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The motion of test membranes on which the group G of isometries of a spacetime M acts has been
considered in general settings. It has been shown that the configuration of Nambu-Goto membranes is
described by the Nambu-Goto membranes in the quotient manifold M=G with an appropriate projected
metric if (i)G is Abelian, (ii)G is semisimple and compact, or (iii) the orthogonal distribution of the orbit of
G is integrable, but in general not. It has also been shown that a similar result holds when the membranes
couple with scalar maps or differential form fields.
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I. INTRODUCTION

Extended objects in cosmology such as cosmic strings and
membranes (domain walls) naturally arise as topological
defects associatedwith various symmetry-breaking phenom-
ena in quantum field theory. They play an important role in
the scenario of the structure formation of the Universe.
The description of motion of extended objects such as

strings and membranes in a spacetime with Killing vector
fields simplifies when they respect the spacetime symmetry.
This kind of simplification has long been known in the

minimal surface theory [1] as the cohomogeneity tech-
nique. In general relativity, Frolov et al. [2] find that the
configuration of stationary Nambu-Goto strings in a sta-
tionary spacetime is determined by the geodesic equation in
a certain Riemannian 3-manifold. Their reasoning is based
on the observation that when the stationary string ansatz is
substituted into the Nambu-Goto action, the action reduces
to the geodesic action via the dimensional reduction.
This technique is widely applied to the construction of

stationary string solutions in various background space-
times [3–8]. It is also useful to find dynamical string
solutions in spacetimes with a Killing vector field [9–13].
A similar idea for this dimensional reduction also works

for f þ 1-dimensional Nambu-Goto membranes when the
spacetime has f pairwise commuting Killing vector fields
and the membrane respects this symmetry [14].
The authors of Ref. [15] pointed out that the dimensional

reduction at the action level also occurs when the f Killing
vector fields are noncommuting. With this observation,
they claim that the f þ 1-dimensional Nambu-Goto mem-
branes respecting the f-dimensional non-Abelian group of
isometry of the spacetime could be reduced to the geodesic
motion in the quotient manifold.
However, it is of course not the correct procedure to put a

trial solution directly into the action. Hence, we would like
to confirm whether the above claim is correct or not.

In the following, we consider Nambu-Goto membranes of
general dimensions in spacetime with a non-Abelian group
of isometries, assuming that the membranes respect the
spacetime symmetry. We show that the resultant equation
of motion for the membranes is almost that for lower-
dimensional Nambu-Goto membranes, but with extra force
terms. This force term becomes zero for the Abelian case, or
the semisimple and compact cases, but it does not in general.
In particular, the claim in Ref. [15] is not the case.
The organization of this paper is as follows. In Sec. II,

the mathematical settings are described. In Sec. III, the
Nambu-Goto membranes with spacetime symmetries are
considered, and their general equation of motion is derived.
In Sec. IV, similar consideration on the membranes coupled
with scalar maps is made. In Sec. V, membranes coupled
with a differential form field are treated. In Sec. VI, several
remarks are made.

II. ISOMETRIC ACTIONS ON WORLD SHEETS

Let (M, g) be an m-dimensional spacetime, which is a
differentiable manifold M endowed with a spacetime
metric g of the signature ð−;þ; � � � ;þÞ. Let G be an
f-dimensional connected Lie subgroup of the full isometry
group of M.
The (left) G-action on M is a group homomorphism

G → DiffðMÞ; g ↦ fg

of G into the group of diffeomorphisms on M, such that

G ×M → M; ðg; xÞ ↦ fgðxÞ

is differentiable.
We assume that the G-action on M is free, which means

that fg does not have a fixed point on M for every
nonidentity element g of G, or in other words, M admits
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f linearly independent Killing vector fields as the infini-
tesimal generators of G.
We also require that theG-action onM be proper, i.e., the

map

G ×M → M ×M; ðg; xÞ ↦ ðfgðxÞ; xÞ

is proper, which means that the preimage of any compact
set is compact.
For each element x in M, the set

Gx ¼ ffgðxÞjg ∈ Gg

is called the orbit of x. The set of these orbits is called the
orbit space, and it is denoted by M=G.
Under the free and proper action of G, it is guaranteed

that (a) each orbit Gx is an embedded closed submanifold
of M, (b) Gx is diffeomorphic with G, and (c) the orbit
space M=G naturally acquires a differentiable structure.
In the rest of this section, we give the general form of the

Lorentzian metric g on M. The construction goes along
similar lines to that of homogeneous universes [16].
We first determine the geometry of the orbit Gx. We

assume that each orbit is non-null, so that the induced
metric on Gx is a nondegenerate Riemannian or Lorentzian
metric.
Let fyigi¼1;2;…;f be a local coordinate system on Gx.

Since f linearly independent Killing vector fields
fξIgI¼1;2;…;f generating a G-action are tangent to Gx,
these can be written as ξI ¼ ξI

i∂i with this coordinate basis.
Since these Killing vector fields generate a left action of

G on Gx, they are identified with the right invariant vector
fields on G. According to the general theory of Lie groups,
the right invariant vector fields on G are subject to the
commuting relation

½ξI; ξJ� ¼ fIJKξK;

where fIJK’s are the structure constants for the Lie algebra
g of G.
A left invariant vector field σi on Gx is a tangent vector

field invariant under the G-action, characterized by the
equation

LξIσ
i ¼ 0;

where LξI denotes the Lie derivative. This equation admits
f linearly independent solutions, which we denote by
fσI igI¼1;2;…;f. By taking a linear combination, it is always
possible to find the basis fσiIgI¼1;2;…;f of the left invariant
vector fields, such that

½σI; σJ� ¼ fIJKσK

holds.

The dual basis of 1-forms fσIigI¼1;2;…;f, characterized by

σI
kσJk ¼ δJI ;

consists of left invariant 1-forms. These satisfy

LξIσ
J
k ¼ 0;

dσK ¼ −
1

2
fIJKσI ∧ σJ:

The induced metric on Gx can be written in terms of this
left invariant basis as

gij ¼ ϕIJσ
I
iσ

J
j; ð1Þ

with entries ϕIJ of the nondegenerate symmetric matrix.
Since gij is invariant under the G-action, i.e.,

LξI gij ¼ 0

should be required, the coefficients ϕIJ are constants over
Gx. Equation (1) gives the general form of the metric on
the orbit.
Now, we can write the spacetime metric g in the present

setting. Since the orbit space M=G is the differentiable
manifold, it has a local coordinate system, which we denote
by fzμgμ¼1;2;…;b, where b ¼ m − f. The spacetime metric
could in general be written as

g ¼ ϕIJðzαÞðσIðykÞ − wI
μðyk; zλÞdzμÞðσJðykÞ

− wJ
νðyk; zλÞdzνÞ þ hμνðyk; zλÞdzμdzν;

so that it induces gij ¼ ϕIJσ
I
iσ

J
j on each orbit by setting

zμ ¼ const. Since the spacetime metric g is invariant under
the G-action, it is subject to the Killing equation

LξI g ¼ 0:

Then, it is required that

wI
ν ¼ wI

νðzkÞ; hμν ¼ hμνðzkÞ

hold. This gives the general local form of the spacetime
metric g.

III. NAMBU-GOTO G MEMBRANES

Let us consider the motion of extended objects in
spacetimes equipped with the isometric G-action. It is
generally expected that the equation of motion simplifies
when the extended object also respects the isometry. The
simplification typically occurs in the form of the dimen-
sional reduction; i.e., the equation of motion reduces to that
for the objects (e.g., particles, strings, or membranes) in the
orbit spaceM=G. In this section, we study the Nambu-Goto
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membranes as a basic example of extended objects in the
relativistic mechanics.
In general, a relativistic membrane is described as a

timelike immersion i∶ W → M of a differentiable manifold
W, called a world sheet, into the spacetime M. Let
fxaga¼1;2;…;m andfsAgA¼1;2;…;w be a local coordinate system
on M and W, respectively. The immersion i is locally
described as

xa ¼ Xaðs1;…; swÞ;

in terms of the m scalar functions Xa on the world sheet W.
Then, the Lorentzian metric

GAB ¼ gabXa
;AXb

;B

is locally induced on W.
The Nambu-Goto action for the relativistic membrane is

given by

S½Xa� ¼ −τ
Z
W
ds1…dsw

ffiffiffiffiffiffiffi
jGj

p
;

where τ is a constant identified with the tension of the
membrane, and G ¼ detGAB. The Euler-Lagrange equa-
tion becomes

Ka ≔ DCDCXa þ Γa
bcG

bc ¼ 0;

where DC denotes the covariant derivative with respect to
GAB, Γa

bc the Christoffel symbol for gab, and

Gab ¼ GABðDAXaÞDBXb

has been defined, where GAB denotes the inverse matrix
of GAB.
The vector field Ka on W has a simple geometrical

meaning. It is the mean curvature vector

Ka ¼ GBCKa
BC;

which is the trace of the extrinsic curvature vector

Ka
BC ¼ DBDCXa þ Γa

bcðDBXbÞDCXc:

The extrinsic curvature vector is defined as follows: let UA

and VA be tangent vector fields on W, and let Ua and Va

be smoothly extended vector fields of i�U and i�V,
respectively, to a neighborhood W of W. For x ∈ W,
the orthogonal decomposition TxM ¼ TxW ⊕ NxW of
ð∇UVÞx is written as

∇UV ¼ DUV þ KðU;VÞ:

Then, K∶ TxW × TxW → NxW is defined by this
equation.
We assume that the group of isometry G acts freely and

properly on M. Then, as we see in Sec. II, the spacetime
metric can be written locally as

g ¼ ϕIJðσI − wI
μdzμÞðσJ − wJ

νdzνÞ þ hμνdzμdzν;

where σI ¼ σIðykÞ constitutes a left invariant basis of
1-forms on the orbit Gx, and

ϕIJ ¼ ϕIJðzλÞ; wI
μ ¼ wI

μðzλÞ; hμν ¼ hμνðzλÞ

are the scalar, vector and metric tensor fields on the orbit
space M=G.
Let the membrane respect this isometry, so that the image

of the world sheetW is G-invariant, i.e., invariant under the
action of G. The general form of such Gmembranes can be
written as

Xi ¼ αi ði ¼ 1;…; fÞ
Xμ ¼ XμðβA0 Þ ðμ ¼ f þ 1;…; mÞ

in terms of the world sheet coordinates

fsAg ¼ fαi; βA0gi¼1;…;f;A0¼fþ1;…w:

This is identified with the immersion of the world sheet
orbit space W=G into the spacetime orbit space M=G,
characterized by

Xμ ¼ XμðβA0 Þ:

Thus, a G membrane can be regarded as a membrane in the
orbit space M=G.
Although the following calculations are most efficiently

executed via the Cartan’s structure equations for connection
forms, we show the results of the direct coordinate
calculations for the reader’s convenience. In the following
calculations, indices are raised and lowered, respectively,
by ϕIJ, ϕIJ, λij, λij, hμν, and hμν, where ϕIJ denotes the
entries of the inverse matrix of ϕIJ, λij is defined by

λij ¼ ϕIJσ
I
iσ

J
j;

λij is its inverse, and hμν is the inverse of hμν. The covariant
derivative compatible with hμν is denoted by the semicolon.
The components of the spacetime metric g and its inverse

g−1 are given by

gij ¼ λij; giμ ¼ −wiμ; gμν ¼ hμν þwKμwK
ν;

gij ¼ λij þ σI
iσJ

jwI
λwJλ; giμ ¼ σK

iwKμ; gμν ¼ hμν:
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The Christoffel symbols are computed as

Γi
jk ¼ σI

iσIðj;kÞ þ σI
iσJjσ

K
k

�
fIðJKÞ þ fLðJKÞwI

μwLμ

−
1

2
ϕJK;μwIμ

�
; ð2Þ

Γi
jλ ¼ σI

iσJj

�
1

2
ϕJK;λϕ

IK þ 1

2
ϕJK;ρwIρwK

λ

−
1

2
fIJKwK

λ −
1

2
fLJKwIρwL

ρwK
λ − wIρϕJKwK ½ρ;λ�

�
;

ð3Þ

Γi
νλ ¼ σK

i

�
−ϕIKϕIJ;ðνwJ

λÞ − wKðν;λÞ þ wK
μ
hΓμ

νλ

þ wKμ

�
−
1

2
ϕIJ;μwI

νwJ
λ þ wIνwI ½μ;λ� þ wIλwI ½μ;ν�

��
;

ð4Þ

Γμ
jk ¼ σJjσ

K
k

�
−
1

2
ϕJK

;μ þ fIðJKÞwIμ

�
; ð5Þ

Γμ
νk ¼ σKk

�
1

2
ϕJK

;μwJ
ν þ ϕJKhμλwJ ½ν;λ� −

1

2
fIKJwIμwJ

ν

�
;

ð6Þ

Γμ
νλ ¼ hΓμ

νλ −
1

2
ϕIJ

;μwI
νwJ

λ þ wIðνwIμ
;λÞ − wIðνwI

λÞ;μ; ð7Þ

where hΓμ
νλ denotes the Christoffel symbol with respect to

hμν. Note that we raise or lower the indices I; J;…with ϕIJ,
ϕIJ, but not with the Killing metric on the Lie algebra g, so
that, e.g., fIJK may not be totally antisymmetric under the
permutation of the indices.
The induced metricGAB and its inverseGAB on the world

sheet W become

Gij ¼ λij; GiB0 ¼ −λijCj
B0 ;

GA0B0 ¼ G0
A0B0 þ λijCi

A0Cj
B0

Gij ¼ λij þ Ci
A0Cj

B0G0A0B0
;

GiB0 ¼ Ci
A0G0A0B0

; GA0B0 ¼ G0A0B0
;

where

Cj
B0 ¼ σJ

jwJ
λDB0Xλ;

G0
A0B0 ¼ hμνðDA0XμÞDB0Xν

have been defined, and G0A0B0
denotes the inverse of G0

A0B0 .
This G0

A0B0 gives the induced metric on the quotient world
sheet W=G as the membrane immersed in (M=G, h).

The spacetime component Gμν of GAB is calculated as

Gij ¼ σI
iσJ

jðϕIJ þ wI
μwJ

νG0μνÞ;
Giν ¼ σI

iwI
μG0μν;

Gμν ¼ G0μν;

where

G0μν ¼ G0A0B0 ðD0
A0XμÞD0

B0Xν

has been defined, which is the spacetime component
of G0A0B0

.
In order to derive the equation of motion for G

membranes, we need the expression for the extrinsic
curvature vector:

Ka
BC ¼ DBDCXa þ Γa

bcðDBXbÞDCXc

¼ Xa
;BC − GΓA

BCX
a
;A þ Γa

bcX
b
;BXc

;C;

where GΓA
BC denotes the Christoffel symbol with respect

to GAB.
Noting that

GΓA
BC ¼ GADXa

;DgadðXd
;BC þ Γd

bcX
b
;BXc

;CÞ;

we have another expression for the extrinsic curvature
vector:

Ka
AB ¼ ðδad − Ga

dÞðXd
;AB þ Γd

bcX
b
;AXc

;BÞ:

The direct computations show

Kμ
ij ¼ N0μν

�
fKðIJÞwK

ν −
1

2
ϕIJ;ν

�
σI iσ

J
j; ð8Þ

Kμ
iB0 ¼ 1

2
N0μνðfIJKwJ

νwK
λ þ ϕIJ;νwJ

λ − 2ϕIJwI ½ν;λ�Þ
× σI iD0

B0Xλ; ð9Þ

Kμ
A0B0 ¼ K0μ

A0B0

þ N0μν
�
−
1

2
ϕIJ;νwI

λwJ
ρ þ 2ϕIJwI ½ν;λ�wJ

ρ

�

× ðD0
ðA0XλÞD0

B0ÞX
ρ; ð10Þ

Ki
AB ¼ σI

iwI
μK

μ
AB; ð11Þ

whereD0
A0 denotes the covariant derivative compatible with

G0
A0B0 ; N0μν the projection onto the normal space toW=G in

M=G, defined as

N0μν ¼ hμν − G0μν;
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and

K0μ
A0B0 ¼ D0

A0D0
B0Xμ þ hΓμ

νλðD0
A0XνÞDB0Xλ

is the extrinsic curvature vector of W=G relative to
(M=G, h).
Then, the equation of motion is calculated as

Kμ ¼ K0μ þ N0μν
�
fIJJwI

ν −
1

2
ϕ−1ϕ;ν

�
¼ 0;

where K0μ ¼ G0A0B0
K0μ

A0B0 is the mean curvature vector of
W=G relative to (M=G, h), and we abbreviate as
ϕ ¼ detϕIJ. The remaining equation Ki ¼ 0 does not give
further restriction since

Ki ¼ σI
iwI

μKμ

holds.
This resembles the equation of motion for Nambu-Goto

membranes, but with the extra force term. We can partially
reduce the force term via the conformal transformation

hμν ¼ jϕj−1=w̃h̃μν;
G0

A0B0 ¼ jϕj−1=w̃G̃A0B0 ;

where w̃ ¼ w − f. The inverses of h̃μν and G̃A0B0 are,
respectively, written as h̃μν and G̃A0B0

.
The extrinsic curvature vector of W=G relative to

(M=G, h̃) is written as

K̃μ
A0B0 ¼ D̃A0D̃B0Xμ þ Γ̃μ

νλðD̃A0XνÞD̃B0Xλ;

where D̃A0 denotes the covariant derivative with respect to
the conformally transformed world sheet metric G̃A0B0 and
Γ̃μ
νλ the Christoffel symbol with respect to G̃A0B0 . Here and

in what follows, the indices for conformally transformed
quantities are raised or lowered in terms of G̃A0B0

, G̃A0B0 , h̃μν,
and h̃μν.
The extrinsic curvature vector undergoes the conformal

transformation as

K̃μ
A0B0 ¼ K0μ

A0B0 −
1

2w̃
ϕ−1ϕ;νÑμνG̃A0B0 ;

where the projection tensor Ñμν has been defined as

Ñμν ¼ jϕj−1=w̃N0μν:

Finally the equation of motion for G membranes
becomes

K̃μ ¼ ÑμνfJIJwI
ν; ð12Þ

where

K̃μ ¼ G̃A0B0
K̃μ

A0B0 ¼ D̃C0D̃C0
Xμ þ Γ̃μ

νλðD̃C0XνÞD̃C0
Xλ

is the mean curvature vector of W=G relative to the orbit
space (M=G, h̃). In this way, the force term generally
appears at the right-hand side of the reduced equation of
motion (12).

In Ref. [15], the G-invariant Nambu-Goto membranes
are considered in the case of w̃ ¼ 1, and it is argued that the
equation of motion reduces to the geodesic equation in the
conformally transformed orbit space (W=G, h̃), which is
based on the dimensional reduction at the action level,

S ¼ −τ
Z
W
dws

ffiffiffiffiffiffiffi
jGj

p

¼ −τ
Z
G
dfαj det σI ij

Z
W=G

dβ1
ffiffiffiffiffiffiffiffiffiffi
jG̃11j

q

∝
Z
W=G

dβ1
ffiffiffiffiffiffiffiffiffiffi
jG̃11j

q
:

The last expression gives the geodesic action. However it
turns out that it generally does not produce a correct
equation of motion due to the presence of the force term,
as we have explicitly shown.
In certain special cases, the force term becomes zero

so that the configuration of the G-invariant membranes
corresponds to the extremal surface in the orbit space
(W=G, h̃) or to the geodesicwhen w̃ ¼ 1. They includewhen

(i) G is Abelian: All the structure constants fIJK

become zero. This includes the case when the orbit
Gx is one dimensional.

(ii) G is semisimple and compact: The Jacobi identity
for the structure constants implies that fIJJ ¼ 0
automatically holds.

(iii) Orthogonal distributions of G-orbits are integrable:
When the orbit Gx is everywhere orthogonal to the
orbit space, wI

i becomes identically zero.

IV. G MEMBRANES COUPLED TO SCALAR MAP

It would be natural to ask whether a reduction mecha-
nism similar to that shown in the previous section works in
the presence of the external fields. As a simple case, we
here consider the membranes coupled to a single complex
scalar field without U1 gauge couplings.
Assume that there is a complex scalar field ψ∶ W → C

on the membrane. We consider the following model for the
membrane coupled to a scalar map:

S½Xa;ψ � ¼ SNG½Xa� þ Sψ ½Xa;ψ �;

SNG½Xa� ¼ −τ
Z
W
ds1…dsw

ffiffiffiffiffiffiffi
jGj

p
;

Sψ ½Xa;ψ � ¼ −κ
Z
W
ds1…dsw

ffiffiffiffiffiffiffi
jGj

p
½GABðDAψ

�ÞDBψ

þUðψ�ψÞ�:
The first variation of this action with respect to Xa gives

the equation of motion for the membrane

1ffiffiffiffiffiffiffijGjp gab
δS
δXb ¼

1ffiffiffiffiffiffiffijGjp ∂A½
ffiffiffiffiffiffiffi
jGj

p
ðτGAB − TABÞDBXa�

þ Γa
bc½τGbc − TBCðDBXbÞDCXc� ¼ 0;

ð13Þ
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where the stress-energy tensor

TAB ¼ κ½2ðDðAψ�ÞDBÞψ − ðDCψ
�ÞðDCψÞGAB −UGAB�

on the world sheet W has been defined.
The first variation with respect to ψ� gives the wave

equation

1

κ
ffiffiffiffiffiffiffijGjp δS

δψ� ¼ DCDCψ −U0ψ ¼ 0 ð14Þ

for ψ. This implies the local conservation law for the energy

DATAB ¼ 0:

Using this equation, Eq. (13) reduces to

τKa − TABKa
AB ¼ 0; ð15Þ

in terms of the extrinsic curvature vector.
Here we assume the G-invariant configuration for the

metric

g ¼ ϕIJðσI − wI
μdzμÞðσJ − wJ

νdzνÞ þ jϕj−1=w̃h̃μνdzμdzν;

as in the previous section, and for the membrane and the
scalar field on it:

Xi ¼ αi; Xμ ¼ XμðβA0 Þ; ψ ¼ ψðβA0 Þ:

Then, Eq. (15) reduces to

τKμ−TABKμ
AB ¼ jϕj1=w̃

�
τK̃μ− T̃A0B0

K̃μ
A0B0

þ Ñμν

�
τfIJJwI

νþjϕj1=w̃ðD̃C0ψ�ÞðD̃C0
ψÞ

×

�
fIJJwI

ν−
1

w̃
ϕ−1ϕ;ν

���
¼ 0;

and

τKi − TABKi
AB ¼ σI

iwI
μðτKμ − TABKμ

ABÞ ¼ 0;

where the reduced stress-energy tensor is defined by

T̃A0B0 ¼ κfjϕj1=w̃½2ðD̃ðA0
ψ�ÞD̃B0Þψ − ðD̃C0ψ�ÞðD̃C0

ψÞG̃A0B0 �
−UG̃A0B0 g:

On the other hand, the wave equation (14) becomes

D̃C0 ðjϕj1=w̃D̃C0
ψÞ −U0ψ ¼ 0: ð16Þ

In summary, the equation of motion reduces to

τK̃μ − T̃A0B0
K̃μ

A0B0 ¼ Ñμν

�
τfJIJwI

ν þ jϕj1=w̃ðD̃C0ψ�ÞðD̃C0
ψÞ

×

�
fJIJwI

ν þ
1

w̃
ϕ−1ϕ;ν

��
: ð17Þ

Except for the term with the factor fJIJwI
ν, Eqs. (15)

and (17) are derived from the action

S̃½Xμ;ψ � ¼ −
Z
W=G

dβ1…dβw̃
ffiffiffiffiffiffiffi
jG̃j

q
fτ þ κ½jϕj1=w̃

× ðD̃C0ψ�ÞD̃C0
ψ þ Uðψ�ψÞ�g; ð18Þ

obtained via the naive dimensional reduction.

V. COUPLING TO DIFFERENTIAL
FORM FIELD

As another model for matter coupling, we consider a
background differential form field ω, which is a w-form
field on M.
The simplest model would be given by

S½Xa� ¼ SNG½Xa� þ Sω½Xa�;

SNG½Xa� ¼ −τ
Z
W
ds1…dsw

ffiffiffiffiffiffiffi
jGj

p
;

Sω½Xa� ¼ −λ
Z
W
i�ω

¼ λ

w!

Z
W
ds1…dswωa1…awðDA1

Xa1Þ

…ðDAw
XawÞϵA1…Aw;

where ϵA1…Aw denotes the w-index Levi-Civita symbol on
W such that ϵ12…w ¼ −1.
The first variation of the action is calculated as

δS
δXa ¼ τ

ffiffiffiffiffiffiffi
jGj

p
gabKb þ λðwþ 1Þ

w!
ω½a1…aw;a�ðDA1

Xa1Þ
…ðDAw

XawÞϵA1…Aw :

Thus the equation of motion for the membrane becomes

τKa ¼ −
λðwþ 1Þ
w!

ffiffiffiffiffiffiffijGjp gabω½a1…aw;b�ðDA1
Xa1Þ

…ðDAw
XawÞϵA1…Aw: ð19Þ

We assume that both the membrane and the background
w-form field are G-invariant. The general form of the
G-invariant w-form is

ðleft invariant p-form onGxÞ ∧ ½ðw − pÞ-form onM=G�

or their linear combination. Among these, only the p ¼ f
case results in the reduction of the system to the membrane
equation in M=G. Hence we choose
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ω ¼ σ1 ∧ σ2 ∧ … ∧ σf ∧ ω̃;

where ω̃ is the w̃-form on M=G. In terms of coordinate
components, we assume that

Xi ¼ αi; Xμ ¼ XμðβA0 Þ;

ωa1…aw ¼ w!
w̃!

σ1½a1…σfaf ω̃ðxμÞafþ1…afþw̃�:

Then, Eq. (19) reduces to the equation for the membrane
in M=G as

τK̃μ ¼ ð−1Þsþt λðw̃þ 1Þ
w̃!

ffiffiffiffiffiffiffi
jG̃j

p h̃μνω̃½μ1…μw̃;ν�ðDA0
1
Xμ1Þ

…ðDA0
w̃
Xμw̃ÞϵA0

1…A0
w̃ þ τÑμνfJIJwI

ν: ð20Þ

The factor ð−1Þs in the first term on the rhs is (þ1) if G̃A0B0

has Riemannian signature and (−1) if Lorentzian, and the
factor ð−1Þt denotes the signature of det σIi. The w̃-index
Levi-Civita symbol on W=G has been normalized such
that ϵfþ1;fþ2;…;fþw̃ ¼ ð−1Þs.
Except for the final force term, Eq. (20) has the same

form as Eq. (19), which is derived from the naive reduced
action

S̃½Xμ; ω̃� ¼ −τ
Z
W=G

dβ1…dβw̃
ffiffiffiffiffiffiffi
jG̃j

q
− ð−1Þtλ

Z
W=G

i�ω̃:

ð21Þ

VI. CONCLUDING REMARKS

We have considered in general settings the motion of
test membranes on which the group G of spacetime
isometries acts. We have found that the configuration
of Nambu-Goto membranes is described by the Nambu-
Goto membranes in a quotient manifold with the appro-
priate projected metric, if at least one of the following
conditions holds: (i) G is Abelian, (ii) G is semisimple and
compact, or (iii) the orthogonal distribution of the orbit
of G is integrable. We have also obtained similar results
for the membranes coupled with the scalar maps or the
differential form fields.
At the same time, it should be emphasized that the usual

dimensional reduction procedure at the action level is not
always justified. This is because the variational principle
for dimensionally reduced action does not incorporate the
variation of membranes with inhomogeneous variation
with respect to the G-orbits.
Nevertheless, the correct equation of motion for G

membranes derived here is only slightly different from
the naive equation of motion by force terms written with
local geometrical quantities. Hence, our formalism would
be useful when we seek for more general string/membrane
solutions in spacetimes with isometries and when we
classify such solutions.
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