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The full computation of the renormalized expectation values hΦ2iren and hT̂μνiren in four-dimensional
(4D) black hole interiors has been a long-standing challenge, which has impeded the investigation of
quantum effects on the internal structure of black holes for decades. Employing a recently developed mode
sum renormalization scheme to numerically implement the point-splitting method, we report here the first
computation of hΦ2iren in the Unruh state in the region inside the event horizon of a 4D Schwarzschild
black hole. We further present its Hartle-Hawking counterpart, which we calculate using the same method,
and obtain a fairly good agreement with previous results attained using an entirely different method by
Candelas and Jensen in 1986. Our results further agree upon approaching the event horizon when compared
with previous results calculated outside the black hole. Finally, the results we obtain for the Hartle-
Hawking state at the event horizon agree with previous analytical results published by Candelas in 1980.
This work sets the stage for further explorations of hΦ2iren and hT̂μνiren in 4D black hole interiors.
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I. INTRODUCTION

It is well known that classical matter fields on black hole
(BH) backgrounds can considerably modify the interior
geometry. Consider, for instance, the unperturbed Reissner-
Nordström (RN) and Kerr solutions. Both solutions possess
an inner horizon, which is a perfectly regular null hyper-
surface. However, classical perturbations, both linear and
nonlinear, were shown to result in the formation of a weak
null curvature singularity along the ingoing section of the
inner horizon, in four-dimensional spinning [1–5] and
spherically symmetric charged BHs [6–10]. A different
example for the modification that classical perturbations
impose upon BH interior geometry is the effective shock-
wave singularity developing along the outgoing section of
the inner horizon [11–13]. It is therefore reasonable to
expect that quantum matter fields would also affect the BH
interior geometry. Indeed, semiclassical general relativity,
in its turn, proved to have the potential to drastically
influence the evolution of BHs. It implies, e.g., that BHs
emit radiation and evaporate, as was shown in an analysis
by Hawking [14]. This process results in a spacetime
structure that is radically different from the classical BH
structure. It therefore seems conceivable that semiclassical
stress-energy fluxes could potentially affect the inner
horizon of the RN and Kerr solutions in a different manner
than the classical perturbations considered thus far. In
particular, one may consider the scenario where semi-
classical effects convert the classical weak null singularity
into a strong (i.e., tidally destructive) spacelike one.
Or alternatively, one may entertain the thought that

semiclassical effects might actually resolve the strong
spacelike singularity in Schwarzschild spacetime. These
are profound issues that remain as yet unresolved.
Interested as we are in the internal structure of BHs, we

must therefore investigate the semiclassical picture of BH
interiors. Semiclassical gravity considers quantum field
theory in curved spacetime, where gravitation is treated
classically, i.e., describing spacetime structure as a
Lorentzian manifold that is equipped with a metric gμν.
At the same time, the matter fields propagating in that
classical background are quantum fields. The relation
between spacetime geometry and the stress-energy of the
quantum matter fields is described by the semiclassical
Einstein field equation

Gμν ¼ 8πhT̂μνiren: ð1:1Þ

Here Gμν is the Einstein tensor of spacetime, and hT̂μνiren is
the renormalized stress-energy tensor (RSET), which is the
renormalized expectation value of the stress-energy tensor
operator T̂μν, associated with the quantum fields. In
Eq. (1.1) and throughout this paper we adopt standard
geometric units c ¼ G ¼ 1, along with the metric signa-
ture ð−þþþÞ.
As already mentioned, we are generally interested in the

internal structure of BHs within the semiclassical frame-
work, and especially in the effect of quantum fields on the
inner horizons of RN and Kerr BHs. To this end, we have
initiated a research program aimed to compute the RSETon
BH backgrounds. In the present work we focus attention on
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the interior of a Schwarzschild BH, which is interesting in
its own right. As an example of a quantum field we take for
simplicity a massless scalar field, satisfying the massless
Klein-Gordon equation1

□gΦ̂ ¼ 0; ð1:2Þ

where Φ̂ is the scalar field operator, and the covariant
d’Alembertian operator is used with respect to the back-
ground spacetime metric, denoted by g, which is the
Schwarzschild metric in the present case. Although the
physically more interesting object is the RSET, it is useful
to first compute hΦ2iren as it is technically simpler, yet it
still captures many of the RSET’s essential features,
thereby serving as a simple toy model for it.
However, the computation of hΦ2iren (and of other

composite operators, including the RSET) in a general
curved spacetime is a tremendously difficult task. The naive
computation yields a divergent series of modes which
requires renormalization. A renormalization method based
on point splitting was developed by Christensen [15,16].
He employed the DeWitt-Schwinger expansion of
Feynman’s Green function [17,18] (see also Ref. [19])
in order to compute hΦ2iren (and similarly the RSET,
hT̂μνiren). The basic idea is to regularize the expectation
value by splitting the point x, at which hΦ2ðxÞiren is to be
evaluated, into a separated pair of points x and x0, and
consider the two-point function hΦ̂ðxÞΦ̂ðx0Þi. It is conven-
ient and common—and we shall be adhering to that
convention—to consider, instead of the two-point function,
the Hadamard function which is related in a simple way to
the two-point function and is defined as

Gð1Þðx; x0Þ ¼ hfΦ̂ðxÞ; Φ̂ðx0Þgi; ð1:3Þ

where f; g denotes anticommutation. A specific counter-
term, which is a local geometric object that depends on the
background metric and is independent of the quantum state,
is then subtracted from the Hadamard function. Finally the
limit x0 → x is taken, yielding hΦ2iren. A similar procedure
can be applied to the computation of the RSET and of other
composite operators which are quadratic in the field
operator and its derivatives.
This point-splitting scheme works fine in situations

where the scalar field modes can be analytically computed.
Unfortunately, in BH backgrounds the modes must be
numerically computed, and as a result the procedure by
Christensen, as is, is impractical. Nevertheless, practical
methods that numerically implement the point-splitting
scheme were later developed by Candelas, Howard,

Anderson and others [16,20–23], allowing for the compu-
tation of hΦ2iren and the RSET, usually requiring a high-
order WKB expansion for the field modes. Seeing as this is
highly difficult to carry out in the Lorentzian section of
spacetime, a Wick rotation to the Euclidean section is
usually performed. This approach restricts the background
spacetimes where the renormalization procedure can be
applied, since a generic spacetime does not admit a
Euclidean section.
The pragmatic mode-sum regularization (PMR) scheme,

recently developed by two of the authors (A. L. and A. O.),
offers a more versatile method to numerically implement the
point-splitting scheme. It relies on neither a Euclidean
section nor a WKB expansion. It only requires a single
Killing field in the background spacetime. The PMRmethod
was used [24–28] to compute hΦ2iren and the RSEToutside
the event horizons of the three canonical BH solutions,
namely Schwarzschild, RN (unpublished), and Kerr.
So far, most of the calculations of hΦ2iren and the RSET

were carried out in the regions exterior to the event horizon of
BHs. We are only aware of a single exception presented in
Ref. [29], where hΦ2iren was calculated in the interior region
of a Schwarzschild BH, in the Hartle-Hawking state [30,31].
A possible reason for that may be that the computation in BH
interiors entails intricate analytic derivations, expressing the
Hadamard function by the standard Eddington-Finkelstein
modes, and it further involves tedious numerical computa-
tions in both regions, interior and exterior. The present work
implements the angular-splitting (or “θ-splitting”) variant of
the PMRmethod, introduced inRef. [25], to compute hΦ2iren
in the interior region of a Schwarzschild BH, as a first stage
before computing it in the interior of RN. We employed the
PMR method in the Hartle-Hawking state to recover the
results appearing in Ref. [29] in the domain M ≤ r < 2M,
and we found a fairly good agreement. We further compute
hΦ2iren in theUnruh state [32] (in the same range of r), which
is physically more interesting as it describes an evaporating
BH. Our results for hΦ2iren in both quantum states (i.e.,
Hartle-Hawking and Unruh) show nice agreement with
previous analogous results obtained outside the BH [25]
when compared at the event horizon, where both sets of
results meet.
The organization of this paper is as follows. In Sec. II we

introduce necessary preliminaries needed for the compu-
tation of hΦ2iren. Then, in Sec. III we briefly present the key
steps in the renormalization procedure we use in the
computation. Section IV presents the details of the numeri-
cal implementation and the results we obtain for hΦ2iren. In
Sec. V we discuss our results and possible extensions.

II. PRELIMINARIES

Before we delve into the details of the numerical
implementation of the angular-splitting variant of the
PMR method inside the Schwarzschild event horizon, let

1The Klein-Gordon equation for a nonminimally coupled
massless scalar field also includes the term ξRΦ̂, where R is the
Ricci scalar. However, we are considering here a Schwarzschild
spacetime where the Ricci scalar vanishes.
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us proceed by establishing the basic definitions of coor-
dinate systems, sets of modes, and quantum states which
we use in the present work. We also write down the form of
the Hadamard function inside the event horizon of a
Schwarzschild BH, for both Hartle-Hawking and Unruh
states. This preliminary section summarizes the relevant
definitions and results of Ref. [33], with the reservation that
Ref. [33] considered RN BHs. Specializing to the
Schwarzschild case simply amounts to taking the limit
where the electric charge of the BH vanishes.

A. Coordinate systems

The line element of the Schwarzschild solution in the
standard Schwarzschild coordinates takes the form

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð2:1Þ

where

f ¼ 1 −
2M
r

: ð2:2Þ

The event horizon, r ¼ rs, is located at the root of f, i.e.,

rs ¼ 2M:

The surface gravity parameter, κ, is given by

κ ¼ 1

4M
:

We define the tortoise coordinate, r�, in both the interior
and the exterior regions, using the standard relation

dr
dr�

¼ 1 −
2M
r

:

Specifically, we choose the integration constants in the
interior and the exterior regions such that in both regions

r� ¼ rþ 2M ln

�����1 − r
2M

����
�
:

Note that rs corresponds to r� → −∞ (both inside and
outside the BH), and r ¼ 0 to r� → 0.
The Eddington-Finkelstein coordinates are defined in the

exterior and interior regions by

uext ¼ t − r�; v ¼ tþ r� ðoutsideÞ;

and

uint ¼ r� − t; v ¼ r� þ t ðinsideÞ:

Note that the v coordinate is continuously defined through-
out both regions I and II of Fig. 1.

The Kruskal coordinates are defined in terms of the
exterior and interior Eddington-Finkelstein coordinates by

UðuextÞ ¼ −
1

κ
exp ð−κuextÞ;

VðvÞ ¼ 1

κ
expðκvÞ ðoutsideÞ; ð2:3Þ

and

UðuintÞ ¼
1

κ
exp ðκuintÞ;

VðvÞ ¼ 1

κ
expðκvÞ ðinsideÞ: ð2:4Þ

We introduce the following notations: Hpast denotes the
past horizon [i.e., the hypersurface ðU < 0; V ¼ 0Þ], and
PNI denotes past null infinity [i.e., ðU ¼ −∞; V > 0Þ]. HL
is the “left event horizon” ðU > 0; V ¼ 0Þ, and HR is the
“right event horizon” ðU ¼ 0; V > 0Þ. See Fig. 1.

B. Sets of modes and quantum states

Recall that the matter field we are considering here is a
massless quantum scalar field satisfying the d’Alembertian
equation (1.2) on the Schwarzschild background. This field
can be decomposed into sets of modes satisfying Eq. (1.2).
By choosing certain sets of modes, one can define several
quantum states of interest. To this end, it will be useful to
consider various complete sets of modes outside and inside
the event horizon.
Let us begin with the definition of the Unruh modes for

positive ω, which we denote by gupωlm and ginωlm. We first use
the spherical symmetry to decompose the modes in the
following standard way:

gΛωlmðxÞ ¼ ω−1=2ClmðxÞg̃ΛωlðxÞ; ð2:5Þ

where

FIG. 1. Penrose diagram of Schwarzschild spacetime. In the
exterior region (region I), we use the external Eddington-
Finkelstein coordinates, while in the interior (region II), we use
the internal ones. In addition, the Kruskal coordinate system is
shown in green and is defined throughout both regions I and II. The
red-framed area denotes the region in the eternal Schwarzschild
spacetime which concerns this paper, i.e., regions I and II.
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ClmðxÞ ¼ ð4πÞ−1=2 1
r
Ylmðθ;φÞ: ð2:6Þ

Here the index Λ denotes “in” and “up,” and the factor
1=

ffiffiffiffiffiffiffiffiffi
4πω

p
was introduced to ensure proper normalization

under the Klein-Gordon inner product. Furthermore, g̃Λωl are
solutions of the following two-dimensional wave equation,
obtained by substituting Eq. (2.5) into Eq. (1.2):

g̃Λ;r�r� − g̃Λ;tt ¼ VlðrÞg̃Λ; ð2:7Þ

where

VlðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
: ð2:8Þ

The Unruh modes are then defined by requiring the two sets
of independent solutions, g̃upωl and g̃inωl, to satisfy the
following initial conditions:

g̃upωl ¼
8<
:
e−iωU; Hpast;

e−iωU; HL;

0; PNI;

g̃inωl ¼
8<
:
0; Hpast;

0; HL;

e−iωv; PNI:

ð2:9Þ

Note that the Unruh modes are defined both inside and
outside the event horizon, i.e., they are defined throughout
the red-framed regions I and II in Fig. 1.
Using these modes, the quantum scalar field operator is

decomposed as

Φ̂ðxÞ ¼
Z

∞

0

dω
X
Λ;l;m

½gΛωlmðxÞâΛωlm þ gΛ�ωlmðxÞâΛ†ωlm�; ð2:10Þ

and the Unruh state, j0iU, is defined as the quantum state
annihilated by the operators âΛωlm appearing in Eq. (2.10),
i.e.,

âΛωlmj0iU ¼ 0

(for all Λ and ωlm). As was mentioned in the Introduction,
the Unruh state is physically interesting, as it describes an
evaporation of a BH [32]. The vacuum expectation value of
the stress-energy tensor in this state is regular at the event
horizon (HR), but not at the past horizon (Hpast) [34].
Let us now proceed to the definition of the outer

Eddington-Finkelstein modes, fupωlm and finωlm, for positive
ω (these are also known as the Boulware modes, as they are
closely related to the Boulware state [35]). Again, we
decompose the modes like we did in Eq. (2.5) above:

fΛωlmðxÞ ¼ jωj−1=2ClmðxÞf̃ΛωlðxÞ; ð2:11Þ

where Clm is the same function appearing in Eq. (2.6) and
the index Λ again stands for “in” and “up.” The functions

f̃Λωl, like g̃
Λ
ωl, also satisfy the wave equation (2.7), but with

the significant difference that they are only defined in
region I (see Fig. 1). To complement the definition of these
functions we require the following initial conditions:

f̃inωl ¼
�
0; Hpast;

e−iωv; PNI;
f̃upωl ¼

�
e−iωuext ; Hpast;

0; PNI:
ð2:12Þ

Due to the staticity of the background metric, the
outer Eddington-Finkelsteinmodes f̃inωl and f̃upωl can be
further decomposed into a time-dependent part and a radial
function, satisfying an ordinary differential equation
(ODE), which can be readily solved numerically. The
decomposition is as follows:

f̃inωlðr; tÞ ¼ e−iωtΨ in
ωlðrÞ;

f̃upωlðr; tÞ ¼ e−iωtΨ up
ωlðrÞ: ð2:13Þ

Substituting these decompositions into Eq. (2.7) yields the
following radial equation for ΨΛ

ωl:

ΨΛ
ωl;r�r� þ ½ω2 − VlðrÞ�ΨΛ

ωl ¼ 0; ð2:14Þ

where the effective potential Vl is given by Eq. (2.8). In
terms of the radial functions ΨΛ

ωl, the initial conditions
given in Eq. (2.12) are translated to

Ψ in
ωlðrÞ ≅

�
τinωle

−iωr� ; r� → −∞;

e−iωr� þ ρinωle
iωr� ; r� → ∞

ð2:15Þ

and

Ψ up
ωlðrÞ ≅

�
eiωr� þ ρupωle

−iωr� ; r� → −∞;

τupωle
iωr� ; r� → ∞;

ð2:16Þ

where ρΛωl and τΛωl are the reflection and transmission
coefficients (corresponding to the mode f̃Λωl), respectively.
Solving numerically Eq. (2.14) together with the boundary
conditions (2.15) and (2.16) yields ΨΛ

ωlðrÞ, which then
gives the modes finωlm and fupωlm using Eqs. (2.13) and (2.11).
We can now similarly define the two sets of inner

Eddington-Finkelstein modes, which are again decom-
posed according to Eq. (2.11), and the corresponding
functions f̃Λωl also satisfy Eq. (2.7). It is very analogous
to the above definition of the outer Eddington-Finkelstein
modes, except that here Λ denotes “right” (R) and “left”
(L), corresponding to the following initial conditions on the
left and right event horizons2:

2As was already stressed in Ref. [33], the “right” and “left”
modes defined in the interior region of the BH are only
introduced for mathematical convenience and are not used here
for the definition of any quantum state.
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f̃Lωl ¼
�
e−iωuint ; HL;

0; HR;
f̃Rωl ¼

�
0; HL;

e−iωv; HR:
ð2:17Þ

Note that these modes are defined only in region II,
depicted in Fig. 1.
Just like the outer Eddington-Finkelsteinmodes, the

inner Eddington-Finkelsteinmodes f̃Lωl and f̃Rωl can be
further decomposed into a t-dependent part and a radial
function, satisfying the same radial equation (2.14) as the
external radial function ΨΛ

ωl (with some, obviously differ-
ent, appropriate initial conditions which will be specified
below). Note however the important fact that upon crossing
the event horizon from the exterior region to the interior, the
roles of the t and r coordinates as timelike and spacelike,
respectively, are reversed. As a result, outside the BH there
is a single t-dependent part, namely e−iωt, in the decom-
position of both f̃inωl and f̃upωl. However, inside the BH the
decomposition of f̃Lωl and f̃Rωl is as follows:

f̃Lωlðr; tÞ ¼ eiωtψωlðrÞ; f̃Rωlðr; tÞ ¼ e−iωtψωlðrÞ: ð2:18Þ

Notice that in Eq. (2.18) the two modes differ in their
t-dependent part. At the same time, these two modes
share a single radial function ψωlðrÞ, unlike the external
Eddington-Finkelstein modes which involve two different
radial functions, Ψ in

ωlðrÞ and Ψ up
ωlðrÞ. Substitution of the

decompositions (2.18) into Eq. (2.7) yields the aforemen-
tioned radial equation for ψωl, namely

ψωl;r�r� þ ½ω2 − VlðrÞ�ψωl ¼ 0: ð2:19Þ

In terms of this radial function, the initial conditions given
in Eq. (2.17) reduce to the single condition

ψωl ≅ e−iωr� ; r� → −∞: ð2:20Þ

Then, solving numerically the ODE (2.19) together with
the initial condition (2.20) yields ψωlðrÞ. Using Eqs. (2.18),
(2.11) and (2.6) will then give us the modes fLωlm and fRωlm.
Finally, we are also interested in the Hartle-Hawking

state [30,31], denoted by j0iH. Unlike the Boulware state,
the Hartle-Hawking state does not correspond to the
conventional concept of a vacuum. The RSET is regular
on the event horizons, both past (Hpast) and future (HR), but
the state is not empty at infinity. In fact, it corresponds to a
thermal bath of radiation at infinity. Although it is custom-
ary to define it using an analytic continuation to the
Euclidean section, for our current purposes we are merely
interested in the mode structure of this state: the Hartle-
Hawking modes assume the form of Kruskal modes on
both the past (Hpast) and future (HR) event horizons; more
specifically, e−iωU at Hpast and e−iωV at HR.

C. The Unruh and Hartle-Hawking states
Hadamard functions inside the black hole

Recall that the inner Eddington-Finkelstein modes
can be expressed in terms of a single radial function,
ψωlðrÞ [see Eq. (2.18)] which can be computed numeri-
cally. We intend to use this fact, and we are thus in need of
an expression of the Hadamard function, inside the BH,
in terms of the inner Eddington-Finkelstein modes
(in both states of interest, namely Unruh and Hartle-
Hawking).
Recall that in Eq. (2.10) the scalar field operator was

decomposed in terms of the Unruh modes. Substitution of
this expression into the definition of the Hadamard
function [see Eq. (1.3)], yields a mode-sum expression
for the Hadamard function in terms of the Unruh modes.
As the latter are continuously defined throughout both
regions I and II of Fig. 1 (as discussed in Sec. II B),
this expression applies to both the exterior and interior
regions of the BH spacetime. As was thoroughly elabo-
rated in Ref. [33], in both the exterior and interior
regions, these Unruh modes can be reexpressed in terms
of the outer and inner Eddington-Finkelstein modes.
Using these relations, expressions for the Unruh state
two-point function outside and inside the BH, in terms of
the outer and inner Eddington-Finkelstein modes, may be
obtained.
This procedure was carried out in Ref. [34] for the

Feynman propagator outside the event horizon of
Schwarzschild spacetime. When this procedure is applied
to the Hadamard Green function it yields

Gð1Þ
U ðx; x0Þ ¼

Z
∞

0

dω
X
l;m

�
coth

�
πω

κ

�
ffupωlmðxÞ; fup�ωlmðx0Þg

þ ffinωlmðxÞ; fin�ωlmðx0Þg
�
; ð2:21Þ

where the subscript U stands for “Unruh state,” and the
curly brackets denote symmetrization with respect to the
arguments x and x0, i.e.,

fAðxÞ; Bðx0Þg ¼ AðxÞBðx0Þ þ Aðx0ÞBðxÞ:

A similar procedure can be applied to the Hartle-Hawking
Hadamard function, yielding [34]

Gð1Þ
H ðx; x0Þ ¼

Z
∞

0

dω
X
l;m

coth

�
πω

κ

�
½ffupωlmðxÞ; fup�ωlmðx0Þg

þ ffinωlmðxÞ; fin�ωlmðx0Þg�; ð2:22Þ

where the subscript H stands for “Hartle-Hawking state.”
This expression may actually be obtained by replacing the
above Unruh modes with corresponding modes associated
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with the Hartle-Hawking state, which assume the form of
Kruskal modes at both the past and future horizons.3

However, for the purpose of the present work we are
interested in the expressions for the Unruh state and Hartle-
Hawking state Hadamard functions inside the BH. These
were obtained in Ref. [33] and we merely quote here the
final results, which we express here in the following
schematic form:

Gð1Þ
U ðx; x0Þ ¼

Z
∞

0

dω
X
l;m

ẼU
ωlmðx; x0Þ

and

Gð1Þ
H ðx; x0Þ ¼

Z
∞

0

dω
X
l;m

ẼH
ωlmðx; x0Þ;

where

ẼU
ωlmðx; x0Þ ¼ coth

�
πω

κ

�
ffLωlmðxÞ; fL�ωlmðx0Þg

þ
�
coth

�
πω

κ

�
jρupωlj2 þ jτupωlj2

�

× ffRωlmðxÞ; fR�ωlmðx0Þg

þ 2csch

�
πω

κ

�
Re½ρupωlffRωlmðxÞ; fL�ð−ωÞlmðx0Þg�;

ð2:23Þ
and

ẼH
ωlmðx; x0Þ ¼ coth

�
πω

κ

�
½ffLωlmðxÞ; fL�ωlmðx0Þg

þ ffRωlmðxÞ; fR�ωlmðx0Þg�

þ 2csch

�
πω

κ

�
Re½ρupωlffRωlmðxÞ; fL�ð−ωÞlmðx0Þg�:

ð2:24Þ
As already mentioned, the inner Eddington-Finkelstein

modes can be computed [via Eqs. (2.18) and (2.11)] by
numerically solving the ODE (2.19) for ψωl in the interior
region together with the initial condition given by
Eq. (2.20). This concludes the numerical computation of
the Unruh and Hartle-Hawking states Hadamard functions
in the BH interior.

III. ANGULAR-SPLITTING VARIANT OF THE
PMR METHOD: THE PRACTICAL RECIPE

Recall that the task at hand is to compute the renormal-
ized hΦ̂2i in the Schwarzschild BH interior. As mentioned

in the Introduction, a frequently employed technique to
regularize hΦ̂2ðxÞi is point splitting. This method may be
recast in the form

hΦ2ðxÞiren ¼ lim
x0→x

½hΦ̂ðxÞΦ̂ðx0Þi −GDSðx; x0Þ�: ð3:1Þ

For our purposes it will be convenient to rewrite Eq. (3.1) in
terms of the Hadamard function, as follows:

hΦ2ðxÞiren ¼ lim
x0→x

�
1

2
Gð1Þðx; x0Þ −GDSðx; x0Þ

�
: ð3:2Þ

In the last two equations, GDSðx; x0Þ is the DeWitt-
Schwinger counterterm, which in our case, that is for a
massless scalar field propagating in a Schwarzschild back-
ground spacetime, takes the form4 [15,22]

GDSðx; x0Þ ¼
1

8π2σ
: ð3:3Þ

Here σ is the biscalar of geodesic separation, equal to one
half the square of the distance between the points x and x0
along the shortest geodesic connecting them. A key feature
of the DeWitt-Schwinger counterterm is that it is a purely
local geometric object, independent of the quantum state,
and it fully embodies the singular part of the Hadamard
function at the coincidence limit.
As we already mentioned in the Introduction, the field’s

modes are usually not known analytically, and in particular
in BH background spacetimes, the modes can only be
numerically computed. In such cases, the direct evaluation
of the coincidence limit of the split expression in Eq. (3.2)
becomes impractical, especially because it requires increas-
ingly high numerical accuracy when x0 approaches x. This
obstacle is overcome by the PMR method. We will not be
reviewing the construction of the PMR method here. For a
detailed exposition of the method, see Refs. [24,25]. In
what follows we merely present the key steps involved in
the implementation of the angular-splitting variant [25] of
the method.
In Eqs. (2.23) and (2.24) we expressed the Hadamard

functions in Unruh and Hartle-Hawking states, respec-
tively, in terms of the inner Eddington-Finkelstein modes,
which will be our modes of interest in what follows. Recall
from Eqs. (2.11) and (2.18) that the field modes can be
decomposed as follows:

fLωlmðxÞ ¼ eiωtYlmðθ;φÞψ̄ωlðrÞ;
fRωlmðxÞ ¼ e−iωtYlmðθ;φÞψ̄ωlðrÞ; ð3:4Þ

where we introduced the notation

3More technically, this may be achieved by changing e−iωv →
e−iωV at PNI in Eq. (2.9).

4This expression for the DeWitt-Schwinger counterterm ac-
tually applies to a massless scalar field propagating in any
vacuum background spacetime.
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ψ̄ωlðrÞ ¼ ð4πjωjÞ−1=2 1
r
ψωlðrÞ: ð3:5Þ

The functions ψωl satisfy the ODE (2.19), along with the
initial condition given by Eq. (2.20).
The final outcome of the PMR method is entirely

expressed in terms of the coincidence limit x0 → x of the
quantities ẼU

ωlm and ẼH
ωlm defined in Eqs. (2.23) and (2.24)

respectively. We therefore define the coincidence limit of
these two quantities [multiplied by 2π=ð2lþ 1Þ for later
convenience]:

EU
ωlðrÞ ¼

X
m

2π

2lþ 1
ẼU
ωlmðx; x0 ¼ xÞ;

EH
ωlðrÞ ¼

X
m

2π

2lþ 1
ẼH
ωlmðx; x0 ¼ xÞ: ð3:6Þ

Note that the dependence on θ, φ and t cancels out upon
taking the coincidence limit and summing over m. It is
convenient to express EU

ωlðrÞ and EH
ωlðrÞ directly in terms of

the radial function ψωl [rather than the functions fΛωlm
appearing in Eqs. (2.23) and (2.24)], since this is the
function we actually obtain by solving numerically the
radial equation (2.19). To this end we recall that Eqs. (3.4)
and (3.5) provide the relation between the functions fΛωlm
and ψωl, and further note that ψ ð−ωÞl ¼ ψ�

ωl. It thus readily
follows that

EU
ωlðrÞ ¼

�
coth

�
πω

κ

�
ðjρupωlj2 þ 1Þ þ jτupωlj2

�
jψ̄ωlj2

þ 2csch

�
πω

κ

�
Reðρupωlψ̄2

ωlÞ ð3:7Þ

and

EH
ωlðrÞ ¼ 2

�
coth

�
πω

κ

�
jψ̄ωlj2 þ csch

�
πω

κ

�
Reðρupωlψ̄2

ωlÞ
�
;

ð3:8Þ

where we again used Eq. (3.5) to translate these expressions
from ψωl to ψ̄ωl for compactness.
For convenience, in what follows unless specifically

stated otherwise, we shall denote both EU
ωl and EH

ωl as Eωl
because the next stages treat them in exactly the same way.
Following the PMR prescription, we define the following
integral:

Fðl; rÞ≡
Z

∞

0

dω½EωlðrÞ − Eω;l¼0ðrÞ�: ð3:9Þ

We further define

Fsingðl; rÞ ¼ −8πaðrÞhðlÞ; ð3:10Þ

which captures the singular piece of the function Fðl; rÞ.
Here, the function hðlÞ is the harmonic number defined by

hðlÞ≡Xl

k¼1

1

k
; hð0Þ≡ 0;

and aðrÞ is a coefficient appearing in the expansion of GDS
in powers of sin ðε=2Þ (where ε is the splitting in θ), a
procedure thoroughly explained in Ref. [25]. Another such
coefficient that will be of use later is dðrÞ, which also
appears in the same expansion of GDS. These coefficients
generally depend on the mass of the field, on its coupling
constant ξ, and on the background metric. For a massless
scalar field and a Schwarzschild background geometry they
assume the simple forms

aðrÞ ¼ 1

16π2r2
; dðrÞ ¼ −

M
24π2r3

: ð3:11Þ

Therefore we have

Fsingðl; rÞ ¼ −
1

2πr2
hðlÞ: ð3:12Þ

Notice that, just like h, Fsing diverges logarithmically
with l.
We now remove the singular piece from the function F

by subtracting Fsing from it, thereby obtaining a new
regularized function denoted by Freg, that is

Fregðl; rÞ≡ Fðl; rÞ − Fsingðl; rÞ: ð3:13Þ

It turns out that subtracting Fsing is generally insufficient for
the convergence of the sum over l, and in fact, Fregðl; rÞ
converges to a nonzero constant limit as l → ∞; hence the
naive sum over l of this quantity [multiplied by 2lþ 1, as a
compensation for the denominators introduced in Eq. (3.6)]
would diverge. This divergence reflects the fact that the
counterterm provides only partial information about
the mode-sum singularity, as information is lost in the
Legendre decomposition. This obstacle was referred to as
the blind spots phenomenon in Ref. [25], and to circumvent
it, a process called self-cancellation is employed. The idea
is that the nonzero limiting value of Fregðl; rÞ ought to be
further subtracted for the sum over l to converge, and our
technical means of achieving it is by defining the following
sequence of partial sums5:

5Note that the limitHðl → ∞; rÞ is equivalent to the sum over l
of the sequence 2lþ1

4π ½Fregðl; rÞ − Fregðl → ∞; rÞ�.

MODE-SUM RENORMALIZATION OF hΦ2i … PHYS. REV. D 98, 084017 (2018)

084017-7



Hðl; rÞ≡Xl

k¼0

2kþ 1

4π
½Fregðk; rÞ − Fregðl; rÞ�: ð3:14Þ

The final expression for hΦ2iren is

hΦ2ðxÞiren ¼ ℏ½ lim
l→∞

Hðl; rÞ − dðrÞ�: ð3:15Þ

Recall that H is constructed from functions originating
in Eωl. In order to obtain the Unruh state hΦ2iren from
Eq. (3.15), one has to construct H from EU

ωl of Eq. (3.7).
Similarly, obtaining the Hartle-Hawking state hΦ2iren
requires the use of EH

ωl defined in Eq. (3.8).
Let us summarize. The final expression for the renor-

malized expectation value of Φ̂2 is given in Eq. (3.15), with
H defined in Eq. (3.14). There we used the function Freg

which is specified in Eq. (3.13). This function involves the
quantity Fsing defined for our specific case in Eq. (3.12). It
further requires the use of F defined in Eq. (3.9), which in
turn is constructed from Eωl. As we mentioned above, the
latter quantity is denoted by EU

ωl in the Unruh state [see
Eq. (3.7)] and by EH

ωl in the Hartle-Hawking state [see
Eq. (3.8)]. These are computed from the radial functions,
ψ̄ωl, defined in Eq. (3.5) in terms of ψωl. The latter is
obtained by numerically solving the radial equation (2.19)
with the initial conditions (2.20).

IV. NUMERICAL IMPLEMENTATION: hΦ2iren
INSIDE A SCHWARZSCHILD BLACK HOLE

Our final expression for hΦ2iren was constructed in
Sec. III using the integrands (3.7) and (3.8). These

integrands consist of the radial function ψ̄ωl and also the
reflection coefficient ρupωl and the transmission coefficient
τupωl. The computation of hΦ̂2ðxÞiren therefore requires the
numerical computation of the three quantities ψ̄ωlðrÞ, ρupωl
and τupωl.
The radial equation (2.19) together with the initial

condition (2.20) was solved numerically for ψωl using
the ODE solver embedded in MATHEMATICA. It was solved
for 21 l values (0 ≤ l ≤ 20), for each l in the range
ω ∈ ½0; 20�, with a uniform spacing dω ¼ 10−2. Then
ψ̄ωl was constructed from ψωl using Eq. (3.5).
The transmission (τupωl) and reflection (ρupωl) coefficients

for each ωl mode were extracted from the numerical
solution of Eq. (2.14) for the radial function Ψωl outside
the BH. Boundary conditions were specified at the past
horizon, where the radial functions assumed the form
Ψωl ¼ e−iωr� , and the solution was evolved towards
r → ∞. Here, as well, the calculation was carried out by
the ODE solver embedded in MATHEMATICA, for the same
modes of l and ω as described above.
In order to illustrate the various stages of the renorm-

alization procedure, let us follow an example of the
computation of hΦ2iren for r ¼ 1.4M in the Hartle-
Hawking state. Figure 2(a) displays EH

ωl as a function of
ω for l ¼ 1. Here and in all the graphs below we use units
whereM ¼ 1 andG ¼ c ¼ 1. As is indicated by the dashed
black curve, EH

ωl behaves asymptotically at large ω as 1=ω,
and therefore its integral diverges at infinity. This diver-
gence is regularized by subtracting from the integrand the
l ¼ 0 mode, i.e., EH

ω;l¼0, as was done in Eq. (3.9). This
regularization results in an integrand which behaves

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

E
, l

=
1

E
 l
 vs   for l=1, r=1.4M

(a)

0 5 10 15 20

-0.2

-0.15

-0.1

-0.05

0

E
, l

=
1

E
 l
 - E

 l=0
 vs   for l=1, r=1.4M

(b)

FIG. 2. (a) Blue curve: the numerically computed EH
ω;l¼1, as defined in Eq. (3.8), evaluated at r ¼ 1.4M. The dashed black curve is

ωEH
ω;l¼1, indicating that the asymptotic behavior of EH

ω;l¼1 at large ω is proportional to ω−1. (b) Blue curve: the numerically computed
difference EH

ω;l¼1 − EH
ω;l¼0, evaluated at r ¼ 1.4M. The dashed black curve is 8ω3ðEH

ω;l¼1 − EH
ω;l¼0Þ, thus the asymptotic behavior of the

difference at large ω is proportional to ω−3.
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asymptotically as 1=ω3, as indicated by the dashed black
curve in Fig. 2(b), leading to a convergent integral.
Even after the aforementioned regularization of the

integral over ω, the convergence is still rather slow, and
the integration requires a very large range of ω in order to
achieve a result with sufficient accuracy. We circumvented
this difficulty by employing a large-ω expansion6 of

jψωlðrÞj2 up to order ω−13 in the integral from ω ¼ 20
to infinity.
Recall from Eq. (3.9) that the integral over ω gives

Fðl; rÞ, displayed in Fig. 3(a) as a series of blue dots. Note
the logarithmic behavior at large values of l, which
importantly, characterizes Fsingðl; rÞ as well [also shown
in Fig. 3(a) in red]. Of course, the sum over l of
ð2lþ 1ÞFðl; rÞ then diverges, demonstrating the need for
a subtraction of the divergent piece. This is predominantly
achieved in Eq. (3.13) by subtracting Fsingðl; rÞ, resulting in

0 5 10 15 20
l

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
F

 (
l,r

=
1.

4M
)

F(l,r=1.4M) & F
sing

(l,r=1.4M)

F (l,r=1.4M)
F

sing
(l,r=1.4M)

(a)

0 5 10 15 20
l

0

1

2

3

4

5

6

7

F
re

g
(l,

r=
1.

4M
)

10-3 F
reg

(l,r=1.4M)

(b)

FIG. 3. (a) The numerically computed Fðl; r ¼ 1.4MÞ, as defined in Eq. (3.9), represented by blue dots. The analytically computed
function Fsingðl; r ¼ 1.4MÞ, as defined in Eq. (3.12), appears as red dots. (b) Fregðl; r ¼ 1.4MÞ as defined in Eq. (3.13), i.e., the
difference between the two curves in panel (a). It quickly converges to a constant (the so-called “blind spot” mentioned in Sec. III),
which will require self-cancellation.

0 5 10 15 20
l

-6

-5

-4

-3

-2

-1

0

H
 (

l,r
=

1.
4M

)

10-4 H (l,r=1.4M)

(a)

4 6 8 10 12 14 16
l

-5.905

-5.9

-5.895

-5.89

-5.885

-5.88

H
 (

l,r
=

1.
4M

)

10-4 H (l,r=1.4M)

(b)

FIG. 4. (a) The numerically computed sequence Hðl; r ¼ 1.4MÞ, constructed according to Eq. (3.14). It clearly rapidly converges at
large l. (b) A closer look at the plateau region in panel (a). On this scale, the growth of a numerical error at large l is apparent. The red dot
indicates the estimated optimal l value for the numerical evaluation of the large-l limit of H. This l is automatically selected by an
algorithm that locates the value of l beyond which the numerical error begins to increase.

6We followed here the large-ω expansion procedure presented
in Appendix D in Ref. [25].
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Fregðl; rÞ which behaves as a constant at large values of l
[see Fig. 3(b)].
We next self-cancel the “blind spot” by constructing

the sequence Hðl; rÞ according to Eq. (3.14). This quantity
is presented in Fig. 4(a). Note the rapid convergence
of Hðl; rÞ, most clearly seen in the zoom displayed in
Fig. 4(b).
Finally, the large-l limit of Hðl; rÞ is taken, yielding the

limiting value −0.0005902M−2. When substituted into
Eq. (3.15), it yields hΦ̂2ðr¼ 1.4MÞiren ≅ 0.0009484ℏM−2

in the Hartle-Hawking state.
In the same way, we computed hΦ2ðrÞiren for different

values of r in the domain7 1 ≤ r ≤ 1.99999. The same
computation scheme was then applied to the Unruh state as
well. The results are presented in Fig. 5 which displays
hΦ2iren in both the Hartle-Hawking and Unruh states for
various values of r, together with corresponding results
previously obtained outside the BH [25]. We estimate that
the numerical error is typically around two parts in 103 or
smaller. Our results for the Hartle-Hawking state are
compared to previous results published by Candelas
and Jensen [29] (black crosses), showing a fairly good
agreement.8

Figure 6 displays hΦ2ðrÞiren for different values of r in
the vicinity of the event horizon, showing results for both
the interior and the exterior regions. Extrapolation of the
results, from both inside and outside the BH, to the event
horizon shows good agreement, with a difference of about
0.03% (fully consistent with our estimated numerical
errors). It further shows a difference of only ∼0.02% from
the analytical result Candelas obtained [34] for the Hartle-
Hawking state hΦ2iren at the event horizon, which is equal
to 1=192π2M2 ≃ 0.0005277M−2.

V. DISCUSSION

In this work we considered a massless scalar field, and
numerically computed hΦ2iren inside a Schwarzschild BH,
in both the Hartle-Hawking and Unruh quantum states. We
performed the computation by employing a recently
developed numerical implementation method of the
point-splitting renormalization scheme [24,25], which we
referred to as the “PMR” method. This method has been
previously utilized to numerically compute hΦ2iren and
hT̂μνiren outside Schwarzschild, RN (unpublished) and Kerr
BHs [24–28]. Here we reported the first application of the
PMR method in BH interiors, as part of an ongoing

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2
10-3

FIG. 5. The solid red and blue lines represent our results for
hΦ̂2ðrÞiren in the Hartle-Hawking state and Unruh state, respec-
tively, inside the BH. The red and blue dots represent the
analogous results previously obtained outside the event horizon
[25]. The event horizon is marked by the vertical black solid line.
The results by Candelas and Jensen for the Hartle-Hawking state
appear as black “x” markers. Our results seem to agree at the
event horizon with those of Ref. [25], and are in fairly good
agreement with those obtained by Candelas and Jensen.

1.9 1.925 1.95 1.975 2 2.025 2.05
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7
10-4

FIG. 6. Near-horizon results for hΦ2ðrÞiren calculated for
different values of r. The red and blue dots represent the results
for hΦ2iren in the Hartle-Hawking state and Unruh state,
respectively, inside the BH. Note that the results for the Unruh
state (blue) were shifted here by an amount þ0.000185 for
convenience of display. [This shift allows us to present the two
sets of data (Unruh and Hartle-Hawking) on the same graph, with
sufficient resolution at the vertical scale.] The red and blue “x”
markers represent the analogous results previously obtained
outside the event horizon, using the method described in Ref. [25].
The two sets of results (external and internal ones) nicely agree at
the event horizon (vertical black solid line). They also show good
agreement with the analytical result obtained by Candelas at the
event horizon (in the Hartle-Hawking state), marked here by the
short green horizontal dashed line.

7We stopped our computation at r ¼ 1, since the numerical
difficulties grow significantly as r decreases.

8With a difference of less than 1% (which probably results
from numerical inaccuracy), improving markedly to less than
0.1% in the region 1.6 ≤ r ≤ 1.9.
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program to compute the RSET inside BHs and, in particu-
lar, to explore how it modifies the geometrical structure of
the inner (Cauchy) horizon of RN and Kerr BHs.
In order to facilitate the computation of hΦ2iren, we used

the results of Ref. [33] to express the Hartle-Hawking and
Unruh states Hadamard functions in the interior of a
Schwarzschild BH in terms of a sum of what we call
inner Eddington-Finkelstein modes. These modes can be
decomposed into radial functions satisfying an ODE, which
we solved numerically. We subsequently employed the
angular-splitting variant [25] of the PMR method, and
obtained hΦ2iren for the Hartle-Hawking and Unruh states
inside a Schwarzschild BH.
Our results for the Hartle-Hawking state were compared

with previous results by Candelas and Jensen [29] with
fairly good agreement, as seen in Fig. 5. The results we
obtained for both the Hartle-Hawking and Unruh states
further agree at the event horizon with previous results for
hΦ2iren obtained outside the BH in Ref. [25]. Our results for
the Hartle-Hawking state at the event horizon also agree
with previous analytical results obtained by Candelas [34].
We are generally interested in the internal structure of

BHs and, in particular, the influence of quantum fluxes on
the BH interior geometry. Understanding this issue ulti-
mately requires the investigation of the behavior of hT̂μνiren
in the interior of BHs. As a first step towards this goal, we
set out to compute hΦ2iren in BH interiors, starting with the
case of a Schwarzschild BH as elaborated in the present
paper. It would be interesting, and important in the context
of the aforementioned research program, to further extend
the present work and compute hΦ2iren inside RN [36] and
Kerr BHs. Since the latter are in fact the real astrophysical

BHs, it would be of special interest to extend this work to
Kerr BHs in the future. To accomplish that, one would have
to resort to the t-splitting variant (or perhaps φ-splitting
variant) of the PMR method, because the angular-splitting
variant will not work in the Kerr case. Employing the
t-splitting variant will have the additional benefit of
providing independent results which would serve to cor-
roborate those presented here for the interior of
Schwarzschild BHs, obtained using the angular-splitting
variant.
In the next stage, it will be necessary to extend the

present analysis of quantum effects in BH interiors from
hΦ2iren to the RSET, especially in BHs with inner horizons,
and most importantly inside Kerr BHs.
Beyond the challenging task of computing hT̂μνiren

throughout the interior of BHs, in order to achieve a more
complete understanding of semiclassical BH interiors, we
shall have to confront the much harder challenge of self-
consistently analyzing the backreaction effect of these
quantum fluxes on the internal geometry (via the semi-
classical Einstein equation). However, at the moment this
goal is far out of reach.
In addition, it would be particularly interesting to

consider the fluxes due to the quantum electromagnetic
field (and perhaps also due to quantized gravitational
perturbations?). These are the more realistic physical fields,
and we hope their effects will be studied in the future.
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