers comoving with the fluid, who
have 4-velocity u® [26,27].
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Since u® and #“ are orthogonal, it is clear from Eq. (2.12) that the expansion scalar reduces to the divergence

g O VIV
OV S eV eV 220
The shear tensor is
1
Oap = (_Ve¢ve¢)—3/2 |:_(ve¢ve¢>vavb¢ - § (va¢vb¢ - gabvcd)vcd))l:ld)
1 2V ¢V

-5 (04 G )OIV + (Va0 Ti + V9TV, e.2)

while the shear scalar reads

1 1/2 1 1
o= (300) " = VBV AVR VT 0 T -5 O

VTGV = (Vg9 (VT V- SOV )T )

Since 6> > 0, Eq. (2.23) yields the inequality
VeV {vav')waqus -3 <D¢>2}

A LA

2(V Vg VeV g)*
T vegvg 20 (2.24)

Remember that 6> = 0 if and only if 6,,;, = 0 [27]. In many
applications involving the focusing or defocusing of the
fluid worldlines, it is essential to know the sign of the
expansion, which is given by Eq. (2.21):

0> 0 VipVegpV V,p — VeV, p0h > 0. (2.25)

III. SCALAR FIELD EFFECTIVE
STRESS-ENERGY TENSOR

In scalar-tensor gravity, the effective stress-energy tensor
of the Brans-Dicke-like field is given by

sa1(f = 2 (V¥ - 30509,
1 \%
+$(vavb¢_gabm¢) _ﬁgab- (31)

This effective stress-energy tensor and the matter stress-
energy tensor are covariantly conserved separately,

vert —o,  verl) — o, (3.2)

It was shown in Ref. [10] that the effective energy-
(¢)
b

a

momentum tensor 7’ can be written as the stress-energy

tensor of an imperfect fluid. The latter admits the decom-
position

Top = pugity + qautp + qpitg + Igp, (3.3)
where

p=Typuu’, (3.4)
Gy = =T quh,?, (3.5)
My = Phyy + 70y = Teahahy?, (3.6)
P = g™, = S hT,, (3.7)

3 3
Tapy = Wy — Phyy, (3.8)

are, respectively, the effective energy density, heat flux
density, stress tensor,' isotropic pressure, and anisotropic
stresses (the trace-free part 7, of the stress tensor I1,,) in
the comoving frame. In this frame, by definition, the fluid
elements are at rest, and the heat flux density, which is the
only energy flow, is purely spatial,

ut =0, 3.9
q. (3.9)

while

"The right-hand side in the last equality of (3.6) points to an
incorrect sign in Eq. (9) of Ref. [10], but this incorrect sign was
not used in the rest of this reference.
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l_[a;,uh = ﬂ'ahuh = Habl/ta = ﬂabu“ = 0, ﬂuu =0.

(3.10)
The covariant conservation of TE;’Z) can be projected along

the time direction #“ and on the 3-space with Riemannian
metric h,;,, which yields [27]

WV p ) 4 (P 1 p)g 4 T, + Vg, + qoit, — O,
aP P ab 9a q U,

(PP + p M)ty + o (VPP 4 VPILy + uV,q,)

4
+ (wab +o0,0 + §9th> q, = 0. (3.12)
Since we used the fluid 4-velocity ¢ and the corresponding
3-metric h,, to project, the imperfect fluid quantities
defined in this way are those in the comoving frame.

(3.11) When calculated explicitly, they read [10]
J
\% va¢vb¢vavb¢
() — —_—_ye — —_ 4 77
St = s VOV g+ g (0 -, 313
Vepve
877:q51¢> == W (vd¢vcva¢ - vzt¢vcvd¢) (314)
VepV Ve VpVIPV .V
TRV GV P B3
O
Sallf) = (V90 | (=52 V9.0 =L = L) (99 = 0V 09,0
Vd V,pVepV .V
L (VYT - ViV T = Vg9V L) 310
[l \%

_( 2752VC¢ - (f 2¢>hab+¢h hde V.. (3.17)

KA

(9) — Ve RS ALY

@ _ 1 VepVIapV Y ¢

877y, = ¢vg¢v Ak [ (V ¢V — g VPV, ¢) (D¢ —W>
V oV, V<V .V

(VT = ViV = V9 Vg O GELTT (3.19)
82T = 8rgbT'¥) = —ﬁwv o —%—%V (3.20)

Apart from different notations, Eqs. (3.13)—(3.20) agree
with the corresponding expressions of Ref. [10]. It is
straightforward to check explicitly that ¢¢, I1%°, 7% are
purely spatial and that the trace of the effective stress-
energy tensor of ¢ coincides, as it should, with
—p\?) 1 3P with p(#) and P¥) given by Eqgs. (3.13)
and (3.18). Furthermore, by comparing Egs. (3.14) and
(2.15), one obtains

@) _ _V=VPV.p.

qa - = uaa

3d (3.21)

making obvious the fact that this vector is purely spatial.

What is more, it is easy to see that in general the heat flux

density q(f) and the anisotropic stresses ﬂ'E;Z) do not vanish

and that the effective fluid is necessarily an imperfect one.
The relation (3.21), which seems to have gone unnoticed in
the literature thus far, has a physical consequence in
Eckart’s first order thermodynamics [28] (which is noto-
riously plagued by noncausality and instability but is still
widely used as an approximation). In this theory, the heat
flux density is related to the temperature 7 by the
generalized Fourier law [28]
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Go = —K(h, VT + Ti,), (3.22)
where K is the thermal conductivity. The comparison of
Egs. (3.21) and (3.22) leads to the result that, in the
comoving frame, the spatial temperature gradient vanishes
and the heat flow is then due purely to the inertia of energy
described by the acceleration term in Eq. (3.22). Moreover,
the product of the thermal conductivity and the temperature

of the effective fluid is

/ c
KT = 7V ¢VC¢’ (3.23)
8rgp
which is positive definite.

An alternative approach consists of trading temperature
with chemical potential, assigning zero temperature and
entropy but nonzero chemical potential to the effective
fluid. This approach is pioneered in Ref. [19] (note the
similarity between our Eqgs. (3.21) and (3.35) of Ref. [18]).

It is sometimes convenient to replace the d’ Alembertian
[J¢ in the expressions of p® and P¥) with its value
obtained from the field equation (1.3). For reference, we
provide the corresponding expressions

ve 20 — 1
8mpl¥) = 24;2 VigVed + 55 (20) ¥ 3)

1 dw
9 [z 3 <¢—¢‘ W’@)
R AR AR YY)
SR i } (3.24)
V (6w +1)
() — _ 7 xge _ o\ v
8P = ¢2v PVt 6¢ (2w + 3)
[ 2 dw
"3 {2w+ 3 <¢%_ We"’%)
VapN VN .
W] . (3.25)

It is now straightforward to check that the imperfect fluid

stress-energy tensor (3.3) is reproduced by T%). In fact,
adding Eqgs. (3.13)—(3.19) with the appropriate coefficients,
one obtains

PP uy, + qg )ub + q< )u + Hil) = T%). (3.26)

Being built by hand out of geometric or gravitational terms,

the effective fluid stress-energy tensor T(J,;), in general, does

not satisfy any energy condition because of the presence of
second derivatives of ¢. The weak energy condition

T,»t°t? > 0 for all timelike vectors #* [26] becomes, for

7' and the fluid 4-velocity,

. VgV PV Vg
—ﬂv Ve + +D¢— Va4 >0. (3.27)

The strong energy condition (T, — T¢g,,/2)tt? > 0 for all
timelike vectors * [26] reads, when applied to u“ and to

.

1 ]

2
. \%
= - ?v ¢ve¢ - ﬁ
a b
_,_% {_lgqg - —V ¢Vv‘f¢¢vvejﬁv}7¢ > 0. (3.28)

However, as noted above, it is not physically meaningful to

impose these energy conditions on T[(i). Moreover, the

energy conditions reported involve density and stresses in
the comoving frame because we imposed that the observer
coincides with the fluid 4-velocity (i.e., t* = u®). The
energy conditions of an imperfect fluid with respect to
arbitrary timelike observers are discussed in Refs. [29,30].

IV. SPECIAL CASE: THE NONMINIMALLY
COUPLED SCALAR FIELD

The correspondence between a Brans-Dicke-like scalar
¢ and an imperfect fluid was studied in Ref. [11], for
general spacetimes, in the case of a scalar field coupling
nonminimally to the Ricci curvature. Such a nonminimal
coupling appears when quantizing a canonical, minimally
coupled test scalar field in a curved space [31] and also in
the context of radiation problems [32-34] (see also
Refs. [35-39]). The nonminimal coupling of the scalar
has been studied extensively during inflation of the early
Universe (see Ref. [40] and references therein). When the
scalar is allowed to gravitate, one has, for all practical
purposes, a scalar-tensor theory [41,42]. We now show that
a known representation of the theory of a nonminimally
coupled scalar field as an imperfect fluid [11] is contained,
as a special case, in our formulas. The action for a
nonminimally coupled scalar ¢ is

e = [ ¢ (560 5V avp- V(o)
(4.1)

where ¢ is the dimensionless coupling constant (with & =
1/6 corresponding to conformal coupling [26,31]), the
value of which depends on the nature of the scalar and can
often be determined as a running coupling going to an
infrared fixed point under a renormalization group flow
[35,43]. Our general scalar-tensor action in vacuo is instead
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1 . o) o, 3
Sgr = e d*xy/ g[wR ” VeyVay = V(y)|.
(4.2)

In order to establish the connection between these two
actions, it is sufficient to write the particular form of the
function w(y) that corresponds to the Brans-Dicke-like
representation of the action (4.1). Identifying the first term
in each action gives

w = 1—8nép?. (4.3)
Contrary to the Brans-Dicke-like field ¢, the nonminimally
coupled scalar ¢ is not restricted to being positive.
However, since y > 0, for £ > 0, the scalar ¢ must satisfy

|p| < ¢p. = 1/+/8n&, while all values of ¢ are admissible if
£ < 0. By using

_ | =w
¢p== SnE (4.4)
Vo
= 4.
=T ST (4.5)
1
vavb(¢2) = _8—7Z_§vavbWa (46)
one finds easily
W
W) =iy @7

Vice versa, it is

V. = -161£pV . ¢, (48)

V. Vo = =87V, V,(4%), (4.9)
1= 8réd?

w(y(p)) = e (4.10)

These transformation properties allow us to recover the
theory described by the action (4.1), the effective fluid
representation of which is discussed in Ref. [11], as a
special case of the general theory described by the scalar-
tensor action (4.2). This limit was not derived in Ref. [10].

The effective stress-energy tensor (3.1) of the Brans-
Dicke-like scalar field y becomes, in terms of the new
field ¢,

1
T = (1~ 8n5¢2)-1{va¢vh¢ 59V BV

_@gab =&V, (4?) —gabD(¢2)]}, (4.11)
where
U(p) = V[y;,(:b)] @12)

As already shown, the energy-momentum tensor (4.11)
assumes the form of an imperfect fluid energy-momentum
tensor. The effective energy density is

1 U VeVl pV V, (?
o) = (1= sazgry {3999+ S [ TETOLDE) e, (4.13)
while the effective heat flux density is
Vepve
i = 81 = 8n?) ! G A V.Y () - VgV V) (4.14)
The effective pressure reads
a1 Ulg) ¢ ARAAANCS)
W) — (1 - —_Ve 2" 5
PW) = (1-8xn&p?) 1{ SVPVeh ——=+ 3 [25(4»2) + VeV ] } (4.15)
while the stress tensor and the anisotropic stresses are
Hz(zv;) = (1 - 87[5(]’72)_1{ [_%ve(ﬁve(ﬁ - M] hab + ‘f[hablj(¢2) - hachbdvcvd(¢2)]} (416)

and
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(w) 5(1 - 87[5452)_1

1
= - {_ (va¢vb¢ - gabve¢ve¢) |:|:|(¢2)

Tab Ve¢ve¢ 3

+ Vg [vd‘ﬁvavb((ﬁz) - VoV Vu(d?) +

respectively. Finally, the trace of the stress-energy tensor is

TW) = (1 — 87E¢?) "' [-VehV,p — 2U(¢p) + 3¢0(¢?)].
(4.18)

Equations (4.11)—(4.18) reproduce the corresponding
effective fluid quantities of Ref. [11] after accounting for
the different notations.

A. Minimally coupled scalar field

By setting the coupling constant £ to zero, the scalar ¢
decouples from the Ricci curvature and assumes the
ordinary nongravitational form considered in GR. In the
limit £ — 0, Egs. (4.11)—(4.18) yield the effective fluid
quantities

1 U

TES,) = V. pV, - Egabveqﬁve - %gab, (4.19)
p) = —%vw}veg{) + @ (4.20)

1 U(¢)

(0) — __ye _Z2\¢)
PO = 2v A 5 (4.21)
ng) = —%V%Ved) —@ Rap, (4.22)
TO = —V¢V,p - 2U(¢h), (4.23)

while the heat flux density qﬁ,o)

ﬂfl(;) vanish identically, giving the energy-momentum tensor
of the minimally coupled scalar field the structure of a

perfect fluid, as is well known [11-15]. One can also write

and the anisotropic stresses

7 =V, ¢V, — LOg,,, (4.24)

where

1
LO = S VoV - U(4) (4.25)
is the minimally coupled scalar field Lagrangian density.
Furthermore, it is

£0) — p), (4.26)

In the effective fluid approach to scalar field theories, this
equation is significant because it is consistent with the fact,
well known in relativistic and nonrelativistic fluid

AR AANCD)
V9V, }
vaqsqusvcvd(qﬁ)} }

VepV, ’

(4.17)

|
dynamics, that equivalent Lagrangian densities for a perfect
fluid are £, =P and L, =—p [44-46]. These two
Lagrangians become inequivalent if the fluid couples to
another component of the matter sector of the theory, as
discussed in the recent Ref. [47]. When ¢ couples to the
Ricci curvature (i.e., £ # 0), instead, the equivalent effec-
tive fluid is no longer a perfect fluid, and Eq. (4.26) no
longer holds (therefore, it is meaningless to discuss the
equivalence of P and —p as Lagrangians).
For the minimally coupled scalar, we have also
p = LO 1 2U(p). (4.27)
An equation of state for this perfect fluid is specified by
giving two relations: p = p(£©, U), P = P(LY), U) [12].

V. FLUID SYMMETRY FOR ELECTROVACUUM
BRANS-DICKE GRAVITY

Consider now the vacuum or electrovacuum Brans-
Dicke theory with @ = const. The Brans-Dicke action
(1.1) with constant @ is invariant in form under the one-
parameter group of symmetries [48]

9ab = Jap = ¢2agabv (51)

b>d=¢  a#0,1/2, (5.2)
provided that the Brans-Dicke parameter @ and the scalar

potential V(¢) are replaced by

. _o+6a(l —a)
o(w,a) = 207 (5.3)
V@) = V(). (5.4

This one-parameter symmetry group is used to generate
new solutions from known ones [49] and to study the limit
to GR of Brans-Dicke gravity [48]. Assuming that V¢¢ is
timelike, under the transformation (5.1) and (5.2), the fluid
4-velocity is mapped to

u. — i:tc = % = qﬁ"uc, (55)
\/ _ngvc¢vd¢
u¢ - i = ¢puc. (5.6)
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Since ¢ > 0, the transformation property (5.5) preserves
the timelike character of the 4-velocity, and since u¢ and i€
are normalized with respect to different metrics, it also
preserves the normalization of the 4-velocity,

Gy, = ¢ Pu,u, = —1. (5.7)
The fluid quantities ﬁ(@, P@, é,(;’s), ﬁ%), and 7?((;’2) are given
in terms of ¢ and its derivatives by the analog of
Egs. (3.13)—(3.19), obtained by replacing nontilded with
tilded quantities. In terms of the “original” ¢-fluid, the
effective energy-momentum tensor of the “new” ¢-fluid is

@) _ )@ [(1+0a)
Tab - Tab + 4]_[4) ¢ va¢vb¢
—2
+ (a2¢ )ve¢ve¢gah - (vavb¢ - gabD¢) .

(5.8)

We then proceed to find the new fluid quantities in the
comoving frame expressed in terms of the original ones.
The effective energy density is

50) = p=2a|pd) e
p ¢ [p g ¢2V ¢V.9
VAPV PV, Vg

4n¢< N ﬂ )

Using Eq. (3.13), one can rewrite it as

56) — 20 (1 — 2 — A2 D) G av

P9 = 2|12y - w9 g4 .

(5.10)

The effective heat flux density is

P — o { O

Vo VepVid

a
4np/-V°PV, ¢ [ ‘

(V. Vg VpVig)
Vg0 V.o ¢, (5.11)
and using Eq. (3.14), this turns into
3P = (1 -2a)p~2q. (5.12)

The effective pressure is

5@ — g2 p) . % [(@=2) g, 2
P ¢2{P +4¢[ 29 V¢V6¢+3D¢
RATLLL)

WG (5.13)

which, using Eq. (3.18), becomes

a(a—a)—2)

P@) — 2| (1 — 20 PP
3 (1 -2 p 2

VioVeh - A
(5.14)

The effective spatial stress tensor is computed as

e =ny + = {( 2 9epv.p + D¢]

4 | 29
a ¢(vavc¢vb¢ + vbvc¢va¢)
g [V“W ) VgV
(Ve VahVpVig) }
V.V, 5.15
Vg 1)
@, a [(@a=2)g,
=TI, +4¢[ 20 V¢Ve¢+D¢]
The use of Eq. (3.17) in Eq. (5.16) then gives
i) = (1- 20
e =D g9 5-vln, 17
8¢ ¢ ¢ '
The effective anisotropic stresses are simply
7P = (1 -2a)2? (5.18)

in terms of those associated with the ¢-fluid.

A symmetry transformation (5.1), (5.2) with a > 1/2
reverses the sign of the heat flux density and of the
anisotropic stresses. For example, in spherical symmetry,
a (radial) ingoing energy flow will be changed into an
outgoing flow by such a transformation. This fact is of
some interest in the context of inhomogeneous universes
describing black holes embedded in cosmological back-
grounds [50].

V1. EFFECTIVE FLUID DESCRIPTION
OF f(R) GRAVITY

f(R) gravity, which is an extremely popular class of
theories used to explain the present acceleration of the
Universe without dark energy [4], is described by the action

Sim) = 16 d*x\/=gf(R) + 8™, (6.1)

where f(R) is a nonlinear function of the Ricci scalar and,
as usual, S is the action of ordinary matter. It is well

known that the gravitational action Sy, is equivalent to
that of a Brans-Dicke theory with Brans-Dicke field
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¢ = f'(R), Brans-Dicke coupling @ = 0, and scalar field
potential [7]

V@) = RFR) = f(R)prigys  (62)
where R is now a function of the scalar field ¢ = f'(R) and
a prime denotes differentiation with respect to the Ricci
scalar R. In general, the relation R = R(¢) cannot be

inverted explicitly to obtain an explicit function V().
The fourth order vacuum field equations are

f(R)

f/(R)Rab - Tgab = vavbf/(R) - gabDf/(R) (63)

and can be written as the effective Einstein equations [7]

1 e
Rab - EgabR = 87Z'T( bff>, (64)

a
where

ey _ 1
ab 87rf’ (R)

|:vavbf/(R) - gabDf/(R)

We need the transformation properties

Véf = fIVeR, (6.6)
V,V,f = f'V,V,R + f"V,RV,R,  (6.7)
Of = f"OR + f"V¢RV,R. (6.8)

We have ¢ = f'(R) > 0 in order for the graviton to carry
positive kinetic energy, while we require f”(R) > 0 to
avoid the notorious Dolgov-Kawasaki instability [51,52].
As a result, the condition that V¢ be timelike implies that
VR is also timelike, and the definition (2.1) of the effective
fluid 4-velocity yields

yy = YR (6.9)

¢ /=V°RV,R’

The effective fluid quantities are computed using Egs. (6.6)—

f(R) = Rf'(R (6.9) in the expressions of the effective scalar-tensor fluid,
+ %gab} . (6.5)  obtaining
|
1 V,V,RV?RV*’R] Rf' —f
(eff) — = 11 _YaV¥b
P 87 f {f [DR V¢RV,R } 2 } (6.10)
o " c d
(eff) — A [(vcvdfv RVR) V,R - VaVCRVCR} , (6.11)
8zf'\/—VRV R VRV,.R
. Rf —

" = e,V () - (07 R) + L Y (6.12)

_ 1 V. V,R+ (V,RV,V.R+V,RV,V.R)V'R (V.V,RVRVYR)V,RV,R

8zf avh —V°RV,R (V¢RV,R)?
- ( f"O0R + f""V°RV,R + RT 2_ f ) ha,,}, (6.13)
1 1 V.V,RV?RV*R Rf - f
(eff) _ _J a _ VAVL
P 8nf [ 3 <2DR + VeRV_R f"VERV R + > ; (6.14)
ety S 3 (V,RV,V.R+V,RV,V.R)V'R (V.V,RV°RVR)
Tab = Qaf {v“va VRV,R (V°RV,R)? VaRV,R
1 (V.V,RVRVIR
+§ (W— DR) hab} (6.15)
Finally, the trace of the effective stress-energy tensor is
T(eff) — _p(eff) + 3P(eff)

[-3(f"CIR + f""V¢RV,R) +2(f — Rf")]. (6.16)

B 8xf’
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It is thus demonstrated that, in general, the terms generated
by a nonlinear function f(R) in the gravitational Lagran-
gian are equivalent to an imperfect fluid when writing the
field equations as the effective Einstein equations (6.4). In
special geometries, this imperfect fluid reduces to a perfect
fluid dubbed “curvature fluid” [53-55]. This is the case for
the FLRW geometry [53-55], for the Lorentzian version of
a Hawking wormhole [25], and for a Witten bubble
spacetime solution [25].

VII. DISCUSSION AND CONCLUSIONS

The fluid equivalent of the Brans-Dicke-like scalar field
¢ of scalar-tensor gravity in the Jordan frame has been
worked out in detail, completing and extending the work of
Ref. [10]. The field equations (1.2) and (1.3) can be
regarded as effective Einstein equations, and the terms
originating from ¢ and its derivatives, relegated to the right-
hand side, can always be interpreted as an effective fluid.
Contrary to the case of a canonical scalar field minimally
coupled to the curvature, which is definitely a matter field
of nongravitational nature and is equivalent to a perfect
fluid, the effective fluid corresponding to a Brans-Dicke-
like field is an imperfect one (except for special circum-
stances in highly symmetric geometries—but we refer to
the general situation here). As expected, since the effective
fluid is generated by a purely scalar degree of freedom, it is
irrotational. Dissipation in fluids is important, and it is
related to the stability of star models [56], while dissipative
fluids are also the subject of a vast literature related to the
AdS/CFT correspondence [57]. The discussion and for-
mulas presented here should find applications when modi-
fied gravity is discussed in conjunction with these areas of
research.

Contrary to what we have done here, in principle, one
could have started out with the Einstein frame representa-
tion of scalar-tensor gravity, obtained by the conformal
transformation and nonlinear field redefinition (g, ¢) —

(gah ’ a’) with

ab — d)gub’ (71)
< [Ro(g) +3|dg

which is completely different from the symmetry (5.1) and
(5.2) discussed in Sec. V. The Einstein frame version of the
scalar-tensor action (1.1) is

SST = /d X\/i[m_i abva¢vb¢ U(&)

) [¢_ gfd’ l//(m)]:|
¢*(9) ’

+ (7.3)

where

402

(7.4)
O lo—p(@)

U(g) =

and w™ collectively denotes the matter fields. The
Lagrangian density of the new scalar ¢ has canonical form
save for the fact that it couples explicitly to all other forms
of matter except conformally invariant matter [41,42]. If
one considers (electro)vacuum scalar-tensor gravity, the
Einstein frame scalar is equivalent to a perfect fluid. In this
case (but not in the general case of nonconformal matter),
the transformation from the Jordan to Einstein frame
changes an equivalent imperfect fluid into a perfect one,
and vice versa. (The behavior of more general perfect and
imperfect fluids under conformal transformations is dis-
cussed in Ref. [58]).

Finally, let us discuss the implications of the work
presented here for the different, long-standing problem
of finding a Lagrangian description of a dissipative imper-
fect fluid. It is notoriously difficult to give a Lagrangian or
Hamiltonian description of dissipative systems [59], except
for simplistic models of friction in point particle mechanics
[60]. The problem is even more difficult in fluid mechanics
[59]. By reversing our original problem of finding an
effective fluid description of a scalar field theory, we are
able to provide a very limited answer: an irrotational
imperfect fluid with an energy-momentum tensor (3.3)
can be given a scalar field description and, therefore, a full
Lagrangian description, if its irrotational 4-velocity field
can be written in the form (2.1) for a suitable scalar ¢.
Needless to say, this is an extremely restrictive condition
which makes the answer useless for most practical purposes
because, in general, one cannot integrate Eq. (2.1) to
determine the velocity potential ¢, but this condition has
been usefully implemented using a Lagrange multiplier (a
second scalar field) in more complicated theories [22,23].
A much simpler problem occurs by restricting oneself to
specific spacetimes with a high degree of symmetry. If the
scalar field ¢ is forced to depend on just one of the four
coordinates, which can happen only in highly symmetric
spaces because ¢ is a matter source, then Eq. (2.1)
simplifies considerably. This is the case, e.g., of spatially
homogeneous and isotropic FLRW cosmology. In a FLRW
space with line element

ds* = —di* + a*(1) 5 + r*(d6* + sin’0dg?) |,

1 —kr?
(7.5)

the gravitating scalar field depends only on time, ¢ = ¢(1),
and then the fluid 4-velocity simplifies to u, = —d,. Even
in this case, however, integrating Eq. (2.21) with 6 =
3H = 3a/a to determine ¢(¢) is not a trivial task because
this equation is nonlinear for a general potential V(¢). The
conclusion is that the scalar field-fluid correspondence does
not allow for significant progress in the problem of the
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Lagrangian description of dissipative fluids. An alternative
approach to dissipation, obtained by resorting to a modi-
fication of gravity different from the scalar-tensor pre-
scription and doing away with dark energy, is discussed in
Ref. [61]. Apart from the approach to a Lagrangian
description of dissipation, the correspondence between
Brans-Dicke-like scalar field and fluid is now clarified in
the important situations where a scalar field appears in the
modeling of cosmology and stellar interiors in the context
of modified [scalar-tensor and f(R)] gravity.

For a last remark, we mention that we presented a
general formalism without committing to any specific
geometry. Two applications to specific spacetime geom-
etries would be particularly interesting: the first is the case
of perturbed Friedmann-Lemaitre-Robertson-Walker uni-
verses, and the second is the perturbation of black hole
spacetimes. In the first case, perturbations of universes
filled with an imperfect fluid have been studied in the
literature (see Ref. [62] for a review). This description may
be adapted to scalar-tensor gravity, with the addition of a
matter fluid to the picture. This application of the imperfect

fluid formalism presented here necessarily involves many
details and will be presented elsewhere. In the second case,
perturbations of black holes in scalar-tensor gravity have
been studied, but perturbations in the presence of an
imperfect fluid in general relativity are less clear and will
also require a separate analysis. Likewise, the imperfect
fluid corresponding to modified gravity constitutes a form
of nonadiabatic dark energy quite different from the
standard dark energy models, which would give rise to
nonadiabatic perturbations. Nonadiabatic dark energy has
been considered in various works (e.g., Ref. [63]), but the
detailed relations with the present imperfect fluid formal-
ism are still missing and will be explored elsewhere.
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