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Recently a new class of scalarized black holes in Einstein-Gauss-Bonnet (EGB) theories was discovered.
What is special for these black hole solutions is that the scalarization is not due to the presence of matter,
but it is induced by the curvature of spacetime itself. Moreover, more than one branch of scalarized
solutions can bifurcate from the Schwarzschild branch, and these scalarized branches are characterized by
the number of nodes of the scalar field. The next step is to consider the linear stability of these solutions,
which is particularly important due to the fact that the Schwarzschild black holes lose stability at the first
point of bifurcation. Therefore we here study in detail the radial perturbations of the scalarized EGB black
holes. The results show that all branches with a nontrivial scalar field with one or more nodes are unstable.
The stability of the solutions on the fundamental branch, whose scalar field has no radial nodes, depends on
the particular choice of the coupling function between the scalar field and the Gauss-Bonnet invariant. We
consider two particular cases based on the previous studies of the background solutions. If this coupling has
the form used in [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, 131103 (2018)] the fundamental
branch of solutions is stable, except for very small masses. In the case of a coupling function quadratic in
the scalar field [H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, Phys. Rev. Lett. 120,
131104 (2018)], though, the whole fundamental branch is unstable.

DOI: 10.1103/PhysRevD.98.084011

I. INTRODUCTION

Very recently new black holes with a nontrivial scalar
field have been constructed in the extended scalar-tensor-
Gauss-Bonnet (ESTGB) theories [1–4]. What is interesting
in these results is the presence of nonuniqueness of the
solutions—in addition to the pure general relativistic
solution, that exists in the whole domain of the parameter
space, for a certain range of parameters new branches of
solutions with a nontrivial scalar field are present. These
branches can be characterized by the number of nodes of
the scalar field. In fact, besides the fundamental branch
which possesses no nodes of the scalar field, there arises a
whole sequence of radially excited branches.1 Moreover,
the Schwarzschild solution loses stability at the point where
the first nontrivial branch bifurcates from it. Then the

fundamental branch of scalarized black holes could re-
present the stable one. This would represent a direct
analogy with the spontaneous scalarization of neutron stars
in the standard scalar-tensor theories considered in [8], and
also with the scalarized black holes in scalar-tensor theories
in the presence of nonlinear matter sources [6,7,9,10]. The
main difference with respect to those results, though, is that
in the ESTGB case the scalar field is not sourced by matter,
but instead by the curvature of spacetime through the
Gauss-Bonnet scalar. In fact such spontaneous scalarization
in ESTGB theories is observed also for neutron stars [2,11].
The ESTGB theories are very interesting on their own

because of the following reasons. Their theoretical moti-
vation comes from attempts to quantize gravity and the fact
that pure general relativity is not a renormalizable theory. A
way to cure this problem is to supplement the Einstein-
Hilbert action with all possible algebraic curvature invar-
iants of second order [12]. A serious problem that appears,
though, is that the resulting field equations are of order
higher than two, which leads to Ostrogradski instability and
to the appearance of ghosts. However, this can be avoided
in the special case when the additional dynamical scalar
field is nonminimally coupled to a special combination
of the second order invariants, namely the Gauss-Bonnet
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1Note that radially excited black hole solutions were known

before only in Einstein-Maxwell-Chern-Simons theory [5] and in
scalar tensor theories in the presence of a nonlinear electromag-
netic field [6,7].
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invariant, since the resulting field equations in this case are
of second order [13]. These are exactly the ESTGB
theories.
One of the most studied classes of ESTGB theories is the

dilatonic Einstein-Gauss-Bonnet (EGB) theories, where the
coupling function between the scalar field and the Gauss-
Bonnet invariant has the form αe2γφ, where α and γ are
arbitrary constants, and the scalar field potential is set to
zero. Black holes in dilatonic EGB theories have been
extensively studied, both in the perturbative and non-
perturbative regime and also including rapid rotation
[14–26]. In contrast with the dilatonic EGB theories, the
considered class of ESTGB theories in [1–4] is charac-
terized by a coupling function that can lead to nonunique-
ness of the solutions and scalarization/descalarization.
Stability of black holes in dilatonic EGB theories was

examined in [20,27–31] and it was shown that the primary
branch of black holes is stable, while the secondary
branch, that appears for sufficiently strong dilaton cou-
pling, is unstable. The linear stability of the scalarized
black holes obtained in [1–4] has not been studied yet.
It was already proved, though, in [1,2,32] that the
Schwarzschild solution loses stability at the point of
bifurcation, where the first nontrivial branch of solutions
appears. Examining the stability of the nontrivial branches
of solutions is much more involved and represents the goal
of the present paper. Based on thermodynamical analysis,
it has been argued in [1] that, for the particular coupling
function considered there, the fundamental ESTGB black
hole branch should be the stable one, whereas all radially
excited branches should be unstable. Of course in order to
check this hypothesis more rigorously, one has to examine
the linear stability of the branches of scalarized black
holes, as done below.
In Sec. II the field equations used to obtain the back-

ground solutions are presented. The radial perturbations are
examined in Sec. III, while the lengthy formulas are given
in a separate Appendix. The results for the stability of the
scalarized black holes are presented in Sec. IV. The paper
ends with our conclusions.

II. FIELD EQUATIONS

The action of ESTGB theories in vacuum, in its general
form, can be written as

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R− 2∇μφ∇μφ−VðφÞ þ λ2fðφÞR2
GB�;

ð1Þ

where R is the Ricci scalar with respect to the spacetime
metric gμν; φ is the scalar field; VðφÞ and fðφÞ are the
potential and the coupling function, respectively, that
depend on φ only; and λ is the Gauss-Bonnet coupling
constant that has dimension of length. The Gauss-Bonnet

invariant R2
GB is defined as R2

GB ¼ R2 − 4RμνRμν þ
RμναβRμναβ where R is the Ricci scalar, Rμν is the Ricci
tensor and Rμναβ is the Riemann tensor.
We will consider static and spherically symmetric space-

times as well as static and spherically symmetric scalar field
configurations. In addition, we will concentrate on the case
of zero scalar field potential VðφÞ ¼ 0. Thus, the spacetime
metric can be written in the following form:

ds2 ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ

After varying the action and performing a dimensional
reduction of the resulting field equations one can obtain the
following system of ordinary differential equations (more
details can be found in [1]):

2

r

�
1þ 2

r
ð1 − 3e−2ΛÞΨr

�
dΛ
dr

þ ðe2Λ − 1Þ
r2

−
4

r2
ð1 − e−2ΛÞ dΨr

dr
−
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dr

�
2

¼ 0; ð3Þ

2

r

�
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r
ð1 − 3e−2ΛÞΨr

�
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dr

−
ðe2Λ − 1Þ

r2
−
�
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dr

�
2

¼ 0;

ð4Þ

d2Φ
dr2

þ
�
dΦ
dr

þ 1

r

��
dΦ
dr

−
dΛ
dr

�

þ 4e−2Λ
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�
3
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dr

dΛ
dr

−
d2Φ
dr2

−
�
dΦ
dr

�
2
�
Ψr

−
4e−2Λ
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dΦ
dr

dΨr

dr
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dφ
dr

�
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¼ 0; ð5Þ

d2φ
dr2

þ
�
dΦ
dr

−
dΛ
dr

þ 2

r

�
dφ
dr

−
2λ2

r2
dfðφÞ
dφ

�
ð1 − e−2ΛÞ

�
d2Φ
dr2

þ dΦ
dr

�
dΦ
dr

−
dΛ
dr

��

þ 2e−2Λ
dΦ
dr

dΛ
dr

�
¼ 0; ð6Þ

where

Ψr ¼ λ2
dfðφÞ
dφ

dφ
dr

: ð7Þ

Furthermore, we assume zero cosmological value of
the scalar field φjr→∞ ≡ φ∞ ¼ 0, and the coupling function
fðφÞ is chosen such that it satisfies the conditions
df
dφ ð0Þ ¼ 0 and b2 ¼ d2f

dφ2 ð0Þ > 0. Without loss of generality

we can set b ¼ 1, which can be achieved after rescaling of
the coupling parameter λ → bλ and redefinition of the
function f → b−2f. Another observation one can make is
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that the field equations do not depend on fðφÞ itself, but
only on its derivative with respect to φ which leaves the
freedom to choose fð0Þ ¼ 0.
After performing an expansion of the reduced field

equations at the horizon and requiring regularity of the
metric functions and the scalar field, one finds [1] that black
hole solutions with a real scalar field exist only when the
following condition is fulfilled:

r4H > 24λ4
�
df
dφ

ðφHÞ
�

2

; ð8Þ

where rH is the radius of the black hole horizon and φH is
the value of the scalar field at the horizon.
The boundary conditions are derived by the requirement

for asymptotic flatness:

Φjr→∞ → 0; Λjr→∞ → 0; φjr→∞ → 0: ð9Þ

On the other hand, the very existence of a black hole
horizon requires

e2Φjr→rH → 0; e−2Λjr→rH → 0: ð10Þ

In the present paper we will concentrate mainly on the
following coupling function:

fðφÞ ¼ 1

12
ð1 − e−6φ

2Þ; ð11Þ

since it was shown in [1] that it can produce non-negligible
deviations from pure general relativity (GR). In addition,
Eq. (11) is quite similar to the coupling function employed
in the studies of spontaneous scalarization of neutron
stars [8].
In the last part of the paper we will also present results

for the case of the quadratic potential previously considered
in [2]:

fðφÞ ¼ 1

2
φ2: ð12Þ

It is worth noting that in the case of small scalar field, the
coupling (12) is the leading term of the coupling (11),
fðφÞ ¼ 1

12
ð1 − e−6φ

2Þ ≈ 1
2
φ2 þOðφ4Þ, and both couplings

will share many features in the small φ domain.

III. RADIAL PERTURBATIONS

A. Ansatz and equations

We consider time-dependent radial perturbations over
the spherically symmetric and static background
black holes obtained after solving the reduced system of
equations (3)–(6):

ds2 ¼ −e2ΦðrÞþϵFtðr;tÞdt2 þ e2ΛðrÞþϵFrðr;tÞdr2

þ r2ðdθ2 þ sin2θdϕ2Þ;
φ ¼ φ0ðrÞ þ ϵφ1ðr; tÞ; ð13Þ

with ϵ being the control parameter of the perturbations. The
field equations result in three second order differential
equations and two algebraic constraints on the first deriv-
atives [28]. However, the system can be simplified into a
single second order differential equation

g2ðrÞ ∂
2φ1

∂t2 −
∂2φ1

∂r2 þ C1ðrÞ
∂φ1

∂r þUðrÞφ1 ¼ 0; ð14Þ

where the functions UðrÞ, gðrÞ and C1ðrÞ depend only on
the background metric and scalar field. Their expressions
are given in the Appendix.
In order to study the mode stability of the background

configuration, we decompose the perturbation function φ1 as

φ1ðr; tÞ ¼ φ1ðrÞeiωt ð15Þ

and we obtain the master equation for the eigenvalue
problem, namely

d2φ1

dr2
¼ C1ðrÞ

dφ1

dr
þ ½UðrÞ − ω2g2ðrÞ�φ1ðrÞ: ð16Þ

The master equation (16) can be cast into the standard
Schrödinger form by defining the function ZðrÞ,

φ1ðrÞ ¼ C0ðrÞZðrÞ; ð17Þ

where C0ðrÞ is the solution of the following differential
equation:

1

C0

dC0

dr
¼ C1 −

1

g
dg
dr

: ð18Þ

Thus we obtain

d2Z
dR2

¼ ½VðRÞ − ω2�Z; ð19Þ

where we have defined the tortoise coordinate R and the
effective potential as

dR
dr

¼ g; ð20Þ

VðRÞ ¼ 1

g2

�
U þ C1

C0

dC0

dr
−

1

C0

d2C0

dr2

�
: ð21Þ

Since we are interested in the stability analysis of the
background solutions, we will focus on perturbations with
purely imaginary eigenfrequencies: ω ¼ iωI .
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B. Boundary conditions and numerical method

We want the perturbation to be outgoing at infinity and
ingoing at the horizon:

Z →
r→∞

eiωðt−RÞ ¼ e−ωIðt−RÞ; ð22Þ

Z →
r→rH

eiωðtþRÞ ¼ e−ωIðtþRÞ: ð23Þ

These boundary conditions simplify a lot for unstable
modes possessing ωI < 0, and it is straightforward to show
that Zjr¼∞ ¼ Zjr¼rH ¼ 0 (see e.g., [7]).
In order to obtain the unstable modes, we implement the

following numerical procedure. The first step is to generate
a background solution for a set of fixed values for rH, λ and
the number of nodes of the scalar field. We make use of
Colsys [33] in order to integrate the equations. Colsys
allows us to solve boundary value problems for systems of
ordinary differential equations, implementing a spline
collocation method that automatically adapts the mesh
points to achieve the required precision in the functions
and derivatives. Two different sets of programs based on
Colsys are written for two specific cases.
In the first case, we implement Eqs. (3), (4) and (6),

with boundary conditions e2Φjr¼rH ¼ 0, e−2Λjr¼rH ¼ 0,
φ0jr¼rH ¼ φH and Φjr¼∞ ¼ 0. In this setting, the free
parameters are rH, φH and λ. Provided that relation (8)
is satisfied, numerical solutions can be generated by
proposing as an initial guess the Schwarzschild solution
with the corresponding value of rH, and a constant scalar
field φ0 ¼ φH. Colsys converges to solutions that can be
required to have a relative precision of 10−15 in the values
of the functions and derivatives with around 1000–10000
points on a grid in the compactified coordinate x ¼
1 − rH=r. However these solutions do not have in general
φ∞ ¼ 0.
To obtain such solutions we implement a second set

of programs, solving with Colsys Eqs. (3), (4) and (6),
with boundary conditions e2Φjr¼rH ¼ 0, e−2Λjr¼rH ¼ 0,
φ0jr¼∞ ¼ 0 and Φjr¼∞ ¼ 0. The free parameters are just
rH and λ in this case. But now for the initial guess we use
numerical solutions obtained with the setting described in
the previous paragraph. If we carefully choose the initial
guess so that φ∞ is small, then Colsys quickly converges to
solutions with φ0jr¼∞ ¼ 0. In this way we can explore the
space of solutions with arbitrary values of rH, φH and λ, and
specifically construct the configurations with φ∞ ¼ 0. All
these solutions can be obtained with relative precision of
10−15, 1000–10000 points on a grid in x ¼ 1 − rH=r.
We need the background configurations in order to

calculate numerically the coefficients of Eq. (16), using
also Eqs. (3)–(6) to evaluate the higher order derivatives
of the background functions. We use Eq. (16) instead of
Eq. (19) because the former is slightly simpler. We write a

routine that calculates the coefficients for any value of r by
cubic interpolation.
Once the coefficients are calculated, we are ready to

obtain the modes solving Eq. (16). We follow a scheme
similar to the one described in [34] to obtain the bifurcation
points. We define the quantity ω2 ≡ E, and promote it to an
auxiliary function EðrÞ. This function satisfies a trivial
differential equation, dEdr ¼ 0, which is added to Eq. (16) to
form a system of differential equations. The three boundary
conditions that we impose on this system are φ1jr¼rH ¼ 0,
φ1jr¼r0 ¼ 1 and φ1jr¼∞ ¼ 0, where rH < r0 < ∞. This
setting is implemented again in Colsys. We feed the routine
with an initial guess given by a simple sinusoidal profile for
the perturbation φ1 and a guess value for E. This setting is
used essentially to obtain solutions close to the bifurcation
points. For a fixed background the free parameters are just
the guess value of E and r0. The latter can be freely
adjusted in order to improve the numerical results, and
typically we choose r0 ¼ 2rH. Once Colsys converges to a
mode, the numerical profile of φ1 and E can be used as the
initial guess for the perturbation of other background
solutions. Typically E and φ1 are obtained with a relative
precision of 10−4 − 10−5 or better, on a grid with a few
hundred points in x ¼ 1 − rH=r.
The procedure is automatized, allowing us to rapidly

calculate the eigenfrequency for several thousands of
solutions in the parameter space.

IV. STABILITY ANALYSIS

Using the procedure described above we calculate the
potential and the unstable modes of the Schwarzschild
branch as well as the first few branches of scalarized black
holes for the two coupling functions (11) and (12).

A. Exponential coupling function

In the following we will focus on the exponential
coupling function (11), employed in [1], discussing first
the nonperturbative background solutions and subsequently
the unstable modes.

1. Background solutions

The domain of existence of these black holes is sum-
marized in Fig. 1, where we show the space of solutions in
the (rH, φH) plane for λ ¼ 1.2 The yellow area represents
the region where condition (8) is not fulfilled, with the red
line representing the saturation of this inequality (i.e., the
singular limit). The area in cyan is filled by solutions that in

2All dimensional quantities can be scaled with λ in such a way
that in the dimensionless representation of the field equations and
their perturbations the parameter λ does not appear explicitly.
This is equivalent to considering λ ¼ 1 in our calculations. The
exact dimensional values of the quantities will of course depend
on the particular choice of λ.
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general do not satisfy the condition φ∞ ¼ 0. This condi-
tion is only satisfied for the solutions shown with black
curves. Thus the φ∞ ¼ 0 solutions form a system of
branches bifurcating from the Schwarzschild solution
(shown by the vertical line in Fig. 1). In the following
we will only consider these branches of φ∞ ¼ 0 solutions.
The stability analysis will only be performed for these
asymptotically flat solutions with zero cosmological value
of the scalar field.
Each branch of scalarized black holes can be charac-

terized by the number of nodes of the scalar field as it
extends along the radial coordinate. The fundamental
branch possesses solutions without nodes (n ¼ 0), the first
excited branch has solutions with one node (n ¼ 1),
etc. Here we present results for the first six branches

(n ¼ 0…5), although branches with a higher number of
nodes exist, presenting similar features.
The first few branches can also be seen in Fig. 2, where

we exhibit the scalar charge D=λ vs the mass M=λ. The
Schwarzschild solution exists for arbitrary values of M=λ,
while the scalarized branches exist only in certain intervals.
The fundamental branch (shown in orange) exists between
M=λ ¼ 0 and the upper bound M=λ ¼ 0.587, where the
scalar hair disappears and the branch merges with the
Schwarzschild branch.
The radially excited branches exist only in very

small intervals of M=λ since the condition (8) is quickly
violated. All these branches have the same structure, as seen
in Fig. 2. The n ≥ 1 branches bifurcate from the
Schwarzschild branch at certain values of M=λ, which
decrease with increasing node number. Along these scalar-
ized branches, the scalar charge increaseswith increasingM.
The branches then end at some critical value ofM=λ, where
the scalarized solution becomes singular [1]. The branches
rapidly decrease in size as the node number increases.
Figure 2 also indicates the radial stability of each branch,

discussed in detail below. Solid curves correspond to
radially unstable solutions (i.e., on solid curves the sol-
utions possess at least one unstable radial mode). The
dotted curves correspond to solutions that are radially
stable (i.e., the effective potential is everywhere positive).
The dashed curves correspond to solutions that do not seem
to possess unstable modes although the potential is not
strictly positive.

2. Unstable Schwarzschild modes

Let us now turn to a detailed discussion of the radial
stability of the Schwarzschild branch and the scalarized
branches, starting with a summary of our findings as
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FIG. 1. Domain of existence of black holes parametrized by rH
and φH for λ ¼ 1.

-0.2

-0.1

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

n=0

Schwarzschild

n=1n=2n>2D
/λ

M/λ

no modes, V>0
no modes

unstable

f(ϕ)=(1-e-6ϕ2

)/12

-0.01

-0.005

 0

 0.005

 0.01

 0.06  0.12  0.18  0.24

Schwarzschild

n=1

n=2
n=3

n=4n=5D
/λ

M/λ

unstable

FIG. 2. Left: The scalar charge D vs the mass M, both quantities scaled with λ. In red we show the Schwarzschild solution; in orange
the fundamental branch; and in blue, green, violet, brown and black the branches n ¼ 1, 2, 3, 4 and 5, respectively. Solid curves
represent radially unstable solutions, dashed curves solutions without unstable modes, and dotted curves solutions with a strictly positive
potential. Right: A zoom of the n ¼ 1…5 branches. All the solutions shown in this region are unstable.
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exhibited in Fig. 3. Here we exhibit the value of ωI

multiplied by M2=λ vs the (scaled) mass M=λ for all
considered branches of solutions. In red we show the
modes of the Schwarzschild solution, and with various
other colors the modes corresponding to the scalarized
branches. The right panel of Fig. 3 shows a zoom-in
focusing on the region, where the n ¼ 1…5 scalarized
branches reside.
Figure 3 shows that the branch of Schwarzschild

solutions possesses sets of unstable modes, indicated by
the red curves. All these modes behave like ðM2=λÞ−1 when
M=λ → 0 (see the scaling). The first set of unstable modes
extends from M=λ ¼ 0 up to M=λ ¼ 0.587. This set of
modes corresponds to the instability previously investi-
gated in [1] by analyzing the potential. AtM=λ ¼ 0.587 the
curve reaches a zero mode (i.e., ωI ¼ 0), which appears
because at that point there is the bifurcation point of the
fundamental branch. This set of unstable modes exists in
the same range of parameters as the fundamental branch,
which coexists with the Schwarzschild solution in this
region of the parameter space [see Fig. 2 (left), the
orange curve].
Consequently the Schwarzschild black hole in this

theory is unstable under radial perturbations in the full
interval where the fundamental branch of scalarized black
holes exists. Moreover, the black hole solutions are not
unique in this interval. Nevertheless, as soon as the funda-
mental branch ceases to exist (i.e., for M=λ>0.587), the
instability of the Schwarzschild solutions disappears. The
potential, however, is only strictly positive for M=λ >ffiffiffiffiffiffiffiffi
3=4

p
. Hence in Fig. 2 (left) a solid red line indicates

the unstable Schwarzschild solutions in the interval

0 < M=λ < 0.587, a dashed line indicates the solutions
between 0.587 < M=λ <

ffiffiffiffiffiffiffiffi
3=4

p
, and a dotted line marks

the stable Schwarzschild solutions for 0.587 < M=λ.
Clearly, this is not the only set of unstable modes that the

Schwarzschild solution possesses. In Fig. 3 we see addi-
tional sets of unstable modes extending from M=λ ¼ 0 up
to certain values of M=λ, where further zero modes are
reached. Again, these zero modes appear precisely at the
bifurcation points of the scalarized branches, but now with
node number n > 0 (shown by the short blue to black
curves in Fig. 2). We note that the different sets of unstable
modes of the Schwarzschild solutions can be characterized
by the number of nodes of the perturbation function φ1: the
set of unstable Schwarzschild modes connected to the zero
mode associated with the emergence of the nth scalarized
branch always possesses n nodes in the function φ1.
To summarize the above analysis, we conclude that the

number of unstable modes of the Schwarzschild solution
depends on the value ofM=λ: if the Schwarzschild solution
resides in between bifurcation points of the nth and
the (nþ 1)th branch of scalarized solutions, then it has
nþ 1 unstable modes.

3. Unstable n > 0 modes

Let us next address the unstable modes of the n > 0
branches before discussing the stability of the fundamental
branch. In Fig. 3 these unstable modes are marked in blue,
green, pink, brown and black for the branches with n ¼ 1,
2, 3, 4 and 5, respectively. We see that these scalarized
black holes also possess several sets of radially unstable
modes. One of these sets is always related to the respective
zero mode of the Schwarzschild solution at the bifurcation
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FIG. 3. Left: Eigenfrequency ωI scaled with M2=λ vs the scaled mass M=λ. The unstable modes in red correspond to the
Schwarzschild solution. Note that there are no unstable Schwarzschild modes beyond M=λ ¼ 0.587. In orange we show the mode
corresponding to the fundamental branch. The vertical dashed line in orange marks the value M=λ ¼ 0.171 at which the unstable mode
of the fundamental branch disappears. In blue, green, pink, brown and black we show the modes corresponding to the n ¼ 1…5
branches, respectively. Right: A zoom-in focused on the modes of the n ¼ 1…5 branches.
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point. For instance, in Fig. 3 we see that at each zero mode
(for n ≥ 1), a set of unstable modes of the corresponding
nth branch appears and extends up to the maximum value
of M=λ, where the background solutions become singular.
The additional sets of unstable modes are not directly

connected to the zero modes. However, since the nth
excited branch bifurcates from the Schwarzschild solution,
its unstable modes bifurcate from the unstable modes of the
Schwarzschild solution as well as from the zero mode. This
occurs at the bifurcation point as dictated by continuity
(although for zero modes there could also arise a mode that
is not purely imaginary). Therefore the nth excited branch
should have a total of nþ 1 unstable modes, as indeed seen
in Fig. 3. In Fig. 4 (left) we focus on the subset of unstable
modes that bifurcate from the set of unstable Schwarzschild

modes connecting with the zero mode of the fundamental
branch, while in Fig. 4 (right) we zoom in on these unstable
modes of the n ¼ 1 branch. The behavior is analogous for
the sets of unstable modes bifurcating from the other
branches of unstable Schwarzschild modes. We also note
that each set of unstable modes can be characterized by the
nodes in the φ1 function, possessing the same number of
nodes as the modes of the corresponding Schwarzschild
family they are connected with.
Let us again summarize the above analysis and conclude

that the nth excited branch of scalarized black holes (where
n > 0) possesses nþ 1 distinct unstable modes.
This conclusion is supported further by an inspection of

the potential for the excited branches. In Fig. 5 (left) we
show the potential V vs the function of the radial coordinate
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FIG. 4. Left: Subset of eigenfrequencies ωI scaled withM2=λ vs the scaled massM=λ. The unstable modes in red correspond to those
of the Schwarzschild solution and connect with the zero mode associated with the bifurcation point of the fundamental branch. Further
colors denote a subset of unstable modes of the n > 0 branches. Right: A zoom-in focusing on a set of unstable modes of the n ¼ 1
branch (blue).
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FIG. 5. Left: The scaled potential V vs 1 − rH=r for several black holes on the excited branches with n ¼ 1, 2 and 3 for λ ¼ 1 and
several values of rH . Right: A similar figure for black holes on the fundamental branch.
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1 − rH
r for black holes of the n ¼ 1, 2 and 3 branches. Here

we clearly see that the potential is dominantly negative. In
fact, the integral of the potential is negative,

n > 0 ⇒
Z

∞

−∞
VðRÞdR < 0; ð24Þ

in accordance with the existence of the unstable modes.
Hence in Fig. 2 (left), the n > 1 branches are shown by
solid lines, since they are always radially unstable.

4. Stability analysis of the fundamental branch

Let us now turn to the analysis of the radial stability
of the fundamental branch of scalarized black holes. In
Fig. 5 (right) we show the potential V vs the function of the
radial coordinate 1 − rH

r for several black holes along this
branch (with λ ¼ 1 and different values of rH). What we
observe is that the potential is always positive for solutions
in the range 0.285≲M=λ≲ 0.542. Hence we conclude that
no unstable modes exist on the fundamental branch for
black holes as long as the solution belongs to this region. In
Fig. 2 (left) this region of the fundamental branch (orange)
is marked with a dotted line.
For black holes on the fundamental branch in the interval

0.542≲M=λ≲ 0.587 the potential becomes slightly neg-
ative in a region close to the horizon, while for black holes
with 0.171≲M=λ≲ 0.288 the potential becomes slightly
negative in some intermediate region of r, as seen, for
instance, in Fig. 5 (left) for the potentials corresponding
to λ ¼ 1, rH ¼ 1.16 (in red) and rH ¼ 0.3 (in purple).
However for both intervals the integral of the potential is
always positive, meaning that

n ¼ 0; M=λ≳ 0.171 ⇒
Z

∞

−∞
VðRÞdR > 0: ð25Þ

Although this does not exclude the possibility of unstable
modes, we have not been able to generate any solution to
the perturbation equation (16) describing an unstable mode
and satisfying the boundary and regularity conditions. We
interpret this as a strong indication that solutions along
this branch are mode stable as long as M=λ≳ 0.171. In
Fig. 2 (left) the two intervals of the fundamental branch are
marked with a dashed line, where stability can thus not be
decided with certainty.
The black holes on the fundamental branch in the

interval 0 < M=λ≲ 0.171 need a more involved investi-
gation. Let us first consider the problem on the level of the
Schrödinger equation (19). For the interval under consid-
eration the tortoise coordinate becomes ill defined. In order
to show this, we plot in Fig. 6 the function ð1 − rH

r Þ2g2 vs
1 − rH

r , for black holes belonging to the fundamental branch
with λ ¼ 1 and for different values of rH. This function
should be positive in order to have a well-defined tortoise
coordinate R [see Eq. (20)]. As rH is decreased, the

function deviates more and more from the Schwarzschild
case, which corresponds to g ¼ ð1 − rH

r Þ−1. For small
enough values of rH, the function becomes negative in
the range rH ≤ r ≤ r� where gðr�Þ ¼ 0. As a consequence,
the potential becomes singular for M=λ≲ 0.171.
The more fundamental reason for this strange behavior

is that for M=λ≲ 0.171 Eq. (14) is not hyperbolic for
rH ≤ r ≤ r�. This is an interesting and highly nontrivial
phenomenon. What is immediately clear from this fact is
that the study of the linear stability as a Cauchy problem is
ill posed. More detailed discussions of such phenomena of
hyperbolicity violation can be found in [35,36]. In general,
however, the hyperbolicity violation in the gravitational
theories is far from being understood in depth. That is
why leaving aside many subtle mathematical questions,
we can formally study the stability on the level of the
eigenvalue problem. It is possible to analyze the mode
stability by using the standard coordinate r and integrating
Eq. (16). Then it is possible to find that indeed, black
holes of the fundamental branch with M=λ≲ 0.171
possess an unstable mode. In Fig. 3, this unstable mode
is shown in orange. The mode extends from M=λ ¼ 0 up
to M=λ ≈ 0.171, where the mode diverges. [This limit is
marked by a vertical dashed line in orange in Fig. 3 (left).]
Interestingly, this unstable mode does not bifurcate from
any Schwarzschild mode (although in the figure it crosses
the sets of unstable Schwarzschild modes for small values
of M=λ, it is not connected with them). The perturbation
function φ1 of this family of modes always presents
zero nodes.
Marking consequently this part of the fundamental

branch extending from M=λ ¼ 0 to M=λ ¼ 0.171 with a
solid orange line in Fig. 2 we note that black holes
belonging to the fundamental branch are not always
radially stable; i.e., for arbitrary values of M=λ, and even
worse, for small enough black holes (as compared to the
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coupling parameter) the theory is not hyperbolic. Stability
is only found for sufficiently large values of M=λ. The
entropy of the studied branches was examined in [1] using
the generalized formula proposed by Wald [17,18]. It was
shown that the whole fundamental branch has higher
entropy compared to the Schwarzschild solution and there-
fore, it is thermodynamically more favorable. Thus, the
entropy cannot shed further light on the problem of the
change of stability of this branch.
We remark that the structure found is to some extent

reminiscent (although much more complicated) of the
radial instability observed in the dilatonic EGB black holes
in [28,31]. This theory corresponds to fðφÞ ¼ e2γφ and
λ2 ¼ α

4
(following the conventions of [30,31]). For certain

values of the coupling constant γ, one secondary branch of
solutions is present in a small region of the parameter space,
in addition to the main branch of dilatonic black holes,
resulting in nonuniqueness of the solutions. The secondary
branch appears close to the minimum value of the black
hole mass allowed by the theory, and it was found to be
radially unstable [28,31].
It is also interesting to note that in dilatonic EGB black

holes the existence of a minimum mass is caused by the
existence of a limiting value of the normalized coupling
constant [i.e., the maximum value of ζ ¼ α=M2 [31],
when condition (8) is no longer satisfied]. No regular
black hole solutions can be found for smaller values of
this mass. This is different from the scalarized EGB black
holes on the fundamental branch considered here, which
exist for arbitrarily small values of the mass. However,
this branch also possesses an effective minimum mass
(M=λ ≈ 0.171), below which the theory is no longer
hyperbolic (i.e., where the configurations are no longer
stable).

B. Quadratic coupling function

Finally we turn to the case of the quadratic coupling (12).
In Fig. 7 (left) we show the domain of existence rH vs φH.
As expected, we find that the space of solutions is very
similar to the one of the previous coupling in the small φH
and rH region (compare Fig. 1). In particular, since the
quadratic coupling (12) is obtained in the small φ limit
of the exponential coupling (11), the bifurcation points
of the Schwarzschild solution coincide. Even more, the
structure of the zero modes and sets of instabilities of the
Schwarzschild solution are exactly the same for both
couplings. This is seen in Fig. 7 (right), where we show
D=λ vs M=λ for solutions with the quadratic coupling.
The most important difference appears for the funda-

mental branch n ¼ 0, which in this case extends from the
bifurcation pointM=λ ¼ 0.587 to larger values ofM=λ and
reaches the singular limit at a finite value of φ. This gives
the n ¼ 0 branch a similar structure to the excited n > 0
branches. In fact, the fundamental branch turns out to be
unstable like the excited branches. In Fig. 8 we exhibit the
scaled unstable modes ωI vsM=λ focusing on the n ¼ 0, 1
branches for the quadratic coupling. Again in red we show
the first two sets of unstable Schwarzschild modes that
connect with the n ¼ 0 and n ¼ 1 zero modes. In the
present case at the zero mode of the n ¼ 0 branch, a new set
of unstable modes appears and remains present on the
whole fundamental branch (shown by the orange curve).
The branch and with it its set of unstable modes end when
the singular configuration is reached. The n ¼ 1 modes are
also shown (in blue). Moreover, for comparison the
respective unstable modes corresponding to the exponential
coupling (11) are shown (in cyan).
Hence in this case, all the scalarized branches are

unstable, and the nth branch possesses nþ 1 unstable
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modes, including the fundamental branch, n ¼ 0. This
means there are no stable configurations below the first
branching point at M=λ ¼ 0.587. As a matter of fact this
conclusion coincides with the thermodynamical results—
after performing a calculation of the black hole entropy
similar to [1] but for the particular coupling function (12), it
turns out that all of the branches with a nontrivial scalar
field, including the fundamental one, have lower entropy
than the Schwarzschild solution and therefore they are
thermodynamically less stable.

V. CONCLUSIONS

In the present paper we have studied the stability with
respect to radial perturbations of scalarized black holes in
EGB theories. We have focused on asymptotically flat
black holes with zero cosmological value of the scalar field.
The two particular cases of the coupling functions between
the scalar field and the Gauss-Bonnet invariant considered
have been motivated by the previous studies of black holes
with a nontrivial scalar field. The first one is the case of
fðφÞ ¼ 1

12
ð1 − e−6φ

2Þ considered in [1] which leads to a
well-manifested fundamental branch (i.e., the branch char-
acterized by a scalar field which has no nodes) that deviates
significantly from the Schwarzschild black holes. Second,
the coupling function fðφÞ ¼ 1

2
φ2, considered in [2], has

been examined.
It was previously shown [1,2] that the Schwarzschild

solution is stable only up to the first point of bifurcation
where the fundamental branch appears. Therefore a natural
question to ask has been whether another solution with a
nontrivial scalar field is stable for masses smaller than
the critical mass of the bifurcation. The results from the
linear stability analysis performed show that all solutions

characterized by a scalar field with n > 0 nodes possess
nþ 1 unstable modes. Thus all radially excited branches of
solutions are radially unstable.
The picture is more complicated for the fundamental

branch. In the case of the coupling function fðφÞ ¼
1
12
ð1 − e−6φ

2Þ, the scalarized solutions are stable from
the bifurcation point until some small critical mass M�,
where they formally lose stability as well. The presence of
this instability is formally different in nature from the
instability of the other scalarized branches—the unstable
modes are not connected with any zero mode of the
Schwarzschild solution and are due most probably to the
fact that for small masses the tortoise coordinate is ill
defined and leads to singularities of the potential of the
perturbation equations. In fact the situation is even worse
because below the critical mass M� the theory loses its
hyperbolicity, and the stability has only been investigated
formally on the basis of a formal eigenvalue problem.
In contrast, in the case of the coupling function fðφÞ ¼

1
2
φ2 the whole fundamental branch, which in this case is

short and terminates at some nonzero mass because of
violation of condition (8), is unstable. This instability is a
more “classical” one since it is connected with a zero mode
of the Schwarzschild solution.
We should note that these conclusions are in agreement

with the thermodynamical studies of the stability performed
in [1].Moreprecisely, the entropyof all branchesof solutions
possessing a scalar field which has one or more nodes is
smaller than the entropy of the Schwarzschild black holes.
On the other hand, the results show that the fundamental
branch for fðφÞ ¼ 1

12
ð1 − e−6φ

2Þ is thermodynamically
more stable as compared to the Schwarzschild solution,
while for fðφÞ ¼ 1

2
φ2 the entropy of the fundamental branch

is always smaller than the Schwarzschild one.
It is interesting to make a comparison of these solutions

with the black holes in the dilatonic EGB theory, where the
coupling function has the form fðφÞ ¼ e2γφ. In this case
solutions can only exist if they are larger than a certain
minimum value of the mass. For some values of the
coupling constant γ, a secondary branch of black
holes appears close to this limit. The solutions on this
secondary branch were shown to be always radially
unstable [28,31].
Thus, the stability and the existence of solutions is highly

controlled by the coupling function. A general conclusion,
though, is that for all of the considered cases there exists a
threshold mass below which there are no stable black hole
solutions (including the Schwarzschild one). As a matter of
fact one might be able to cure this problem by a better
choice of the coupling function [or even by varying the
numerical constants in the coupling functions (11) or (12)].
Answering this question and studying the loss of hyper-
bolicity for small black holes requires, however, a much
more thorough investigation that will be the subject of a
future study.
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Finally, let us briefly comment on the prospect of
constraining the EGB theories with electromagnetic and
gravitational wave observations. As we commented, there
exists a minimum black hole mass, below which both the
scalarized solutions and the Schwarzschild one are unsta-
ble, i.e., M=λ≲ 0.171. The least massive black hole
observed until now is the x-ray binary A0620-00 which
has M ¼ 3.095 M⊙ [37]. The minimum mass in EGB
theories should be lower than the limit given by A0620-00
which leads to λ≲ 27 km. Moreover, the remnant of
GW170817 could possibly be a black hole with mass M ¼
2.74 M⊙ [38–40]. In this case we would get a slightly
improved constraint with λ≲ 24 km.
On the other hand, the black hole mergers detected by

aLIGO fit very well in the standard GR framework. The
EGB black holes considered in the present paper couple to
an extra scalar degree of freedom, though, which means
that they will emit scalar gravitational radiation [30,31].
This will clearly change the merger waveforms as well.
Therefore, one can suppose that all of the black holes
observed by aLIGO are unscalarized. Since stable
Schwarzschild solutions only exist for M=λ≳ 0.587 in
the EGB theories treated in this paper, this assumption
results in a stronger constraint. Using the mass of the
smallest black hole in GW151226 (M ≈ 7 M⊙) [41] leads
to λ≲ 18 km.
However, to consistently use these constraints from the

theory, it is necessary to study black hole mergers in the
EGB theories under consideration. This is a highly com-
plicated task that was not done until now. Therefore, it is
unclear whether some degeneracy in the parameter space
related to the inclusion of a nontrivial scalar field is present.
More precisely, effects on the waveforms coming from the
scalarization and the related scalar gravitational wave
emission might be quite similar to effects coming from
varying the black hole masses, spins, etc., which would not

allow us to set constraints on λ in such a simplified way.
That is why further studies in this direction are needed [42].
However, we should note that all these constraints on λ are
made for the particular choice of coupling function con-
sidered in the paper fðφÞ ¼ 1

12
ð1 − e−6φ

2Þ. Clearly, a
change of this function or the numerical constants in it
would change the constraints on λ as well.

ACKNOWLEDGMENTS

J. L. B. S. would like to acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG) Project No. BL
1553. J. L. B. S. and J. K. would like to acknowledge
support by the DFG Research Training Group 1620
Models of Gravity and the European Cooperation in
Science and Technology (COST) Action CA16104. S. Y.
and D. D. would like to thank the support from the COST
Action CA16214. S. Y. would like to thank the support
from the COST Action CA16104 and the Sofia University
Research Fund under Grants No. 80-10-73/2018 and
No. 3258/2017. D. D. would like to thank the European
Social Fund, the Ministry of Science, Research and the Arts
Baden-Württemberg for the support. D. D. is indebted
to the Baden-Württemberg Stiftung for the financial sup-
port of this research project by the Eliteprogramme for
Postdocs.

APPENDIX: ADDITIONAL EQUATIONS

The functions that appear in the master equation (16)
depend only on the background configurations. The function
g that characterizes the tortoise coordinate can be written like

g2 ¼ A=B; ðA1Þ
with the functions A and B:

A ¼ −8e6Λφ0
0λ

2r3
df
dφ0

þ e8Λr4 þ 16φ0
0
2λ6ðe2Λ − 1Þ2e2Λ

�
df
dφ0

�
2 d2f
dφ2

0

− 16λ6ðe2Λ − 1Þðe2ΛΛ0φ0
0 − e2Λφ00

0 þ 3Λ0φ0
0 þ φ00

0Þe2Λ
�
df
dφ0

�
3

− 4e4Λλ4ðe4Λ − 4e2ΛΛ0r − 4φ0
0
2r2 − 2e2Λ þ 4Λ0rþ 1Þ

�
df
dφ0

�
2

; ðA2Þ

B ¼ −8e4Λþ2Φφ0
0λ

2r3
df
dφ0

þ e6Λþ2Φr4 þ 16e2ΦΦ0φ0
0λ

6ðe4Λ þ 2e2Λ − 3Þ
�
df
dφ0

�
3

− 4e2Φþ2Λλ4ð−4φ0
0
2r2 þ 4e2ΛΦ0rþ e4Λ − 4Φ0r − 2e2Λ þ 1Þ

�
df
dφ0

�
2

: ðA3Þ
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The coefficient C1 can be written like

C1 ¼ C2=C4; ðA4Þ

with the functions C2 and C4 being

C4 ¼
�
2
df
dφ0

φ0
0ðe2Λ − 3Þλ2 þ e2Λr

�
×

�
−8

df
dφ0

e4Λφ0
0λ

2r3 þ e6Λr4 þ 16Φ0φ0
0λ

6ðe2Λ − 1Þðe2Λ þ 3Þ
�
df
dφ0

�
3

− 4e2Λλ4ð4Φ0e2Λrþ e4Λ − 4φ0
0
2r2 − 4Φ0r − 2e2Λ þ 1Þ

�
df
dφ0

�
2
�
; ðA5Þ

C2 ¼
d2f
dφ2

0

�
4φ0

0
2λ2r4ðe8Λ − e6ΛÞ þ 32Φ0φ0

0
3λ8ð15e4Λ − 7e2Λ − 5e6Λ − 3Þ

�
df
dφ0

�
3

− 8φ0
0
2λ6e2Λð8e4ΛΦ0rþ 8e2ΛΦ0r − 16Φ0rþ 9e4Λ − 9e2Λ − 3e6Λ þ 3Þ

�
df
dφ0

�
2

þ 4φ0
0λ

4re4Λðe4Λφ0
0
2r2 − 6e2Λφ0

0
2r2 þ 5φ0

0
2r2 þ 8e2ΛΦ0rþ 2e4Λ − 8Φ0r − 4e2Λ þ 2Þ df

dφ0

�

þ 32φ0
0λ

8

�
df
dφ0

�
4

½−7e4ΛΦ02φ0
0 − 11e4ΛΦ0Λ0φ0

0 þ 15e2ΛΦ02φ0
0 − 9e2ΛΦ0Λ0φ0

0 þΦ02φ0
0e

6Λ
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0
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0
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2r2 þ 2e2ΛΦ02r2

− 18e2ΛΦ0Λ0r2 − e6Λ þ 4e2ΛΦ00r2 þ 2e4ΛΦ0r − 8e2ΛΦ0r� − e8Λr4½−Λ0rþΦ0rþ 2�

− 2λ2r3e6Λ
df
dφ0

½e4Λφ0
0 − 2e2Λφ00

0r − 6Φ0φ0
0rþ 2Λ0φ0

0rþ 2e2Λφ0
0 þ 2φ00

0r − 15φ0
0�: ðA6Þ

Finally, the function U, related with the effective potential, can be written like

U ¼ C3=C4; ðA7Þ

with

C3 ¼ D0 þD2λ
2 þD4λ

4 þD6λ
6 þD8λ

8; ðA8Þ

and

D0 ¼ −φ0
0r

5e8Λð−2Φ0φ0
0rþ 2Λ0φ0

0rþ e2Λφ0
0 − 3φ00

0r − 5φ0
0Þ; ðA9Þ
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D2 ¼ −2r3e6Λ½e2Λφ0
0
4r2 − 3φ0

0
4r2 − 2e2ΛΦ0φ0

0
2rþ 2e2ΛΛ0φ0

0
2r − 3e2Λφ0

0φ
00
0rþ 4Φ0φ0

0
2r

− 4Λ0φ0
0
2rþ e4Λφ0

0
2 − e2ΛΦ02 þ e2ΛΦ0Λ0 − 4e2Λφ0

0
2 þ 3φ0

0φ
00
0r − e2ΛΦ00 þΦ02

− 3Φ0Λ0 þ 3φ0
0
2 þΦ00�

�
d2f
dφ2

0

�
þ 2r4e6Λφ0

0
3ðe2Λ − 1Þ

�
d3f
dφ3

0

�

þ 2r2e6Λ½10e2Λφ0
0
3r2 þ 4Λ0φ0

0
3r3 − 4Φ0φ0

0
3r3 − 12φ0

0
2φ00

0r
3 þ 4Φ0φ00

0r
2 þ 3Φ0φ0

0r

þ2Λ0φ0
0r − 30φ0

0
3r2 − e4Λφ0

0 þ 2e2Λφ0
0 − φ00

0rþ e2Λφ00
0rþ 4Φ02φ0

0r
2 þ 3Φ00φ0

0r
2

þ2e2ΛΦ0Λ0φ0
0r

2 − φ0
0 − 2e2ΛΦ0φ00

0r
2 − 2e2ΛΦ0φ0

0r − 14Φ0Λ0φ0
0r

2 þ e4ΛΦ0φ0
0r

þ2e2ΛΦ0φ0
0
3r3 − 2e2ΛΛ0φ0

0
3r3 þ 2e2Λφ0

0
2φ00

0r
3 − 2e2ΛΦ02φ0

0r
2 − e2ΛΦ00φ0

0r
2�
�
df
dφ0

�
; ðA10Þ

D4 ¼ −4φ0
0
4r3ðe8Λ − 4e6Λ þ 3e4ΛÞ

�
d2f
dφ2

0

�
2

þ ½−8e8ΛΦ0Λ0φ0
0r

2 − 16e6ΛΦ0Λ0φ0
0r

2 þ 8e4ΛΦ0Λ0φ0
0r

2 − 8φ00
0e

6Λrþ 4e8Λφ00
0r

− 24e4Λφ0
0
5r4 − 4e4Λφ0

0 þ 4e8Λφ0
0 þ 4φ0

0e
6Λ − 4φ0

0e
10Λ þ 4e4Λφ00

0rþ 36e8Λφ0
0
3r2

− 104e6Λφ0
0
3r2 þ 68e4Λφ0

0
3r2 þ 8e6Λφ0

0
5r4 − 56e4ΛΛ0φ0

0
3r3 þ 8e8Λφ0

0
2φ00

0r
3

− 56e6Λφ0
0
2φ00

0r
3 þ 48e4Λφ0

0
2φ00

0r
3 þ 8e8ΛΦ02φ0

0r
2 − 32e6ΛΦ02φ0

0r
2 þ 24e4ΛΦ02φ0

0r
2

þ 8e8ΛΦ00φ0
0r

2 − 24e6ΛΦ00φ0
0r

2 þ 16e6ΛΦ0φ00
0r

2 þ 16e4ΛΦ00φ0
0r

2 − 16e4ΛΦ0φ00
0r

2 þ 8e8ΛΦ0φ0
0r

− 16e4ΛΛ0φ0
0r − 8e8ΛΛ0φ0

0
3r3 − 88e6ΛΦ0φ0

0
3r3 þ 32e6ΛΛ0φ0

0
3r3 þ 124e4ΛΦ0φ0

0
3r3

− 32Φ0φ0
0e

6Λrþ 16Λ0φ0
0e

6Λrþ 12e8ΛΦ0φ0
0
3r3 þ 24e4ΛΦ0φ0

0r�
�
df
dφ0

��
d2f
dφ2

0

�

þ 4φ0
0
2r½−6φ0

0
2e6Λr2 þ e8Λφ0

0
2r2 þ 5e4Λφ0

0
2r2 þ 4Φ0e6Λr − 4e4ΛΦ0r − 2e6Λ þ e8Λ

þ e4Λ�
�
df
dφ0

��
d3f
dφ3

0

�
þ ½8e8ΛΦ0Λ0φ0

0
2r3 þ 8e6ΛΦ0Λ0φ0

0
2r3 þ 80e4ΛΦ0Λ0φ0

0
2r3

− 4e8ΛΦ0φ0
0φ

00
0r

3 − 16e6ΛΦ0φ0
0φ

00
0r

3 þ 4e4ΛΦ0φ0
0φ

00
0r

3 þ 4e4ΛΦ0 þ 24e4Λφ0
0
2r

þ 24e6ΛΦ02rþ 168e4Λφ0
0
4r3 þ 4e10ΛΦ0 − 4e8ΛΦ0 − 4e6ΛΦ0 þ 8e8Λφ0

0
4r3 − 32e6Λφ0

0
2r

− 8e8ΛΦ02rþ 8e6ΛΦ00r − 4e8ΛΦ00r − 8e6ΛΦ03r2 − 16e4ΛΦ02rþ 8e4ΛΦ03r2

− 4e4ΛΦ00r − 80e6Λφ0
0
4r3 þ 8e8Λφ0

0
2r − 16e6ΛΦ0φ0

0
4r4 þ 16e6ΛΛ0φ0

0
4r4 − 16e6Λφ0

0
3φ00

0r
4

þ 48e4Λφ0
0
3φ00

0r
4 − 8e8ΛΦ02φ0

0
2r3 þ 16e6ΛΦ02φ0

0
2r3 − 40e4ΛΦ02φ0

0
2r3 − 4e8ΛΦ00φ0

0
2r3

þ 16e6ΛΦ00φ0
0
2r3 − 44e4ΛΦ00φ0

0
2r3 − 24e8ΛΦ0φ0

0
2r2 − 24e8ΛΛ0φ0

0
2r2 þ 40e6ΛΦ02Λ0r2

þ 104e6ΛΦ0φ0
0
2r2 þ 8e6ΛΛ0φ0

0
2r2 − 56e4ΛΦ02Λ0r2 − 128e4ΛΦ0φ0

0
2r2 þ 8e8Λφ0

0φ
00
0r

2

− 16e6ΛΦ00Φ0r2 − 8e6Λφ0
0φ

00
0r

2 þ 16e4ΛΦ00Φ0r2 − 16e6ΛΦ0Λ0rþ 16e4ΛΦ0Λ0r�
�
df
dφ0

�
2

; ðA11Þ
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D6 ¼ 8e2Λφ0
0
3½2e4Λφ0

0
2r2 − 8e2Λφ0

0
2r2 þ 6φ0

0
2r2 − 12e4ΛΦ0rþ 32e2ΛΦ0r − 20Φ0r

þ e6Λ þ e4Λ − 5e2Λ þ 3�
�
df
dφ0

��
d2f
dφ2

0

�
2

þ 8e2Λφ0
0½−9φ0

0Φ0 þ 2e2Λφ00
0

− 4e4Λφ00
0 þ 10e4ΛΛ0φ0

0 þ φ0
0Φ0e6Λ − 6Λ0φ0

0e
6Λ − e6ΛΦ0Λ0φ0

0rþ 13e4ΛΦ0Λ0φ0
0r

− 11e2ΛΦ0Λ0φ0
0rþ 12Λ0φ0

0
3r2 − 2Φ0φ00

0r − 18e4Λφ0
0
3rþ 2e6Λφ0

0
3r − 30φ0

0
3r

þ 6Λ0φ0
0 − 4e4Λφ0

0
2φ00

0r
2 þ 16e2Λφ0

0
2φ00

0r
2 − 10e4ΛΦ0φ0

0
3r2 þ 4e4ΛΛ0φ0

0
3r2

þ 24e2ΛΦ0φ0
0
3r2 − 8e2ΛΛ0φ0

0
3r2 þ 3e4ΛΦ02φ0

0r − 9e2ΛΦ02φ0
0rþΦ02φ0

0e
6Λr

− 9e4ΛΦ00φ0
0r − 10e4ΛΦ0φ00

0rþ 11e2ΛΦ00φ0
0rþ 12e2ΛΦ0φ00

0rþΦ00φ0
0e

6Λr − 9Φ0Λ0φ0
0r

þ 11e2ΛΦ0φ0
0 − 3e4ΛΦ0φ0

0 þ 2φ00
0e

6Λ − 3Φ00φ0
0r − 12φ0

0
2φ00

0r
2 − 10e2ΛΛ0φ0

0 þ 46e2Λφ0
0
3r

− 30Φ0φ0
0
3r2 þ 5Φ02φ0

0r�
�
df
dφ0

�
2
�
d2f
dφ2

0

�
þ 8e2Λφ0

0
3½−2e4Λφ0

0
2r2 þ 8e2Λφ0

0
2r2

− 6φ0
0
2r2 þ 2e4ΛΦ0r − 20e2ΛΦ0rþ 18Φ0rþ e6Λ − 5e4Λ þ 7e2Λ − 3�

�
df
dφ0

�
2
�
d3f
dφ3

0

�

− 8e2Λ½3Φ0φ00
0 þ e4ΛΦ0φ00

0 þ 7e2ΛΦ00φ0
0 − 2e2ΛΦ02φ0

0 − 5e2ΛΦ0φ00
0 þΦ0φ00

0e
6Λ

þ 2Φ02φ0
0e

6Λ − 5e4ΛΦ00φ0
0 þ 6Φ0Λ0φ0

0 − 16e4ΛΦ0Λ0φ0
0
3r2 þ 4e2ΛΦ0Λ0φ0

0
3r2

þ 6e4ΛΦ0φ0
0
2φ00

0r
2 − 12e2ΛΦ0φ0

0
2φ00

0r
2 þ 10e4ΛΦ02Λ0φ0

0r − 8e2ΛΦ02Λ0φ0
0r − 4e4ΛΦ00Φ0φ0

0r

− 8e2ΛΦ00Φ0φ0
0r − 6Φ00φ0

0
3r2 − 14Φ02φ00

0rþ 6Φ03φ0
0r − 3Φ00φ0

0 − 10e4ΛΦ0φ0
0
3r

− 4e2ΛΦ03φ0
0rþ 22e2ΛΦ0φ0

0
3r − 10e4ΛΦ02φ00

0rþ 24e2ΛΦ02φ00
0r − 8e2ΛΦ02φ0

0
3r2

þ 12Φ0Λ0φ0
0
3r2 þ 6Φ0φ0

0
2φ00

0r
2 − 18Φ02Λ0φ0

0rþ 12Φ00Φ0φ0
0rþ 2e4ΛΦ00φ0

0
3r2 − 4e2ΛΦ00φ0

0
3r2

þ 2e6ΛΦ0φ0
0
3r − 2e4ΛΦ03φ0

0r − 6Φ0Λ0φ0
0e

6Λ þ 10e4ΛΦ0Λ0φ0
0

− 10e2ΛΦ0Λ0φ0
0 þΦ00φ0

0e
6Λ − 30Φ0φ0

0
3r�

�
df
dφ0

�
3

; ðA12Þ

D8 ¼ −32φ0
0
4Φ0½3e6Λ − 13e4Λ þ 25e2Λ − 15�

�
df
dφ0

�
2
�
d2f
dφ2

0

�
2

− 32φ0
0
4Φ0ðe6Λ − e4Λ − 9e2Λ þ 9Þ

�
df
dφ0

�
3
�
d3f
dφ3

0

�
− 64φ0

0
2½−Φ02φ0

0e
6Λ

− 5Φ0Λ0φ0
0e

6Λ þ 3e4ΛΦ02φ0
0 þ 10e4ΛΦ0Λ0φ0

0 − 5e2ΛΦ02φ0
0 − 9e2ΛΦ0Λ0φ0

0

þΦ00φ0
0e

6Λ þ 2Φ0φ00
0e

6Λ − 4e4ΛΦ00φ0
0 − 7e4ΛΦ0φ00

0 þ 3e2ΛΦ00φ0
0 þ 8e2ΛΦ0φ00

0

þ 3Φ02φ0
0 − 3Φ0φ00

0�
�
df
dφ0

�
3
�
d2f
dφ2

0

�
þ 64φ0

0Φ0½Φ02φ0
0e

6Λ − 5Φ0Λ0φ0
0e

6Λ

− 4e4ΛΦ02φ0
0 þ 10e4ΛΦ0Λ0φ0

0 þ 3e2ΛΦ02φ0
0 − 9e2ΛΦ0Λ0φ0

0 þ 2Φ00φ0
0e

6Λ

þΦ0φ00
0e

6Λ − 8e4ΛΦ00φ0
0 − 3e4ΛΦ0φ00

0 þ 6e2ΛΦ00φ0
0 þ 5e2ΛΦ0φ00

0 − 3Φ0φ00
0�
�
df
dφ0

�
4

: ðA13Þ
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