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We investigate the gravitational radiation from binary systems in conformal gravity (CG) and massive
conformal gravity (MCG). CGmight explain observed galaxy rotation curves without dark matter, and both
models are of interest in the context of quantum gravity. Here we show that gravitational radiation emitted
by compact binaries allows us to strongly constrain both models. We work in Weyl gauge, which fixes the
rescaling invariance of the models, and derive the linearized fourth-order equation of motion for the metric,
which describes massless and massive modes of propagation. In the limit of a large graviton mass, MCG
reduces to general relativity (GR), whereas CG does not. Coordinates are fixed by Teyssandier gauge to
show that for a conserved energy-momentum tensor the gravitational radiation is due to the time-dependent
quadrupole moment of a nonrelativistic source, and we derive the gravitational energy-momentum tensor
for both models. We apply our findings to the case of close binaries on circular orbits, which have been used
to indirectly infer the existence of gravitational radiation prior to the direct observation of gravitational
waves. As an example, we analyze the binary system PSR J1012þ 5307, chosen for its small eccentricity.
When fixing the graviton mass in CG such that observed galaxy rotation curves could be explained without
dark matter, the gravitational radiation from a binary system is much smaller than in GR. Thus in CG one
cannot explain the orbital decay of binary systems via gravitational radiation, and replace dark matter
simultaneously. In MCGwith small masses of the graviton, again one cannot reproduce the orbit of binaries
by the emission of gravitational waves. On the other hand, for large graviton masses, the orbital period of
compact binaries is in agreement with the data, as MCG reduces to GR in this limit.
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I. INTRODUCTION

The standard model of gravity, general relativity (GR), is
tested very well. The equivalence principle has been probed
for a large region of the relevant parameter space and GR
passes all solar system tests (see, e.g., [1]). Also the orbits
of relativistic compact binaries show no deviation from the
GR prediction and provide indirect evidence for the
existence of gravitational waves [2,3].
In 2015, the aLIGO interferometers recorded the first

direct observation of gravitational waves, as they observed
the very last moment of a binary black-hole merger [4,5].
So far, five binary black-hole mergers have been reported
by the LIGO/VIRGO Collaboration [6–8]. Very recently,
the aLIGO and VIRGO interferometers detected a gravi-
tational wave signal from the merger of two neutron stars
(GW170817) with follow-up measurements across the
electromagnetic spectrum coming from GRB 170817A

[9–11]. Strong constraints on the speed of gravitational
waves follow from the difference in arrival times of the
gravitational and the electromagnetic signals, which in
turn allows one to constrain modified models of gravity
[12–19].
However, GR also faces shortcomings. We do not

understand how to combine quantum physics with the
principles of GR. In the ultraviolet regime, GR does not
lead to a renormalizable model and therefore is non-
predictive. In the infrared regime, cosmological and astro-
physical observations interpreted in the context of GR
imply the existence of dark energy and dark matter, and the
observed smallness of the cosmological constant is not
understood.
This motivates our study of modified models of gravity

that change the gravitational field equations, instead of
introducing a dark sector. Most physical models employ
second-order equations of motion, which ensures that the
theory is free from Ostrogradski instabilities [20,21].
However, higher-derivative theories, albeit suffering from
ghost instabilities, can improve renormalization issues.

*caprini@apc.in2p3.fr
†patric.hoelscher@physik.uni-bielefeld.de
‡dschwarz@physik.uni-bielefeld.de

PHYSICAL REVIEW D 98, 084002 (2018)

2470-0010=2018=98(8)=084002(22) 084002-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.084002&domain=pdf&date_stamp=2018-10-02
https://doi.org/10.1103/PhysRevD.98.084002
https://doi.org/10.1103/PhysRevD.98.084002
https://doi.org/10.1103/PhysRevD.98.084002
https://doi.org/10.1103/PhysRevD.98.084002


In this work we consider a unique higher-order derivative
theory of gravity: a conformal model that reduces either to
conformal gravity (CG) or to massive conformal gravity
(MCG). The difference between those models is encoded in
a parameter ϵ, with ϵ ¼ −1 corresponding to CG and ϵ ¼
þ1 to MCG (see Sec. II for details). These models are not
only invariant under general coordinate transformations,
but also under Weyl rescaling of the metric and the matter
fields. The purpose of this work is to study gravitational
waves in conformal models of gravity.
Conformal models of gravity have been considered for

the first time shortly after the introduction of GR, especially
CG by Weyl and Bach [22,23]. The approach of Weyl has
been dropped briefly after its publication because of non-
integrability. On the other hand, the theory of Bach has
been the precursor of CG, introduced by Mannheim and
Kazanas [24–30]. More recently ’t Hooft, who considered a
nonperturbative approach of the path-integral formalism for
quantum gravity, found connections between GR and CG.
Terms of the same form as in the Weyl action appear as the
only divergent term after a dimensional regularization [31–
34]. Maldacena considered CG as a possible UV comple-
tion of GR by using specific boundary conditions, which
separate out the Einstein-Hilbert solutions from the larger
set of solutions in CG [35].
The early approach to CG has been discarded. First, the

fourth-order structure of the theory made it mathematically
uncomfortable. Second, from an experimental point of view
there was no need to modify GR. Last but not least, the
theory did not allow for bare mass terms in the matter action
and our every day experience is strongly against the
concept of scaling invariance.
It is now clear that masses in particle physics arise

dynamically. In that light CG has been revived by
Mannheim and Kazanas in 1989, and masses arise only
after a spontaneous breaking of the conformal symmetry
[29]. Besides that, Mannheim and Kazanas got some
remarkable results, which made CG interesting again.
CG was demonstrated to be renormalizable [30,34], and
they solved the field equations for a static and spherically
symmetric system in the Newtonian limit. They found a
modified Newtonian potential which contains a term that
grows linearly with distance [28,36–38]. This modified
potential makes it possible to fit rotation curves of a huge
class of galaxies [39–41].
It was shown that CG contains viable cosmological

solutions, which fit the Hubble diagram and solve the
singularity and cosmological constant problems [25,29,42–
45]. However, in [46] it has been argued that the Λ cold
dark matter model is favored by data from gamma-ray
bursts and quasars. Besides checking the Hubble diagram,
much work is left to be done. There is no analysis of the
cosmic microwave background yet. Primordial nucleosyn-
thesis has been analyzed in conformal models of gravity
[47,48], and it seems that there is a tension with the

deuterium and lithium abundances, the latter also being at
odds with the cosmological standard model. But most
importantly, structure formation has not been investigated
in any detail.
Several authors claimed that light deflection is problem-

atic in CG, but possibly there is a way out [38,49–56]. The
work of Perlick and Xu [57] represented the major criticism
on CG for a long time. They have shown that pure CG
without a Weyl invariant energy-momentum tensor of
matter is ruled out and contributed to fundamental advances
in the understanding of conformally invariant theories. For
a detailed discussion of this work, see also [58].
Previous investigations of gravitational waves in CG

presented first steps such as the linearization of the
equations of motion and the calculation of the gravitational
energy-momentum tensor in pure CG [59–61].
The present work goes well beyond these first studies.

We include matter, we discuss in depth the choice of gauge,
and we derive the formalism for analyzing the gravitational
radiation by binary systems in CG and MCG.
Until recently, there were only indirect measurements of

gravitational radiation from pulsar binary systems; see, e.g.,
[3]. Gravitational radiation was indirectly detected through
the measurement of the decreasing orbital period of the
system. The recent direct detection, as already discussed
above, and especially the observation of the merger of two
neutron stars open new possibilities to test GR and its
alternatives. Several models of modified gravity such as
fðRÞ gravity, Horndeski’s theories, vector theories, or
bimetric theories have been tested and constrained [12–19].
Here we study linearized gravity for nonrelativistic

binaries, and thus we can compare our findings to systems
long before the merger. This allows us to demonstrate that
CG, when fixing the free parameters to explain galaxy
rotation curves, cannot at the same time reproduce the
gravitational radiation from binaries (observed indirectly
via their orbital period decay). For MCG, on the other hand,
there is a region of parameter space that is in concordance
with observations.
Similar analyses study generalizations of CG and

MCG [62–64]. In these works an incomplete gravitational
energy-momentum tensor has been used to calculate the
radiated energy from a binary system. It is assumed that
the expression for the radiated energy is approximately the
same as in GR, and hence the result differs significantly
from ours. As we show, there are important additional
contributions.
Section II gives an introduction to CG and MCGwith the

basic assumptions and equations. In Sec. III we show how
to obtain the linearized field equations for the gravitational
field and obtain their general solutions. We calculate the
decay of the orbital period of coalescing binaries in the
early inspiraling phase for CG and MCG in Sec. IV, and in
Sec. V we derive the gravitational energy-momentum
tensor in CG and MCG. In Sec. VI we evaluate the radiated
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energy from a binary system, and in the last section we
conclude and summarize our findings.
For the Weyl and Riemann tensor we use definitions and

sign conventions of Weinberg [65]; see Appendix A. We
use natural units in which c ¼ ℏ ¼ 1, unless stated other-
wise. Greek letters denote spacetime indices (0…3) and
latin letters are spatial indices (1…3).

II. CONFORMAL GRAVITY

Conformal and massive conformal gravity are based on a
Weyl invariant action. The spacetime metric gμν is rescaled
by a Weyl transformation (conformal transformation)
according to

gμνðxÞ → Ω2ðxÞgμνðxÞ; ð1Þ

where Ω > 0 is a real and smooth function called the
conformal factor and x denotes the spacetime coordinates.
To model gravity, the Einstein-Hilbert action is replaced
by the Weyl action IW and the action for the Universe is
given by

I ¼ IW þ IM ¼ −αg
Z

d4x
ffiffiffiffiffiffi
−g

p
CλμνκCλμνκ þ IM ð2Þ

¼ −αg
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

�
RμκRμκ −

1

3
R2

�
þ LL

�
þ IM; ð3Þ

where IM is the matter action. αg is a dimensionless
coupling constant, g ¼ detðgμνÞ, and Cλμνκ, Rμν, and R
are the Weyl and Ricci tensors and the Ricci scalar, defined
in Appendix A. To obtain expression (3) the Gauss-Bonnet
term (Lanczos Lagrangian), which is a total derivative in
four spacetime dimensions, has been used [66],

ffiffiffiffiffiffi
−g

p
LL ¼ ffiffiffiffiffiffi

−g
p ðRλμνκRλμνκ − 4RμνRμν þ R2Þ; ð4Þ

where Rλμνκ denotes the Riemann tensor. Hence, it does not
contribute to the field equations and can be discarded. Let
us note that it is forbidden to introduce a cosmological
constant term in Eq. (2), because of the Weyl symmetry.
The Weyl tensor has some outstanding properties. It is

the traceless part of the Riemann tensor

gμκCλ
μνκ ¼ 0; ð5Þ

and under the transformation (1) it behaves as

Cλ
μνκðxÞ → Cλ

μνκðxÞ; ð6Þ

CλμνκCλμνκ → Ω−4CλμνκCλμνκ: ð7Þ

Variation of the action (3) with respect to gμν leads to the
equation for the gravitational field [23],

4αgWμν ¼ 4αg½2Cμλνκ
;λ;κ − CμλνκRλκ� ¼ Tμν

M; ð8Þ

where

Wμν ¼ −
1

6
gμνR;β

;β þ Rμν;β
;β − Rμβ;ν

;β − Rνβ;μ
;β − 2RμβRν

β

þ 1

2
gμνRαβRαβ þ 2

3
R;μ;ν þ 2

3
RRμν −

1

6
gμνR2 ð9Þ

is the Bach tensor and

Tμν
M ≡ 2

ð−gÞ1=2
δIM
δgμν

ð10Þ

is the matter energy-momentum tensor.
The matter energy-momentum tensor should also be

Weyl invariant. Then the most general local matter action
for a generic scalar and spinor field coupled conformally to
gravity is [25]

IM ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϵ

�
−
S;μS;μ
2

þ S2R
12

�

þ λS4 þ iψ̄γμðxÞ½∂μ þ ΓμðxÞ�ψ − ξSψ̄ψ

�
: ð11Þ

SðxÞ represents a self-interacting scalar field and ψðxÞ
is a generic spin-½ fermion field. ξ and λ are dimensionless
coupling constants, γμðxÞ are the vierbein-dependent
Dirac-gamma matrices, ψ̄ ¼ ψ†γ0, and ΓμðxÞ is the fermion
spin connection [67]. To be invariant under local Weyl
transformations the matter fields have to transform as
SðxÞ → Ω−1ðxÞSðxÞ, ψðxÞ → Ω−3=2ðxÞψðxÞ, and gμνðxÞ →
Ω2ðxÞgμνðxÞ. The exponent of the conformal factor is called
conformal weight.
In (11) we introduce the parameter ϵ, which can assume

values of −1 orþ1. In the first case, the theory corresponds
to CG, while in the second it corresponds to MCG [68–70],
as will become clear later. Note that only the combination
of the two terms in parentheses is Weyl invariant.
For ϵR < 0 and λ > 0 the potential VðSÞ ¼ ϵS2R=12þ

λS4 can lead to a spontaneous breaking of Weyl symmetry.
The matter action in (11) serves as a toy model to

investigate the gravitational radiation in CG and MCG.
Since the standard model of particle physics is locally
conformally invariant before the spontaneous symmetry
breaking of the gauge symmetry SUð3Þ × SUð2Þ ×Uð1Þ
(i.e., before mass generation), one can add the complete
standard model of particles physics, up to modifications of
the Higgs sector. The complex Higgs doublet HðxÞ has to
be coupled conformally; thus a term ∝ H†HR with a
conformal coupling coefficient has to be added to the
kinetic term of the Higgs and the Higgs potential becomes
aS2H†H þ bðH†HÞ2, where a and b are constants that
have to be fixed appropriately to generate the Higgs mass
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and self-coupling after fixing the Weyl gauge S ¼ S0. For
details see [71].
We find the field equations for the scalar and fermion

fields

ϵ

�
−S;μ;μ −

1

6
SR

�
− 4λS3 þ ξψ̄ψ ¼ 0; ð12Þ

iγμðxÞ½∂μ þ ΓμðxÞ�ψ − ξSψ ¼ 0: ð13Þ

Variation of the action (11) with respect to gμν and using
the equation of motion (13) leads to the matter energy-
momentum tensor

TM
μν ¼ Tf

μν þ ϵ

�
−
2S;μS;ν

3
þ gμνS;αS;α

6
þ SS;μ;ν

3
−
gμνSS;α;α

3

þ 1

6
S2
�
Rμν −

1

2
gμνR

��
− gμνλS4; ð14Þ

where

Tf
μν ≡ 1

2
½iψ̄γμðxÞ½∂ν þ ΓνðxÞ�ψ þ ðμ ↔ νÞ� ð15Þ

is the energy-momentum tensor of the fermion.
Since the action I given in Eq. (2) is invariant under a

Weyl transformation, it is always possible to choose a
frame in which the scalar field is constant,

SðxÞ → S0ðxÞ ¼ Ω−1ðxÞSðxÞ ¼ S0 ¼ const:; ð16Þ

with ΩðxÞ ¼ SðxÞ=S0. This is called the Higgs or unitary
gauge [68,72]. Because of this choice all terms with
derivatives on S vanish.
Up to now, CG and MCG are still unrelated to GR.

However, these theories were proposed in order to over-
come the usual GR problems and, at the same time, to
reproduce its very accurate predictions on solar system
distance scales. Hence, they must be arranged in a way that
makes the connection and the differences to GR explicit.
This is possible because S0 is not a free parameter of the
theory: therefore, physics is unchanged for any choice of
the configuration of the scalar field. For this reason we
introduce the relations

8πG̃≡ 6

S20
; ð17Þ

Λ≡ 6λS20; ð18Þ

where G̃ denotes an effective Newton’s constant. For
αg → 0, G̃ ¼ G, where G is Newton’s constant, and
interpreting Λ as the cosmological constant, this leads
exactly to the GR field equations for the metric. As we will

see in the following, in all cases of interest we will set
G̃ ¼ G, Newton’s constant.
Since the scalar field SðxÞ can always be fixed to a

constant by choosing a specific Weyl gauge, it is just an
auxiliary field and does not represent a dynamical degree of
freedom (d.o.f.) [71,73]. Therefore, we do not need to
worry about its stability properties. We nevertheless discuss
them in Appendix C, where we follow the analysis of [74].
In this gauge (fixing the Weyl invariance), there is a

constant mass for the fermions given by mf ¼ ξS0. Since
we know from experiments that fermions have masses, one
should choose ξS0 > 0. Consequently, (12) and (13)
become

−
ϵRþ 4Λ
8πG̃

þmfψ̄ψ ¼ 0; ð19Þ

Tf −mfψ̄ψ ¼ 0; ð20Þ

whereTf denotes the trace of the fermion energy-momentum
tensor. These two equations can be combined to

ϵRþ 4Λ ¼ 8πG̃Tf: ð21Þ

With the energy-momentum tensor introduced above, the
equation for the gravitational field becomes [75,76]

4αgWμν ¼ Tf
μν þ 1

8πG̃
½ϵGμν − gμνΛ�; ð22Þ

whereGμν denotes the Einstein tensor. Note that the fermion
energy-momentum tensor is covariantly conserved,

Tμν
f ;ν ¼ 0; ð23Þ

due to the Bianchi identities for the Bach and Einstein
tensors.
Before we continue to discuss solutions of the field

equation, we observe that it is convenient to introduce a
“graviton mass” mg via

m2
g ≡ 1

32πG̃αg
: ð24Þ

Besides having the dimensions of a mass, at this point it is
not obvious that mg does indeed play the role of a mass for
the graviton. This will become clear in the next section. We
can then write

−ϵGμν þ gμνΛþ 1

m2
g
Wμν ¼ 8πG̃Tf

μν; ð25Þ

and observe that in the limit mg → ∞ (αg → 0), the
Einstein equations are recovered for ϵ ¼ þ1 or equivalently
IW vanishes in (3). This is the case of MCG, which
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therefore differs from most theories with a massive spin-2
field, for which GR is recovered in the limit of mg → 0. In
the next section it will become clear that CG and MCG
contain two spin-2 fields, one that is massless as in GR, and
one that has the mass mg. Hence, the small mass limit does
not reproduce GR, but provides a theory with two effec-
tively massless spin-2 fields. This distinguishes CG and
MCG from other theories with a massive graviton, such as
the de Rham–Gabadaze–Tolley massive gravity or bigrav-
ity, for which one would expect to recover GR in the
massless limit. Note that, in these theories, taking the
massless limit is problematic, because the metric does not
reduce to a single massless spin-2 field as there is an
additional scalar d.o.f. left [77]: this is called the van Dam–
Veltman–Zakharov discontinuity [78,79]. For MCG it was
shown that the theory is continuous in the massless limit
[80]. The same result also holds for CG. On the other hand,
CG (ϵ ¼ −1) does not contain GR as a limit, because in the
massless limit Eq. (25) provides a different sign than in GR.
Note that the trace of (25) reproduces Eq. (21).
For conformally flat spacetimes, Wμν ¼ 0, and thus,

independently of the value of mg the solutions agree with
those of GR for MCG (but not for CG, where the relative
sign between the Einstein and the energy-momentum
tensors is reversed). In particular, MGC leaves the isotropic
and homogeneous Friedmann-Lemaître models untouched.

III. WEAK GRAVITATIONAL FIELD IN
TEYSSANDIER GAUGE

A. Equation of motion

Let us now turn to the study of gravitational waves in CG
and MCG. In the following we drop, for simplicity, the
cosmological constant (Λ ¼ 0) and linearize around flat
Minkowski spacetime gμν ¼ ημν þ hμν, where hμν is a small
metric perturbation. For consistency we have to assume that
the energy-momentum tensor vanishes at zeroth order.
The second term of the Bach tensor in Eq. (8) is at least

of second order in hμν; hence we only need to consider the
first term

Cμλνκ
;λ;κ ¼ ∂κ∂λC

μλνκ
ð1Þ þOðh2Þ; ð26Þ

where …ð1Þ denotes terms of first order in hμν. This term
can be rewritten as

∂κ∂λC
μλνκ
ð1Þ ¼ 1

2
□Rμν

ð1Þ −
1

12
ημν□Rð1Þ −

1

6
∂μ∂νRð1Þ; ð27Þ

where we have used the Bianchi identities

∂κ∂λR
λμνκ
ð1Þ ¼ □Rμν

ð1Þ − ∂λ∂μRλν
ð1Þ; ð28Þ

∂λR
λμ
ð1Þ ¼

1

2
∂μRð1Þ: ð29Þ

The d’Alembert operator is defined as □≡ ∂μ∂μ. This
leads us to the linearized field equations for the metric

− ϵ

�
Rμν
ð1Þ −

1

2
ημνRð1Þ

�

þ 1

m2
g

�
□Rμν

ð1Þ −
1

6
ημν□Rð1Þ −

1

3
∂μ∂νRð1Þ

�
¼ 8πG̃Tμν

fð1Þ:

ð30Þ

The linearized energy-momentum tensor satisfies

∂μT
μν
fð1Þ ¼ 0: ð31Þ

From now on, all quantities are of first order and we
write Tf

μν ¼ Tμν.
Using (21) and the expressions from Appendix Awe can

rewrite (30) as

m−2
g ð□ − ϵm2

gÞ
�
1

2
□hμν −

1

6
ημνR

�
þ 1

2
ð∂μZν þ ∂νZμÞ

¼ 8πG̃

�
Tμν −

1

3
ημνT

�
; ð32Þ

where Zμ ≡ −m−2
g ½ð□ − ϵm2

gÞ∂ρh̄
ρ
μ þ ð1=3Þ∂μR� and

h̄μν ≡ hμν −
1

2
ημνh ð33Þ

is the trace-reversed metric perturbation.
It turns out to be convenient to choose the gauge

condition

Zμ ¼ 0: ð34Þ

This is called the Teyssandier gauge [81] (see also
Appendix B). Then Eq. (32) simplifies to

1

m2
g
ð□ − ϵm2

gÞ
�
□hμν −

1

3
ημνR

�
¼ 16πG̃

�
Tμν −

1

3
ημνT

�
:

ð35Þ

Before we proceed to solve Eq. (35), let us analyze the
forms this equation can take in different limits of CG and
MCG. We denote with L the typical variation scale of the
metric perturbation and with d the typical size of the source.
To analyze the various limits of this theory it is useful to

rewrite Eq. (35) to

½□2 − ϵm2
g□�hμν ¼ 16πG̃m2

gT̄μν; ð36Þ

where

T̄μν ¼ ðTμν − 1=2ημνTÞ þ ϵ=ð6m2
gÞημν□T: ð37Þ
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By writing (36) approximately as ½L−4 − ϵm2
gL−2�h∼

G̃m2
gT þ ϵG̃d−2T, it appears that there are four relevant

cases. If Lmg ≪ 1, one recovers the limits of CG and MCG
without the GR part, since the term with higher derivatives
dominates the left-hand side. If instead Lmg ≫ 1, the wave
equation is of second order. Depending on the relation
among mg and d, different terms dominate the right-hand
side. Note that, if both Lmg ≫ 1 and dmg ≫ 1, MCG
reduces to GR, while CG provides the same equation as in
GR, but with a flip of the sign. The limiting cases are
summarized in Table I.

B. Gravitational wave propagator

The solution to the inhomogeneous Eq. (36) is given by

hμν ¼ 16πG̃
Z

d4x0Gðx − x0ÞT̄μνðx0Þ: ð38Þ

Green’s function GðxÞ is defined by

ð□ − ϵm2
gÞ□Gðx − x0Þ ¼ m2

gδ
4ðx − x0Þ: ð39Þ

For the Fourier transformed Green’s function one finds

G̃ðkÞ ¼ m2
g

ðω2 − k2 − ϵm2
gÞðω2 − k2Þ : ð40Þ

This can be rewritten as

G̃ðkÞ ¼ ϵ

�
−

1

ðω2 − k2Þ þ
1

ðω2 − k2 − ϵm2
gÞ
�
; ð41Þ

where k2 ≡ k2. In the propagator for the spin-2 metric
perturbation hμν above, either the massless term ðϵ ¼ −1Þ
or the massive term ðϵ ¼ þ1Þ comes with the wrong sign:
the so-called Weyl ghost (see, e.g., [82]). Note that the
spin-2 ghost excitation around the Minkowski vacuum is
present independently of ϵ [83]. However, CG and MCG
have different stability properties and relations to GR.
For CG ðϵ ¼ −1Þ we have demonstrated previously

(cf. Table I) that there is no limit leading to the action
or equations of GR, since the sign of the Einstein-Hilbert
term in the matter action is opposite to GR (the Newtonian
limit of this theory is studied in Sec. IV). As a consequence,
the massless part of the propagator has the wrong sign,

representing a ghost instability. Additionally, the massive
part of the gravitational wave represents a tachyon; i.e., it
travels faster than the speed of light. The ghost instability in
CG has been widely discussed by Mannheim and Bender
[84–91]: they analyzed in a toy model the Pais-Uhlenbeck
fourth-order oscillator [92], which was believed to suffer
from ghost instabilities, too, and in a series of papers they
claimed that this is not the case and that an explicit
quantization and construction of the Hilbert space is
necessary in order to judge whether a theory suffers from
instabilities or not [93].
The case of MCG is different, since it has the correct sign

for the Einstein-Hilbert term and thus it includes GR as a
limiting case (cf. Table I). The Newtonian gravitational
potential can be recovered (the Newtonian limit of MCG is
also studied in Sec. IV and Appendix D) and the massless
excitation represents a healthy graviton traveling at the
speed of light. In this case the wrong sign in the propagator
appears for the massive graviton, which is, however,
subluminal and does not propagate at all in the GR limit.
Note that for both theories the shortcoming of the

appearance of the Weyl ghost comes along with the major
advantage of being better behaved in the UV limit, i.e.,
being renormalizable [95] and hence viable theories of
quantum gravity [30,34,96]. See also [97] for a similar
theory presenting the Weyl ghost.

C. Massive and massless mode

Let us proceed to solve Eq. (35) now. It is possible to
reduce the order of the wave equation by splitting the
metric perturbation

hμν ¼ ϵðHμν þΨμνÞ; ð42Þ

where Hμν and Ψμν are symmetric tensors, and making the
ansatz

Ψμν ¼
1

m2
g

�
□hμν −

1

3
ημνR

�
: ð43Þ

Then, Eq. (35) turns into the equation of motion for a
massive mode

ð□ − ϵm2
gÞΨμν ¼ 16πG̃

�
Tμν −

1

3
ημνT

�
: ð44Þ

TABLE I. Equation (36) for different limits of CG and MCG.

CG ðϵ ¼ −1Þ MCG ðϵ ¼ þ1Þ Remarks

mgL ≪ 1; mgd ≪ 1 3□2hμν ¼ −8πG̃ημν□T 3□2hμν ¼ 8πG̃ημν□T Light mg

mgL ≪ 1; mgd ≫ 1 □2h̄μν ¼ 16πG̃m2
gTμν □2h̄μν ¼ 16πG̃m2

gTμν Irrelevant for L > d
mgL ≫ 1; mgd ≪ 1 3□hμν ¼ −8πG̃m−2

g ημν□T −3□hμν ¼ 8πG̃m−2
g ημν□T Intermediate mg

mgL ≫ 1; mgd ≫ 1 □h̄μν ¼ 16πG̃Tμν −□h̄μν ¼ 16πG̃Tμν ⇔ GR Heavy mg
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We now use (44), eliminate the term m2
gΨμν by means of

(43), and replace the Ricci scalar by means of (21). Finally,
we use (42) and (33) to arrive at a massless equation of
motion that looks familiar,

□H̄μν ¼ −16πG̃Tμν; ð45Þ

where H̄μν is the trace-reversed massless mode. In the last
step we exploit the gauge condition (34). Using (45), (44),
and (21) we find

Zμ ¼ −∂ρH̄
ρ
μ ¼ 0; ð46Þ

the condition for the massless mode to be transverse. But
there is one more condition that is fixed in the Teyssandier
gauge. From the expression for the Ricci scalar, condition
(46), the trace of (45), and (21) it follows that

∂ρ∂σΨρσ ¼ □Ψ: ð47Þ

Defining Ψ̂μν ≡Ψμν − ημνΨ, Eqs. (44) and (47) are equiv-
alent to

ð□ − ϵm2
gÞΨ̂μν ¼ 16πG̃Tμν; ∂ρ∂σΨ̂ρσ ¼ 0: ð48Þ

Hence, the total metric perturbation hμν is decomposed into
a transverse massless mode Hμν and a massive mode Ψμν.
It is interesting to note that in the limit mg → 0, Eq. (48)

becomes a massless wave equation, differing only by a sign
from Eq. (45). Writing (42) as

hμν ¼ ϵ

�
H̄μν −

1

2
ημνH̄ þ Ψ̂μν −

1

3
ημνΨ̂

�
; ð49Þ

in this limit and under the assumption that the traces of both
modes vanish, which is indeed the case for the coordinate
gauge that we will use in Sec. IV B, the total metric
perturbation vanishes, too. This demonstrates that mg → 0

is not the GR limit. One recovers GR in the limit mg → ∞,
which makes the massive spin-2 field nondynamical.
In the homogeneous case, Eqs. (45) and (48) take the

form

□H̄μν ¼ 0; ð50Þ

ð□ − ϵm2
gÞΨ̂μν ¼ 0: ð51Þ

The solutions to (50) and (51) are a massless plane wave
and a massive plane wave

H̄μν ¼ aμνeikρx
ρ
; kρkρ ¼ 0; ð52Þ

Ψ̂μν ¼ bμνeilρx
ρ
; lρlρ ¼ −ϵm2

g; ð53Þ

where aμν and bμν are constant and symmetric. Depending
on the values of ϵ, the wave vector lρ is timelike or
spacelike, corresponding to a wave that travels slower than
the speed of light for MCG ðϵ ¼ þ1Þ and a tachyon that is
faster than the speed of light for CG ðϵ ¼ −1Þ. For more
details, see Appendix C.
In the next subsections, we derive the solutions of

Eqs. (45) and (48).

D. Solution with a source: Massive part

In the following, we only analyze the massive wave
equation (48), since the massless part is known from GR.
The most convenient way to analyze the inhomogeneous
solutions is to keep real space while switching to ω
dependence. We define

Ψ̂μν ¼ 16πG̃
Z

d4x0Gðx − x0ÞTμνðx0Þ; ð54Þ

with frequency-domain Green’s function

Gðω;x − x0Þ ¼ 1

ð2πÞ3
Z

d3k
eik·ðx−x0Þ

ω2 − k2 − ϵm2
g

¼ −i
2ð2πÞ2jx − x0j

Z
∞

−∞
dk

k
ω2 − k2 − ϵm2

g

× ðeikjx−x0j − e−ikjx−x0jÞ; ð55Þ

where we have integrated over the angles and extended the
k integral to −∞ to find the last expression. The poles of the
integrand are at

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ϵm2

g

q
: ð56Þ

In MCG with ϵ ¼ þ1 we have to distinguish two cases,
ω2 > m2

g and ω2 < m2
g, while CG with ϵ ¼ −1 always

leads to a positive radicand.

1. Propagator for small graviton mass

For CG and MCG with a small graviton mass (m2
g < ω2)

the radicand is positive, so by finding the residues of these
poles we get

Gðω;x − x0Þ ¼ −
eikω;ϵjx−x0jθðω −mgÞ þ c:c:θð−ω −mgÞ

4πjx − x0j ;

ð57Þ

where kω;ϵ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ϵm2

g

q
and c.c. is the complex conjugate

of the exponential function. In the far zone approximation
(r ≫ jx0j) we get jx − x0j ¼ r − x0 · nþOðd2=rÞ, where r
denotes the distance between the observer and the source
and n the spatial unit vector pointing from the source to the
observer. Keeping only the first order yields
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Gðω;x− x0Þ ¼ −
eikω;ϵðr−x0·nÞθðω−mgÞ þ c:c:θð−ω−mgÞ

4πr
:

ð58Þ

Note that this result also holds for CG with a large graviton
mass (m2

g > ω2). However, we do not consider this case in
this work, because the reason for proposing CG was that it
can fit galaxy rotation curves without dark matter in the
small mass case. Furthermore, it is not obvious that the case
of a large graviton mass exhibits a valid Newtonian limit
(the gravitational potential oscillates).

2. Propagator for large graviton mass

For MCG with a large graviton mass (m2
g > ω2) the

radicand is negative, and thus k ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g − ω2
q

. Green’s

function becomes

Gðω;x − x0Þ ¼ −
e−kω;>jx−x0j

4πjx − x0j θðmg − jωjÞ

¼ −
e−kω;>ðr−x0·nÞ

4πr
θðmg − jωjÞ; ð59Þ

where kω;> ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g − ω2
q

. In the second line the far zone

approximation has been applied.
Let us remark that (54) together with (58) and (59) is

valid for relativistic and nonrelativistic sources.

IV. GRAVITATIONAL WAVES FROM
A BINARY SYSTEM

We now consider binary systems with massesm1 andm2

on circular orbits moving at a speed small compared to the
speed of light. This means we can treat the source in the
nonrelativistic and weak field limits. Hence, we can neglect
contributions of the gravitational potential and the kinetic
energy to the energy-momentum tensor Tμν in Eq. (54). In
general, these approximations do not hold true for binaries
consisting of compact objects like neutron stars. However,
for binary systems in the inspiraling phase of their
evolution, where the objects are still far apart, these
assumptions are adequate for analyzing the gravitational
radiation behavior. Moreover, here we do not consider the
backreaction on the binaries’motion due to its gravitational
wave emission.
In particular, we look at the binary system PSR J1012þ

5307 [98–100], which is a neutron star–white dwarf system
in quasicircular motion; cf. Table II. The orbital frequency
of this system is given by

ωs ≈ 1.3 × 10−20 eV ≈ 1.9 × 10−5 Hz: ð60Þ

The system is picked for its small eccentricity of the orbit,
such that we can apply the results of our study of circular

orbits. Its orbital speed is of order 10−5 c, which justifies
the low-velocity approximation. The orbital period P of the
binary system PSR J1012þ 5307 and its time derivative _P
have been derived from data collected over 15 years and are
in excellent agreement with the assumption that its decay of
the orbital period is due to gravitational radiation as
predicted by GR.

A. Newtonian limit and Kepler’s third law

In general, the analysis of the gravitational wave emis-
sion proceeds as follows. The first step is to calculate the
decay of the orbital period _P=P (P ¼ 2π=ωs) via Kepler’s
third law for two objects of mass m1 and m2 in the
Newtonian limit for a circular orbit in the center of mass
frame, where μ ¼ m1m2=ðm1 þm2Þ is the reduced mass.
Since the gravitational potential is modified in CG and
MCG, we have to rederive Kepler’s third law in these
theories. In general, we can write

_P
P
¼

_R
2R

−
_V0

2V 0 ; ð61Þ

where V 0ðRÞ ¼ μ−1∂REpotðRÞ is the derivative of the
gravitational potential V with respect to the distance
between the objects R and Epot the gravitational potential
energy.
Note that in GR it is assumed that the total decrease of

the orbital period occurs due to the emission of energy in
gravitational radiation. The result of this chapter is that the
theories we investigate in this work should predict the same
amount of energy that is radiated by gravitational waves
(within the precision of the measurements) as GR in order
to explain the decrease of the orbital period of binary
systems without using any other mechanism than gravita-
tional wave emission.

1. Conformal gravity

In [101] it has been claimed that in CG ðϵ ¼ −1Þ with a
small graviton mass the line element in a static, spherically

TABLE II. Orbital data for the binary system PSR J1012þ
5307 [98–100] consisting of a neutron star and a white dwarf in
quasicircular motion. The semimajor axis is given in light
seconds (ls).

Period P (days) 0.60467271355(3)
Period derivative (observed) _Pobs 5.0ð1.4Þ × 10−14

Period derivative (intrinsic) _Pintr −1.5ð1.5Þ × 10−14

Mass ratio q 10.5(5)
Neutron star mass m1ðM⊙Þ 1.64(22)
White dwarf mass m2ðM⊙Þ 0.16(2)
Eccentricity eð10−6Þ 1.2(3)
Projected semimajor axis a 0.581872ð2Þ ls
Distance r ð840� 90Þ pc
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symmetric geometry exterior to a source of one solar mass
with a nonvanishing scalar field S0 can be written in the
form

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ r2dΩ2; ð62Þ

where BðrÞ ¼ 1 − βð2 − 3βγÞ=r − 3βγ þ γr − kr2. Here β,
γ, and k are constants of integration and are used to fit
galaxy rotation curves. k has an influence on the outer parts
of galaxies, but is much smaller than β and γ, and we can
neglect the k term in the following. Also terms proportional
to βγ ≪ 1 are negligible on the distance scale that corre-
sponds to our binary system. For a source of one solar mass
M⊙, the parameters are given by [41,101]

S20 ¼ 9.7 × 1034 kg s−1; ð63Þ

αg ¼ 3.3 × 1075 kgm2 s−1; ð64Þ

γ ¼ 5.4 × 10−39 m−1; ð65Þ

2β ¼ 3 × 103 m; ð66Þ

k ¼ 9.5 × 10−50 m−2: ð67Þ

For the graviton mass this yields

mg;CG ¼ 1.9 × 10−58 kg ¼ 1.1 × 10−22 eV: ð68Þ

Note that using the line element (62) has been criticized in
the literature; see [56,72,73,102–104]. Nevertheless, in the
following we show that it does not matter for our analysis of
the gravitational radiation whether these additional terms
are there or not. For the parameter values that are needed to
fit galaxy rotation curves (corresponding to a small
graviton mass) the additional terms do not affect the
gravitational radiation of the system under study.
To be consistent with solar system tests we have to

choose G̃ ¼ G ¼ β=M⊙ and γ⊙ ¼ γ=M⊙. The gravita-
tional potential energy and its time derivative for CG is
given by [24,28,37,101]

Epot ¼ −
GμM
R

þ γ⊙μM
2

R; ð69Þ

_Epot ¼ GμM
_R
R2

�
1þ γ⊙R2

2G

�
; ð70Þ

where M ¼ m1 þm2 is the total mass of the system.
Inserting this into (61), we find

_P
P
≈ −

jEGRj·
jEGRj

�
3

2
−

γ⊙
2G

R2

�
; ð71Þ

where jEGRj ¼ GMμ=ð2RÞ and γ⊙R2=G ≪ 1. To verify
that this combination is indeed small, we insert the
distance between the sources of the binary system under
study; cf. Table II and assume that for a binary system
in circular motion, we have R ≈ a ≈ 8.9 × 1014 eV−1,
where a is the semimajor axis of PSR J1012þ 5307.
Also we use the parameters determined by the analysis
of galaxy rotation curves in (63)–(67), which shows that
the second term in Eq. (71) is indeed negligible since
γ⊙a2=G ≈ 10−26. This demonstrates that in CG with a
small graviton mass the orbital energy, which is lost by
the system, is, up to small modifications, the same as in
GR, because on solar system distance scales the second
term in (69) can be neglected with respect to the first
one. Therefore, we can treat the binary system in the
Newtonian limit.

2. Massive conformal gravity

Now, let us apply the same analysis for MCG ðϵ ¼ þ1Þ
in the case of a large graviton mass ðm2

g;> > ω2Þ, where
mg;> denotes the graviton mass for this case.
In [103,104] or in Appendix D it is pointed out

that this model cannot fit galaxy rotation curves without
dark matter, but it is still interesting because of its
GR limit.
In this case the massive part of the graviton becomes

damped, and we are left with a theory that is just
GR modified by exponentially suppressed contributions.
Nevertheless, there is a profound difference to GR,
since it is claimed that this theory is power-counting
renormalizable [95,105].
In Appendix D it is shown that the gravitational potential

in the Newtonian limit is given by

ΦðrÞ ¼ −
GM
r

�
1 −

4

3
e−mg;>r

�
; ð72Þ

where G̃ ¼ G has been chosen.
We have to constrain the graviton mass with data from

short range tests of the inverse square law. From [106],
we get

mg;> > 10−38 kg ≈ 10−2 eV: ð73Þ
This means that the Yukawa term in (72) becomes
important only on submillimeter distance scales. For binary
systems in the inspiral phase the distance between the
objects is always macroscopic ðmg;>a ≈ 3.5 × 1012Þ, and
hence we can completely neglect this term for the analysis
of gravitational radiation. The result for the decay of the
orbital period is

_P
P
≈ −

3jEGRj·
2jEGRj

: ð74Þ
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Further, we can look at the case of a small graviton mass
ðm2

g;< < ω2Þ in MCG. Let us first assume the same
potential as for the case of a large graviton mass in Eq. (72).
From the constraint m2

g;< < ω2 it is clear that one cannot
make the graviton mass large enough to push the Yukawa
contribution to the submillimeter scale. Rather we get an
upper bound on the graviton mass from solar system tests
on the inverse square law of the gravitational force [106]

mg;< < 10−58 kg ≈ 10−22 eV: ð75Þ

With this bound even on galactic distance scales the
Yukawa contribution is too small and has the wrong sign
to compensate for dark matter.
Here we get for the decay of the orbital period

_P
P
≈ −

jEGRj·
jEGRj

�
3

2
−
2

3
m2

g;<R2e−mg;<R

�
: ð76Þ

The second term in the bracket is negligible, since
ðmg;<aÞ2 ≲ 10−36 for R ≈ a, where a is the semimajor axis
of the system.
We have shown that in all cases of interest the choice

G̃ ¼ G leads to the Newtonian limit and hence this relation
should hold from now on. Note, however, that G̃ is not a
free parameter of the theory. The theory is independent of
G̃, because of the Weyl invariance. The only free parameter
is αg (or equivalently mg). Hence, the choice of G̃ ¼ G is
just convenient to recover expressions that look familiar
and to compare to GR.

B. Gravitational waves from binary systems

We discuss the GW solutions for an explicit binary
system in circular motion and in the Newtonian limit.
But before doing so, we show that for a small graviton

mass monopole and dipole radiation can be neglected. For
the massless part, since it is the same as in GR, there is no
monopole and dipole radiation and the leading contribution
comes from the quadrupole term. The reason for this is that
the metric perturbation is a massless spin-2 field and that
the matter energy-momentum tensor is conserved far away
from the source. But for a small graviton mass there are
nonvanishing contributions from the monopole and dipole
radiation. Nevertheless, in the following we will show that
in the quadrupole approximation these do not contribute to
the radiated energy and that only 2 of the 5 additional d.o.f.
of the massive mode are excited by a conserved matter
energy-momentum tensor.
The quadrupole approximation requires that the typical

velocities of the source are much smaller than the velocity

of the gravitational waves such that kωd ≪ 1 is fulfilled. In
GR this holds true for nonrelativistic sources, since the
gravitational waves travel with the speed of light.
For a small graviton mass we can apply the quadrupole

approximation in (58) because kω;ϵ ≈ ωð1 − ϵm2
g=ð2ω2ÞÞ

for m2
g=ω2 ≪ 1 and, as we will verify later in this section,

ω ¼ 2ωs. Thus the speed of the massive mode of the
gravitational waves is nearly the speed of light and hence
much higher than the orbital speed of the source.
However, in the case of MCG with a large graviton mass

we have kω;> ≈mgð1 − ω2=ð2m2
gÞÞ for ω2=m2

g ≪ 1, which
leads to kω;>d ≫ 1. This shows that the quadrupole
approximation cannot be used in (59). Nevertheless, the
term exp ð−mgrÞ in (59) leads to an exponential suppres-
sion of the massive mode anyway. Hence, we do not need
the quadrupole approximation and keep only the leading
order term of the far field approximation. For more details
to the multipole expansion, see, e.g., [107].
Before we apply the quadrupole approximation let us

define the mass-energy moments

MðtÞ ¼
Z

d3xT00ðt;xÞ; ð77Þ

DiðtÞ ¼
Z

d3xxiT00ðt;xÞ; ð78Þ

MijðtÞ ¼
Z

d3xxixjT00ðt;xÞ: ð79Þ

These quantities are called monopole, dipole, and quadru-
pole moments, and we denote their time Fourier trans-
formations as M̃ðωÞ, D̃iðωÞ, and M̃ijðωÞ. We further
introduce relations between the energy-momentum tensor
and the mass-energy moments using energy-momentum
conservation in flat spacetime,

Z
d3xT̃ijðω;xÞ¼−

ω2

2

Z
d3xxixjT̃00ðω;xÞ¼−

ω2

2
M̃ijðωÞ;

ð80Þ
Z

d3xT̃0iðω;xÞ ¼ −iω
Z

d3xxiT̃00ðω;xÞ ¼ −iωD̃iðωÞ;

ð81ÞZ
d3xT̃ijðω;xÞ ¼ −iω

Z
d3xxiT̃j0ðω;xÞ ¼ −

ω2

2
M̃ijðωÞ:

ð82Þ
Now, we transform (58) back to real space, insert it into

(54), expand in kωjx0 · nj ≪ 1, and keep terms up to the
quadrupole contribution. This yields

Ψ̂μνðt;xÞ ¼ −
4G
r

Z
d3x0

�Z
∞

mg

dω
2π

e−iωteikωr
�
1 − ikω;ϵx0 · n −

k2ω;ϵ
2

ðx0 · nÞ2
�
T̃μνðω;x0Þ þ

Z
−mg

−∞
…

�
; ð83Þ
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where kω;ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ϵm2

g

q
. The integral

R −mg
−∞ represents the contribution from the second term in (58), which we suppress in

the steps below because its analysis is analogous to the first integral. This expression is exact up to the quadrupole
contribution. For the components we find

Ψ̂00 ¼ −
4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
M̃ðωÞ − ikω;ϵnkD̃kðωÞ − k2ω;ϵ

2
nknlM̃klðωÞ

�
; ð84Þ

Ψ̂0i ¼ −
4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
−iωD̃iðωÞ − ω

2
kω;ϵnkM̃kiðωÞ

�
; ð85Þ

Ψ̂ij ¼ 2G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵrðω2M̃ijðωÞÞ: ð86Þ

We will later see that for the radiated energy we only need time derivatives of these components, because all spatial
derivatives can be translated into time derivatives. They are given by

_̂Ψ
00 ¼ −

4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
−iωM̃ðωÞ − ωkω;ϵnkD̃kðωÞ þ iω

k2ω;ϵ
2

nknlM̃klðωÞ
�
; ð87Þ

_̂Ψ
0i ¼ −

4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
−ω2D̃iðωÞ þ i

ω2

2
kω;ϵnkM̃kiðωÞ

�
; ð88Þ

_̂Ψ
ij ¼ −i

2G̃
r

Z
∞

mg

dω
2π

e−iωteikω;ϵrω3M̃ijðωÞ: ð89Þ

Note that we can expand kω;ϵ ≈ ωð1 − ϵm2
g=ð2ω2ÞÞ for m2

g=ω2 ≪ 1 and ω > 0. The validity of this expansion will be
shown in Sec. VI. Using this expansion Eqs. (87)–(89) simplify to

_̂Ψ
00
≈ −

4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
−iωM̃ðωÞ þ ω2nkD̃k þ i

ω3

2
nknlM̃klðωÞ

�
; ð90Þ

_̂Ψ
0i
≈ −

4G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵr
�
ω2D̃i − i

ω3

2
nkM̃kiðωÞ

�
; ð91Þ

_̂Ψ
ij
≈ −i

2G
r

Z
∞

mg

dω
2π

e−iωteikω;ϵrω3M̃ijðωÞ: ð92Þ

In GR, one can go to the transverse-traceless (TT) gauge
ðhTTμμ ¼ 0; h0μTT ¼ 0; ∂jhTTij ¼ 0Þ in vacuum, and one only
needs to calculate the spatial components of the metric
perturbation. In CG/MCG, the choice of the gauge is more
subtle, since there are more d.o.f. than in GR. In principle,
the massive graviton contributes 5 additional d.o.f. Hence,
by using the additional coordinate freedom left over after
choosing the Teyssandier gauge, we can find the analog to
the TT gauge (see Appendix B for details),

HTTμ
μ ¼ 0; ∂μH

μν
TT ¼ 0; HTT

μ0 ¼ 0; ð93Þ

ΨTTi
i ¼ 0; ΨTT

0i ¼ 0; ∂i∂jΨ
ij
TT ¼ −∂i∂iΨTT

00 : ð94Þ

Note that for the massive part only the spatial trace is zero
and the 00 component does not vanish.

Nevertheless, we show that these additional modes are
not excited by a conserved energy-momentum tensor.
Contracting (54) with a partial derivative yields

∂μΨ̂μν ¼
Z
V
d4x0

� ∂
∂xμ Gðx − x0Þ

�
Tμνðx0Þ

¼ −
Z
V
d4x0

� ∂
∂x0μ Gðx − x0Þ

�
Tμνðx0Þ

¼ −Gðx − x0ÞTμνðx0Þj∂V
þ
Z
V
d4x0Gðx − x0Þ

� ∂
∂x0μ Tμνðx0Þ

�

¼ 0; ð95Þ
where we have used ∂

∂xμ Gðx − x0Þ ¼ − ∂
∂x0μ Gðx − x0Þ for the

second equal sign and integration by parts for the third
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equal sign. Furthermore, we have chosen an integration
volume V that is larger than the source, such that TμνðxÞ
vanishes on the boundary ∂V. The last expression vanishes
due to matter energy-momentum conservation; see (31).
Hence, although the Teyssandier gauge (see Appendix B)
does not lead to the harmonic gauge for the massive mode
of the metric perturbation, a conserved energy-momentum
tensor only excites the transverse modes and we get the
harmonic gauge condition for the massive part automati-
cally. By applying a further coordinate transformation in an
analogous way as in GR without spoiling the harmonic
gauge, we can bring both parts of the wave to the standard
GR-TT gauge

HTTμ
μ ¼ 0; ∂μH

μν
TT ¼ 0; HTT

μ0 ¼ 0; ð96Þ

ΨTTμ
μ ¼ 0; ∂μΨ

μν
TT ¼ 0; ΨTT

μ0 ¼ 0: ð97Þ

Note that in the TT gauge H̄μν ¼ Hμν and Ψ̂μν ¼ Ψμν, since
the traces vanish.
Inserting (84)–(86) explicitly into (95) leads to

−i
Z

∞

mg

dω
2π

e−iωteikω;ϵrωM̃ðωÞ ¼ 0; ð98Þ

−
Z

∞

mg

dω
2π

e−iωteikω;ϵrω2D̃iðωÞ ¼ 0: ð99Þ

This shows that the monopole and dipole contributions in
(90)–(92), which are the quantities that enter into the
radiated energy, drop out and we are left with only the
quadrupole contribution as for the massless mode. However,
there is a phase difference between the massless and the
massive mode varying with the distance to the source. This
becomes obvious by the factor expð−ikωrÞ in (90)–(92).
Let us calculate the explicit solution for the gravitational

wave that is generated by a simple binary system in circular
motion in the Newtonian limit, which can be described in
the center of mass frame as one particle with the reduced
mass μ. We choose the orbit such that it lies in the xy plane
and get for the relative coordinates

x10ðtÞ ¼ −R sinðωstÞ; ð100Þ

x20ðtÞ ¼ R cosðωstÞ; ð101Þ

x30ðtÞ ¼ 0; ð102Þ

where R is the radius of the source. We do not need to
calculate the 0μ components, because our aim is to
calculate the radiated energy far away from the source,
where we can use the TT gauge. Therefore, we restrict here
to calculate only the spatial components in the harmonic
gauge and project the solutions into the TT gauge when
needed.

For a point particle of reduced mass μ in the non-
relativistic limit we get for the quadrupole moment

Mij ¼ μxi0x
j
0: ð103Þ

In components this reads

M11 ¼ μR2
1 − cos ð2ωstÞ

2
; ð104Þ

M22 ¼ μR2
1þ cos ð2ωstÞ

2
; ð105Þ

M12 ¼ −μR2
sin ð2ωstÞ

2
; ð106Þ

Mi
i ¼ μR2; ð107Þ

where Mi
i is the spatial trace of the mass moment and

ωs > 0. The time Fourier transform of these expressions is
given by

M̃11ðωÞ ¼
μR2π

2
½δðωÞ − δðωþ 2ωsÞ − δðω − 2ωsÞ�;

ð108Þ

M̃22ðωÞ ¼
μR2π

2
½δðωÞ þ δðωþ 2ωsÞ þ δðω − 2ωsÞ�;

ð109Þ

M̃12ðωÞ ¼
μR2π

2i
½δðω − 2ωsÞ − δðωþ 2ωsÞ�; ð110Þ

M̃i
iðωÞ ¼ μR2πδðωÞ: ð111Þ

For CG and MCG with a small graviton mass, inserting
(108)–(110) into (86) (note that we have to consider theR−mg
−∞ … contribution here), we find the nonvanishing
components for the massive mode,

Ψ̂11ðt; rÞ ¼ −Ψ̂22ðt; rÞ ¼ −
4GμR2ω2

s

r
cos ð2ωstmÞ; ð112Þ

Ψ̂12ðt; rÞ ¼ Ψ̂21ðt; rÞ ¼ −
4GμR2ω2

s

r
sin ð2ωstmÞ; ð113Þ

Ψ̂i
iðt; rÞ ¼ 0; ð114Þ

where tm ¼ t − vg;ϵr is the travel time and vg;ϵ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵm2

g=ð4ω2
sÞ

q
is the speed of the massive gravitational

wave.
We have calculated the massive part of (49). To get the

full metric perturbation, we now add the massless mode
H̄μν of the metric perturbation to the massive mode in (112)
and (113). The derivation of the solution for the massless
mode can be found in nearly every standard textbook about
GR and gravitational waves; see, e.g., [65,107]. We find
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h11ðt;rÞ¼−h22ðt;rÞ

¼ 4GϵμR2ω2
s

r
½cosð2ωstretÞ− cosð2ωstmÞ�; ð115Þ

h12ðt; rÞ ¼ h21ðt; rÞ

¼ 4GϵμR2ω2
s

r
½sin ð2ωstretÞ − sin ð2ωstmÞ�; ð116Þ

where tret ¼ t − r is the retarded time. This result is
consistent with the statement made in Sec. III C that the
metric perturbation vanishes in the limitmg → 0 (for H̄ ¼ 0

and Ψ̂ ¼ 0), which shows that this is not the GR limit.
For MCG with a large graviton mass, we find

Ψ̂11ðt; rÞ ¼ −Ψ̂22ðt; rÞ ¼
−4GμR2ω2

s

r
e−kω;>r cos ð2ωstÞ;

ð117Þ

Ψ̂12ðt; rÞ ¼ Ψ̂21ðt; rÞ ¼ −
4GμR2ω2

s

r
e−kω;>r sin ð2ωstÞ;

ð118Þ
and Ψ̂i

iðt; rÞ ¼ 0. We combine this with the massless mode
and get the final result

h11ðt; rÞ ¼ −h22ðt; rÞ

¼ 4GμR2ω2
s

r
½cosð2ωstretÞ − e−kω;>r cosð2ωstÞ�;

ð119Þ
h12ðt; rÞ ¼ h21ðt; rÞ

¼ 4GμR2ω2
s

r
½sinð2ωstretÞ − e−kω;>r sinð2ωstÞ�;

ð120Þ
which is just the GR solution modified by an exponentially
damped term.

V. ENERGY-MOMENTUM TENSOR OF
GRAVITATIONAL WAVES

To analyze the radiation emitted by sources like binary
systems, we need to calculate the explicit form of the
gravitational energy-momentum tensor in CG and MCG.
We calculate the gravitational energy-momentum tensor

via the corresponding Noether current. In order to do so, we
have to expand the gravitational part of the total action

IGRAV ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
−m−2

g

�
RμνRμν −

1

3
R2

�
− ϵR

�

ð121Þ

to second order in hμν and apply the TT gauge. We find

ITTð2ÞGRAV ¼ 1

64πG

Z
d4xð−m−2

g □hTTρσ□hρσTT þ ϵ∂αhTTρσ ∂αhρσTTÞ:

ð122Þ
The formula for an energy-momentum tensor of a fourth-
order derivative theory is given by

ðTGRAVÞλα ¼
1ffiffiffiffiffiffi−gp

��
∂ξ

∂L
∂gρσ;λξ −

∂L
∂gρσ;λ

�
gρσ;α

−
∂L

∂gρσ;λξ gρσ;ξα þ δλαL
�
; ð123Þ

where the angle brackets denote the average over several
wavelengths or periods of the wave. This leads to

ðTð2Þ
GRAVÞλα ¼

1

32πG
h2m−2

g □hTTρσ ∂α∂λhρσTT þ ϵ∂λhTTρσ ∂αh
ρσ
TTi:
ð124Þ

Here, we have already discarded terms proportional to ηλα,
since they do not contribute to the radiated energy;
cf. (130). In vacuum with the help of (42), (50), and
(51) it is possible to write this as

ðTð2Þ
GRAVÞλα ¼

1

32πG
h2ΨTT

ρσ ∂α∂λhρσTT þ ϵ∂αhTTρσ ∂λhρσTTi:
ð125Þ

VI. ENERGY LOSS DUE TO GRAVITATIONAL
WAVE EMISSION

A. Radiated energy

In this section we want to calculate the amount of energy
that is radiated by binary systems. We use the conservation
of the energy-momentum tensor in the far zone (r ≫ R) and
set Tμν ¼ 0. Hence we can go to the TT gauge. We find

∂0T0ν
GRAV þ ∂sTsν

GRAV ¼ 0: ð126Þ

The energy carried in volume V by gravitational waves is
given by EV ¼ R

d3xT00
GRAV. By combining with Eq. (126)

we find

_EV ¼
Z
V
d3x∂0T00

GRAV

¼ −
Z
V
d3x∂sTs0

GRAV

¼ −r2
Z
∂V

dΩnsTs0
GRAV; ð127Þ

where dΩ ¼ sin θdθdϕ is the differential solid angle, ∂V is
the surface of the volume V, and n is the spatial unit vector
pointing from the source to the observer. The minus sign
means that gravitational waves carry away energy flux from
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the volume. Hence, the radiated energy of gravitational
waves has the opposite sign, and we find

_E ¼ r2
Z
∂V

dΩnsTs0
GRAV: ð128Þ

Therefore, the quantity of interest is

Ts0
GRAVns ¼

1

32πG
nsh2ΨTT

ρσ ∂s∂0hρσTT þ ϵ∂shTTρσ ∂0hρσTTi
ð129Þ

¼ ϵ

32πG
nsh−∂sΨTT

ij ∂0Ψij
TT þ ∂sHTT

ij ∂0Hij
TTi; ð130Þ

where we used (42) and integration by parts in the second
line. Only the spatial components contribute in the
TT gauge.

1. Small graviton mass

For CG and MCG with a small graviton mass
(m2

g < 4ω2
s , where ωs ¼ ω=2) we find

Ts0
GRAVns ¼

ϵ

32πG

�
−∂0ΨTT

ij ∂0Ψij
TT þ ∂0HTT

ij ∂0Hij
TT þ ϵ

m2
g

8ω2
s
∂0ΨTT

ij ∂0Ψij
TT þO

�
m4

g

ω4
s
∂0ΨTT

ij ∂0Ψij
TT

��

≈
ϵ

32πG
Λijkl

�
−∂0Ψ̂ij∂0Ψ̂kl þ ∂0H̄ij∂0H̄kl þ ϵ

m2
g

8ω2
s
∂0Ψ̂ij∂0Ψ̂kl

�
; ð131Þ

where we have used ∂sH̄ρσ ¼ ∂0H̄ρσns þOð1=r2Þ, ∂sΨ̂ρσ ¼ ∂0Ψ̂ρσ½1 − ϵm2
g=ð8ω2

sÞ þOðm4
g=ω4

sÞ�ns þOð1=r2Þ, and
nsns ¼ 1 to find the first line. In the second line we introduced the so-called Lambda tensor Λijkl, which projects hij

into the TT gauge (see Appendix A for details). Note that the second term is the same as in GR for ϵ ¼ þ1. This shows that
the contribution from the massless and the massive part of the metric perturbation have the same structure, but come with a
relative sign.
We insert (131) in (127) and use Z

dΩΛijkl ¼
2π

15
ð11δikδjl − 4δijδkl þ δilδjkÞ; ð132Þ

to find

_E ≈
ϵr2

20G

�
−∂0Ψ̂ij∂0Ψ̂ij þ ∂0H̄ij∂0H̄ij þ ϵ

m2
g

8ω2
s
∂0Ψ̂ij∂0Ψ̂ij

�
: ð133Þ

Inserting (115) and (116) yields

_E ≈ ϵ _EGRh−sin2ð2ωstmÞ − cos2ð2ωstmÞ þ sin2ð2ωstretÞ þ cos2ð2ωstretÞi þ
m2

g

8ω2
s

_EGR ¼ m2
g

8ω2
s

_EGR; ð134Þ

where

_EGR ¼ 32Gμ2R4ω6
s

5
: ð135Þ

Note that (133) is independent of the signs of H̄ij and Ψ̂ij as
they appear quadratically. Hence, depending on ϵ, the first
or the second term comes with the wrong sign compared to
GR. However, in (134) we see that the ϵ-dependent part
vanishes and the remaining contribution has the same sign
as in GR.
For CG we have m2

g;CG=ð8ω2
sÞ ≈ 9 × 10−6 and for MCG

we have m2
g;<=ð8ω2

sÞ < 10−5. Hence, the radiated energy is
several orders of magnitude smaller than in GR.
Since we have shown in Sec. IVA that a too small

radiated energy directly translates into a too small decay of

the orbital period, it seems that gravitational radiation
cannot explain the measured decrease of the orbital period
of binary systems in these theories.

2. Large graviton mass

For MCG with a large graviton mass (ϵ ¼ þ1,
m2

g > 4ω2
s , where ωs ¼ ω=2) we use ∂rΨ̂μν ¼ −kωΨ̂μν þ

Oð1=r2Þ in (130) to find

Ts0
GRAVns ≈

1

32πG
Λij;klhkωΨ̂ij∂0Ψ̂kl þ ∂0H̄ij∂0H̄kli;

ð136Þ

with kω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g − 4ω2
s

q
. The second term in (136) gives the

same contribution as in GR. To calculate the first term,
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we use Eqs. (117) and (118). We find kωΨ̂ij∂0Ψ̂kl ∝
kωe−2kωr sin ð2ωstÞ cosð2ωstÞ, which vanishes in combina-
tion with the average over several periods of the wave.
Hence, MCG with a large graviton mass reproduces the GR
result exactly. We get

_E ¼ r2

20G
h∂0H̄ij∂0H̄iji ¼ _EGR: ð137Þ

Therefore, MCG with a large graviton mass represents a
theory that still needs dark matter to explain galaxy rotation
curves, but accounts for the decay of the orbital period
due to gravitational waves. On macroscopic distance scales
such as r ≫ m−1

g it can be split into GR plus small con-
tributions from the higher derivative terms. Therefore,
it is reasonable to expect that also the other tests of gravity
can be passed. Only on very small scales, where the
higher derivative terms become important, is a significant
deviation from GR expected. This is the reason why this
theory is renormalizable [95].

VII. SUMMARY, CONCLUSION,
AND OUTLOOK

In this work we have investigated gravitational radiation
from the binary system PSR J1012+5307 in CG and MCG.
Both theories belong to the class of models containing
higher derivatives and are invariant under Weyl rescaling.
The action is given by a C2 term that contributes the higher-
derivative part and a term that resembles the Einstein-
Hilbert term in the Weyl gauge SðxÞ ¼ S0 and G̃ ¼ G. By
introducing the parameter ϵ ¼ �1, we distinguished
between CG and MCG. The difference between these
two theories is the sign in front of the Einstein-Hilbert
term, and both signs are allowed by the Weyl symmetry.
This choice of sign does not only change the results for
gravitational radiation but also changes the properties of the
gravitational wave. We have argued that in CG (ϵ ¼ −1) the
choice of sign leads to metric perturbations that can be
written as a massless ghost field and a massive tachyon.
Whereas in MCG (ϵ ¼ þ1), the massless mode is healthy
and the massive mode is a ghost, but not a tachyon. A ghost
field represents a severe problem for a theory, but as we
discussed in Sec. III B, there seem to be solutions to the
ghost problems in CG and MCG [30,105].
In Sec. III we derived the inhomogeneous linearized field

equations in the Teyssandier gauge for the metric pertur-
bation given in Eq. (35). These equations are higher-
derivative partial differential equations for a partially
massive field. It was shown that one can divide this
equation into a massless and a massive mode; see (45)
and (48). Since the solution to the massless part is known
from GR, we only investigated the massive part. In
principle, the massive part contributes 5 additional d.o.f.,
including monopole and dipole radiation. However, in
Sec. IV B we have shown that these additional d.o.f. are

not excited by a conserved energy-momentum tensor (for
nonrelativistic binaries it is mass conservation), and hence
monopole and dipole radiation vanish. This means that only
the transverse modes contribute.
We found solutions for three different cases. For CG the

massive mode has the same form as in GR, but travels faster
than the speed of light. In the case of MCG with a small
graviton mass the solution is the same, but the sign is
different and the velocity is smaller than the speed of light.
For MCG in the case of a large graviton mass, the massive
terms are damped exponentially, such that in the limit of a
large graviton mass GR is recovered.
To calculate the energy radiated by an idealized binary

system, we derived the gravitational energy-momentum
tensor in Sec. V. It has a contribution from the massless
mode that is the same as in GR (the sign depends on ϵ) and
additional contributions that depend on the massive mode of
the metric perturbation. Most importantly, there is a relative
sign between the various contributions that can lead to
cancellations and that reduces the efficiency of gravitational
wave emission in certain regions of the parameter space.
Finally, in Sec. VI we were able to calculate the radiated

energy in the Newtonian limit for a binary system in
circular motion. In Table III we summarize our results and
compare them to the radiated energy in GR given in
Eq. (135). In CG and MCG with a small graviton mass
(small compared to the orbital frequency of the binary
system), we find the radiated energy to be much smaller
than in GR. For CG we fixed the graviton mass by the
analysis of galaxy rotation curves without the introduction
of dark matter, mg;CG ¼ 1.1 × 10−22 eV, which turns out to
fall into the small mass regime.
Hence, CG and MCG with a small graviton mass cannot

explain the decay of the orbital period via gravitational
radiation. Nevertheless, one could think of another mecha-
nism to account for the shrinkage of the orbits of binary
systems. A suggestion in this direction is given in [30].
Thus our result does not rule out CG, as we cannot exclude
the existence of another such mechanism, but it makes CG
a less attractive solution to the dark matter problem.
MCG cannot fit galaxy rotation curves without dark

matter, but experiments on the inverse square law of the
Newtonian potential constrain the graviton mass to the
ranges mg;< < 10−22 eV for m2

g < 4ω2
s and mg;> >

10−2 eV for m2
g > 4ω2

s. The orbital frequency of the binary
system studied in this work is ωs ≈ 1.3 × 10−20 eV. Most
interestingly, MCG with a large graviton mass (i.e.,
mg;> > 10−2 eV) shows properties close to GR. As it
contains GR as a limit (MCG with a small graviton mass
does not contain GR as a limit, because m2

g < 4ω2
s and

mg → ∞ are inconsistent unless ωs→∞), MCG is expected
to pass all tests of GR on length scales r ≫ m−1

g . And
besides, due to its higher-derivative nature, it seems to be a
renormalizable model for gravity [95]. Thus, this model
seems to offer interesting opportunities for future work.
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The application and extension of our findings to coa-
lescing binaries, as observed by gravitational wave inter-
ferometers and for compact stars followed up by telescopes
at various wavebands is most interesting, as it might result
in further constraints on these theories, in the case in which
another mechanism would account for the shrinkage of the
orbits of binary systems far away from coalescence (in
which case the above findings would not be relevant). Up to
now, strong constraints on the graviton mass have been
derived from the absence of differences in the arrival times
of the gravitational wave and the electromagnetic signal,
within the experimental error. This experimental constraint
has not yet been applied to CG and MCG. Further studies
are needed to figure out what one should expect for these
theories, because there are two modes that travel with
different speeds, and hence there will be interference
between these modes. This will result in a beating pattern
(over distance) for the total amplitude of the gravitational
wave. On the other hand, for MCG with a large graviton
mass the massive mode is not propagating, and hence one
cannot expect a constraint on the graviton mass in this case.
This analysis will be presented in a forthcoming paper.
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APPENDIX A: CONVENTIONS

The signature of the metric is

g ¼ diagð−;þ;þ;þÞ: ðA1Þ
The Christoffel symbols are defined by

Γλ
κμ ¼

1

2
gλρð∂κgρμ þ ∂μgρκ − ∂ρgκμÞ; ðA2Þ

and the Riemann tensor is given by

Rλ
μνκ ¼ −ð∂νΓλ

μκ − ∂κΓλ
μν þ Γλ

ναΓα
μκ − Γλ

καΓα
μνÞ: ðA3Þ

From this we find the Ricci tensor Rμκ ¼ gλνRλμνκ and the
Ricci scalar gμκRμκ. The Einstein equations in the con-
vention used by Mannheim and Weinberg [65] read

Gμν ≡ Rμν −
1

2
gμνR ¼ −8πGTμν þ Λgμν: ðA4Þ

The Weyl tensor is given by the expression

Cλμνκ ¼ Rλμνκ þ
1

6
R½gλνgμκ − gλκgμν�

−
1

2
½gλνRμκ − gλκRμν − gμνRλκ þ gμκRλν�: ðA5Þ

In the following we give a list of the curvature tensors,
expanded around flat spacetime, at first order in hμν:

Rμð1Þ
νρσ ¼ 1

2
ð−∂ν∂ρh

μ
σ − ∂μ∂σhνρ þ ∂μ∂ρhνσ þ ∂ν∂σh

μ
ρÞ;
ðA6Þ

Rð1Þ
μν ¼ 1

2
ð□hμν − ∂ρ∂μh

ρ
ν − ∂ν∂ρh

ρ
μ þ ∂μ∂νhÞ; ðA7Þ

Rð1Þ ¼ □h − ∂μ∂νhμν: ðA8Þ
At second order in hμν the Ricci tensor is given by

Rð2Þ
μν ¼ −

1

2
hρσ½∂μ∂νhρσ − ∂ν∂ρhμσ − ∂σ∂μhρν þ ∂ρ∂σhμν�

þ 1

4
½2∂σhσρ − ∂ρh�½∂νh

ρ
μ þ ∂μh

ρ
ν − ∂ρhμν�

−
1

4
½∂ρhσν þ ∂νhσρ − ∂σhρν�½∂ρhσμ þ ∂μhσρ − ∂σhρμ�:

ðA9Þ
Since we use the Ricci tensor in the action integral, we can
use integration by parts. Using the TT gauge we find

Rð2ÞTT
μν ¼ 1

4
∂νhTTσρ ∂μh

σρ
TT −

1

2
∂ρhTTσν ∂ρhσTTμ: ðA10Þ

The Ricci scalar is given by

Rð2ÞTT ¼ 1

4
□hρσTTh

TT
ρσ : ðA11Þ

Let us also define the Lambda tensor, which is the
projector into the TT gauge. It is given by

Λijkl ¼ δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

þ 1

2
nknlδij þ

1

2
ninjδkl þ

1

2
ninjnknl; ðA12Þ

where ni denotes the spatial unit vector pointing into the
direction of wave propagation. The Lambda tensor has
some useful properties:

Λijmn ¼ ΛijklΛkl
mn; ðA13Þ

Λi
ikl ¼ Λk

ijk ¼ 0; ðA14Þ

niΛijkl ¼ 0; ðA15Þ

njΛijkl ¼ 0: ðA16Þ
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APPENDIX B: GENERALIZED GAUGE
CONDITION

In order to find the physical d.o.f. of CG and MCG we
have to choose gauge fixing conditions. In higher-order
derivative theories, it is convenient to choose a generali-
zation of the harmonic gauge, the so-called Teyssandier
gauge [81]. To show the usefulness of this gauge, let us start
with gauging the theories in a naive way, similar to how it is
usually done for GR.
To find the number of physical d.o.f., it is enough to

study gravitational waves that propagate in a vacuum. In
GR, the metric perturbation is a symmetric 4 × 4 matrix
and has 10 independent components. We are free to
perform a coordinate transformation

xμ → x0μ ¼ xμ þ ξμðxÞ; ðB1Þ

where j∂μξνj is of order jhμνj. The trace-reversed metric
perturbation transforms as

h̄μνðxÞ → h̄0μνðx0Þ ¼ h̄μνðxÞ − ð∂μξν þ ∂νξμ − ημν∂ρξ
ρÞ;
ðB2Þ

and hence

∂νh̄μν → ð∂νh̄μνÞ0 ¼ ∂νh̄μν −□ξμ: ðB3Þ

So to find the harmonic gauge condition one has to choose

□ξμ ¼ ∂νh̄μν: ðB4Þ

These four conditions reduce the d.o.f. to 6. Nevertheless,
this does not fix the gauge freedom completely. One can do
a residual coordinate transformation

x0μ → x00μ ¼ x0μ þ ζμ; ðB5Þ

where j∂μζνj is again of the order of jhμνj. This leads to

h̄0μνðxÞ → h̄00μνðx0Þ ¼ h̄0μνðxÞ − ð∂μζν þ ∂νζμ − ημν∂ρζ
ρÞ:
ðB6Þ

Since we do not want to spoil the harmonic gauge
condition, we have to demand

□ζμ ¼ 0: ðB7Þ

For simplicity we only look at a single mode and find the
plane wave solution to this equation

ζμ ¼ cμeikρx
ρ þ c:c: ðB8Þ

In the following, we will also suppress the complex
conjugate (c.c.). Here cμ represents four arbitrary constants

for fixed wave number kμ, which is lightlike ðkρkρ ¼ 0Þ.
Inserting this into (B6) one can explicitly use the four
components of ζμ to set components of h̄0μν to zero. In the
TT gauge these functions are chosen in order to get

h̄00 ¼ 0; ðB9Þ

∂jh̄ij ¼ 0; ðB10Þ

h̄0i ¼ 0; ðB11Þ

h̄ii ¼ 0: ðB12Þ

For CG/MCG naively one could apply the same pro-
cedure. The difference is that there is now also a massive
part of the metric perturbation

h̄μν ¼ ϵðH̄μν þ Ψ̄μνÞ; ðB13Þ

where H̄μν corresponds to the massless and Ψ̄μν to the
massive part of the spin-2 field. Hence, there are 20
independent components now. To analyze this, let us
expand the metric perturbation in Fourier modes

h̄μν ¼ ϵðāμνeikρxρ þ b̄μνeilρx
ρÞ; ðB14Þ

where lρlρ ¼ −ϵm2
g. āμν and b̄μν are called the polarization

tensors. Inserting Eq. (B14) into the harmonic gauge
condition we get

kνāμν ¼ 0; ðB15Þ
lνb̄μν ¼ 0: ðB16Þ

These eight conditions reduce the d.o.f. to 12. Now, there
appears a problem. Although it is possible to bring the
massless part to the standard TT gauge, it is not possible to
set terms of the massive part to zero, since ζμ is a lightlike
vector field, which cannot cancel a massive wave. But since
we still have eight independent components, there has to be
one more condition, since a massless and a massive spin-2
field should have only 7 d.o.f.. This is the reason why it is
more convenient to use the Teyssandier gauge. Let us
briefly derive this gauge here.
The field equations and gauge conditions for the mass-

less and the massive parts of the wave are shown in Sec. III.
In Eq. (34) we have chosen the Teyssandier gauge

condition. But the gauge freedom is not fixed completely,
and hence we can do another coordinate transformation.
Under a coordinate transformation, xμ → x0μ ¼ xμ þ ζμ,
this quantity transforms as

Z0μ ¼ Zμ − ϵm−2
g ð□ − ϵm2

gÞ□ζμ: ðB17Þ

Again, to not spoil the Teyssandier gauge condition Zμ ¼ 0

we have to demand
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ð□ − ϵm2
gÞ□ζμ ¼ 0: ðB18Þ

The solution to this equation is

ζμ ¼ cμeikρx
ρ þ dμeilρx

ρ
: ðB19Þ

We look only at one mode and discard the c.c. for
simplicity. cμ and dμ are arbitrary constants for fixed wave
numbers kμ and lμ ðkρkρ ¼ 0 and lρlρ ¼ −ϵm2

gÞ. The
second term describes a massive vector field, and hence it is
possible to set components of the massive mode of the
metric perturbation to zero. The massless and the massive
parts of the metric perturbation expanded in Fourier modes
transform as

a0μν ¼ aμν − iðkμcν þ kνcμÞ; ðB20Þ

b0μν ¼ bμν − iðlμdν þ lνdμÞ: ðB21Þ

We bring the massless part to the TT gauge as in GR. With
no loss of generality we choose the wave propagating in the
z direction, kμ ¼ ðk; 0; 0; kÞ. From the gauge (46) for the
massless part we get

ā00 ¼ −ā30; ðB22Þ

ā01 ¼ −ā31; ðB23Þ

ā02 ¼ −ā32; ðB24Þ

ā03 ¼ −ā33; ðB25Þ

and hence ā00 ¼ ā33. Using this, one can show that a ¼
−a00 þ a33 and a11 þ a22 ¼ 0. For the trace we find

a0 ¼ a − 2ikρcρ: ðB26Þ

We can set a0 ¼ 0 if we choose

c0 ¼
−a00 þ a33

2ik
− c3: ðB27Þ

Using (B21) we also see that a011 þ a022 ¼ 0, because a11
and a22 do not transform under this coordinate trans-
formation. To set a00i ¼ 0, we have to choose

c1 ¼ −
a01
ik

; ðB28Þ

c2 ¼ −
a02
ik

; ðB29Þ

c3 ¼
a03 − a
2ik

: ðB30Þ

Inserting this in the harmonic gauge condition yields

ā000 ¼ 0; ðB31Þ

ā033 ¼ 0; ðB32Þ

ā031 ¼ 0; ðB33Þ

ā032 ¼ 0: ðB34Þ

This brings the massless part to the convenient TT gauge

HTT
00 ¼ 0; ðB35Þ

∂jHTT
ij ¼ 0; ðB36Þ

HTT
0i ¼ 0; ðB37Þ

HTTi
i ¼ 0: ðB38Þ

For the massive mode we can proceed analogously. The
gauge condition ∂ρ∂σΨρσ ¼ □Ψ yields

ðl0Þ2b00 þ 2l0l3b03 þ ðl3Þ2b33 ¼ −ϵm2
gb; ðB39Þ

where we again have chosen the massive part to travel in the

z direction with lμ ¼
	
l; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ϵm2

g

q 

. We choose

d1 ¼
b01
il0

; ðB40Þ

d2 ¼
b02
il0

; ðB41Þ

d3 ¼
b03
il0

−
l3

2iðl0Þ2
b00; ðB42Þ

to set b00i ¼ 0. Inserting this back into the transformed
(B39) we find the condition

ðl0Þ2b000 þ ðl3Þ2b033 ¼ −ϵm2
gb

0μ
μ : ðB43Þ

We have the freedom to choose d0 to set to zero b000, b
0
33,

b0ii , or b
0μ
μ . Thus, one choice for the completely gauge-fixed

massive mode is

ΨTT
0i ¼ 0; ðB44Þ

ΨTTi
i ¼ 0; ðB45Þ

ΨTT
00 ¼ −ΨTT

33 ; ðB46Þ

which reduce the d.o.f. of the massive mode to 5.
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APPENDIX C: GHOSTS AND TACHYONS FOR
THE SCALAR FIELD

In this Appendix we want to study the properties of a free
scalar field SðxÞ in flat spacetime. We investigate

IM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ϵ

2
ð∇μS∇μS −m2

sS2Þ; ðC1Þ

where m2
s ¼ R=6 represents the mass of the scalar field

SðxÞ. The equation of motion is given by

ð∇μ∇μ −m2
sÞS ¼ 0: ðC2Þ

By defining the conjugate momentum πS ¼ ϵ
ffiffiffiffiffiffi−gp ∇0S we

find the Hamiltonian density

H ¼ πS∇0S − L ¼ ϵ

2

ffiffiffiffiffiffi
−g

p ð−∇0S∇0S − ð∇SÞ2 þm2
sS2Þ:
ðC3Þ

From this we can derive the stability properties of the scalar
field, which are summarized in Table IV. We see that the
sign of ϵ and the Ricci scalar are crucial for the properties of
the scalar field. Nevertheless, since in CG and MCG the
scalar field represents no real d.o.f., it is not necessary that
it is a healthy field. We can always choose a Weyl gauge,
which sets the scalar field to a constant.

APPENDIX D: ANALYSIS OF THE
NEWTONIAN LIMIT

Let us investigate the Newtonian limit of MCG. We use
the wave equations (44) and (45) and make the following
assumptions corresponding to the Newtonian limit:

∂thμν ¼ 0; ðD1Þ

TNewt
00 ≈Mημ0ην0δ

ð3ÞðrÞ; ðD2Þ

TNewt ≈ −Mδð3ÞðrÞ; ðD3Þ

∂tρ ¼ 0; ðD4Þ

where TNewt
00 is the time-time component of the matter

energy-momentum tensor TNewt
μν in the Newtonian limit and

TNewt is the trace. M is the mass of the point source at
r ¼ 0, and we have neglected the pressure p. Inserting this
into (44) and (45) we find

△Hμν ¼ −16πG̃M
�
ημ0ην0 þ

1

2
ημν

�
δð3ÞðrÞ; ðD5Þ

ð△−m2
gÞΨμνðrÞ¼ 16πG̃M

�
ημ0ην0þ

1

3
ημν

�
δð3ÞðrÞ: ðD6Þ

First, let us find the vacuum solutions to these equations.
In the Newtonian limit we can write the line element as

ds2 ¼ ð−1 − 2ΦðrÞÞdt2 þ ð1 − 2ΘðrÞÞdr2 þ r2dΩ2;

ðD7Þ

where h00 ¼ −2Φ, hrr ¼ −2Θ, and dΩ2 ¼ dθ2 þ
sin2 θdϕ2 is the line element of a unit 2-sphere. The 00
component of (D5) and (D6) in the vacuum yields

ΦðrÞ ¼ c0 þ
c1
r
þ c2e−mgr

r
þ c3emgr

r
; ðD8Þ

where c0, c1, c2, and c3 are arbitrary constants. The
constant term has no physical relevance, so we set
c0 ¼ 0. The condition of asymptotic flatness demands
c3 ¼ 0. For the other constants it is convenient to choose
c1 ¼ −GM and c2 ¼ −GMα. This leads to

ΦðrÞ ¼ −
GM
r

ð1þ αe−mgrÞ: ðD9Þ

The point source solution to (D5) and (D6) in spatial
Fourier space reads

h̃μνðkÞ¼ 16πG̃M

�
ημ0ην0þ 1

2
ημν

k2
þημ0ην0þ 1

3
ημν

k2þm2
g

�
: ðD10Þ

In real space this yields

hμν ¼
4G̃
r

�
ημ0ημ0 þ

1

2
ημν

�
−
4G̃
r

e−mgr

�
ημ0ημ0 þ

1

3
ημν

�
;

ðD11Þ

where we have chosen boundary conditions of asymptotic
flatness. From the 00 component we find for the Newtonian
potential

TABLE III. Summary of the radiated energy for CG and MCG
with small and large graviton masses.

ϵ −1 þ1

m2
g < 4ω2

s
m2

g

8ω2
s

_EGR
m2

g

8ω2
s

_EGR

m2
g > 4ω2

s No reasonable Newtonian limit _EGR

TABLE IV. The stability properties of the scalar field minimiz-
ing the action (C1).

R<0 R>0

ϵ ¼ −1 Healthy Tachyon
ϵ ¼ þ1 Tachyonic ghost Ghost
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ΦðrÞ ¼ −
G̃M
r

�
1 −

4

3
e−mgr

�
: ðD12Þ

Choosing G̃ ¼ G and comparing with (D9) we get
α ¼ −4=3. The limit mgr ≫ 1 yields just the standard
Newtonian potential. For mgr ≪ 1 one gets ΦðrÞ ¼
GM=ð3rÞ, which leads to a repulsive gravitational force.
This points out that the additional Yukawa potential cannot
serve to fit galaxy rotation curves without dark matter in
any parameter range, since it always comes with the wrong
sign; see [108].
In literature there also exists another choice for the

gravitational potential. This is the phenomenological
approach by Sanders [109], which is also adopted by
MCG [68,110]. In this case the gravitational potential
exterior to a source, given by

Φ ¼ −
GM

rð1þ δÞ ½1þ δe−mg;Sr�; ðD13Þ

with parameters δ ¼ −0.92 and mg;S ≈ 1.6 × 10−28 eV
(mg;S is the graviton mass) [109], has been used to fit
galaxy rotation curves without dark matter. The standard
Newtonian potential is recovered in the limit mgr ≪ 1.
Trying to match (D13) with (D12) seems to be impossible,
unless the massive part of the metric perturbation couples
differently to matter than the massless part.
Assuming that it is possible to derive such a potential in

some way, let us calculate the decay of the orbital period of
the binary system. We find

_P
P
≈ −

jEGRj·
jEGRj

�
3

2
þ δ

2
m2

g;SR
2e−mg;sR

�
; ðD14Þ

where we have assumed that mg;SR ≪ 1, which can be
verified using Table II. We find mg;SR ≈ 10−13. Hence, the
contribution from the second term in the parentheses in
Eq. (D14) is negligible.
Fourth-order theories, such as L ¼ fðR;RμνÞ, have been

criticized for explaining galaxy rotation curves without
dark matter; see [108]. In this reference the authors state
that for a fourth-order theory, which includes squares of the
Ricci tensor, the additional Yukawa potential term always
comes with the wrong sign, such that it does not give
additional but less attraction.
In the phenomenological approach of Sanders the

Yukawa term also appears with the wrong sign, since δ
is negative. Nevertheless, the reason why this approach is
able to fit galaxy rotation curves without invoking dark
matter is that also the gravitational constantG is changed to
an effective gravitational constant G̃ ¼ G=ð1þ δÞ. This
procedure has also been adopted in MCG [68] and in
scalar-tensor-vector gravity [110]. However, in accordance
with our findings, it is also criticized in [111] that it is not
clear how such a modified gravitational potential as in
(D13) can emerge from a standard matter source.
On top of that it also fails to explain the decrease of the

orbital period of binary systems by gravitational radiation.
The ratio between the graviton mass and the orbital

frequency of the binary system is mg;S=ωs ≲ 10−8 and the
radiated energy is to first order in m2

g=ω2
s

_E ≈
m2

g

8ω2
sð1þ δÞ

_EGR; ðD15Þ

which is much smaller than _EGR.
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