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We perform dynamical and nonlinear numerical simulations to study critical phenomena in the
gravitational collapse of massless scalar fields in the absence of spherical symmetry. We evolve
axisymmetric sets of initial data and examine the effects of deviation from spherical symmetry. For
small deviations we find values for the critical exponent and echoing period of the discretely self-similar
critical solution that agree well with established values; moreover we find that such small deformations
behave like damped oscillations whose damping coefficient and oscillation frequencies are consistent with
those predicted in the linear perturbation calculations of Martín-García and Gundlach. However, we also
find that the critical exponent and echoing period appear to decrease with increasing departure from
sphericity and that, for sufficiently large departures from spherical symmetry, the deviations become
unstable and grow, confirming earlier results by Choptuik et al. We find some evidence that these growing
modes lead to a bifurcation, similar to those reported by Choptuik et al., with two centers of collapse
forming on the symmetry axis above and below the origin. These findings suggest that nonlinear
perturbations of the critical solution lead to changes in the effective values of the critical exponent, echoing
period and damping coefficient and may even change the sign of the latter, so that perturbations that are
stable in the linear regime can become unstable in the nonlinear regime.
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I. INTRODUCTION

Critical phenomena in gravitational collapse were first
reported in Choptuik’s seminal study of massless scalar
fields [1]. Specifically, Choptuik performed numerical
simulations of the dynamical evolution of massless scalar
fields coupled to Einstein’s equations. He considered
different families of spherically symmetric initial data,
parameterized by a parameter η, say. Sufficiently strong
initial data collapse to form a black hole, while sufficiently
weak data disperse to infinity and leave behind flat space.
We refer to a value of the parameter η that separates
supercritical from subcritical data as a critical parameter η�.
Critical phenomena appear close to the black-hole

threshold, in the vicinity of a critical parameter η� (see,
e.g., [2,3] for reviews). For many different systems and
matter models, and with η close to η�, the dynamical
evolution will, during an intermediate time, approximately
follow a critical solution that contracts in a self-similar
fashion. This self-similar solution focuses on an accumu-
lation event that occurs at a finite proper time τ� as
measured by an observer at the center. At any proper time
τ, the spatial scale Rsc of the critical solution is therefore
proportional to τ� − τ:

Rsc ≃ τ� − τ ð1Þ
(here and throughout we assume geometrized units, in
which c ¼ 1 and G ¼ 1). For massless scalar fields we

refer to this self-similar critical solution as the Choptuik
spacetime. The better the fine-tuning to criticality, i.e., the
closer η to η�, the longer the evolution will follow
the critical solution, and the later the time τ at which the
evolution will depart from the critical solution. The scale
Rsc ≃ τ� − τ of the critical solution at this time τ imprints a
length scale on the subsequent evolution, resulting, e.g., in
the famous scaling law

M ≃ jη − η�jγ ð2Þ

for the black-hole mass M in supercritical evolutions.
Here γ is the critical exponent, which Choptuik found to
be about γ ≃ 0.37 in his original numerical experiments,
independently of the parametrization of the initial data.
The critical exponent can also be found by considering

perturbations of the critical solution. In spherical symmetry,
the departure from the critical solution is caused by an
unstable, spherically symmetric mode that grows exponen-
tially with expðκTÞ, where

T ¼ − lnðτ� − τÞ: ð3Þ

Note that τ → τ� corresponds to T → ∞. The critical
exponent can then be shown to be the inverse of the
Lyapunov exponent κ, i.e., γ ¼ 1=κ. For a massless
scalar field, Gundlach found γ ¼ 0.374ð1Þ from such a
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perturbative calculation [4], in excellent agreement with
Choptuik’s numerical results.
Choptuik’s discovery launched an entire new field of

research, triggering a large number of studies, both
numerical and perturbative, of critical phenomena for
different matter models, spacetime dimensions and asymp-
totics (see [2,3] for reviews). In particular, these studies
showed that for some matter models, e.g., radiation fluids
[5], the critical solution displays a continuous self-
similarity, while for others, including massless scalar
fields, a discrete self-similarity. A discretely self-similar
solution performs an oscillation as it contracts towards the
accumulation event. In terms of the logarithmic time T, this
oscillation has a period Δ, which can be determined by
casting the problem as an eigenvalue problem [4,6]. The
value computed by [7] is Δ ¼ 3.445452402ð3Þ. At a time
T þ Δ, the self-similar solution will take the same shape as
at time T, but on a radial scale that is smaller than that at T
by a factor of

RscðTþΔÞ
RscðTÞ

¼ τ�− τðTþΔÞ
τ�− τðTÞ ¼ e−ðTþΔÞ

e−T
¼ e−Δ∼

1

31.3
: ð4Þ

The reappearance of the solution at time intervals Δ is
referred to as echoing, and Δ as the echoing period.
Until recently most numerical studies of critical collapse

assumed spherical symmetry, which is helpful for resolving
the small spatial structures that emerge close to criticality
(a notable early exception is the study by Abrahams and
Evans of critical phenomena in the collapse of gravitational
waves [8]). A number of important questions, however,
cannot even be addressed under the assumptions of
spherical symmetry. One such question concerns the
stability of the critical solution to aspherical modes.
Adopting a perturbative treatment, Martín-García and

Gundlach [9] (hereafter MGG) found that all aspherical
modes in the collapse of massless scalar fields are stable,
leading them to conclude that “all nonspherical perturba-
tions of the Choptuik spacetime decay.” We note, however,
that the decay rate of the most slowly damped mode, an
l ¼ 2 mode, was found to be quite small in magnitude,
corresponding to a slow damping.
In [10], Choptuik et al. (hereafter CHLP) adopted a code

in cylindrical coordinates (see also [11]) to study critical
collapse of massless scalar fields in axisymmetry. CHLP
adopted a two-parameter family of initial data, with η
parametrizing the overall strength of the data, and ϵ the
departure from spherical symmetry [see Eq. (11) below].
For a given value of ϵ, CHLP then fine-tuned η to the
black-hole threshold (to about η=η� − 1 ≃ 10−15 for small
values of ϵ) and studied the properties of the emerging
critical solution.
Briefly summarized, CHLP reported two key results.

One of their findings is that the critical exponent γ and the
period Δ appear to depend on ϵ, with both of them

decreasing with increasing departure from sphericity (see
Table I in CHLP). The other, perhaps more important
finding is that, for large values of ϵ and for exquisite fine-
tuning to criticality, the collapsing region in the center of
the spacetime appears to bifurcate into two collapsing
regions, located along the axis of symmetry. This result
indicates that there exists a nonspherical growing mode that
dominates the evolution at late times T, in apparent conflict
with the findings of MGG.
Given the seemingly contradictory results of MGG and

CHLP it is of interest to verify whether the results of CHLP
can be reproduced with an independent numerical code.
However, only a few codes have been able to simulate
critical collapse in the absence of spherical symmetry, as
most recent numerical relativity codes in three spatial
dimensions have been designed for simulations of binary
problems (but see [12,13] for attemptswith such codes in the
context of vacuum evolutions, as well as [14–17] e.g., of
recent codes specifically designed for simulations of critical
collapse in vacuum spacetimes). In [18], Healy and Laguna
simulated critical collapse of scalar fields in three spatial
dimensions (see also [19]). Their calculations achievedmore
modest fine-tuning (to about η=η� − 1 ≃ 10−4), which was
sufficient to measure the critical exponent γ and possibly the
echoing period Δ but not to make statements about the
stability of the critical solution. More recently, Deppe et al.
[20] performed similar simulations of critical collapse of
scalar fields in three spatial dimensions and achieved better
fine-tuning (to about η=η� − 1 ≃ 10−6). Interestingly, their
reported values for the echoing period differ slightly from
those found in previous numerical solutions as well as the
semianalytical value of [7]. Deppe et al. did not observe
any growing modes, but it also is not clear whether their
fine-tuning would be sufficient to find such modes.
In this paper we adopt a code in spherical polar

coordinates [21,22] to study critical collapse of massless
scalar fields in the absence of spherical symmetry. The code
has been used previously for studies of critical collapse in
ultrarelativistic fluids [23–26]. In essence, we follow a
suggestion made in the conclusion section of CHLP,
namely “… one could write a code adapted to the spherical
critical solution (for instance using spherical polar coor-
dinates with a logarithmic radial coordinate).” We evolve
the same axisymmetric initial data as those considered by
CHLP [see Eq. (11) below] and study the properties of
near-critical solutions, fine-tuned to about η=η� − 1 ≃
10−12 or better, for different deviations ϵ from sphericity.
For small values of ϵ we find values of the critical

exponent γ and the echoing period Δ that agree well with
those found in most previous studies; furthermore we
find that small deformations from sphericity behave as
damped oscillations with a decay rate κ and oscillation
frequencies similar to those computed by MGG. We also
confirm CHLP’s finding that both γ and Δ appear to
decrease with increasing ϵ. For sufficiently large values of ϵ
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we find evidence for a growing unstable mode, in further
agreement with CHLP’s results. We also present some
evidence that this growing mode results in a bifurcation
similar to that reported by CHLP, with two centers of
oscillation forming on the symmetry axis above and below
the origin. These results suggest that, in the presence
of nonlinear perturbations of the spherically symmetric
critical solution, the evolution can be described in terms
of effective values of γ, Δ and κ that depend on the
departure from spherical symmetry. The decay rate κ,
which started out quite close to zero, may even change
sign, thereby making a mode that was stable in the linear
regime, as predicted by MGG, unstable for sufficiently
large departures from spherical symmetry, as observed
by CHLP.
This paper is organized as follows. We present basic

equations, our numerical method, initial data and diag-
nostics in Sec. II. In Sec. III we then present the results
from our simulations, first under the assumption of
spherical symmetry and then relaxing this assumption.
We briefly summarize in Sec. IV.

II. SETUP OF THE PROBLEM

A. Basic equations

We solve Einstein’s equations

Gab ¼ 8πTab; ð5Þ

where Gab is the Einstein tensor, under the assumption
that the stress-energy tensor Tab is that of a massless scalar
field [see Eq. (10) below]. Specifically, we adopt the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [27–29] in spherical polar
coordinates ðr; θ;φÞ with the help of a reference-metric
formulation [30–33]. The BSSN formalism is based on a
“3þ 1” decomposition of the spacetime, so that the line
element takes the form

ds2 ¼ gabdxadxb

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð6Þ

Here gab is the spacetime metric, α the lapse function, γij
the spatial metric, and βi the shift vector. The normal on the
spatial slices is given by

na ¼ ð−α; 0; 0; 0Þ or na ¼ α−1ð1;−βiÞ: ð7Þ

We further introduce a conformal decomposition of the
spatial metric

γij ¼ ψ4γ̄ij; ð8Þ

where ψ is the conformal factor and γ̄ij the conformally
related metric. For our applications in spherical coordinates

we also identify the reference metric γ̂ij with the flat metric
ηij expressed in spherical coordinates. We refer the reader
to [21,22] for details of this formalism, as well as its
implementation in our code.
The massless scalar field ϕ satisfies the wave equation

gab∇a∇bϕ ¼ 0; ð9Þ

where ∇a is the covariant derivative associated with
the spacetime metric gab, and its stress-energy tensor is
given by

Tab ¼ ð∇aϕÞð∇bϕÞ −
1

2
gabð∇cϕÞð∇cϕÞ: ð10Þ

Our convention for Tab agrees with that used in many
places in the literature, including [34] (as well as, e.g.,
[20,35]), but differs from that of CHLP by a factor of 2
[see their Eq. (3)]. In comparisons of our results with theirs
the scalar field ϕ therefore needs to be rescaled with a
factor of

ffiffiffi
2

p
.

B. Initial data

We impose initial data at an initial moment of time
symmetry and assume that, at this time, the scalar field is
given by the axisymmetric two-parameter family

ϕ ¼ η exp ð−ðr=r0Þ2ðsin2 θ þ ð1 − ϵ2Þ cos2 θÞÞ ð11Þ

[compare Eq. (9) in CHLP]. The parameter η determines
the overall strength of the initial data, and ϵ2 the departure
from sphericity. The constant r0 has units of length; in
practice we set r0 ¼ 1, meaning that we report all dimen-
sional results in units of r0.
We also assume the spatial metric to be conformally flat

initially, γ̄ij ¼ γ̂ij, and, consistent with time symmetry,
choose the shift vector βi as well as time derivatives of the
spatial metric and the scalar field to vanish. The initial
conformal factor ψ can then be found by solving the
Hamiltonian constraint

D̂2ψ ¼ −2πψ5ρ ð12Þ

subject to Robin boundary conditions at the outer boun-
dary. Here D̂2 is the flat Laplace operator associated with
γ̂ij, and ρ is the energy density

ρ ¼ nanbTab: ð13Þ

We use an iterative process, alternately solving Eq. (12) and
updating (13), to construct simultaneous solutions to the
two equations.
We complete the specification of the initial data by

choosing a “precollapsed lapse” α ¼ ψ−2 as the initial data
for the lapse function α, as well as zero shift, βi ¼ 0.
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C. Numerical evolution

Our numerical code is very similar to that used in
[24–26,36], except that here we couple Einstein’s equations
to a massless scalar field instead of a fluid. We evolve the
gravitational fields using the code described in [21,22]. The
code uses finite-difference methods to solve the BSSN
equations [27–29], recast with the help of a reference-
metric formulation [30–33], in spherical coordinates. We
also rescale all tensorial variables, so that the coordinate
singularities at the origin and on the axis can be handled
analytically.
We define a new auxiliary variable

Π≡ −na∇aϕ ¼ −
1

α
ð∂tϕ − βi∇iϕÞ ð14Þ

in order to cast the wave equation (9) as a pair of two
equations that are first order in time. Unlike in many other
applications, however, we do not introduce variables that
absorb first spatial derivatives of the scalar field ϕ and
instead leave the spatial derivatives in (9) in terms of second
derivatives—similar to the treatment of the gravitational
fields in the BSSN equations.
The code does not make any symmetry assumptions,

but for the axisymmetric simulations presented in this
paper we set to zero all derivatives with respect to φ
and use only a single grid point in the azimuthal
direction. We also impose an equatorial symmetry and
evolve only one of the two hemispheres. For spherically
symmetric simulations we use the minimum number of
grid points possible in the θ direction, Nθ ¼ 2, while in
the absence of spherical symmetry we use Nθ ¼ 12

uniformly allocated angular grid points for ϵ2 ¼ 0.01
and 0.5 and Nθ ¼ 14 for ϵ2 ¼ 0.75 (unless noted
otherwise).
The radial grid points are allocated logarithmically (see

Appendix A in [23]), so that each grid cell is larger than
its inner neighbor by a factor of c ¼ 1.025. For most
simulations we use Nr ¼ 312 grid points and initially
place the outer boundary at rinitout ¼ 64 (in our code units).
We allow the code to regrid whenever the length scale
l ¼ ðϕ;rrÞ−1=2 becomes smaller than 25Δr, where Δr is
the innermost grid size. In each regridding, the code
variables are interpolated to a new grid that extends to a
smaller outer boundary rout. We allow up to 20 regrids,
shrinking the outer boundary by equal factors down to
rfinalout ¼ 0.32. We terminate all runs before the center of
the simulation comes into causal contact with the outer
boundary. For larger ϵ2 the accumulation event occurs
at a later proper time τ� (see Table I below), and we
therefore placed the outer boundary at rinitout ¼ 128, used
Nr ¼ 340 radial grid points (in order to achieve the same
resolution at the center), and allowed 25 regrids to the
same final outer boundary location of rfinalout ¼ 0.32.

For this latter setup, the ratio between the radial grid
size at the outer boundary and that at the origin is
cNr ≃ 4430. Further taking into account the regridding,
we find that the ratio between initial grid size at the
outer boundary and the final grid size at the origin is
ðrinitout=rfinalout ÞcNr ≃ 1.77 × 106. For comparison, a code with
adaptive-mesh refinement would require about 20 levels
of refinement to cover a similar range of scales, assuming
refinements by factors of 2 between each level.
We impose a “moving-puncture” coordinate condition

during our evolution calculations. Specifically, we adopt
the 1þ log slicing condition [37]

ð∂t − βi∂iÞα ¼ −2αK ð15Þ

for the lapse, where K is the mean curvature, and choose a
Gamma-driver condition [38] for the shift, namely the
version presented in [39].

D. Diagnostics

We use several diagnostics to analyze the properties of
our numerical solutions.
As discussed in Sec. II C, we allowed regridding to

small values of the outer boundary in order to be able to
follow the self-similar solution to late times. The dis-
advantage of this approach is that we had to terminate the
simulations before the horizons of newly formed black
holes had enough time to settle down to approximate
equilibrium. In this paper we therefore do not analyze the
scaling of black hole masses for supercritical data. As
pointed out by [40], however, scaling can also be
observed for subcritical data. The maximum encountered
value of the central density ρc, e.g., has units of inverse
length and therefore must satisfy a scaling law

TABLE I. Summary of our numerical results. The “quasiana-
lytical” results (from [4,6,7]) provide values for γ and Δ, but not
for η� or τ�, which depend on the specifics of the initial data. We
report values of Δ as computed from three different approaches,
namely from the frequency of the fine structure of the critical
scaling, i.e., Eq. (18), from the periodicity of the scalar field at the
origin, Eq. (24), and from the scaling of radial echoes, Eq. (4).
See the text for estimates of our errors; in particular, Δ can be
determined only very crudely from the scaling of the echoes for
large values of ϵ. We find good agreement with the perturbative
results for small departures from sphericity but find that both γ
and Δ decrease as ϵ2 increases (compare Table I in CHLP).

η� τ� γ Δ

ϵ2 (18) (24) (4)

Quasianalytical � � � � � � 0.374 3.445452402
0 0.303376 1.570 0.374 3.47 3.46 3.46
0.01 0.303352 1.572 0.374 3.47 3.47 3.45
0.5 0.304512 1.775 0.369 3.39 3.37 3.35
0.75 0.308378 2.067 0.306 2.87 2.80 2.75
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ρmax
c ≃ jη� − ηj−2γ: ð16Þ

We note that the density ρ, defined in (13), is in general
not an invariant quantity, since it depends on the
spacetime slicing through the normal vector na. At the
origin of the coordinate system, however, the symmetries
in the problem single out a preferred normal vector, so
that the values of the central density ρc reported here do
take on an invariant meaning.
The scaling laws (2) and (16) describe the overall

behavior of quantities close to criticality, but both
Gundlach [4] and Hod and Piran [41] realized that, for
scalar fields, the discretely self-similar nature of the critical
solution imprints a periodic fine structure on the scaling
law. The scaling for the maximum encountered central
density can then be written as

ln ρmax
c ¼ C − 2γ ln jη� − ηj þ fðln jη� − ηjÞ; ð17Þ

where C is the logarithm of the constant of proportionality
between ρc and the term jη� − ηj−2γ in (16) and where fðxÞ
is a function that is periodic in x with angular frequency

ω ¼ Δ
2γ

: ð18Þ

In the fits presented in Sec. III we assume that, to leading
order, we can approximate fðxÞ as

fðxÞ ¼ A sinðωxþ ϕphÞ; ð19Þ

where A is the amplitude of the fine structure and ϕph a
phase, so that (17) becomes

ln ρmax
c ¼ C − 2γ ln jη� − ηj

þ A sinðω ln jη� − ηj þ ϕphÞ: ð20Þ

Fits to numerical data then provide values for η� and the
critical exponent γ, as well as ω. Using (18) we can then
compute Δ from ω and γ—the first of three different
approaches to computing the period Δ.
We also adopt an approach similar to that of CHLP to

monitor the departure from sphericity. At logarithmic times
T0 [see Eq. (3)] we launch pairs of photons from the center,
one along the axis (θ ¼ 0) and one in the equatorial plane
(θ ¼ π=2). For each pair of photons we initialize the affine
parameter λ to zero, and the derivative of λ to that of T, i.e.,
dλ=dt ¼ dT=dt (other normalizations are possible, but with
this normalization λ inherits the self-similar nature of T).
We follow the photons’ trajectories during the subsequent
evolution and record the value of the scalar field ϕ at each
photon’s current location as a function of its affine
parameter λ. We then compute the difference

δϕðT0; λÞ ¼ ϕaxðλÞ − ϕeqðλÞ ð21Þ

for a pair of photons launched at T0, as well as the maxima
of these differences

ΔϕðT0Þ≡max
λ

jδϕðT0; λÞj ð22Þ

for each pair of photons emitted at logarithmic time T0.
For ϵ2 > 0, a projection of our initial data (11) into

Legendre polynomials would result in contributions to
modes of all even order l. However, we expect higher-
order modes to decay more rapidly than lower-order modes
(see Table I in MGG) so that at sufficiently late times our
diagnostics δϕ and Δϕ become a measure of l ¼ 2 modes.

III. RESULTS

A. Spherical symmetry

In order to both test and calibrate our code, and for better
comparison with our aspherical results in Sec. III B 2, we
start with a discussion of results in spherical symmetry, i.e.,
for ϵ ¼ 0 in the initial data (11). Essentially the results
presented in this section reproduce those of [1] and
numerous follow-up publications, including [35] who,
similar to our treatment here, adopted the BSSN formalism
and moving-puncture coordinates.
We bracket the critical parameter η� using bisection,

except that in each step we refine the bracketing interval
into ten new intervals instead of two by adding one more
digit to η. For subcritical data the scalar field disperses,
leaving behind flat space, and the lapse function α
approaches unity, while for supercritical data the minimum
of the lapse function drops to zero, indicating the formation
of a black hole. We show an example in Fig. 1, which
already suggests the presence of a pattern that keeps
repeating on increasingly small scales.
While we can bracket the critical parameter η� to about

13 significant digits, we would like to emphasize that
these numbers do depend on the numerical grid. The true

FIG. 1. The central value of the lapse function α as a function of
coordinate time t for two spherically symmetric evolutions with
values of η that bracket the critical value η�.
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uncertainty in η� is significantly larger than the 13 digits
suggest; see our discussion below.
In Fig. 2 we show numerical results for the maximum

encountered central density ρc as a function of η for
subcritical data. We fit the numerical data to (20) and
obtain values for η�, γ and ω (as well asC, A and ϕph). From
(18) we can then obtain our first estimate of the echoing
period Δ.
Several different sources of error affect the uncertainty in

the parameters determined in these fits. The critical ampli-
tude η� is mostly affected by numerical finite-difference
error. Based on comparisons with different grid setups we
expect this value to be accurate to within about 0.1% for the
spherically symmetric simulations considered here. The
coefficients γ and Δ also depend more sensitively on which
data are included in the fits—evolutions too close to the
critical point develop features that can no longer be resolved
on our grids, and therefore lead to large errors, while for
evolutions far way from the critical point the expected
power-law scalings no longer apply. We crudely estimate the
resulting errors to be about 1%: slightly less for γ, and
slightly more for Δ.
We next consider the central value ϕc of the scalar field

for a subcritical evolution close to the critical point. When
plotted as a function of proper time of an observer at the
origin, as in Fig. 3, ϕc displays oscillations with decreasing
period, as one would expect for a self-similarly contracting
solution whose time and length scales continuously
decrease. The oscillations accumulate at the accumulation
time τ�.
We can determine the accumulation time τ� by looking

for periodic behavior in the logarithmic time T [see
Eq. (3)]. In practice we identify the proper times τn of
zero crossings of ϕc. We then consider a pair of subsequent
zero crossings, say τn and τnþ1, and a second pair τm and
τmþ1. Assuming that the advance of logarithmic time T for
each pair is equal—namely Δ=2—results in the estimate

τ� ¼
τnτmþ1 − τnþ1τm

τn − τnþ1 − τm þ τmþ1

: ð23Þ

Equating the advance of T for each pair to Δ=2 then yields

Δ ¼ 2 ln

�
τ� − τn
τ� − τnþ1

�
; ð24Þ

our second approach to determining Δ. In practice we
compute Δ for all pairs during the self-similar part of the
evolution and report average values in Table I. For different
pairs, the values of Δ differ by up to approximately 1%,
which we therefore take to be the approximate error in this
value. In Fig. 4 we show the central value of the scalar field
as a function of T, which clearly reveals the periodic
behavior during an intermediate regime.
Figure 4 helps distinguish three different phases during

the evolution. In phase 1, the initial data approach the

FIG. 2. Scaling of the maximum central density ρmax
c for

spherically symmetric subcritical data. Open circles represent
numerical results from spherical evolutions, while the solid line is
a fit based on (20).

FIG. 3. The central value of the scalar field ϕ versus proper time
τ for a near-critical, spherically symmetric evolution. The field
displays oscillations with decreasing period, as expected for a
self-similarly contracting solution, accumulating at the accumu-
lation time τ�.

FIG. 4. The same as Fig. 3, but plotted as a function of T rather
than τ. The labels identify every other zero crossing of ϕc; in
Fig. 5 we show radial profiles of ϕ at these times in order to
demonstrate echoing. (See also Table II for the coordinate and
proper times of these zero crossings.)
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self-similar, critical solution. This phase depends on the
specifics of the initial data, but with sufficient fine-tuning it
will result in the critical solution, the Choptuik spacetime,
plus a perturbation whose amplitude depends on the degree
of fine-tuning. During phase 2, the evolution can then be
described as the critical solution plus the slowly growing
perturbation. Once the perturbation has become sufficiently
large, the evolution departs from critical solution non-
linearly, marking the transition from phase 2 to phase 3, and
the scalar field either disperses to infinity or collapses into a
black hole. The intermediate regime during which the
periodic behavior can be observed in Fig. 4 corresponds to
phase 2.
In Fig. 4 we also label every other zero crossing of ϕc,

i.e., times T that, during phase 2, are separated by a
whole period Δ, as opposed to the half-periods discussed
above. We list both coordinate times and proper times of
these zero crossings in Table II. Note that N ¼ 0 occurs
just before the evolution enters phase 2, while for N ¼ 3
the resolution at the center becomes quite poor.
According to the properties of the discretely self-similar
solution, radial profiles of ϕ at these times should be
echoes of each other, meaning that they should be
identical to each other (in those parts of the solution
that have reached self-similarity already), except rescaled
by a factor e−Δ between each echo [see Eq. (4)]. In
Fig. 5 we show these profiles as a function of proper
distance R from the origin, which we find by integrating
from the origin to each grid point along lines of constant
angles θ and φ. For those parts of the profiles in the self-
similar regime (and with sufficient numerical resolution)
we find excellent agreement if we choose Δ ¼ 3.45. This
provides us with a third measure of the echoing period Δ.
The agreement becomes visually worse if we increase or
decrease Δ by about 1%.
As an aside we note that it was not clear a priori that the

discretely self-similar symmetry of the Choptuik spacetime
would be revealed in our time slicing, but apparently the
1þ log slicing (15) does reflect the symmetry of the
spacetime (see also the discussion in [36] in the context
of ultrarelativistic fluids; see also [42] for proposals for
symmetry-seeking spacetime coordinates).

We report all our results in Table I. In particular we find
that our different approaches to determining Δ yield values
that are within our estimated margins of error. Our values
are also in good agreement with most previous numerical
studies (e.g., [35]) as well as the values provided by [4,6,7],
who found Δ by casting the problem as an eigenvalue
problem. Similarly, our values of the critical exponent agree
well with previous numerical results, as well as the
perturbative values found by [4]. In the following, includ-
ing in Table I, we will refer to the results of [4,6,7] as
quasianalytical results, even though solving the eigenvalue
problem or the perturbative equations involves numeri-
cal work.

B. Aspherical deformations

1. Critical parameters

We next consider aspherical evolutions with ϵ > 0 in the
initial data (11). For a given value of ϵ we bracket the
critical value η� as described in Sec. III A.
For subcritical evolutions we can again fit the values of

the maximum encountered density to the scaling relation
(20). The result of these fits is shown in Fig. 6, which
generalizes Fig. 2 to include aspherical evolutions. The
overall trend—namely that the critical exponent γ appears
to decrease with increasing ϵ—can already be observed in
Fig. 6, but it is easier to see this after subtracting the overall
scaling −2γ0 lnðη� − ηÞ [see Eq. (20)] from each curve.
Here γ0 ¼ 0.374 is the value that we found in our spherical
evolutions (see Table I). The resulting curves are shown in
Fig. 7—note the similarity with the corresponding Fig. 3 in
CHLP. For ϵ2 ¼ 0.75 we included data only for relatively

TABLE II. Coordinate times t and proper times τ (as measured
by an observer at the origin) of the Nth other zero crossing of the
scalar field ϕ at the origin (as indicated in Fig. 4). The number of
digits provided does not reflect the numerical error in these data.

ϵ2 ¼ 0 ϵ2 ¼ 0.5 ϵ2 ¼ 0.75

N t τ t τ t τ

0 1.85344 0.838213 2.15922 0.943157 2.70846 1.06692
1 6.27193 1.54598 7.35928 1.74628 9.54811 2.01083
2 6.57627 1.56913 7.7259 1.77395 10.1933 2.06492
3 6.59199 1.56987 7.7457 1.77491 10.2777 2.07448

FIG. 5. Radial profiles of ϕ at the times identified in Fig. 4, i.e.,
at every other zero crossing of the central value ϕc (see also
Table II for coordinate and proper times of these zero crossings).
We show ϕ as a function of proper distance R from the origin, on
a logarithmic scale, and the Nth echo rescaled with a factor eNΔ

with Δ ¼ 3.45 [see Eq. (4); note that e3Δ ≃ 31000]. In regimes
for which the solution has entered the self-similar phase, and for
which we have not yet lost numerical resolution close to the
origin, the radial profiles agree very well, clearly demonstrating
echoing.

ASPHERICAL DEFORMATIONS OF THE CHOPTUIK SPACETIME PHYS. REV. D 98, 084012 (2018)

084012-7



large values of lnðη� − ηÞ. Closer to the black-hole thresh-
old we found larger deviations from these fits, which we
believe are caused by a growing aspherical mode, as we
will discuss in more detail below.
From the fits to (20) we determine both γ and, via (18),

the echoing period Δ (see Table I). For small deformations,
we estimate the errors to be similar to those that we found
for spherically symmetric data. For larger values of ϵ, two
effects lead to increasing errors. A stronger angular
dependence leads to larger numerical finite-difference
errors for a given angular resolution. Moreover, for ϵ2 ¼
0.75 we included fewer data points in the fits, as discussed
above, which also increases the error. We estimate the latter
by varying the number of points included in the fits and find
that, for large ϵ, the errors in γ andΔ are closer to about 5%.
We nevertheless note that both values decrease with
increasing ϵ, in good agreement with the findings of
CHLP (see their Table I).
The critical exponent γ and the echoing period Δ

describe properties of the spherically symmetric critical

solution and its linear perturbations; strictly speaking,
therefore, they take unique values that are independent
of ϵ. Apparently, however, the dynamics of nonlinear
perturbations of the critical solution can still be described
heuristically in terms of similar parameters γ and Δ, except
that they now take on effective values that do depend on ϵ.
When we discuss the dependence of γ and Δ on ϵ in the
following, we mean these effective values rather than those
defined in the context of linear perturbation theory.
As for our spherically symmetric evolutions in Sec. III A,

we next consider the time dependence of the central value
of ϕ for a near-critical evolution. Identifying the proper
times of zero crossings during phase 2 we can determine
the accumulation time τ� from (23) and the echoing period
Δ from (24). Our results for different values of ϵ are listed
in Table I. For ϵ2 ¼ 0.01 and 0.5 we estimate the error in Δ
to be again approximately 1%. For ϵ2 ¼ 0.75, however, we
observe fewer zero crossings during phase 2 and therefore
believe that our error is close to about 5%. As before, we
find that Δ decreases with increasing ϵ, in good agreement
with our previous determination of Δ from the scaling of
ρmax
c . In Fig. 8 we show ϕc as a function of logarithmic time
T for different values of ϵ; this graph also shows that the
period Δ becomes smaller for increasing ϵ.
Next we again consider echoing in radial profiles of the

scalar field ϕ at moments of alternating zero crossings of its
central value ϕc. We again list the times of these zero
crossings in Table II. The echoing is now harder to identify
than for the spherical evolutions, because the new angular
dependency leads to additional oscillations with periods
different from Δ, meaning that the echoing is no longer
exact [see also Eq. (25) below]. For small values of ϵ the
overall time dependence of ϕ is still dominated by that of
the spherical Choptuik spacetime, so that the echoing can
still be seen very cleanly, and Δ can still be determined
quite accurately. For ϵ2 ¼ 0.5 the deviations are larger, as

FIG. 7. The same as Fig. 6, but with the overall scaling
−2γ0 lnðη� − ηÞ subtracted in order to highlight the difference
between the spherical and aspherical scalings [see Eq. (20)]. Here
γ0 ¼ 0.374 is the value of the critical exponent found in our
spherical evolutions. (Compare Fig. 3 in CHLP.)

FIG. 6. The same as Fig. 2, but now including results for
aspherical evolutions with ϵ > 0. The symbols represent numeri-
cal results, and the solid lines fits based on (20).

FIG. 8. The same as Fig. 4, but now including aspherical near-
critical evolutions for different values of ϵ. We also introduced an
offset Toffset, defined as the logarithmic time T of the first
maximum, for an easier comparison of the echoing period.
(Compare Fig. 4 in CHLP.)
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we show in Fig. 9. We now show each echo in its own panel
and include profiles of ϕ in both the axial direction (θ ¼ 0,
solid lines) and the equatorial direction (θ ¼ π=2, dotted
lines) in each panel. While the profiles in the two directions
do not agree, the differences do not appear to decay or grow
with time (i.e., from echo to echo). Moreover we can still
identify the overall features of the Choptuik spacetime,
which match quite well if we rescale each echo with
Δ ¼ 3.35.
The behavior becomes more complicated for ϵ2 ¼ 0.75,

as shown in Fig. 10. It now appears that the differences
between the axial and equatorial profiles do grow—in fact,
these deviations appear to cause an early departure from
self-similar solution, so that the third echo N ¼ 3 is no
longer in what we had identified as phase 2 (see also

Fig. 8). We still observe some resemblance with the
Choptuik solution for larger values of R and were able
to match these features reasonably well with Δ ¼ 2.75—
clearly, however, this value should be considered a crude
estimate only. At smaller values of R, however, and on the
axis, a new feature appears to have emerged by the time of
the third echo.
In Fig. 10 we included results for two angular resolutions

Nθ ¼ 14 and Nθ ¼ 12. The two resolutions cannot be
distinguished in the figure at early times, as well as at a
sufficiently large radius. The new features that emerge late
in the evolution, however, appear on the axis and therefore
have a strong angular dependence that is difficult to resolve
in spherical coordinates. While this leads to increasing
quantitative differences between the different angular
resolutions, the qualitative behavior remains very similar,
as we discuss in more detail in the following section. (The
“double peak” peak at e3ΔR ≃ 10 for N ¼ 3, θ ¼ 0 and
Nθ ¼ 12 leads to a single peak very similar to that for
Nθ ¼ 14, just at a slightly later time; compare Fig. 15.)

2. Properties of the deformations

In order to analyze the growth or decay of deviations
from spherical symmetry more carefully we emit pairs of
photons from the origin in the axial and equatorial
directions, as described in Sec. II D. We then record the
differences δϕ in the scalar field ϕ that these pairs observe
as a function of the photons’ affine parameter λ [see
Eq. (21)] and also compute the maximum values of the
differences Δϕ [see Eq. (22)]. In Fig. 11 we show results
for δϕ for a near-critical evolution with ϵ2 ¼ 0.01, and in
Fig. 12 maximum values Δϕ for different values of ϵ
(rescaled with ϵ2).

FIG. 9. Echoing in spatial profiles of the scalar field ϕ for
ϵ2 ¼ 0.5, with Δ ¼ 3.35.

FIG. 10. The same as Fig. 9, but for ϵ2 ¼ 0.75 and with
Δ ¼ 2.75. At the time of the third echo a new feature has emerged
on the axis (note the different scale on the y axis for N ¼ 3). We
include results for Nθ ¼ 14 (solid colors) as well as Nθ ¼ 12
(faded) colors. At early times, as well as at sufficiently large radii,
the two cannot be distinguished in this plot. While the increasing
angular dependence of the emerging feature leads to increasing
quantitative differences, we nevertheless find very similar quali-
tative behavior independently of angular resolution (see also
Fig. 15 as well as the discussion in the text).

FIG. 11. Differences in the scalar field ϕ as observed by pairs of
photons emitted from the origin at logarithmic times T0 in the
axial and equatorial directions, as a function of the photons’
affine parameter λ [see Eq. (21)]. Shown are results for a near-
critical evolution with ϵ2 ¼ 0.01.
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For spherical evolutions, with ϵ ¼ 0, the differences Δϕ
always remain close to truncation error (about 5 × 10−14 or
less). This behavior is different from that reported by
CHLP, who find a growth in Δϕ even for ϵ ¼ 0, although
these values of Δϕ decrease with improving numerical
accuracy (see their Fig. 6). This effect might be related to a
small drift of the center of symmetry with respect to the
origin in the simulations of CHLP, which also converges to
zero as numerical accuracy is improved. We do not observe
such a drift in our simulations with spherical polar
coordinates and equatorial symmetry nor a growth in Δϕ
for ϵ ¼ 0.
According to MGG, linear perturbations of the Choptuik

spacetime can be described by functions of the form

uðTÞ ≃ eκT cosðωpT þ ϕphÞgðTÞ; ð25Þ

where κ determines the rate of perturbation’s growth or
decay. The function gðTÞ is a function with the period Δ of
the discretely self-similar background solution. Values of κ
and ωp for different modes l are tabulated in Table I of
MGG. In particular, MGG found that all κ are negative,
leading them to conclude that “all nonspherical perturba-
tions of the Choptuik spacetime decay.”
In general, the period 2π=ωp of the perturbation is not

commensurate with the period Δ of the background,
making it difficult to analyze theses functions, especially
if data are available for only a small number of periods Δ
(see also the discussion in MGG). This situation is quite
different from the critical collapse of ultrarelativistic fluids,
for which the critical solution is continuously self-similar,
so that perturbations behave like (25) but without the
function gðTÞ (see [43]). In this case the perturbations
behave like damped or growing oscillations, and the
coefficients κ and ωp can be determined from fits to the
numerical data (see [23,36]).

While it is significantly harder to determine κ and ωp for
scalar fields, the curve for ϵ2 ¼ 0.01 in Fig. 12 does appear
like a slowly damped oscillation (the same damping is
present in Fig. 11, but more difficult to see in a surface
plot). For comparison, we included the exponential
expðκpertTÞ with κpert ¼ −0.07=Δ, the value for an even
l ¼ 2 mode according to MGG (see their Table I). The
slope of this curve appears to agree quite well with the
overall decay of our numerical curve for Δϕ.
Following MGG, we now multiply δϕ for ϵ2 ¼ 0.01

with expð−κpertT0Þ in order to remove the overall expo-
nential decay and then take the Fourier transform of
expð−κpertT0Þδϕ for fixed values of λ > 0 (λ ¼ 0 corre-
sponds to the origin, where δϕ ¼ 0 identically). The low-
frequency end of these Fourier transforms is shown in
Fig. 13; for larger frequencies the spectra quickly decay to
zero. Given that we have data for T0 ≲ 3Δ only, the
resolution of these spectra is quite crude. We can never-
theless observe well-defined peaks, and moreover these
peaks agree well with those predicted in the perturbative
calculations of MGG, marked by the vertical dotted lines in
Fig. 13. We note that the value of ω0Δ=ð2πÞ ¼ 0.3
provided in their Table I is by definition in the range
between 0 and 2 (i.e., it is defined modulo two). Peaks in
the spectrum of the scalar field perturbations can then be
found by adding odd multiples of 2π=Δ to ω0, yielding
values of ωpΔ=ð2πÞ ¼ 1.3; 3.3; 5.3;… (compare their
Fig. 2), while peaks in the spectrum of the metric
perturbation can be found by adding even multiples of
2π=Δ [see also the discussion around their Eq. (173)]. We
conclude that, for small deformations ϵ2, our results are

FIG. 12. Maximum differences in the scalar field ϕ as observed
by pairs of photons emitted from the origin at times T0 in the axial
and equatorial direction [see Eq. (22)], for near-critical evolutions
with different values of ϵ2. The solid line shows the decay rate for
even l ¼ 2 modes as predicted by MGG.

FIG. 13. The low-frequency end of the discrete Fourier
transform of expð−κpertT0Þδϕ for several different fixed values
of λ, for a near-critical evolution with ϵ2 ¼ 0.01 [i.e., the Fourier
transform along lines of constant λ in Fig. 11, except that
we removed the overall exponential decay expðκpertT0Þ from
δϕ]. The vertical dotted lines at frequencies ωpΔ=ð2πÞ ¼
1.3; 3.3; 5.3;… mark the peaks in the spectra as expected from
the perturbative calculations of MGG for even l ¼ 2 modes of
the scalar field (see their Fig. 2).
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consistent with both the slow exponential decay and the
oscillation rates of MGG.
For larger deformations ϵ2, however, we find deviations.

For ϵ2 ¼ 0.5, the curve in Fig. 12 does not seem to decay at
all, which is qualitatively consistent with our observations
from Fig. 9. For ϵ2 ¼ 0.75 the deviations grow, consistent
with Fig. 10, which suggests that κ has changed sign and is
now positive.
It may seem surprising that κ depends on the size ϵ of

deviations from sphericity, since it describes linear pertur-
bations of the unperturbed, spherically symmetric back-
ground solution, the Choptuik spacetime, and hence
reflects properties of the latter. However, we have already
confirmed the observation of CHLP that other coefficients
describing the properties of the background solution,
namely γ and Δ, also appear to depend on ϵ. In this sense
the ϵ dependence of κ is consistent with that of the others.
Unlike the others, the decay constant κ changes sign, but
that may be a result of it starting out very close to zero. We
also note that a similar effect was observed for rotating
ultrarelativistic fluids, where the decay rate of l ¼ 1modes
also appeared to show some dependence on the rotation rate
(see [26]). Strictly speaking, the coefficients κ, γ and Δ
should be defined for small deviations from spherical
symmetry only, so that the evolution can be approximated
as the Choptuik spacetime plus a linear perturbation.
The results of CHLP, Ref. [26], and ours here suggest
that for larger values of the deviation from sphericity the
evolution can, heuristically, still be described in terms of
similar parameters, except that nonlinear terms in the
deviation lead to changes in the effective values of these
coefficients.
We next present some evidence that the growing modes

lead to a bifurcation in the solution, similar to that
described by CHLP. A first hint is offered by the lapse
function α. In Fig. 14 we show graphs of the lapse function
for subcritical evolutions close to criticality, for both
ϵ2 ¼ 0.5 (top panels) and ϵ2 ¼ 0.75 (bottom panels). In
all panels we show the value of the lapse at the center as a
function of coordinate time (αc, blue solid lines), as well as
the minimum values of the lapse along the axis (αaxmin, red
dashed lines) and in the equatorial plane (αeqmin, green dotted
lines). For ϵ2 ¼ 0.5, the graph is qualitatively very similar
to that in Fig. 1 for spherical evolutions. In particular we see
that all three curves coincide at times when the lapse takes a
minimum, indicating that the lapse takes its smallest values
at the origin. For ϵ2 ¼ 0.75, on the other hand, the behavior
is qualitatively different. The evolution no longer shows the
same pattern repeating at increasingly small scales; instead
the pattern changes at late times. Moreover, we now see
periods of time when the minimum value of the lapse along
the axis no longer coincides with its value at the center. This
indicates that the lapse takes a smaller value somewhere on
the symmetry axis, suggesting that a new collapsing region
emerges away from the center.

This is consistent with the behavior of the scalar field ϕ,
which, at late times, starts to develop large oscillations at a
point on the symmetry axis. The example shown in Fig. 15
shows such an oscillation at times shortly after the N ¼ 3
panel in Fig. 10 where, as we discussed before, a similar
feature can be seen. In Fig. 16 we show ϕ at the same times
as surface plots.
Recall that we imposed equatorial symmetry in our

simulations. This means that if a feature develops at a
certain distance from the origin on the symmetry axis
(θ ¼ 0 in Fig. 15 or the z̄ axis in Fig. 16), then the same

FIG. 14. The lapse function α as a function of coordinate time t
for near-critical, but subcritical evolutions with ϵ2 ¼ 0.5 (top
panels) and ϵ2 ¼ 0.75 (bottom panels). The (blue) solid lines
represent the value of the lapse at the center, similar to the solid
blue line in Fig. 1 for ϵ2 ¼ 0. The (red) dashed lines mark the
minimum values of the lapse along the axis (θ ¼ 0), while the
(green) dotted lines mark the minimum values in the equatorial
plane (θ ¼ π=2).

FIG. 15. Radial profiles of the scalar field ϕ for near-critical
evolutions with ϵ2 ¼ 0.75 at times that correspond to the
appearance of the first maximum and the first minimum of ϕ
after the N ¼ 3 echo. We show results for both Nθ ¼ 14 (solid
colors) and Nθ ¼ 12 (faded colors). For Nθ ¼ 14, the two
coordinate times (proper times at the origin) are t ¼ 10.2815
(τ ¼ 2.07515) and t ¼ 10.2891 (τ ¼ 2.07713), while for
Nθ ¼ 12 they are 10.2865 (2.07716) and 10.2959 (2.07932).
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feature also develops at the same distance on the other side
of the equatorial plane. Our simulations therefore suggest
the formation of two centers of collapse on the symmetry
axis, one on each side of the origin. This behavior was first
observed by CHLP, who referred to this process as a
bifurcation.
The plots in Fig. 16 also demonstrate, however, that our

numerical grid is not sufficient to accurately resolve a small
feature developing away from the origin—exactly as CHLP
had anticipated: “Of course, spherical polar coordinates
would not be well suited to following a solution beyond a
bifurcation, but it should be adequate to study the growth or
decay of perturbations.” We showed most results for ϵ2 ¼
0.75 with Nθ ¼ 14 but also compared with results for
Nθ ¼ 12, the resolution used in our other aspherical
simulations. In Fig. 10, e.g., the two resolutions can hardly
be distinguished except in the presence of the new feature
that grows on the axis and which leads to an increasing

angular dependence. We similarly include results for both
angular resolutions in Fig. 15. Note that these simulations
differ not only in angular resolution but also in precise
distance from the critical parameter η�, which makes a
direct comparison difficult. Despite the evident quantitative
differences, we find very similar qualitative behavior,
namely the formation of new centers of oscillation on
the symmetry axis away from the origin. While our
numerical resolution is not sufficient to analyze these
features in greater detail, our simulations suggest that,
for large initial deviations from sphericity, perturbations of
the Choptuik spacetime can grow and that these growing
perturbations may lead to a bifurcation in the solution as
previously observed by CHLP.

IV. SUMMARY

We perform numerical simulations of the critical col-
lapse of massless scalar fields in the absence of spherical
symmetry. We use a numerical relativity code that adopts
spherical coordinates with a logarithmic radial coordinate
and, following CHLP, evolve axisymmetric initial data
whose deviation from sphericity is parameterized by ϵ.
For small ϵ we find values for the critical exponent γ and

the echoing period Δ that agree well with established
values. We also find that small deviations from spherical
symmetry behave like slowly damped oscillations, with a
decay rate κ and frequencies ωp similar to those found by
MGG in perturbative calculations.
For larger deviations from spherical symmetry we find

effective values for the critical exponent γ and the echoing
periodΔ that decrease with increasing ϵ, in good agreement
with the findings of CHLP. Moreover, we find that, for
sufficiently large departures from spherical symmetry, the
deviations grow rather than decay, also confirming earlier
results of CHLP. This suggests that the effective value for
the decay rate κ, like those for γ and Δ, depends on ϵ also
and, in fact, changes sign. We find some evidence that, at
late times, these growing modes lead to a bifurcation of the
critical solution, with large oscillations of the scalar field
developing around two points on the symmetry axis, one
above and one below the origin. While our numerical grid
does not provide sufficient resolution away from the center
to follow the evolution of these oscillations, and possibly
their collapse to black holes (unlike the code of CHLP, our
code does not employ adaptive mesh refinement), our
simulations nevertheless display the growth of these fea-
tures and hence support the original discovery of this
bifurcation by CHLP.
A similar phenomenon was recently discussed by [17]

in the context of collapse of axisymmetric gravitational
waves (see also [8,15]). Specifically, [17] evolved Brill
wave initial data and found that, close to criticality, the
Kretschmann scalar takes maxima on the symmetry axis
away from the origin, reminiscent of the results of CHLP
as well as ours here. Moreover, [17] find that, in their

FIG. 16. The same as Fig. 15, but as surface plots. Following
CHLP we have defined x̄ ¼ R̄ sin θ and z̄ ¼ R̄ cos θ with R̄ ¼
lnð1þ R=e0Þ and e0 ¼ 2 × 10−4. (Compare Fig. 2 in CHLP.)
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equatorially symmetric simulations, two black holes with
disjoint apparent horizons form on the axis, suggesting that
near-critical Brill wave initial data lead to the formation of
two black holes which then collide head on. The authors
further suggest that this behavior may dominate whenever
axisymmetric modes dominate over spherically symmet-
ric modes.
Unlike data for gravitational waves, the initial data (11)

can be produced as an expansion in ϵ about spherically
symmetric data. To linear order, one would therefore expect
agreement with the perturbative results ofMGG, and indeed,
for small ϵ we observe a decay rate κ and oscillation
frequencies ωp that are similar to the values computed by
MGG. For larger ϵ, however, we observe shifts in the
effective values of the critical exponent γ and the echoing
periodΔ aswell as the decay rate κ. Similar behaviorwas also
observed by [26] for rotating ultrarelativistic fluids, even
though there the effect of increasing rotation was to stabilize
the perturbations, whereas here the effect of increasing
deformations is to destabilize the perturbation [44]. The
coefficients γ and κ have a well-defined meaning only in the

context of linear perturbations. Heuristically, however, it
appears that a similar description of the dynamics is still
possible in the presence of nonlinear effects, except that the
effective coefficients γ and κ then depend on the size of the
perturbation. Exploring this possibility quantitatively would
require (at least) a second-order perturbation analysis,which,
unfortunately, is quite challenging.
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