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Motivated by the string theory corrections in the low-energy limit of both gauge and gravity sides, we
consider three-dimensional black holes in the presence of dilatonic gravity and the Born-Infeld nonlinear
electromagnetic field. We find that geometric behavior of the solutions is similar to the behavior of the
hyperscaling violation metric, asymptotically. We also investigate thermodynamics of the solutions and
show that the generalization to dilatonic gravity introduces novel properties into thermodynamics of the
black holes which were absent in the Einstein gravity. Furthermore, we explore the possibility of tuning out
part of the dilatonic effects using the Born-Infeld generalization.
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I. INTRODUCTION

One of our main interests in considering a dilaton field is
the fact that the low-energy limit of string theory precisely
involves a massless scalar dilaton field. This, in turn, has
motivated the scientific community to study dilaton gravity
from different viewpoints. The scalar dilaton field has
significant impact on the casual structure as well as on the
thermodynamic features of the charged black holes. In fact,
the presence of the dilaton field also affects the structure of
spacetime geometry. The impact is sometimes effective
concerning the asymptotic behavior of dilaton solutions.
In particular, it was proved that in the presence of one or
two Liouville-type dilaton potentials, black hole spacetimes
are neither asymptotically flat nor (anti)–de Sitter [1–3].
Nevertheless, in the case of three Liouville type dilaton
potentials, it is possible to construct dilatonic black hole
solutions in the background of (anti)–de Sitter (A)dS
spacetime [4,5]. Also, the coupling of a dilaton field with
other gauge fields may have profound effects on the
resulting solutions [6–8]. Dilaton fields can also be relevant
to the construction of black holes with rather unconven-
tional asymptotes. For example, charged Lifshitz black
holes with an arbitrary dynamical exponent can be sus-
tained by the presence of at least two dilaton scalar fields
[9]. The extension of this dilatonic model with nonlinear

electrodynamics was considered in Refs. [10–13].
Recently, studies on neutron stars in the context of dilaton
gravity [14] as well as black holes in dilaton gravity’s
rainbow [15,16] have been done.
In the present work, we will focus on three-dimensional

dilaton gravity. Our motivations come from the fact that
the discovery of the three-dimensional black hole (BTZ)
[17] and lower-dimensional gravity has gained a lot of
interest in the last two decades [18–26]. Indeed, the reasons
for studying three-dimensional gravity theories are multi-
ple. For example, the near horizon geometry of three-
dimensional solutions can serve as a worthwhile model to
investigate some conceptual questions about the AdS/CFT
correspondence [27]. Moreover, the BTZ solution is a
ground that offers many facets to explore. For example, the
study of the BTZ black hole has improved our knowledge
on gravitational systems and their interactions in three
dimensions [27]. It also opens up the possible existence of
the gravitational Aharonov-Bohm effect due to the non-
commutative BTZ black holes [28]. The existence of
specific relations between these black holes and effective
action in string theory [29,30] is the motivation.
Concerning the black hole solutions that are BTZ-like,
the current literatures contains many of them. For example,
the existence of BTZ black holes/wormholes in the pres-
ence of nonlinear electrodynamics has been investigated in
[31–33] and in higher dimensions in [34,35]. In addition,
exact BTZ-like solutions were shown to arise in massive
gravity [36], dilatonic gravity [37–39], gravity’s rainbow
[40,41], new massive gravity [42,43], Lifshitz gravity [44],
and massive gravity’s rainbow [45] (see also Refs. [46–52]
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for more details). Moreover, thermal aspects have been
explored, where the existence of a phase transition
between the BTZ black hole and thermal AdS space is
possible [53]. It is worth mentioning that the three-
dimensional BTZ solution is also interesting from a
quantum point of view [54–59].
Here, we consider dilatonic BTZ black holes coupled with

linear and nonlinear Born-Infeld electrodynamics. In addition
to what we said for our motivations in the previous para-
graphs, we are going to investigate the effects of nonlinearity
on the properties of the solutions. Although classical electro-
dynamics is well organized with the Maxwell equations
(accompanying to Lorentz force), some of their shortcomings
motivate one to consider nonlinear theory. One of the old
successful theories of nonlinear electrodynamics is the so-
called Born-Infeld theory [60]. This Abelian theory enjoys
most of the Maxwell properties and also its related electric
field of a pointlike charge is regular everywhere. The
foundations of this theory became firmly established when
it is realized that one can obtain its Lagrangian from a class of
the low-energy limit of string theory [61–66]. Hoffmann
employed this type of nonlinear theory in context of Einstein
gravity [67]. Then, different types of black holes in the
presence of this electrodynamics have been studied in
Refs. [68–82]. Based on the mentioned motivation, we
discuss dilatonic black holes with Maxwell and Born-
Infeld theories in two separated sections.

II. BTZ BLACK HOLE SOLUTIONS IN
DILATON-MAXWELL GRAVITY

Here, we consider the three-dimensional action given by

I ¼ −
1

16π

Z
M
d3x

ffiffiffiffiffiffi
−g

p ½R − 4ð∇ΦÞ2 − VðΦÞ þ Lðh;ΦÞ�;

ð1Þ
where Φ is the dilaton field, VðΦÞ is a scalar potential, R
denotes the scalar curvature and

Lðh;ΦÞ ¼ −e−4αΦh: ð2Þ

In the last expression, h stands for the Maxwell invariant
h ¼ hμνhμν where hμν ¼ ∂μAν − ∂νAμ and α represents the
dilaton coupling (dimensionless) parameter. In order to
avoid the vanishing electromagnetic Lagrangian, we adjust
the dilaton field parameter in which the αΦ term is finite
everywhere. The variation of the action (1) with respect to
the metric tensor, the dilaton field (Φ) and the gauge field
(Aμ), yields

Rμν ¼ 4

�
∂μΦ∂νΦþ 1

4
gμνVðΦÞ

�

þ 2e−4αΦ
�
hμηh

η
ν −

1

2
gμνhληhλη

�
; ð3Þ

∇2Φ ¼ 1

8

∂VðΦÞ
∂Φ þ α

2
e−4αΦhληhλη; ð4Þ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
e−4αΦhμνÞ: ð5Þ

Since we are interested in electrically charged static
solution, we consider the following ansatz,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2R2ðrÞdφ2; ð6Þ

where fðrÞ and RðrÞ are two metric functions. Our
study being dedicated to black holes with a radial electric
field, the suitable choice of gauge potential is given by
Aμ ¼ δtμA0ðrÞ, where A0 denotes the electric potential. As
usual the direct integration of the Maxwell equation (5)
permits to express the electric field EðrÞ as

EðrÞ ¼ qe4αΦ

rRðrÞ ; ð7Þ

where q is an integration constant which is related to the
electric charge. Now, the Einstein field equations (3) can be
rearranged as

eqtt∶
1

2

�
f00ðrÞ þ

�
1

r
þ R0ðrÞ

RðrÞ
�
f0ðrÞ

�
þ VðΦÞ ¼ 0; ð8Þ

eqrr∶ eqtt þ
�
R00ðrÞ
RðrÞ þ 2R0ðrÞ

rRðrÞ þ 4Φ02ðrÞ
�
fðrÞ ¼ 0; ð9Þ

eqθθ∶2E2ðrÞe−4αΦðrÞ þ
�
R00ðrÞ
RðrÞ þ 2R0ðrÞ

rRðrÞ
�
fðrÞ

þ
�
1

r
þ R0ðrÞ

RðrÞ
�
f0ðrÞ þ VðΦÞ ¼ 0: ð10Þ

It is then easy to see that the substraction of Eq. (8) with
Eq. (9) yields the following constraint:

R00ðrÞ
RðrÞ þ 2R0ðrÞ

rRðrÞ þ 4Φ02ðrÞ ¼ 0: ð11Þ

In order to transform this equation into a differential
equation for the dilaton field, we use the following judi-
cious ansatz [83] for the metric function,

RðrÞ ¼ e2αΦðrÞ: ð12Þ

This in turn implies that the dilaton scalar field can be
determined to be

ΦðrÞ ¼ γ

2α
ln

�
b
r

�
; ð13Þ
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where b is an arbitrary nonzero constant with length
dimension. It is also notable that the functionΦðrÞ (ΦðrÞ ∈
ð−∞;þ∞Þ) is a decreasing function of r (r ∈ ð0;þ∞Þ)
with one real root at r ¼ b. For convenience, we have
defined

γ ¼ α2

ðα2 þ 1Þ : ð14Þ

Using Eqs. (7), (12)–(14), the electrical field is given as

EðrÞ ¼ q
r

�
b
r

� α2

ðα2þ1Þ; ð15Þ

considering that the electrical field vanishes at infinity
(r → ∞), any arbitrary value of α may satisfy the above
equation.
In order to find analytic solutions, the Liouville-type

dilation potential is chosen as

VðΦÞ ¼ 2Λe4αΦ; ð16Þ

where Λ is a free parameter that plays the role of a
cosmological constant. Note that this kind of potential
have been used in the context of Friedman-Robertson-
Walker scalar field cosmology [85] as well as in the case of
Maxwell-dilaton black holes [86,87]. Finally, the remain-
ing metric function is found to be

fðrÞ¼2q2ðα2þ1Þ2
α2

−mrγþ2Λr2ðα2þ1Þ2
α2−2

�
b
r

�
2γ

; ð17Þ

where m is an integration constant related to the mass of
black holes.
Before continuing our study, it is interesting to rewrite

the metric solution (6) in the “standard form” by defining
the radial coordinate ρ ¼ rRðrÞ

ds2 ¼ −FðρÞdt2 þ b
2γ
γ−1

ð1 − γÞ2
dρ2

ρ
2γ
γ−1FðρÞ

þ ρ2dφ2;

with

FðρÞ ¼ 2q2ðα2 þ 1Þ2
α2

−mρ
γ

1−γb
−γ2
1−γ þ 2Λðα2 þ 1Þ2

α2 − 2
ρ2:

It is interesting to note that for α → 0 with q=α → 0, the
solution reduces to the uncharged static BTZ black hole.
Asymptotically for ρ ≫ 1, the metric behaves as

ds2 ∼ −ρ2dt2 þ dρ2

ρ2ð1−α2Þ
þ ρ2dφ2; α <

ffiffiffi
2

p
;

or

ds2 ∼ −ρα2dt2 þ ρα
2

dρ2 þ ρ2dφ2; α >
ffiffiffi
2

p
:

In both cases, the asymptotic behavior is similar to the
one of the hyperscaling violation metric

ds2 ¼ 1

r2θ

�
−r2zdt2 þ dr2

r2
þ r2dφ2

�

∼ −ρ
2ðz−θÞ
1−θ dt2 þ dρ2

ρ
2

1−θ
þ ρ2dφ2;

where z is the Lifshitz dynamical exponent and θ is
the hyperscaling violating parameter. More precisely, for
α <

ffiffiffi
2

p
, the asymptotic metric corresponds to an hyper-

scaling violation metric with z ¼ 1 and θ ¼ α2=ðα2 − 1Þ,
and for α >

ffiffiffi
2

p
, this corresponds to z ¼ 2=α2 and

θ ¼ ð2þ α2Þ=α2.
The charged dilatonic BTZ black holes are different from

the charged BTZ black holes in Einstein gravity. The
existence of the dilaton may exchange the role of the mass
with the charge and vice et versa. Indeed, in the Einstein-
Maxwell gravity, the mass is associated to the constant term
of the metric function, while the charge term appears in the
structural metric function with a function depending on the
radial coordinate. As one can note from the expression (17),
in the dilatonic case, this is exactly the opposite that occurs.
In addition, it is worth mentioning that the obtained
charged dilatonic BTZ solution does not reduce to the
charged BTZ black hole solution in the absence of dilaton
field. It is expected and comes from the difference between
polynomial functions and logarithmic one. This behavior is
the same as the comparison between higher-dimensional
charged black holes and the three-dimensional case.
We are looking for the curvature singularity, in order to

confirm the black hole interpretation of the solutions. For
this purpose, we calculate the Ricci and Kretschmann
scalars as

R ¼ 4q2

r2
−

mγ

rðα2þ2Þ=ðα2þ1Þ þ
4Λð2α2 − 3Þ

α2 − 2

�
b
r

�
2γ

; ð18Þ

RαβμνRαβμν ¼ 16q4

r4
þ 3γ2m2

r2ðα2þ2Þ=ðα2þ1Þ

þ 32ðα4 − 2α2 þ 3
2
ÞΛ2

ðα2 − 2Þ2
�
b
r

�
4γ

−
32q2ðα2 − 1ÞΛb2γ

ðα2 − 2Þr2ð2α2þ1Þ=ðα2þ1Þ −
8mγq2

rð3α2þ4Þ=ðα2þ1Þ

−
8γmð2α2 − 1ÞΛb2γ

ðα2 − 2Þrð3α2þ2Þ=ðα2þ1Þ : ð19Þ

Calculations show that for finite values of the radial
coordinate, the Ricci and Kretschmann scalars are finite.
Also, for very small and very large values of r, we have
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lim
r→0þ

R ¼ ∞;

lim
r→0þ

RαβμνRαβμν ¼ ∞; ð20Þ

lim
r→∞

R ∝
4Λð2α2 − 3Þ

α2 − 2

�
b
r

�
2γ

;

lim
r→∞

RαβμνRαβμν ∝
32ðα4 − 2α2 þ 3

2
ÞΛ2

ðα2 − 2Þ2
�
b
r

�
4γ

: ð21Þ

The above Eq. (20) confirms that there is an essential
singularity located at r ¼ 0, and Eq. (21) for α ¼ 0, the
asymptotic behavior of solutions is (A)dS (limr→∞R ∝ 6Λ
and limr→∞RαβμνRαβμν ∝ 12Λ2), while for nonzero α, the
asymptotic behavior of solutions is not that of (A)dS. It is
noteworthy that for α → ∞, the asymptotic behaviors of
Ricci and Kretschmann scalars are as limr→∞R ¼ 0 and
limr→∞RαβμνRαβμν ¼ 0. In other word, the effect of curva-
ture singularity at infinity vanishes. Actually, the men-
tioned theory becomes quantum mechanically strongly
coupled at some finite radius r, but this effect vanishes
at infinity (r → ∞).
As for the possible roots of metric function, we inves-

tigate different cases. In the absence of electric charge, root
of the metric function is given as

rðfðrÞ ¼ 0Þjq¼0 ¼ 2
α2þ1

α2−2

�ðα2 þ 1Þ2Λb 2α2

α2þ1

ðα2 − 2Þm
�α2þ1

α2−2

; ð22Þ

Evidently, for α ¼ ffiffiffi
2

p
, the root will be divergent every-

where indicating that dilatonic parameter could not attain
this value. The root of metric function is positive if α >

ffiffiffi
2

p
and Λ > 0, or for α <

ffiffiffi
2

p
and Λ < 0.

In the absence of geometrical mass, root of the metric
function is obtained as

rðfðrÞ ¼ 0Þjm¼0 ¼
�
−
i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 2

p
qb

1

α2þ1
−1

α
ffiffiffiffi
Λ

p
�α2þ1

: ð23Þ

In this case, the existence of real valued positive root is
given by one of the following cases: (i) If Λ < 0 and
α >

ffiffiffi
2

p
, and (ii) Λ > 0 and 0 < α <

ffiffiffi
2

p
. These two

conditions actually are guidelines to the possibility of
black hole solutions in AdS and dS cases.
In the absence of both geometrical mass and electric

charge, the metric function will be without root. As for
the general case, it was not possible to obtain the root of
metric function analytically. Therefore, we use numerical
approach. For more details regarding the behavior of the
metric function, we plot fðrÞ versus r and other parameters
in Fig. 1. As one can see, this solution may contain real
positive roots, and therefore, the singularity can be covered
with an event horizon and interpreted as a black hole.

A. Thermodynamic properties

In this section, we are going to calculate the thermody-
namic and the conserved quantities of the solutions and
then examine the first law of thermodynamics.
In order to calculate the Hawking temperature, we

employ the definition of surface gravity. In doing so,
we have that

T ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μχνÞð∇μχνÞ

r
; ð24Þ

where χ ¼ ∂=∂t is the Killing vector. The Hawking
temperature for the this black hole can be written as

Tþ ¼ −
ðα2 þ 1Þ
2πrþ

�
q2 þ Λr2þ

�
b
rþ

�
2γ
�
; ð25Þ

where rþ is the event horizon of black hole which is the
largest real root of metric function, that is fðr ¼ rþÞ ¼ 0.
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FIG. 1. Variation of the fðrÞ as a function of different parameters for b ¼ 0.3 and Λ ¼ −1.
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In addition, the electric potential U is defined by the gauge
potential in the following form [88]

U ¼ Aμχ
μjr→reference − Aμχ

μjr¼rþ ; ð26Þ

and for our solutions, we obtain

U ¼ q
γ

�
b
rþ

�
γ

: ð27Þ

Also, one can use the area law of entropy in Einstein gravity
to obtain the entropy of this black hole. Based on this law,
the black hole’s entropy equals to one-quarter of horizon
area [89–91]. Therefore, the entropy is

S ¼ πrþ
2

�
b
rþ

�
γ

: ð28Þ

In order to obtain the electric charge of the black holes,
one can calculate the flux of the electromagnetic field at
infinity. The electric charge is obtained as

Q ¼ q
2
: ð29Þ

Regarding the timelike Killing vector ðξ ¼ ∂=∂tÞ, one
can show that the finite mass can be obtained as

M ¼ m
8
ð1 − γÞbγ: ð30Þ

By evaluating the metric function on the largest root of
the solution, one is able to extract the geometrical mass (m)
and insert into the total mass (30). This leads to the
following relation:

M ¼ ðα2 þ 1ÞΛr2þ
4ðα2 − 2Þ

�
b
rþ

�
3γ

þ q2ðα2 þ 1Þ
4α2

�
b
rþ

�
γ

: ð31Þ

Using the relations obtained for the entropy (28) and the
total electric charge (29), one is able to find a Smarr-like
formula as

MðS;QÞ ¼ ðα2 þ 1ÞΛð2Sπ Þ2ðα
2þ1Þb−2α2

4ðα2 − 2Þ
�
πb
2S

�
3α2

þQ2ðα2 þ 1Þ
α2

�
πb
2S

�
α2

: ð32Þ

Now, we can check the validity of first law of thermo-
dynamics. In order to achieve this task, we note that

dMðS;QÞ¼
�∂MðS;QÞ

∂S
�

Q
dSþ

�∂MðS;QÞ
∂Q

�
S
dQ; ð33Þ

and it is a matter of check to show that following equalities
hold

T ¼
�∂M
∂S
�

Q
& U ¼

�∂M
∂Q
�

S
: ð34Þ

The above relations confirm that the first law of thermo-
dynamics is valid, namely

dM ¼ TdSþ UdQ: ð35Þ

B. Thermodynamic behavior

Here, the main goal in this section is to specify the effects
on the coupling constants of the problem on the thermo-
dynamic behavior of the solution, particularly for the mass,
the temperature and the heat capacity.

1. Mass/internal energy

The mass of the black holes is usually interpreted as the
internal energy of the system. Nevertheless, in presence of a
cosmological constant, the mass can also be viewed as an
enthalpy with the cosmological constant playing the role
of the thermodynamic pressure. Here, we do not consider
such a possibility and instead regard the mass as the internal
energy.
First of all, the mass as defined in (31) requires the

coupling constant α ≠
ffiffiffi
2

p
. Now, since the dilatonic param-

eter b > 0, the q2-part of the mass expression is always
positive. On the other hand, it is known that the constant Λ
plays the role of a cosmological constant in the dilaton
gravity. Therefore, it could be negative (for the AdS case)
or positive (for the dS case). Considering these two options,
one finds that the Λ contribution of the mass expression is
positive provided that

Λ > 0 & α >
ffiffiffi
2

p
;

Λ < 0 & α <
ffiffiffi
2

p
; ð36Þ

under these conditions, to absence of roots and the
positivity of the internal energy are ensured. In contrast,
a negative value of the Λ-contribution of the mass expres-
sion can yield the existence of a root and a region of
negativity for the internal energy. In such case, the root of
the internal energy is obtained as

rþjM¼0 ¼
�
−
q2ðα2 − 2Þ

Λα2

�α2þ1
2

b−α
2

: ð37Þ

Evidently, the root of the internal energy is a decreasing
function ofΛ, while it is an increasing function of the electric
charge. In order to elaborate our results, we have plotted a
series of diagrams (see Fig. 2). Finally, considering positive
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internal energy as a condition for having black holes, one can
conclude that physical black hole solutions are present in
range of 0 < rþ < rþjM¼0. Later, we will add some other
restrictions which are imposed by temperature and heat
capacity to complete our picture for the solutions to describe
physical black holes.

2. Temperature

In classical thermodynamics of black holes, one of the
conditions for having physical solutions is the positivity of
the temperature. This highlights the importance of the roots
of temperature. It is a matter of calculation to show that
for these black holes, we have the following root for
temperature,

rþjT¼0 ¼
�
−
q2

Λ

�α2þ1
2

b−α
2

: ð38Þ

Here, the root of the temperature is a decreasing function of
Λ, while it is an increasing function of the electric charge.
Considering the possibility of having both positive and
negative values for Λ, the positive valued root only exists
for Λ < 0. On the other hand, for positive values of the
cosmological constant (Λ > 0), the temperature will be
negative. This indicates that in the classical thermodynam-
ics of black holes, physical solutions exist only for Λ < 0
with the following condition,

Λ < −
q2

r2þ

�
b
rþ

�
−2γ

:

Let us summarize what we have found by studying the
temperature (in classical thermodynamics of black holes).
First of all, physical solutions only exist for negative values

of Λ. Also, we found an upper limit on the values of Λ
which is obtained by the condition of having positive
temperature. Condition that bridges the values of the
electric charge, q with Λ. For completeness, we also
present the following diagrams for the temperature in
terms of rþ (see Fig. 3). In the case of the absence of
the root, the temperature is negative valued everywhere. On
the other hand, in the presence of the root, the positive
valued temperature only exists for rþjT¼0 < rþ. By suitable
choices of different parameters, the temperature could also
acquire an extremum (maximum). It is a matter of calcu-
lation to show that this extremum is obtained as

rþjT¼TMaximum
¼
�
−
q2ðα2 þ 1Þ
Λðα2 − 1Þ

�α2þ1
2

b−α
2

: ð39Þ

It is notable that, rþjT¼TMaximum
is positive when Λ and α

satisfy the following condition,

Λ > 0 & α < 1;

Λ < 0 & α > 1: ð40Þ

Later, we will show that this extremum coincides with
the divergencies of the heat capacity.

3. Heat capacity

The study of the heat capacity is important from two
perspectives. First, their discontinuities represent thermo-
dynamic phase transition critical points. Second, the sign
of the heat capacity determines whether the system is
thermally stable or unstable.

FIG. 2. M versus rþ, for b ¼ 1, q ¼ 1, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line) and Λ ¼ 1 (dashed-
dotted line). Left panels: α ¼ 1; Right panels: α ¼ 2.
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The heat capacity is given by

CQ ¼ T

ð∂2M
∂S2 ÞQ

¼ T

�∂S
∂T
�

Q
¼ T

ð ∂S
∂rþÞQ
ð ∂T∂rþÞQ

; ð41Þ

where by using Eqs. (25) and (28), this expression becomes

CQ ¼ −
πrþð b

rþ
Þγ½q2 þ Λr2þð brþÞ2γ�ðα2 þ 1Þ

2q2ð3α2 − 1Þ − 2ðα2 − 1ÞΛr2þð b
rþ
Þ2γ : ð42Þ

It is a matter of calculation to show that the root and
divergence points of the heat capacity are given, respec-
tively, by

rþðCQ ¼ 0Þ ¼
�
−
q2

Λ

�α2þ1
2

b−α
2

; ð43Þ

rþðCQ → ∞Þ ¼
�
−
q2ðα2 þ 1Þ
Λðα2 − 1Þ

�α2þ1
2

b−α
2

: ð44Þ

Evidently, both the heat capacity and the temperature share
the same roots. Therefore, the arguments given for the root
of the temperature stand for the heat capacity as well. In
addition, the extremum for the temperature (39) and
divergence point of the heat capacity are same. In order
to have a positive valued divergence point for the heat
capacity, the following conditions should be satisfied,

Λ > 0 & α < 1;

Λ < 0 & α > 1: ð45Þ

In the previous section, we have shown that only for
negative values of the Λ do our solutions enjoy a positive
temperature. Consequently, for negative values of Λ and

α > 1, our solutions will develop a phase transition in their
thermodynamic structure. In order to have a positive heat
capacity which implies stable solutions, the denominator
and numerator of the heat capacity must be of the same
sign, that is,

qþ Λr2þ

�
b
rþ

�
2γ

< 0 &

2q2ðα2 þ 1Þ þ 2ðα2 − 1ÞΛr2þ
�
b
rþ

�
2γ

> 0;

or

qþ Λr2þ

�
b
rþ

�
2γ

> 0 &

2q2ðα2 þ 1Þ þ 2ðα2 − 1ÞΛr2þ
�
b
rþ

�
2γ

< 0:

In order to have a better picture of the behavior of the heat
capacity, we have plotted various diagrams (see Fig. 4). It is
explicitly shown that there are three possible cases for the
heat capacity: (i) The heat capacity has no root and is
negative everywhere, (ii) the heat capacity has only one
root, in which after that, the heat capacity is positive and the
solutions are stable, (iii) finally, the heat capacity enjoys
one root and one divergence point in its structure. In this
case, before the root and after the divergency, the heat
capacity is negative and solutions are thermally unstable,
whereas only between the root and divergence point is the
system thermally stable. To end this section, we would like
to add a comment. Previously, it was shown that the heat
capacity in the context of BTZ-Λ-Maxwell theory enjoys
the existence of the root only for negative values of Λ,
whereas the divergence point was only observed for
positive values of the Λ [92]. Here, we see that the
generalization to dilaton gravity has a significant effect

FIG. 3. T versus rþ, for b ¼ 1, q ¼ 1, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line) and Λ ¼ 1 (dashed-dotted
line). Left panels: α ¼ 1; Right panels: α ¼ 2.
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on such behavior. The negative values of Λ can enjoy both
root and divergency in their structure, while the branch of
the positive Λ was ruled out due to the absence of positive
valued temperature. Thermodynamically speaking, the
generalization to dilaton gravity provides black holes with
more complexity in their thermodynamic structure on the
level of the introduction of a new phase transition point
which was absent in the previous case. This highlights the
differences between these two theories.
In order to have physical black holes, we have to

consider negative values of the Λ for the temperature of
black holes (Λ < 0). On the other hand, according to the
obtained limit for positive internal energy [Eq. (36)], the
existence of the event horizon for the obtained black holes
[Eq. (22)] and also this fact that the heat capacity must be
positive, the valid limitations for physical black holes are
Λ < 0 and 1 < α <

ffiffiffi
2

p
. Also, by using the obtained valid

limitations for the cosmological constant and the dilaton
parameter, numerical calculation of Ricci and Kretschmann
scalars show that these quantities have maximum value
when α is near to

ffiffiffi
2

p ðα →
ffiffiffi
2

p Þ. In other words, by the
growth of dilaton parameter from 1 to

ffiffiffi
2

p
, and also by

considering finite radius, the curvature invariants increase.

III. BTZ BLACK HOLE SOLUTIONS IN
DILATON-BORN-INFELD GRAVITY

We now turn in the derivation of the dilatonic-BI-BTZ
black holes where the Lagrangian of the BI-dilaton part is
given by

Lðh;ΦÞ ¼ 4β2e4αΦ
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−8αΦh

2β2

s !
; ð46Þ

where β is the BI parameter. It is notable that, in the limit
β → ∞, the Lagrangian BI, reduces to the standard

Maxwell field coupled to a dilaton field as Lðh;ΦÞ ¼
−e4αΦh. Varying the action (1) with respect to the metric
tensor gμν, the dilaton field Φ and the gauge field Aμ, we
obtain the following field equations

Rμν ¼ 4

�
∂μΦ∂νΦþ 1

4
gμνVðΦÞ

�
− 4e−4αΦ∂YLðYÞhμηhην

þ 4β2e4αΦ½2Y∂YLðYÞ − LðYÞ�gμν; ð47Þ

∇2Φ ¼ 1

8

∂VðΦÞ
∂Φ þ 2αβ2e4αΦ½2Y∂YLðYÞ − LðYÞ�; ð48Þ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
e−4αΦ∂YLðYÞhμνÞ; ð49Þ

where LðYÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y

p
and Y is given as

Y ¼ e−8αΦh
2β2

: ð50Þ

In order to derive the black hole solutions of this system
of equations, we use the static ansatz metric as defined in
Eq. (6) with a purely electrical field Aμ ¼ δ0μAðrÞ. Using the
Eqs. (49) and (6), we have

4β2
�
αrEðrÞRðrÞΦ0ðrÞ − ðrEðrÞRðrÞÞ0

4

�
e8αΦðrÞ

þ ½rR0ðrÞ þ RðrÞ�E3ðrÞ ¼ 0; ð51Þ

where we can obtain the electric field as

EðrÞ ¼ dAðrÞ
dr

¼ qe4αΦ

rRðrÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Γ

p ; ð52Þ

FIG. 4. CQ versus rþ, for b ¼ 1, q ¼ 1, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line) and Λ ¼ 1 (dashed-
dotted line). Left panels: α ¼ 1; Right panels: α ¼ 2.
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where we have defined Γ ¼ q2

r2β2R2ðrÞ. For latter convenience,
we chose a Liouville-type dilation potential defined by
VðΦÞ ¼ 2Λe4αΦ with the ansatz RðrÞ ¼ e2αΦðrÞ. Using
Eq. (52), the electrical field is

EðrÞ ¼ q
r

ðbrÞ
2α2

ðα2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

r2β2 þ ðbrÞ
2α2

ðα2þ1Þ

r ; ð53Þ

according to the fact that the electrical field vanishes at
infinity (r → ∞), so β ≥ 0 and α ≥ 0.
After some algebraic calculations, we obtain the follow-

ing differential equations

α2fðrÞ − rð1þ α2Þf0ðrÞ
r2ð1þ α2Þ2 þ 4

�
β2 −

Λ
2

��
b
r

�
2γ

− 4β2
�
b
r

�
2γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

r2β2ðbrÞ2γ
s

¼ 0; ð54Þ

2ðe2αΦðrÞÞ0 þ rðe2αΦðrÞÞ00 þ 4rðΦ0ðrÞÞ2e2αΦðrÞ ¼ 0: ð55Þ

We are now in a position to obtain exact solutions.
Considering Eqs. (54) and (55), we can obtain the general
solutions as

fðrÞ ¼ 2ðα2 þ 1Þ2ðΛ − 2β2Þr2
α2 − 2

�
b
r

�
2γ

−mrγ

þ 4β2ðα2 þ 1Þ2
α2 − 2

�
b
r

�
2γ

r2H1 þ
4q2ðα2 þ 1Þ2

α2
H2;

ð56Þ

ΦðrÞ ¼ γ

2α
ln

�
b
r

�
; ð57Þ

in which H1 and H2 are the following hypergeometric
functions

H1 ¼ 2F1

��
1

2
;
α2 − 2

2

�
;

�
α2

2

�
;−Γ

�
;

H2 ¼ 2F1

��
1

2
;
α2

2

�
;

�
α2 þ 2

2

�
;−Γ

�
:

It is notable that, in the absence of a BI field (β → ∞), the
solutions (56) reduce to the charged dilatonic BTZ black
hole solutions [see Eq. (17)].
Calculation of the Kretschmann scalar shows that it is

finite for nonzero r and its behavior for very small and very
large values of r can be reported as

lim
r→0þ

RαβμνRαβμν ¼ ∞; ð58Þ

lim
r→∞

RαβμνRαβμν ∝
32Λ2ðα4 − 2α2 þ 3

2
Þ

ðα2 − 2Þ2
�
b
r

�
4γ

: ð59Þ

Equation (58) confirms that there is an essential singu-
larity located at r ¼ 0, while Eq. (59) shows that in the
presence of the dilaton field (α ≠ 0), the asymptotic
behavior of the solutions is not that of (A)dS. It is
notable that, in the absence of dilaton field (α ¼ 0), the
asymptotic behavior of the solutions is (A)dS. Similar to
Maxwell case, for α → ∞, the asymptotic behaviors of
Ricci and Kretschmann scalars are as limr→∞R ¼ 0 and
limr→∞RαβμνRαβμν ¼ 0. Indeed the effects of curvature
singularity at infinity vanish.
Let us now discuss possibility of the existence of root. In

the absence of electric charge, the obtained root for metric
function will be identical to that obtained in Eq. (22). In the
absence of the geometrical mass, the existence of root is
only determined by sign of the first term in Eq. (56). For the
metric function to have root, this term must be negative and
nonzero; therefore, Λ ≠ 2β2. The existence of the root then
is limited to the satisfaction of the one set of following
conditions: (i) Λ > 2β2 and α2 < 2, and (ii) Λ < 2β2 and
α2 > 2. In the absence of electric charge and geometrical
mass, the metric function will be without any root.
Due to the complexity of the obtained metric function, it

is not possible to obtain its roots analytically. Therefore,
we use a numerical method. We plot the obtained metric
function Eq. (56) in Fig. 5. This figure shows that the metric
function may contain real positive roots, and, thus, the
curvature singularity can be covered with an event horizon
and interpreted as a black hole.

A. Thermodynamic properties

We can obtain the Hawking temperature by using
Eq. (24) for the this black hole as

T ¼ ðα2 þ 1Þrþ
2π

�
b
rþ

�
2γ

½2β2ð1 −H1þÞ − Λ�

þ q2ðα2 þ 1Þ
α2πrþ

�
H3 − α2H2þ þ α2ΓþH4

ðα2 þ 2Þ
�
: ð60Þ

Notice that H1þ ¼ H1jr¼rþ and H2þ ¼ H2jr¼rþ and also
that H3 and H4 are given by

H3 ¼ 2F1

��
3

2
;
α2

2

�
;

�
α2 þ 2

2

�
;−Γþ

�
; ð61Þ

H4 ¼ 2F1

��
3

2
;
α2 þ 2

2

�
;

�
α2 þ 4

2

�
;−Γþ

�
; ð62Þ

where Γþ ¼ Γjr¼rþ . The electric potential U is obtained,
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U ¼ q
γ

�
b
rþ

�
γ

H2þ : ð63Þ

Using the area law of entropy in Einstein gravity, and also
calculating the flux of electromagnetic field at infinity, we
can obtain the entropy and the electric charge of this black
hole as

S ¼ πrþ
2

�
b
rþ

�
γ

; ð64Þ

Q ¼ q
2
: ð65Þ

According to the mentioned method for calculation of
the total finite mass of the metric presented in Eq. (6), we
can obtain the total mass as

M ¼ m
8
ð1 − γÞbγ; ð66Þ

which does not depend on the nonlinearity and on the
electromagnetic field directly since both the nonlinearity

and the electromagnetic field vanish for r → ∞. Following
the steps of the pervious sections, the total mass of the
black hole solution is obtained by evaluating the metric
function on its largest root,

MðrþÞ ¼
ðα2 þ 1Þ
2ðα2 − 2Þ

�
b
rþ

�
γ
��

Λ
2
− β2

�
r2þ

þ β2
�
r2þ

�
b
rþ

�
2γ

H1þ þ q2ðα2 − 2ÞH2þ

α2β2

��
; ð67Þ

yielding as well to a Smarr-like formula given by

MðS;QÞ ¼ ðα2 þ 1Þ
2ðα2 − 2Þ

�
πb
2S

�
α2
��

Λ
2
− β2

� ð2Sπ Þ2ðα
2þ1Þ

b2α
2

þ β2
��

2S
π

�
2

H1SQ
þ 4Q2ðα2 − 2ÞH2SQ

α2β2

��
;

ð68Þ

FIG. 5. fðrÞ versus r, for b ¼ 0.3, Λ ¼ −1. Left top panel: for m ¼ 4, α ¼ 1, β ¼ 0.5, q ¼ 0.490 (dashed line), q ¼ 0.518
(continuous line) and q ¼ 0.550 (dotted line). Right top panel: for m ¼ 4, α ¼ 1, q ¼ 0.5, β ¼ 0.480 (dashed line), β ¼ 0.615
(continuous line) and β ¼ 0.850 (dotted line). Right bottom panel: for m ¼ 4, q ¼ 0.5, β ¼ 0.5, α ¼ 1.000 (dashed line), α ¼ 1.021
(continuous line) and α ¼ 1.040 (dotted line). Left bottom panel: for q ¼ 0.5, β ¼ 0.5, α ¼ 1, m ¼ 4.10 (dashed line), m ¼ 3.86
(continuous line) and m ¼ 3.60 (dotted line).
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where H1SQ
¼ H1þjrþ¼bð2SπbÞα

2þ1;q¼2Q
and H2SQ

¼
H2þjrþ¼bð2SπbÞα

2þ1;q¼2Q
. As a direct consequence, the first

law of thermodynamics holds,

dM ¼ TdSþ UdQ; ð69Þ
with

dMðS;QÞ¼
�∂MðS;QÞ

∂S
�

Q
dSþ

�∂MðS;QÞ
∂Q

�
S
dQ; ð70Þ

and

T ¼
�∂M
∂S
�

Q
& U ¼

�∂M
∂Q
�

S
: ð71Þ

B. Thermodynamic behavior

In this section, we would like to stress how the Born-
Infeld theory can modify the thermodynamic behavior of
the black holes. Our main motivation is to distinguish the
differences between the Maxwell and Born-Infeld theories
in the thermodynamic context of charged BTZ-dilatonic
black holes.

1. Mass/internal energy

As in the Maxwell case, the condition α ≠
ffiffiffi
2

p
must also

be taken into consideration. This is not surprising since this
condition is only originated from the dilatonic part of the
action. Interestingly enough, one can see from the expres-
sion of the mass that for

Λ ¼ 2β2; ð72Þ

the effects of the Λ term are canceled by the nonlinearity
term and, since the other two terms (q and other β terms)

are positive valued, the mass is positive everywhere without
any root for this case. This is one of the most important
contributions of the generalization to the BI field which is
not seen in the context of the Maxwell case. Due to the
complexity of the mass relation, it is not possible to obtain
the root of the mass analytically. Therefore, we employ
some numerical method and plot the following diagrams
(see left and middle panels of Fig. 6). It could be seen that
similar behaviors to those in Maxwell case are observed
here too. This means that the mass of these black holes
could enjoy the existences of root and two regions of
positivity and negativity or it could be positive valued
everywhere. In the case of the existence of root, the mass is
only positive valued before the root. The place of this root is
a function of the nonlinearity parameter (see right panel
of Fig. 6). The term “α2 − 2” is present in all terms except
q-term. Therefore, we can separate the effects of different
terms (except the q-term) in the mass into two categories:
α >

ffiffiffi
2

p
and α <

ffiffiffi
2

p
. We give the details for α >

ffiffiffi
2

p
since

the opposite holds for the case α <
ffiffiffi
2

p
(except for the

q-term). For α >
ffiffiffi
2

p
, the q-term and one of the β-terms (the

one which is coupled with the electric charge) have positive
contributions on the total value of the mass. Whereas, the
other β-term has always negative contribution. The effects
of the Λ-term depends on the choices of Λ itself. For
negativeΛ, the effect of this term is toward decreasing mass
while the opposite is observed for positiveΛ. The existence
of a root for positive Λ depends on the following condition:

Λ < 2β2:

If the mentioned condition is satisfied, it is possible to find
a root for the obtained mass, otherwise, the mass is always
positive valued without any root. The situation for a
negative Λ term is different and depends on the following
condition

FIG. 6. M versus rþ, for b ¼ 1, q ¼ 1, β ¼ 0.5, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line), and Λ ¼ 1
(dashed-dotted line). Left panels: α ¼ 1; Middle panels: α ¼ 2. Right panels: for Λ ¼ −2, α ¼ 2, β ¼ 0.5 (continuous line), β ¼ 1
(dotted line), β ¼ 1.5 (dashed line), and the Maxwell case: β → ∞ (dashed-dotted line).
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�
Λ
2
− β2

�
r2þ > β2

�
r2þ

�
b
rþ

�
2γ

H1þ þ q2ðα2 − 2ÞH2þ

α2β2

�
;

which highly depends on choices of the nonlinearity
parameter, β.
Here, we see that the effects of the nonlinearity param-

eter, hence the BI generalization on the properties of the
mass, are significant. The presence of β provided an extra
degree of freedom, and because of that, the mass of the
solutions may have different behaviors. In the next sections,
we will give further details regarding this matter.

2. Temperature

Temperature for these black holes contains several terms:
(i) Three q terms in which, two of them have positive
contributions on the values of temperature while the other
one has negative effect, (ii) two β terms, one of which
contains an electric charge parameter, while the other one
has only a dilatonic parameter. The earlier β term has
negative effect on the values of temperature while the later
one has opposite (positive) effect, and (iii) a Λ term for
which, if Λ is negative, the effects are toward increasing the
temperature and the opposite exists for the positive values
of Λ. Here, too, the factors of Λ and one of the β terms are
the same and by tuning the nonlinearity parameter properly
(Λ ¼ 2β2), the effects of the Λ term could be canceled. This
highlights one of the important effects of the generalization
to BI theory.
Obtaining the root and extremum point of temperature

is not possible analytically. As before, we will use some
numerical method to plot the following diagrams (see left
and middle panels of Fig. 7). Evidently, depending on the
choices of different parameters, (i) the temperature could be
completely negative which in turn implies that the solutions
are not physical, (ii) the temperature could have one root
and, before it, the temperature is negative valued, or (iii) the
temperature could have one root and one maximum in

which the maximum is located after the root and only after
the root the temperature is positive. The places of the root
and extremum depend on the choices of the nonlinearity
parameter (see right panel of Fig. 7). The generalization to
the nonlinear electromagnetic field provided us with extra
terms in the temperature which eventually modified the
root, the regions of negativity or positivity, and the
extremum of temperature. In addition, this generalization
results into one more degree of freedom which could be
used to tune out the effects of some part of the dilaton
gravity. This option was not possible in the context of
Maxwell theory.

3. Heat capacity

Our final study in this section is devoted to the heat
capacity of the nonlinearly charged solutions. By taking a
closer look at Eq. (41), one can see that the heat capacity
contains temperature and the derivations of entropy and
temperature with respect to the horizon radius. The con-
ditions regarding the roots and the positivity or negativity
of the temperature were given in the last section. The
derivation of the entropy with respect to the horizon radius
does not produce any singular point, and it does not contain
terms that could contribute to the positivity or negativity of
the heat capacity. Therefore, we focus our attention on
ð ∂T∂rþÞQ given by

� ∂T
∂rþ

�
Q
¼

ðα2 − 1ÞðΛ
2
− β2Þð b

rþ
Þ2γ

π
þ
ðα2 − 1Þβ2ð brþÞ2γ

π
H1þ

−
ð2α2 − 1ÞH3þ − α2ðα2 þ 1ÞH2þ

πα2r2þ
ð73Þ

þ ð2α2 þ 3ÞH4 − 3H5

πβ2ðα2 þ 2Þr4þð b
rþ
Þ2γ þ

3q6H6

πβ4ðα2 þ 4Þr6þð brþÞ4γ
; ð74Þ

FIG. 7. T versus rþ, for b ¼ 1, q ¼ 1, β ¼ 0.5, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line), and Λ ¼ 1
(dashed-dotted line). Left panels: α ¼ 1; Middle panels: α ¼ 2. Right panels: for Λ ¼ −2, α ¼ 2, β ¼ 0.5 (continuous line), β ¼ 1
(dotted line), β ¼ 1.5 (dashed line), and the Maxwell case: β → ∞ (dashed-dotted line).
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where H5 and H6 are defined as follows:

H5 ¼ 2F1

��
5

2
;
α2 þ 2

2

�
;
�
α2 þ 4

2

�
;−Γþ

�
; ð75Þ

H6 ¼ 2F1

��
5

2
;
α2 þ 4

2

�
;

�
α2 þ 6

2

�
;−Γþ

�
: ð76Þ

Similar to other quantities, here, we are able to tune out
the effects of the Λ term by suitable choices of the
nonlinearity parameter. In other words, it is possible to
cancel out the effects of Λ in the heat capacity of BI
solutions by choosing Λ ¼ 2β2. Once more, we point it out
that such possibility is present in BI generalization while it
is not seen in the linear Maxwell theory. The presence of the
nonlinear electromagnetic field provided a complicated
system of terms in the heat capacity. Unfortunately, such
complication does not allow us to extract divergence points
of the heat capacity analytically. We have plotted the
following diagrams (see left and middle panels of
Fig. 8). Depending on the choices of different parameters,
one of the following cases would take place for the heat
capacity: (i) Two states of stable and unstable which are
separated by a root. In the previous section, it was shown
that the root of the temperature, hence the heat capacity, is a
function of nonlinearity parameter. (ii) The heat capacity
could be negative everywhere without any root or diver-
gency. In this case, the solutions are unstable but according
to the results of previous section, the temperature is also
negative which indicates that the solutions are not physical.
(iii) The heat capacity could enjoy one root and one
divergency. The divergency points out the existence of a
phase transition. Before the root, the heat capacity is also
negative. Therefore, the only physically stable solutions
exist between the root and divergency of the heat capacity.
The plotted diagram for the variation of the nonlinearity
parameter (see right panel of Fig. 8), β, shows that
the location of divergency is a function of this parameter.

This indicates that the region in which physical stable
solutions exist depends on the choice of β. This highlights
another significant effect of the nonlinearity parameter.

IV. CONCLUSION

The paper at hand regarded BTZ black holes in the
presence of two generalizations which are motivated by
string theory: dilaton gravity and a Born-Infeld nonlinear
electromagnetic field.
First, the solutions in the presence of dilaton gravity

were extracted and their thermodynamic properties were
studied. It was shown that, in comparison to Einstein
gravity, here, the mass of these black holes could enjoy the
existence of a root and a region of negative mass/internal
energy. In addition, specific limits for the dilaton param-
eter and Λ were obtained, and it was shown that,
thermodynamically speaking, only for a specific region
of the dilaton parameter physical solutions exist.
Therefore, although generalization to dilaton gravity
provided us with new properties for the solutions, at
the same time, it imposed specific limits on them as well.
In other words, introducing new properties into solutions
by dilatonic generalization was obtained at the cost of
harder restrictions on the solutions.
Next, Born-Infeld generalization was implied to the

action. It was shown that this generalization provides the
possibility of canceling a part of dilatonic contribution by
suitable choices of parameters. In addition, it was shown
that although some of the Maxwell conditions for having
thermodynamically physical solutions stand for this case as
well, the general behavior of the solutions including phase
transition point, region of stable solutions, conditions of
having physical solutions were modified due to the con-
tributions of BI theory.
The study conducted here could be employed to inves-

tigate aspects such as superconductor properties, holo-
graphical principles and entropy spectrum. Specially, it is
interesting to study the central charges of 1þ 1 theories

FIG. 8. CQ versus rþ, for b ¼ 1, q ¼ 1, β ¼ 0.5, Λ ¼ −2 (continuous line), Λ ¼ −1 (dotted line), Λ ¼ 0 (dashed line), and Λ ¼ 1
(dashed-dotted line). Left panels: α ¼ 1; Right panels: α ¼ 2. Right panels: forΛ ¼ −2, α ¼ 2, β ¼ 0.5 (continuous line), β ¼ 1 (dotted
line), β ¼ 1.5 (dashed line), and the Maxwell case: β → ∞ (dashed-dotted line).
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and understand the effects of the dilatonic gravity and BI
generalization in this context. In addition, as it is known,
we can discuss dyon solutions of our dilatonic setup with
two horizons. We address these subjects in the forth-
coming works.
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APPENDIX: POSSIBILITY OF THE STRONG
COUPLING

The runaway type behavior of the dilaton implies that
the theory becomes quantum mechanically strongly
coupled at some finite radius r, as can be seen for example
by the growth of the curvature invariants, or the growth of
the effective electric charge. This can invalidate all
semiclassical calculations on top of the corresponding
solutions.
Considering Eq. (2), one can find that the coefficient of

the kinetic term of the electromagnetic Lagrangian goes to
zero for r → 0 on the specific solution (13). Although we
work in the case that αΦðrÞ is finite everywhere, it is
interesting to investigate the possible existence of strong
coupling of the effective action. As an example, one may
regard a non-vanishing current-current correlator case for
dynamical charges in which the induced electromagnetic
Lagrangian term could overpower the leading contribution.
In order to check that such issue is not important in our
case, one may compare the size of the horizon to the radius

at which the effective charge qe4αΦðrÞ
RðrÞ goes to one. Using

Eqs. (12) and (13), one can obtain

Qeff ¼
qe4αΦðrÞ

RðrÞ ¼ q

�
b
r

� α2

1þα2 ; ðA1Þ

or equivalently, we find that

r ¼ b

�
q

Qeff

�1þα2

α2 :

In order to find the effective radius, we suppose that the
effective charge goes to one, Qeff ¼ 1, yielding

reff ¼ bq
1þα2

α2 :

The effects of different parameters on the effective radius
are given in Fig. 9a showing that it is an increasing function
of the electric charge and dilaton parameters. That being
said, the important issue is that this effective radius is smaller
than horizon radius. To address this issue, we employ the
numerical method and plots diagrams in Figs. 9b and 9c.
Evidently, for considered values, the effective radius is
smaller than horizon radius or at least the largest horizon
radius. Therefore, for considered values for different param-
eters, the effective radius is indeed within acceptable regime.
Though for considered values this is true, we should high-
light a few matters: the metric function contains extra
parameters such as the cosmological constant, geometrical
mass and nonlinearity parameter which are absent in
Eq. (A1). This indicates that these parameters could con-
siderably change the horizon radius in a way that it becomes
smaller than effective radius. An example of such case could
be seen in Fig. 9d. As one can see, such cases usually
happens when b parameters becomes significantly large.
Therefore, by keeping the value of such parameter to small
ones, it is possible to avoid situations where effective radius
becomes larger than horizon radius. This is actually what is
done through our calculations.

FIG. 9. Horizon and effective radius for the Maxwell case. (a) Variation of reff as a function electric charge and dilaton parameters.
(b) Variations of reff and horizon radius as a function of α for m ¼ 3, Λ ¼ −1, b ¼ 0.3 and q ¼ 0.4. (c) Variations of reff and horizon
radius as a function of q for m ¼ 3, Λ ¼ −1, b ¼ 0.3 and α ¼ 1. (d) Variation of reff and horizon radius as a function of α for Λ ¼ −1,
q ¼ 0.4, b ¼ 3 and m ¼ 5.
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