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(Received 19 June 2018; published 9 October 2018)

We assess total-variation methods to denoise gravitational-wave signals in real noise conditions by
injecting numerical-relativity waveforms from core-collapse supernovae and binary black hole mergers in
data from the first observing run of Advanced LIGO. This work is an extension of our previous
investigation in which only Gaussian noise was used. Since the quality of the results depends on the
regularization parameter of the model, we perform a heuristic search for the value that produces the best
results. We discuss various approaches for the selection of this parameter, based on the optimal, mean, or
multiple values, and compare the results of the denoising upon these choices. Moreover, we also present a
machine-learning-informed approach to obtain the Lagrange multiplier of the method through an automatic
search. Our results provide further evidence that total-variation methods can be useful in the field of
gravitational-wave astronomy as a tool to remove noise.
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I. INTRODUCTION

The observation of gravitational waves from coalescing
binary black holes (BBHs) during the first Advanced
LIGO [1] observing run (O1) marked the commencement
of gravitational-wave astronomy [2,3]. After a period of
commissioning, the two LIGO detectors started the second
observing run (O2) by the end of 2016, with the European
detector Advanced Virgo [4] joining on August 2017.
O2 was an overwhelming success. In addition to the
observation of three new BBH mergers [5–7], the latter
simultaneously observed by the three-detector network,
it also accomplished the first observation of gravitational
waves from a binary neutron star (BNS) merger [8]. Unlike
BBH events, BNS mergers emit electromagnetic signals
across the entire spectrum. Those were detected by
dozens of telescopes, opening the field of multimessenger
astronomy [9].
During O2, the BNS observational range of Advanced

LIGO was as large as ∼100 Mpc. However, due to their
intrinsic weakness, signals from most astrophysical sources
within such a large volume are likely to remain in the limit
of detectability. A careful analysis of the collected gravi-
tational-wave data is therefore essential to ensure progress

in spite of the conspicuous instrumental noise of the
detectors (see Ref. [10] and references therein). Actual
gravitational-wave signals may be misinterpreted as artifi-
cial noise transients (glitches), which requires their precise
identification and eventual veto.
Noise removal is a long-standing, major effort in

gravitational-wave data analysis, and specific algorithms
have been developed for every type of signal. For coalesc-
ing compact binary (CBC) signals, such as the existing
sample of observations, the inspiral signal can be observed
by either targeting a broad range of generic transient
signals or by correlating the data with analytic waveform
templates from general relativity and maximizing such
correlation with respect to the waveform parameters
[11,12]. Identification is challenged for events with a
low signal-to-noise ratio (SNR) due to the nonstationarity
and non-Gaussanity of the detector noise. Matched filtering
is impractical for well-modeled but continuous sources,
like spinning (isolated) neutron stars, due to the large
computational resources it would require. Cross-correlation
and coherent detection methods [10,13,14] are the choice
for these sources. In addition to CBC and continuous
sources, there also exist other potential sources that produce
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gravitational-wave transients (or bursts), with core-
collapse supernova (CCSN) signals being a paradigmatic
example. Those can only be modeled imperfectly, as the
computational requirements for obtaining their wave-
forms from numerical-relativity simulations are signifi-
cant and the intrinsic parameter space is larger than for
CBC signals. Recently, coherent approaches over a net-
work of detectors have proven very effective [15,16],
increasing the detection confidence of long-duration
burst signals (above several seconds). In contrast, short-
duration bursts are more affected by detector glitches,
and specific pipelines have been developed to differentiate
between signals and noise transients, namely, BayesWave
[17], either standing alone or in combination with
coherentWaveBurst [18], and oLIB [19]. Approaches to
estimate physical parameters and to reconstruct burst
signal waveforms from noisy environments have also
been put forward by Refs. [20–27].
Methods based on machine learning offer a promising

alternative to current approaches, having already shown
optimal performance for many tasks, like classification
and regression, and in many scientific disciplines [28].
Machine-learning techniques have been recently applied
for gravitational-wave astronomy as well [29–33]. In a
previous paper [34], we assessed total-variation (TV)
algorithms for denoising gravitational-wave signals. TV
methods are based on L1-norm minimization and have
been mainly employed in the context of image processing,
in which they constitute the best approach to solve the so-
called Rudin-Osher-Fatemi denoising model [35]. Our
first investigation [34] was limited to denoising gravita-
tional waves embedded in additive Gaussian noise. We
showed that noise can be successfully removed with TV
techniques, irrespective of the signal morphology or
astrophysical origin. In the current paper, we take a
further step in the assessment of TV methods for gravi-
tational-wave astronomy, using actual noise from the
detectors instead of the idealized nonwhite Gaussian
noise employed in our previous study. To this aim, we
inject numerically generated signals (from BBH mergers
and CCSN) into the data collected by the Advanced LIGO
detector during the O1 observing run that extended from
September 12, 2015, to January 19, 2016. Our goal is to
test whether TV methods can effectively reduce noise in
the conditions found with real data.
The paper is organized as follows. In Sec. II, we

summarize the mathematical framework on which TV
methods are based. Section III briefly explains the
whitening method we employ to remove noise lines
and other artifacts and the waveform catalogs we use to
test our algorithm. In Sec. IV, we discuss the determi-
nation of the regularization parameter that produces the
best results for the sources considered. The main results of
our study are presented in Sec. V. Finally, a summary is
provided in Sec. VI.

II. OVERVIEW OF THE METHOD

TV methods are based on the concept of TV-norm
regularization, introducedbyRef. [35] in1992 as a procedure
to clean noisy signals. Starting from the classical linear
degradation model, f ¼ uþ n, in which a noisy signal f is
built from a signal u and some additive noise n, we assume
white Gaussian noise with zero mean and variance σ2.
The variational approach to u about the noise, is based on

the minimization of f (the observed signal) and some
information about the noise is to prioritize signals u,
through the minimization of RðuÞ a convex energy, called
regularizer, subject to the constraint that the square of the
kf − uk2L2

matches the variance of the noise, σ2. Applying
Tikhonov’s theorem, the constrained variational problem
can be written in general as an unconstrained minimization
problem by introducing the positive Lagrange multiplier
μ > 0:

u ¼ argmin
u

n
RðuÞ þ μ

2
kf − uk2L2

o
: ð2:1Þ

This energy has two main terms. RðuÞ is called the
regularization term that rules out the signals with large
values of RðuÞ. The second term kf − uk2L2

is called the
fidelity term and controls the degree of similarity between
the solution u and the noisy signal f by computing the
square of the L2-norm. Both terms are weighted by a
Lagrange multiplier μ > 0 so that when it has a small value
the relative weight of the fidelity term is small and the
solution is highly regularized. In contrast, when the value
of μ is high, the solution is dominated by the fidelity term,
and u is similar to f.
In this paper, we shall use as regularizing energy RðuÞ

either the L1-norm of the signal (see Ref. [36]) or the
L1-norm of its gradient (see Ref. [35]), which favors sparse
solutions, i.e., very few nonzero components of the solution
or its gradient. In addition, the algorithm to find L1-norm
minimizers is extremely efficient despite the fact that this
norm is not differentiable.
Rudin et al. in their pioneering paper [35] proposed the

use of the L1-norm of the gradient for the regularizing
energy. This specific formulation of the variational problem
(2.1) is called the ROF model (after the authors’ names)
and reads

u ¼ argmin
u

n
TVðuÞ þ μ

2
kf − uk2L2

o
: ð2:2Þ

Since the ROF model uses the TV norm, the solution is the
only one with the sparsest gradient. Thus, the ROF model
reduces noise by making the gradient of the signal more
sparse and avoiding spurious oscillations (ringing) on the
solution signal.
The associated Euler-Lagrange equation of the ROF

model is given by
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∇ ·
∇u
j∇uj þ μðf − uÞ ¼ 0: ð2:3Þ

This equation becomes singular when j∇uj ¼ 0. To avoid
this, the following regularized TV norm was used in
Ref. [34], and we will call it the regularized ROF
(rROF) algorithm, which allows us to obtain an approxi-
mate solution of the ROF model by smoothing the total-
variation energy. The TV functional is slightly perturbed as

TVβðuÞ ≔
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇uj2 þ β
q

; ð2:4Þ

where β is a small positive parameter. Therefore, the rROF
model reads

u ¼ argmin
u

n
TVβðuÞ þ

μ

2
kf − uk2L2

o
: ð2:5Þ

Assuming homogeneous Neumann boundary conditions,
Eq. (2.5) becomes a nondegenerate second-order nonlinear
elliptic differential equation of which the solution is smooth
(for details, see Sec. II in Ref. [34]).
In this paper, we use a regularized ROF algorithm by

solving the associated Euler-Lagrange equation of an
energy that includes a smoothed TV norm (see Ref. [34]
for details). The novelty here consists of using the rROF
algorithm as a building block of an iterative procedure,
called the Bregman iterative procedure (see Ref. [37]),
which runs in the scale space from the solution of the
regularizer TV model, using a very small value of the
Lagrange multiplier, to the processed signal. Roughly
speaking, we first choose the regularization parameter μ
equal to a constant value μ0, which is smaller than the
optimal value needed to obtain a denoised signal by direct
application of the rROF algorithm. The value of μ0 is kept
fixed through all the iterations. Next, we compute u1 by
solving

u1 ¼ argmin
u

n
TVβðuÞ þ

μ0
2
kf − uk2L2

o
; ð2:6Þ

f ¼ u1 þ v1; ð2:7Þ
where v1 is the residual. Then, we again apply the rROF
algorithm using the same μ0 and taking as an input signal
f þ v1 to obtain u2. We thus have

f þ v1 ¼ u2 þ v2: ð2:8Þ
Applying this procedure for an arbitrary number of times n,
we obtain a sequence of signals un for n ¼ 1;… such that

f þ vn−1 ¼ un þ vn: ð2:9Þ
The iteration stops when some discrepancy principle is
satisfied, i.e., when the square of the L2-norm of the
residual matches the variance of the noise. In practice,
however, the variance of the noise is not available, and

we have to resort to some other termination criterion. We
refer to our original paper [34], in which a heuristic
procedure is shown to estimate the optimal value of the
Lagrange multiplier, for details (see Sec. IV, Table I,
and Fig. 4).
Our test over the signals examples shows that tolerances

of 10−3 for both the rROF algorithm and 10−2 for the
iterative step are a good compromise between the accuracy
on the results and computation speed. The number of
Bregman iterations is set to be at most a couple of iterations
for the same reasons. These algorithm parameters will
remain the same for the cases considered in this paper.

III. ALGORITHM PIPELINE AND DATA
CONDITIONING

Our previous work [34] has shown that the rROF
algorithm leads to satisfactory results for signals embedded
in Gaussian noise. However, the noise of gravitational-
wave detectors is non-Gaussian and nonstationary [25,
38–40]. For example, there are well-known, modeled
sources of narrow-band noise, such as the electric power
(at 60 Hz and higher harmonics), mirror suspension
resonances, or calibration lines (see Fig. 3 of Ref. [2]).
For this reason, data must first be preconditioned to make
the noise flat in frequency (a process known as whitening).
To do so, we make as few assumptions as possible. In
this work, we employ ten chunks of data of 5 s each from
the Advanced LIGO Livingston detector to inject the
different signals. The GPS times are selected randomly
over the entire O1 period. The sampling frequency is
16 384 Hz.
We preprocess the data using the whitening procedure

developed by Refs. [41,42]. This procedure uses an
autoregressive (AR) model to transform the colored noise
into white noise (see Ref. [41] for details). First, we obtain

TABLE I. Values of the SSIM index for CCSN waveforms
when using the optimal value of the regularization parameter for
each signal, μopt; the mean value for all signals, μ̄; and multiple
values, μm. The final column, Ref, indicates the SSIM index
computed for the signal obtained after the whitening and the
corresponding template.

SSIM index

Signal Distance (kpc) [μopt] [μ̄] [μm] [Ref]

A 5 0.89 0.83 0.84 0.39
10 0.74 0.68 0.69 0.14
20 0.54 0.44 0.43 0.03

B 5 0.71 0.61 0.65 0.21
10 0.51 0.33 0.38 0.06
20 0.31 0.08 0.11 0.003

C 5 0.64 0.60 0.69 0.06
10 0.40 0.46 0.51 0.012
20 0.23 0.24 0.29 0.002
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the 3000 coefficients of the AR filter required by the
whitening using 300 s of data at the beginning of the
corresponding science segment of every signal injection.
The whitening is applied in the time domain to every block
of 5 s of data we use in order to avoid the border problems
associated with the transformations in the frequency
domain.
As in Ref. [34], we apply the TV method to two different

types of gravitational-wave signals. The first type of
waveforms is bursts from CCSN. We employ the waveform
catalog of Dimmelmeier et al. Ref. [43], who built a catalog
of 128 waveforms from general-relativistic simulations of
rotating stellar core collapse to neutron stars. The simu-
lations considered progenitors with a high rotation rate and
two tabulated, microphysical equations of state (EoS). The
second type of waveforms is based on the 174 numerical
simulations from the inspiral and merger of BBHs of
Mroué et al. [44], 167 of which cover more than 12 orbits
and 91 of which represent precessing binaries.
The rROF algorithm is coded in FORTRAN combined

with a PYTHON interface for plotting purposes. The
algorithm is very efficient; the average time of 1000 runs
of 3 s of data takes ∼16 ms, computed in a single processor
3.5 GHz Intel Core i7 with 16 Gbytes of RAM. The
iterative procedure, including the Bregman iteration, takes
on average 0.5 s to perform the denoising of 3 s of data.

IV. ESTIMATION OF THE REGULARIZATION
PARAMETER

As already discussed in Ref. [34], the denoising results
strongly depend on the value of the regularization param-
eter μ. If this value is too large, the fidelity term in Eq. (2.2)
dominates, and the denoised signal is comparable to the
original noisy signal y. On the contrary, if the value of μ is
too small, it is the regularization term in Eq. (2.2) the
dominant one and the amplitude of the resulting signal
tends to zero. The existence of an optimal value of μ can be
proven theoretically. However, this unique value is not
equally appropriate for all possible cases one may consider
(involving differences in the noise and/or in the signals) and
must therefore be set empirically in practice.
In this section, we determine the interval of values of μ in

which satisfactory results are expected. This is similar to
the analysis we performed in Ref. [34], apart from the fact
that we now use a logarithmic scale because the minimizer
function converges faster than with a linear scale. For this
reason, the regularization parameter used in the rROF
algorithm is 10μ. The optimal value, μopt, is the one that
gives the best results according to some suitable metric
function applied to the denoised signal and to the original
one. This function is used to measure the quality of the
recovered signal. In Ref. [34], we chose the peak signal-to-
noise ratio as our quality estimator. In the present paper, we
assess the results of the iterative rROF algorithm using the
structural similarity (SSIM) index, motivated by the quality

assessment based on error sensitivity reported by Ref. [45].
This estimator deviates from the traditional measures of
error, which are based on the calculation of the absolute
error, because it takes into account the structural informa-
tion of both the original and the reconstructed signals. The
SSIM index varies between 0 (minimum similarity) and 1
(maximum similarity) and is defined as

SSIMðx; yÞ ¼ ð2μxμy þ c1Þð2σxy þ c2Þ
ðμ2x þ μ2y þ c1Þðσ2x þ σ2y þ c2Þ

; ð4:1Þ

where c1 and c2 are constants, μx (μy) is the average of x
(y), σ2x (σ2y) is the variance of x (y), and σxy is the covariance
of x and y. The error provided by the SSIM index is used to
determine the optimal value of the regularization parameter
μ in each case.
We search for the optimal value of μ, i.e., the one that

maximizes the SSIM, injecting numerical-relativity signals
from the CCSN and BBH catalogs into O1 data. For the
former, we employ 30 different CCSN signals at three
different distances, namely, 5, 10, and 20 kpc. These
distances are the same as were used in Ref. [26] and
represent a reasonable example of distance for the signals
in the Dimmelmeier catalog [43]. The injections are per-
formed at ten different random GPS times over the
Advanced LIGO O1 data. With all these data, we obtain
the histogram of optimal values of μ shown in the left panel
of Fig. 1. We follow the same procedure for the BBH signals
of Ref. [44], but in this case, the chosen distances are 400,
800, and 1000 Mpc, which are similar to the distances of the
detected BBH events [2,3,5–7]. The corresponding histo-
gram is shown in the right panel of Fig. 1.
The mean value of μ for CCSN signals is μ̄opt ¼ −0.28

with a standard deviation of σopt ¼ 0.58. In the case of
BBH signals, the values are μ̄opt ¼ −0.95 and σopt ¼ 0.27,
respectively. The mean values of μopt are different for
both types of signals. This is expected since the two
signals are very different and the conditions that apply
for one type do not apply for the other. Specifically, for
the BBH signals, we have centred our analysis in the
denoising of the very last cycles of the inspiral, the merger,
and the ringdown parts. This selection produces unsatis-
factory denoising of the inspiral part of the signal, as we
show later.
Although the mean value of μopt is different for both

catalogs, Fig. 1 also shows that partial overlap exists
between the two distributions. This is expected since if
we knew the variance of the noise it would be possible to
determine the most appropriate value of the Lagrange
multiplier for the fidelity term that corresponds to that
variance. On the other hand, in a realistic situation, the
template is unknown, which renders it impossible to obtain
μopt. Therefore, other strategies are required to determine
the values of the regularization parameter that produce
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good results. For this reason, in this work, we also try
out and compare two different approaches based on the
information provided by the histograms of Fig. 1. The first
one is based on the mean value of μ for all waveforms. The
second approach is to use the average of 20 different values
sampled from a Gaussian distribution with the same mean
and variance as the corresponding histograms.

V. RESULTS

A. Core-collapse supernova signals

We first assess our method with three signals from the
CCSN catalog placed at a distance of 10 kpc and using the
optimal value of μ for each case. The particular signals are
s20a1o05 (signal A), s20a2o09 (signal B), and s20a3o15
(signal C) of the Dimmelmeier catalog [43]. The physical
properties of the CCSN models leading to these waveform
signals are reported in the Appendix. With the source at
10 kpc, the signal is visible over the noise. However,
despite its simplicity, this is the first test the method shall
pass. The results are displayed in Fig. 2. As the distance is
fixed, the strain (amplitude) of the signal depends on the
particular simulation; i.e., the SNR is different for each
case. Figure 2 shows that signal A has the largest amplitude
(top panel). The morphology of these signals is charac-
terized by the presence of a negative peak linked to the time
of the core bounce followed by damped oscillations of the
newborn proto-neutron star.
All denoised signals are very similar to the whitened

templates. Signal A is the strongest, and the denoised signal
fits the template almost perfectly. The other two signals are
weaker at 10 kpc, and the denoising procedure leads to
more oscillatory signals. The amplitude and phase of the
main positive and negative peaks and the first secondary
peak in all signals are well recovered. In contrast, the low-
amplitude damped oscillations that follow the burst (asso-
ciated with the oscillation of the proto-neutron star) are lost

since, due to their low amplitude, they are more affected by
noise. This is inherent to the rROF model, as it preserves
large gradients and disfavors small ones.
The denoised signal shown in the middle panel of Fig. 2

is more oscillatory than the other two. In this case, a higher
value of μ is required to recover its peaks properly, which
leads to the presence of more noise than in the other cases.
This fact is something to take into account in a realistic case
in which the real signal is unknown because these small
oscillations could be disregarded in favor of a more regular
signal and more noise removal. However, it is always
possible to use a larger value of μ to recover these parts of
the signal.
To complete the analysis, we also compute the denoising

using the mean value of the regularization parameter and the
multiple regularization for all cases, in which the distance is
different (5, 10, and 20 kpc). The resulting values of the
SSIM index are shown in Table I. In particular, the last
column of this table shows the SSIM index computed for the
signal obtained after the whitening and the corresponding
numerical template. Therefore, it provides a measure of the
improvement obtainedwith the rROFmethod. The values of
the SSIM index are computed in a 256 window centered at
the position of the negative peak of the signal. These values
are computed before applying the TV method in order to
illustrate its performance. As expected, the values of the
SSIM index become worse as the distance increases,
irrespective of the type of regularization parameter
employed. The comparison shows that the optimal value
of the regularization parameter produces the best results in
all cases. The denoising worsens when using the mean value
of μ; however, the results are similar to those obtained with
the optimal one. It thus seems possible to use the mean value
for all signals and still obtain good results. Likewise, the use
of multiple regularization values seems to be a good
alternative, too, because the values of the SSIM index are
very similar to the other cases. For the case of μm, the values

FIG. 1. Histograms of the optimal values of μ for the training signals from the core-collapse catalog (left panel) and BBH catalog (right
panel) at three different distances in ten different GPS times.
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of the SSIM index depend on the sampling of the Gaussian
distribution. We have repeated the sampling several times,
finding similar results. It is expected that as we increase the
number of samples obtained from the distribution of μ the
value of the SSIM index will converge to that obtained with
μ̄. However, multiple regularization has the advantage that
the results can be analyzed separately.

The results of Table I also show that there is not a very
strong dependence with μ; i.e., if the chosen value is of the
same order of magnitude than μopt, the results are quite
similar. This is a different behavior with respect to the
results we found in Ref. [34], in which this dependence was
more critical. The reason is the use of the iterative
procedure, which allows us to choose larger initial values
of μ. Slightly different values of μ will require a different
number of iterations to reach convergence, but the result
will be similar.
To further test the performance for signals at 20 kpc, we

make a complementary test. We compute the spectrogram of
each signal and integrate the power for each temporal
channel. Then, we determine the time at which the maximum
power is achieved. We make this calculation for the noisy
and the denoised signals and compare the results with the
waveform template. In all cases considered, the time given
by the denoised signal matches the one given by the template
even if the noisy signal (after whitening) does not.

B. Binary black hole signals

We turn next to perform the same analysis on BBH
waveform signals. These signals are significantly longer
than those from CCSN and are composed by three parts:
inspiral, merger, and ringdown. During the inspiral, the
signal amplitude and frequency increase up until merger.
For our tests, as we did in Ref. [34], we employ signal
BBH0001 from the catalog of Ref. [44].
The results of denoising this BBH signal placed at a

distance of 400 Mpc are shown in Fig. 3. The last few
cycles before merger (at t ∼ 2.4 s) are the part of the signal
the TValgorithm recovers best, as expected, since the value
of μ is adapted to this region. Previous cycles of the inspiral
are less smooth because, in general, the merger requires a

FIG. 3. Denoising of signal BBH0001 of the Mroué catalog
[44] at a distance of 400 Mpc. The black line is the original
template (after whitening), and the red line corresponds to the
denoised signal. In the inset, the noise is not plotted, and the area
of interest is enlarged to facilitate the comparison.

FIG. 2. Results of applying the rROF model to three CCSN
signals from the Dimmelmeier catalog [43] at a distance for
10 kpc, namely, A (upper panel), B (middle panel), and C (lower
panel). Black lines indicate the original signals (after whitening),
and red lines correspond to the denoised ones.
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higher value of μ, a choice that is not optimal for the rest of
the signal.
The dependence of our results with other distances and

other possible choices of the regularization parameter are
reported in Table II. Both μ̄ and μm produce worse results
than the optimal regularization parameter as the distance
increases. This may happen if the optimal value for a given
distance lies at the tail of the distribution shown in the
histogram, as, e.g., in the case of 800 Mpc, in which
μopt ¼ −2.45, which is very different from μ̄. Also note that
for a distance of 1 Gpc all three choices of μ lead to similar
fairly low values of the SSIM index.
As the waveform produced by a BBH coalescence has

significant length and variations in frequency and ampli-
tude, the optimal value of μ is different for different parts
of the signal. In Fig. 3 and Table II, we have selected the
values of μ that best fit the last cycles and the merger,
choosing this part as the temporal window in which the
SSIM index is computed. However, there is no guarantee
that this value will produce the best results in other parts of
the signal.
To determine the optimal value of μ in different parts of

the signal, we split the waveform into pieces of 256 samples
and search for μopt for each of the resulting windows. The
denoised signal for a BBH merger at 400 Mpc is shown in

Fig. 4, both with a single value of μopt and with multiple
values. If we compare the results for the SSIM index
restricting the comparison to the last cycles of the inspiral
and the merger, the value is similar to that obtained with
a single μopt procedure. However, when considering the
whole signal, the global value of the SSIM index signifi-
cantly improves, increasing from 0.12 to 0.40. The com-
parison of Figs. 3 and 4 shows that the merger part is
similar in both cases but the inspiral part is recovered better
in the latter, in which the value of μ has been chosen to fit
each part separately.

C. Automatic regularization with an artificial
neural network

From the results of the previous section, we can devise
an automatic way to find the optimal value of μ depending
solely on the data at the input. The goal of this section is to
present a simple way to obtain a value of μ closer to the
optimum one in a realistic case, when the latter cannot be
computed. This is a typical problem for machine-learning
methods, in which the result is determined by the data.
Machine-learning algorithms have been applied to a wide
(and growing) range of fields (see Ref. [28] and references
therein), and a large variety of approaches is available. For
our case, we implement a nonlinear regressor that maps for
each input window of the signal the optimal value of μ
required to achieve the best denoising results. A more
comprehensive analysis with different configurations of
neural networks will be presented elsewhere.
We set up a very simple configuration with 40 neurons in

one layer. The detailed structure of the network is shown in
Fig. 5. Each neuron performs a linear calculation,

zi ¼ wl
iXi þ bli; ð5:1Þ

where wl
i are the weights, b

l
i is the bias parameter, Xi is the

input data, and zi is the output of neuron i at layer l.

FIG. 4. Same as Fig. 3, but including the curve corresponding
to using multiple regularization parameters.

TABLE II. Values of the SSIM index for a BBH waveform
when using the optimal value of the regularization parameter for
each signal, μopt; the mean value for all signals, μ̄; multiple
values, μm; and the reference value computed for the signal
obtained after the whitening and the corresponding template.

SSIM index

Signal Distance (Mpc) [μopt] [μ̄] [μm] [Ref]

0001 400 0.43 0.25 0.25 4 × 10−4

800 0.26 0.14 0.10 1 × 10−4

1000 0.11 0.10 0.10 4 × 10−5

FIG. 5. Structure of the artificial neural network used to
perform the regression.
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Nonlinearity is achieved using the so-called activation
function (see Ref. [28] for details). In this case, we use
the well-known Relu activation, which is given by

fðxÞ ¼ maxð0; xÞ: ð5:2Þ

The best values of the weight matrix of each layer is
achieved during the training step, in which for each input
example the network computes the output and compares
the result with the input value μopt using the mean squared
error (MSE) as an error quantifier. The network changes the
weights iteratively to reduce the MSE. To perform this
optimization procedure, we use the Adam optimizer [46].
We first consider the CCSN catalog employed in Sec. IV.

For the training, we use 104 random examples of the set of
30 CCSN signals. The length of each signal example is 512
samples. The top panel of Fig. 6 displays the results of
applying the regularization parameter determined by the
regressor to the CCSN signal 60 of Ref. [43] (our signal A)
at 10 kpc. As the figure shows, the results achieved with the
optimal value of μ and with the one given by the regressor
are very similar (both curves almost completely overlap).

In addition, Table III reports the values of the SSIM index
after applying the regression procedure to three CCSN
signals at three different distances and the values for μopt for
reference. The results are different than the ones shown in
Table I because of the different window used. Here, we use
a sliding window to denoise the entire signal, and thus the
windows are not exactly the same. For most cases, the
values of the SSIM index given by the regressor are similar
to the optimals.
Finally, we train the regressor with signals from the

BBH catalog, and we repeat the analysis done in Sec. V B.
Specifically, we train the network with 104 random
examples of the set of 30 BBH signals, at five different
GPS times and three distances, and a window of 512
samples. The value of the SSIM index is 0.41 for the
optimal regularization parameter, 0.36 for the regressor in
each window, and 0.2 if we use for all the signals μopt
computed at merger. The comparison is shown in the
bottom panel of Fig. 6.

VI. SUMMARY

This paper has extended the work we initiated in
Ref. [34] to denoise gravitational-wave signals using
total-variation methods. We have assessed these techniques
in real noise conditions, injecting numerical-relativity
waveforms from CCSN and BBH mergers in data from
the first observing run of Advanced LIGO. We have shown
that TV methods remove noise irrespective of the type of
signal. The denoising procedure is performed in two steps.
First, we apply a whitening procedure to remove lines and
to flatten the noise spectrum, and next we apply the TV
method. The quality of the results depends on the value
of the regularization parameter μ of the ROF model.
Therefore, we have to perform a heuristic search for the
Lagrange multiplier that produces the best results. To
improve the statistics, we have computed the optimal value
of μ for 30 different signals from a CCSN catalog [43] and

FIG. 6. Top panel: denoising of CCSN signal A at a distance of
10 kpc, showing the comparison between μopt and μreg. Bottom
panel: same comparison, but for the BBH signal.

TABLE III. Comparative results between using the optimal
value of μ and the value given by the regressor μreg, for three
CCSN signals.

SSIM index

Signal Distance (kpc) ½μopt� ½μreg�
A 5 0.78 0.73

10 0.64 0.63
20 0.46 0.38

B 5 0.25 0.26
10 0.16 0.16
20 0.10 0.05

C 5 0.62 0.51
10 0.55 0.51
20 0.46 0.46
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for another 30 from a BBH merger catalog [44], placing the
signals at various distances. The histograms have shown
that the interval of optimal values of μ is not very wide.
However, the use of an iterative procedure reduces some-
what the denosing dependence on μ and has allowed us to
obtain similar results with a larger span of values of μ than
in our first paper [34].
In a realistic situation, however, the original signal is not

known, and it is not possible to determine the optimal value
of the regularizer. Therefore, in this work, we have
expanded the analysis by testing additional ways to
perform the denoising using a general value of μ. The
first ideas are based on the results of the histograms. We
have shown that using the mean value can suffice in most
cases. Another approach uses 20 different values of μ to
compute the mean, yielding similar results. Multiple-μ
denoising allows us to compare the results at different
scales, to process them separately, and to combine them to
obtain the best results. However, even though the method is
very fast (on average, it takes about 0.5 s to denoise 3 s of
signal with the iterative procedure), it requires multiple
blind selections of μ, which in some cases might not be
adequate. For this reason, we have also tested the use of a
neural network to determine the value of the regularization
parameter. We plan to further explore this approach in a
future investigation.
For the case of long-duration signals such as BBH

waveforms, our results have shown that a single value of
the regularization parameter does not provide a good
enough denoising across the entire signal. Instead, combin-
ing the results using optimal values of μ adapted to different
parts of the signal improves the results. We have general-
ized this procedure by employing a regressor implemented
with an artificial neural network of 40 neurons in one
layer. We have shown that this machine-learning approach
leads to results similar to those obtained with the optimal
regularization parameter. Therefore, it is worth it to
combine TV methods with machine-learning techniques
to improve the results and obtain the Lagrange multiplier μ
through an automatic search.
This paper provides further evidence that TV methods

can be useful in the field of gravitational-wave astronomy
as a tool to remove noise. They can be used in a

preprocessing step before applying other common tech-
niques of gravitational-wave data analysis. However, on
their own, they cannot constitute a stand-alone pipeline
since, as they do not use any information about sources,
they cannot detect, classify, or extract physical information.
We plan to investigate a combined strategy and test if the
application of TV denoising can improve the results of
other approaches, e.g., by reducing the uncertainties in
Bayesian methods or reducing the false-alarm rate.
Furthermore, we want to keep exploring the combination
of TV methods with machine-learning techniques. More
precisely, we will further explore the determination of μ via
machine-learning regressors, and we will work on improv-
ing the denoising algorithm itself by using multilayer
structures typical of deep learning. Our findings will be
presented elsewhere.
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APPENDIX: PHYSICAL PARAMETERS
OF THE CCSN SIGNALS

To facilitate the identification of the three CCSN wave-
forms used in this study, Table IV reports the physical
properties of the corresponding core-collapse models
simulated by Ref. [43].
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