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The motion of test membranes on which the group G of isometries of a spacetime M acts has been
considered in general settings. It has been shown that the configuration of Nambu-Goto membranes is
described by the Nambu-Goto membranes in the quotient manifold M /G with an appropriate projected
metric if (i) G is Abelian, (ii) G is semisimple and compact, or (iii) the orthogonal distribution of the orbit of
G is integrable, but in general not. It has also been shown that a similar result holds when the membranes

couple with scalar maps or differential form fields.
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I. INTRODUCTION

Extended objects in cosmology such as cosmic strings and
membranes (domain walls) naturally arise as topological
defects associated with various symmetry-breaking phenom-
ena in quantum field theory. They play an important role in
the scenario of the structure formation of the Universe.

The description of motion of extended objects such as
strings and membranes in a spacetime with Killing vector
fields simplifies when they respect the spacetime symmetry.

This kind of simplification has long been known in the
minimal surface theory [1] as the cohomogeneity tech-
nique. In general relativity, Frolov et al. [2] find that the
configuration of stationary Nambu-Goto strings in a sta-
tionary spacetime is determined by the geodesic equation in
a certain Riemannian 3-manifold. Their reasoning is based
on the observation that when the stationary string ansatz is
substituted into the Nambu-Goto action, the action reduces
to the geodesic action via the dimensional reduction.

This technique is widely applied to the construction of
stationary string solutions in various background space-
times [3-8]. It is also useful to find dynamical string
solutions in spacetimes with a Killing vector field [9-13].

A similar idea for this dimensional reduction also works
for f + 1-dimensional Nambu-Goto membranes when the
spacetime has f pairwise commuting Killing vector fields
and the membrane respects this symmetry [14].

The authors of Ref. [15] pointed out that the dimensional
reduction at the action level also occurs when the f Killing
vector fields are noncommuting. With this observation,
they claim that the f 4 1-dimensional Nambu-Goto mem-
branes respecting the f-dimensional non-Abelian group of
isometry of the spacetime could be reduced to the geodesic
motion in the quotient manifold.

However, it is of course not the correct procedure to put a
trial solution directly into the action. Hence, we would like
to confirm whether the above claim is correct or not.
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In the following, we consider Nambu-Goto membranes of
general dimensions in spacetime with a non-Abelian group
of isometries, assuming that the membranes respect the
spacetime symmetry. We show that the resultant equation
of motion for the membranes is almost that for lower-
dimensional Nambu-Goto membranes, but with extra force
terms. This force term becomes zero for the Abelian case, or
the semisimple and compact cases, but it does not in general.
In particular, the claim in Ref. [15] is not the case.

The organization of this paper is as follows. In Sec. II,
the mathematical settings are described. In Sec. III, the
Nambu-Goto membranes with spacetime symmetries are
considered, and their general equation of motion is derived.
In Sec. IV, similar consideration on the membranes coupled
with scalar maps is made. In Sec. V, membranes coupled
with a differential form field are treated. In Sec. VI, several
remarks are made.

I1. ISOMETRIC ACTIONS ON WORLD SHEETS

Let (M, g) be an m-dimensional spacetime, which is a
differentiable manifold M endowed with a spacetime
metric g of the signature (—,+,---,+). Let G be an
f-dimensional connected Lie subgroup of the full isometry
group of M.

The (left) G-action on M is a group homomorphism

G — Diff(M); g~ f,
of G into the group of diffeomorphisms on M, such that
GXM— M;(g,x) |—>fg(x)
is differentiable.
We assume that the G-action on M is free, which means

that f, does not have a fixed point on M for every
nonidentity element g of G, or in other words, M admits
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f linearly independent Killing vector fields as the infini-
tesimal generators of G.

We also require that the G-action on M be proper, i.e., the
map

GxM— MxM;(g,x) — (fy(x),x)

is proper, which means that the preimage of any compact
set is compact.
For each element x in M, the set

Gx = {f,(x)lg € G}

is called the orbit of x. The set of these orbits is called the
orbit space, and it is denoted by M/G.

Under the free and proper action of G, it is guaranteed
that (a) each orbit Gx is an embedded closed submanifold
of M, (b) Gx is diffeomorphic with G, and (c) the orbit
space M /G naturally acquires a differentiable structure.

In the rest of this section, we give the general form of the
Lorentzian metric ¢ on M. The construction goes along
similar lines to that of homogeneous universes [16].

We first determine the geometry of the orbit Gx. We
assume that each orbit is non-null, so that the induced
metric on Gx is a nondegenerate Riemannian or Lorentzian
metric.

Let {y'};_1,. ; be a local coordinate system on Gx.
Since f linearly independent Killing vector fields
{&1}1=12..  generating a G-action are tangent to Gx,
these can be written as &, = &0, with this coordinate basis.

Since these Killing vector fields generate a left action of
G on Gux, they are identified with the right invariant vector
fields on G. According to the general theory of Lie groups,
the right invariant vector fields on G are subject to the
commuting relation

61,81 = f1%¢k.

where f;,%s are the structure constants for the Lie algebra
g of G.

A left invariant vector field ¢/ on Gx is a tangent vector
field invariant under the G-action, characterized by the
equation

Lglﬁi - 0,

where L denotes the Lie derivative. This equation admits
f linearly independent solutions, which we denote by
{6/} =14, s By taking a linear combination, it is always

.....

vector fields, such that

[017 61} = fIJKO'K

holds.

The dual basis of 1-forms {6’;},_, , _, characterized by
oo’ =6/,
consists of left invariant 1-forms. These satisfy
Lo’y =0,

1
dﬂk = —Ef]‘]KGI AN UJ

The induced metric on Gx can be written in terms of this
left invariant basis as

9ij = ¢IJGIiOJj’ (1)

with entries ¢;; of the nondegenerate symmetric matrix.
Since g;; is invariant under the G-action, i.e.,

Le9i;=0

should be required, the coefficients ¢;; are constants over
Gx. Equation (1) gives the general form of the metric on
the orbit.

Now, we can write the spacetime metric g in the present
setting. Since the orbit space M/G is the differentiable
manifold, it has a local coordinate system, which we denote
by {z#},-12. 1 Where b = m — f. The spacetime metric
could in general be written as

9= 1y (z%) (6" (YF) = w,(¥F, 2)dz*) (67 (y*)
—-w!, (0", 2)dz") + hy, (y*, ) dzdz”,

so that it induces g;; = ¢;;0';67; on each orbit by setting
7" = const. Since the spacetime metric g is invariant under
the G-action, it is subject to the Killing equation

Then, it is required that
Wlu = Wlu(zk)’ hy,, = h;w(zk)

hold. This gives the general local form of the spacetime
metric g.

III. NAMBU-GOTO G MEMBRANES

Let us consider the motion of extended objects in
spacetimes equipped with the isometric G-action. It is
generally expected that the equation of motion simplifies
when the extended object also respects the isometry. The
simplification typically occurs in the form of the dimen-
sional reduction; i.e., the equation of motion reduces to that
for the objects (e.g., particles, strings, or membranes) in the
orbit space M/G. In this section, we study the Nambu-Goto
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membranes as a basic example of extended objects in the
relativistic mechanics.

In general, a relativistic membrane is described as a
timelike immersion i: W — M of a differentiable manifold
W, called a world sheet, into the spacetime M. Let
{x9} i mand {s*},_;, , bealocal coordinate system
on M and W, respectively. The immersion i is locally
described as

x* = X(s", ..., 8"),

in terms of the m scalar functions X“ on the world sheet W.
Then, the Lorentzian metric

Gup = gabXa,AXb,B

is locally induced on W.
The Nambu-Goto action for the relativistic membrane is
given by

’

S| “]:—1/ ds'...ds"\/|G
w

where 7 is a constant identified with the tension of the
membrane, and G = det G,p. The Euler-Lagrange equa-
tion becomes

K% := DeDEX + 1%, G = 0,

where D denotes the covariant derivative with respect to
Gap, I, the Christoffel symbol for g, and

gab — GAB (DAXa)DBXh

has been defined, where GAZ denotes the inverse matrix
of Gyp.

The vector field K on W has a simple geometrical
meaning. It is the mean curvature vector

K® = GBCK4,.,
which is the trace of the extrinsic curvature vector
K% = DpDcX* +T¢ (DpX?)DcXC.
The extrinsic curvature vector is defined as follows: let U4
and V4 be tangent vector fields on W, and let /¢ and V¢
be smoothly extended vector fields of i,U and i,V,
respectively, to a neighborhood W of W. For x € W,

the orthogonal decomposition T .M =T W & N,W of
(Vy V), is written as

V,V =D,V +K(U.V).

Then, K: TWxTW —> N,W is
equation.

We assume that the group of isometry G acts freely and
properly on M. Then, as we see in Sec. I, the spacetime
metric can be written locally as

defined by this

9= ¢y(c' —=w,d*) (e’ —w dz*) + h,dzdz,

where o/ = ¢!(y*) constitutes a left invariant basis of
1-forms on the orbit Gx, and

by = qﬁ”(z’l), W]y = le (Zl)v huz/ = hﬂu(zﬂ)

are the scalar, vector and metric tensor fields on the orbit
space M/G.

Let the membrane respect this isometry, so that the image
of the world sheet W is G-invariant, i.e., invariant under the
action of G. The general form of such G membranes can be
written as

X=d (i=1,....f)
Xt =XpY) (u=f+1,....m)

in terms of the world sheet coordinates

{SA} = {ai§ﬂA/}i:1 ..... FA=f+1...w

This is identified with the immersion of the world sheet
orbit space W/G into the spacetime orbit space M/G,
characterized by

X = X*(pY).

Thus, a G membrane can be regarded as a membrane in the
orbit space M/G.

Although the following calculations are most efficiently
executed via the Cartan’s structure equations for connection
forms, we show the results of the direct coordinate
calculations for the reader’s convenience. In the following
calculations, indices are raised and lowered, respectively,
by ¢!, ¢y, AV, A, 0, and h,,, where ¢/ denotes the
entries of the inverse matrix of ¢, 4;; is defined by

1
/Iij = ¢0 igjj’

A" is its inverse, and A** is the inverse of ,,. The covariant
derivative compatible with £, is denoted by the semicolon.
The components of the spacetime metric g and its inverse

g~ are given by

— — _ K
gij - /1ij7 giﬂ - _Wi/v g;u/ - h;w + WKMW v

gu — Al + GIlGJJWI;LWM, gm — O'KIWK”, g;w —
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The Christoffel symbols are computed as

Fj‘k =o/'0'(j 5 + 0,0 ;65 {flw() + frurmw' wh

1
- EﬁbJK,,uwlﬂ } . (2)

. ) 1 1
Iy = oo’ i {2 bk + §¢JK,/1WI/)WK/1

1 1
- EfIJKWK/l - szJKWIpWLpWKA - WIP¢JKWKL0;2]:| )

(3)
I, =og' [—fﬁmfﬁu,(uwj@ - WK(D,A) + WKthZﬂ

1
4+ ywku <_ §¢[J,ﬂwlywj/1 +wiw e + WMWI[W])] ’

(4)

1
I = o’ 6%, <—2¢11<'” + fI(JK)WI”), (5)

1 1
I, = o5 <§ bW, + prh ! g — EfIKJWIFWJu>’

(6)
1 .
Iy, ="T, - 3 b1 whw!y Fwiw gy —wiwiy#, o (7)

where T " denotes the Christoffel symbol with respect to
h,,,. Note that we raise or lower the indices I, J, ... with ¢,
¢", but not with the Killing metric on the Lie algebra g, so
that, e.g., f;;x may not be totally antisymmetric under the
permutation of the indices.

The induced metric G 45 and its inverse GA? on the world
sheet W become

Gij = iij, Gig = _/Iijcj B>
GA’B' = G1/4/B/ +/1ijCiA/CjB/
Gl = pii 4 CiA/CjB/G/A’B”

TR : 'n! rp! I p!
GtB — C’A/G/AB , GAB — G/AB,

where
Cly = o,/w Dy X*,
G;X'B/ - h/“,(DA/X”)DB/XD

have been defined, and G’'A'B denotes the inverse of G;‘, B
This G,/ gives the induced metric on the quotient world

sheet W/G as the membrane immersed in (M/G, h).

The spacetime component G* of GA8 is calculated as
G = oo (M +wl W G,
giu — Gliwlﬂg/yv’
g = gm,
where
_ (VAP
g" = G""7 (D), X") Dy X¥
has been defined, which is the spacetime component
of G'A'F
In order to derive the equation of motion for G

membranes, we need the expression for the extrinsic
curvature vector:

K& = DpDeX? + T8 (DpXP) DX
= X% — TacX 4 + T8 X0 pX©
where I3~ denotes the Christoffel symbol with respect
to Gup.
Noting that

Tpe = G*PX pgua(X? ge +T9.XP X ¢).

we have another expression for the extrinsic curvature
vector:

K4p = (8 —G"0) (X up + T4 X" 4 X ).

The direct computations show

Ki; =N (fK(IJ)WKU - %¢11,u> o'io’). (8)
Kty = %N W Fraew! W+ bW = 20w )
x ¢! ;D) X, 9)
Kyy =K'y
+ N'w (— % b’ , + 2¢11W1[u.,1] ij)
X (D[ X ) Dy X7, (10)
Kl =o/'w Kip. (11)

where D',, denotes the covariant derivative compatible with
" g» N the projection onto the normal space to W/G in
M/G, defined as

) U .
N = ppv — GHv,
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and
" _ hH A
K"y =D\ Dy Xt 4+-'T% (D', X*) D X
is the extrinsic curvature vector of W/G relative to

(M/G, h).
Then, the equation of motion is calculated as

1
K* = K'" + N'™ <fIJJWIz/ - 2¢_1¢,D> =0,

where K'* = GAP'K"™, ., is the mean curvature vector of
W/G relative to (M/G, h), and we abbreviate as
¢ = det¢;;. The remaining equation K’ = 0 does not give

further restriction since
i ivol rH
K' =o/w K

holds.

This resembles the equation of motion for Nambu-Goto
membranes, but with the extra force term. We can partially
reduce the force term via the conformal transformation

hm/ = |¢|_1/Wil/wv
Gy = 9|/ "Cyp,

where W =w — f. The inverses of IZW and Gup are,
respectively, written as 7#* and G5

The extrinsic curvature vector of W/G relative to
(M/G, h) is written as

Ky = DyDpX* + T, (DyX*) Dy X,

where D, denotes the covariant derivative with respect to
the conformally transformed world sheet metric G,/ and
f“’:ﬂ the Christoffel symbol with respect to G 4. Here and
in what follows, the indices for conformally transformed
quantities are raised or lowered in terms of G*%', G, I,
and EW.

The extrinsic curvature vector undergoes the conformal
transformation as

- 1 - .
Ry = Ky =376, 8 G,

where the projection tensor N* has been defined as
N/w — |¢|—1/ﬁ/N/ﬂIJ'

Finally the equation of motion for G membranes
becomes

K+ = N’wfnjwlw (12)
where

IN(” - GA/B/IN(Z/B/ — DC/DC/Xﬂ + f‘/:}L(Dc/)(l/)bc/)(/1

is the mean curvature vector of W/G relative to the orbit

space (M /G, h). In this way, the force term generally
appears at the right-hand side of the reduced equation of
motion (12).

In Ref. [15], the G-invariant Nambu-Goto membranes
are considered in the case of W = 1, and it is argued that the
equation of motion reduces to the geodesic equation in the
conformally transformed orbit space (W/G, h), which is
based on the dimensional reduction at the action level,

S:—T/ d"s\/|G|
w

=—1 | da deta’i/ dp'\/|G
[ dtaigad| [ ie]
“AV/Gdﬁl \Y; |Gu|-

The last expression gives the geodesic action. However it
turns out that it generally does not produce a correct
equation of motion due to the presence of the force term,
as we have explicitly shown.

In certain special cases, the force term becomes zero
so that the configuration of the G-invariant membranes
corresponds to the extremal surface in the orbit space
(W /G, h)orto the geodesic whenw = 1. They include when

(i) G is Abelian: All the structure constants f;,X
become zero. This includes the case when the orbit
Gx is one dimensional.

(i) G is semisimple and compact: The Jacobi identity
for the structure constants implies that f,;/ =0
automatically holds.

(iii) Orthogonal distributions of G-orbits are integrable:
When the orbit Gx is everywhere orthogonal to the
orbit space, w!; becomes identically zero.

IV. G MEMBRANES COUPLED TO SCALAR MAP

It would be natural to ask whether a reduction mecha-
nism similar to that shown in the previous section works in
the presence of the external fields. As a simple case, we
here consider the membranes coupled to a single complex
scalar field without U; gauge couplings.

Assume that there is a complex scalar field w: W — C
on the membrane. We consider the following model for the
membrane coupled to a scalar map:

SIX.y] = Snol[X] + S, [X“. y].
Sng[X9] = —r/ ds'...ds"\/|G|,
w

8, Xy = -« / ds" ...ds"\/|GI[GA* (D) Dy
w

+ U(y'y)].

The first variation of this action with respect to X“ gives
the equation of motion for the membrane

1 oS 1
gr— = IalV/|G|(zG*E — T*P) DX

ViGT & /[Gl

+ T [tGP¢ — TBC(DpXP)DX¢] = 0,
(13)
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where the stress-energy tensor

748 = x[2(D4y")DPy — (Dey*) (DCy)GAP — UGH|

on the world sheet W has been defined.
The first variation with respect to y* gives the wave
equation

1 oS

- Uwy=0 14

:DCDCII/—

for y. This implies the local conservation law for the energy
D,TAE = 0.
Using this equation, Eq. (13) reduces to
tK® — TABK4, =0, (15)
in terms of the extrinsic curvature vector.

Here we assume the G-invariant configuration for the
metric

9= ¢IJ(61 - Wludzﬂ)(o-j - ijdzv) + |¢|_1/Wﬁyudzﬂdzb7

as in the previous section, and for the membrane and the
scalar field on it:

Xi=a, Xt=XrpY), =y (p").

Then, Eq. (15) reduces to

TA B Kﬂ

TKM—TABKQB:|¢|1/W{ B

A [Tfufww|¢|1/W<Daw*><f>0’w>

(oot o

tK' = TABK = o,'W! ,(tK* — TABKY ;) = 0,

and

where the reduced stress-energy tensor is defined by

= «{lg|"/*[2(D™
- UG"?'}.

7 WDy = (Do) (DCw) G

On the other hand, the wave equation (14) becomes
De(lgp'" D) = Uy = 0. (16)

In summary, the equation of motion reduces to

¥ = TRy = B |of W, + 1V D) (D)

< (mwtegoen)|an

Except for the term with the factor f,,/w/,, Egs. (15)
and (17) are derived from the action

Sx#y) = A VT

X (Dey*)Dy + Uy w)l}, (18)

obtained via the naive dimensional reduction.

V. COUPLING TO DIFFERENTIAL
FORM FIELD

As another model for matter coupling, we consider a
background differential form field w, which is a w-form
field on M.

The simplest model would be given by

S[X] = Sna[X] + S0 (X,

Sng[X4] = —T/ ds'...ds"\/|G|,
w

8, [X9] = -2 / o
w

A
= ds
!

..(DAWX“w)eA1“~Aw,

dswa)al...aw(DA]Xal)

where €14 denotes the w-index Levi-Civita symbol on
W such that ¢'2-" = —1.
The first variation of the action is calculated as

w1
=TV |G gabe wi )w[al...aw,a] (DAIXal)

o (Dg, X )et-An,

6X a

Thus the equation of motion for the membrane becomes

Alw+1) )
7K = — VE'\/|—(—;— Py a,(Da, XM)
(Dy X )ehAn, (19)

We assume that both the membrane and the background
w-form field are G-invariant. The general form of the
G-invariant w-form is

(left invariant p-form on Gx) A [(w — p)-form on M/G]
or their linear combination. Among these, only the p = f

case results in the reduction of the system to the membrane
equation in M/G. Hence we choose
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w=0c'ANP A ... N6/ ND,

where @ is the w-form on M/G. In terms of coordinate
components, we assume that

X =ad,  Xr=X'(p").
w!
_ 1 ~
Wa,..a, = ﬁg la, 'Gf“fw<xﬂ)“f+l ]

Then, Eq. (19) reduces to the equation for the membrane
in M/G as
Aw+1)
wi/|G]

.. .(DA/WX/J‘?)EA/] ”'A/W + TN”ij[JWIu. (20)

Tf(” = (_1)S+t i‘lw(b[ﬂl--»ﬂwvy] (DA/IXMI)

The factor (—1)* in the first term on the rhs is (+1) if G
has Riemannian signature and (—1) if Lorentzian, and the
factor (—1)" denotes the signature of dets’;. The W-index
Levi-Civita symbol on W/G has been normalized such
that €f+1.f+2 ..... fHw — (_l)s'

Except for the final force term, Eq. (20) has the same
form as Eq. (19), which is derived from the naive reduced
action

S[X*, @) = —T/W/Gdﬂl...dﬁw\/@—(—l)%/ i*@.

W/G
(21)

VI. CONCLUDING REMARKS

We have considered in general settings the motion of
test membranes on which the group G of spacetime
isometries acts. We have found that the configuration
of Nambu-Goto membranes is described by the Nambu-
Goto membranes in a quotient manifold with the appro-
priate projected metric, if at least one of the following
conditions holds: (i) G is Abelian, (ii) G is semisimple and
compact, or (iii) the orthogonal distribution of the orbit
of G is integrable. We have also obtained similar results
for the membranes coupled with the scalar maps or the
differential form fields.

At the same time, it should be emphasized that the usual
dimensional reduction procedure at the action level is not
always justified. This is because the variational principle
for dimensionally reduced action does not incorporate the
variation of membranes with inhomogeneous variation
with respect to the G-orbits.

Nevertheless, the correct equation of motion for G
membranes derived here is only slightly different from
the naive equation of motion by force terms written with
local geometrical quantities. Hence, our formalism would
be useful when we seek for more general string/membrane
solutions in spacetimes with isometries and when we
classify such solutions.
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