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The cosmic microwave background temperature bispectrum is currently the most precise tool for
constraining non-Gaussianity (NG) in the primordial curvature perturbations. The Planck temperature data
tightly constrain the amplitude of local-type NG: flocNL ¼ 2.5� 5.7. In this paper, we compute previously
neglected foreground biases in temperature-based flocNL measurements. We consider signals from the
integrated Sachs-Wolfe (ISW) effect, gravitational lensing, the thermal and kinematic Sunyaev-Zel’dovich
effects, and the cosmic infrared background. In standard analyses, a significant foreground bias arising
from the ISW-lensing bispectrum is subtracted from the flocNL measurement. However, a number of other
terms sourced by the ISW, lensing, thermal and kinematic Sunyaev-Zel’dovich effects, and cosmic infrared
background fields are also present in the temperature bispectrum. We compute the dominant biases on flocNL

arising from these signals, focusing on “squeezed” bispectrum shapes. Most of the biases are nonblackbody
in nature, and are thus reduced by multifrequency component separation methods; however, recent analyses
have found that extragalactic foregrounds are present at non-negligible levels in the Planck component-
separated maps. Moreover, the Planck FFP8 simulations do not include the correlations amongst
components that are responsible for these biases. We compute the biases for individual Planck frequencies,
finding that some are comparable to the statistical error bar on flocNL, even for the main cosmic microwave
background channels (100, 143, and 217 GHz). For future experiments, they can greatly exceed the
statistical error bar (considering temperature data only). Alternatively, the foreground contributions can be
marginalized over, but without strong priors this leads to a non-negligible increase in the error bar on flocNL.
A full assessment for Planck and other experiments will require calculations in tandem with component
separation, ideally using simulations. We also compute these biases for equilateral and orthogonal NG,
finding large effects for the latter. Similar calculations must be performed for trispectrum NG. We conclude
that the search for primordial NG using Planck data may not yet be over.
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I. INTRODUCTION

Primordial non-Gaussianity (NG) is a key probe of the
physics thought to have generated all structure in our
Universe during its earliest moments. The simplest models
of inflation (i.e., single-field, slow-roll) predict negligibly
small departures from Gaussianity in the primordial cur-
vature perturbations [1,2], but a rich spectrum of non-
Gaussian signatures can be produced in more complex
inflationary scenarios or noninflationary early-universe
models (see, e.g., Refs. [3,4] for reviews). A key quantity
of interest is the amplitude of the bispectrum of curvature
perturbations in the so-called “squeezed” limit (in which
one wave number is much smaller than the other two, i.e.,
k1 ≪ k2, k3), conventionally denoted as flocNL [5]. Single-
field, slow-roll inflation predicts that flocNL vanishes exactly

(e.g., [6]), modulo small, higher-order corrections due to
the nonlinearity of gravity [7]. A detection of nonzero flocNL
would rule out essentially all single-field models of
inflation [2,8,9]. We focus on local-type NG here; dis-
cussions and results for additional “shapes” of NG (equi-
lateral or orthogonal), which also contain a wealth of
information about the physics of the early universe [3,4],
can be found in the Appendices.
The most powerful observable for constraining primor-

dial NG in current data sets is the bispectrum of temper-
ature fluctuations in the cosmic microwave background
(CMB) [10–13]. The well-understood, linear physics
responsible for the CMB anisotropy permits an essentially
direct mapping of the primordial curvature perturbations,
thus allowing NG templates to be directly fit to CMBmaps.
The most stringent current constraint on local NG is derived
from Planck data in this manner, yielding flocNL ¼ 2.5� 5.7
(temperature data only) or flocNL ¼ 0.8� 5.0 (temperature
and polarization data) [13].*jch@ias.edu
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Nevertheless, a number of complex problems must be
surmounted in order to extract robust NG constraints from
CMB data. In this paper, we focus on one such problem:
extragalactic foreground contamination in CMB temper-
ature maps. Prior to the NG analysis, maps of the micro-
wave sky at multiple frequencies must be combined to
extract a map of the CMB anisotropy from the multitude of
other sky signals, a process known as “component sepa-
ration” (see Refs. [14–16] for an overview of the Planck
CMB component separation methods). The goal of such
techniques is to minimize the contributions from non-CMB
contaminants (including both foregrounds and noise) while
preserving the CMB signal. However, such methods are
generally imperfect, and some level of foreground residuals
will propagate into the final map. These residuals must be
well understood in order for robust NG constraints to be
obtained.
We focus in this paper on extragalactic foreground

contributions to local-type NG estimators in CMB temper-
ature maps, as detailed further below. Most of these
contributions are nonblackbody in frequency dependence,
and can therefore be reduced (or, in some cases, completely
removed [17]) via multifrequency component separation.
However, the extent to which such reduction for extra-
galactic foregrounds has occurred in the Planck compo-
nent-separated CMB temperature maps is presently
unclear, and evidence has recently accumulated that some
small-scale foregrounds may be present at non-negligible
levels [18,19]. A crucial cross-check could come from a
polarization-only NG analysis, where the only extragalactic
foreground is that due to point source emission, which is
well understood and simple to remove. However, as can be
immediately seen in the results quoted above, the Planck
flocNL constraints are strongly dominated by information in
the CMB temperature field. Upcoming experiments,
including the Simons Observatory1 (SO) [20] and CMB-
S4 [21], may be sufficiently sensitive to allow independent
measurements from temperature and polarization with
comparable error bars. At present, CMB temperature
dominates the information content in NG constraints.
Moreover, some contaminants to NG estimators cannot

be removed via multifrequency component separation, as
they possess the same blackbody frequency dependence as
the CMB itself. Chief amongst these is the CMB temper-
ature bispectrum sourced by the correlation between the
integrated Sachs-Wolfe (ISW) effect [22,23] and the
gravitational lensing potential by which CMB photons
are deflected (see Ref. [24] for a review of CMB lensing).
The ISW effect is the change in the temperature of CMB
photons due to the decay (or enhancement) of late-time
gravitational potentials (e.g., as a result of dark energy).
Both the ISW effect and gravitational lensing do not alter
the blackbody spectrum of the CMB. In addition, both

fields trace the late-time gravitational potential of the
Universe. Finally, since CMB lensing couples previously
independent spherical harmonic coefficients of the CMB,
the ISW-lensing correlation produces a nonzero bispectrum
in the CMB temperature field [25–28]. This ISW-lensing
bispectrum has a nonzero projection onto the bispectrum
shape of local-type NG, thereby producing a non-
negligible, irreducible bias to estimates of flocNL from
CMB temperature maps. For Planck, this bias is substantial
and must be subtracted to obtain unbiased constraints:
Δfloc;ISW-ϕ

NL;Planck ¼ 7.6 (see Sec. IVA). The ISW-lensing bis-
pectrum also produces biases on equilateral and orthogonal
NG estimates (particularly the latter), as discussed in the
Appendices.
In this paper, we point out the existence of additional

foreground biases in CMB temperature-derived flocNL con-
straints. To our knowledge, the ISW-related biases pre-
sented here have not been computed elsewhere, with the
exception of the ISW-lensing bias. Other biases involving
CMB lensing have received some attention, albeit limited
[29,30]. In general, flocNL biases are generated in the CMB
temperature field by bispectra involving the ISW effect,
CMB lensing, the cosmic infrared background (CIB), and
the thermal (tSZ) and kinematic Sunyaev-Zel’dovich (kSZ)
effects.2 The CIB refers to the cumulative infrared emission
of dusty, star-forming galaxies over cosmic time, which has
a broad redshift kernel peaking around z ≈ 2 (similar to the
CMB lensing kernel). The tSZ effect is the inverse-
Compton scattering of CMB photons off hot, free electrons,
producing a shift in the photon spectrum to higher energies,
and thus leaving a nonblackbody spectral distortion in the
CMB [31,32]. The kSZ effect is the Doppler boosting of
CMB photons scattering off electrons that have a nonzero
line-of-sight (LOS) velocity in the CMB rest frame
[33–35]. Along with the ISW and CMB lensing signals,
these fields all trace the large-scale structure of the Universe
in some way. The resulting correlations generate bispectra
in CMB temperature maps. While these bispectra are
interesting in their own right for astrophysical and cosmo-
logical reasons [36–42], here we focus on their role in
biasing measurements of local-type primordial NG, akin to
the bias due to the ISW-lensing bispectrum described
above. Our goal is to consider all extragalactic foreground
bispectra that have strong contributions in the squeezed
limit, i.e., to provide a complete assessment of relevant
biases for local-type NG. Because this set of terms is not
exhaustive for other shapes of primordial NG (although it
contains some that are nevertheless non-negligible), we
relegate calculations for equilateral and orthogonal NG to
the Appendices, deferring a complete bias assessment for
these shapes to future work.

1http://www.simonsobservatory.org.

2Bispectra involving point sources also generate biases, but are
smaller in magnitude, particularly for Planck, and have been
considered in previous analyses.
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Note that rather than treating these foreground contri-
butions as biases, it is possible to include the relevant
bispectrum templates in the NG analysis and marginalize
over their amplitudes, thereby mitigating the biases at the
cost of increasing the error bars on the primordial NG
parameters (e.g., [43]). We consider this approach for each
foreground contribution throughout the paper (assuming no
priors are placed on the amplitudes of any bispectra). In
general, for flocNL we find that marginalizing over lensing-
related foregrounds (i.e., the lensing-ISW, lensing-tSZ, or
lensing-CIB bispectra) leaves the error bar on flocNL nearly
unchanged. However, marginalizing over ISW-related bis-
pectra (i.e., ISW-tSZ-tSZ, ISW-CIB-CIB, ISW-tSZ-CIB, or
ISW-kSZ-kSZ) generally increases the error bar on flocNL by
a non-negligible amount, e.g., ≈50% for Planck. This
increase is simply due to the high correlation coefficient of
the ISW-related bispectra with the local-type bispectrum (all
of these bispectra peak in the squeezed limit). Therefore,
precise theoretical calculations of these signals are important,
so that strong priors can be placed on the relevant amplitudes,
thereby mitigating the error bar increase on flocNL.
The basic conclusions of this paper are summarized in

Table I, which gives the bias on flocNL sourced by several
types of foreground bispectra at the primary CMB channels
of Planck (note that ground-based experiments observe at
similar frequencies). The table includes results for Planck
noise levels, corresponding to an experiment that is cosmic
variance limited to a maximum multipole lmax ¼ 1590, as

well as for future experiments that will be cosmic variance
limited to lmax ¼ 3000 (albeit not covering the full sky).
The primary takeaway from these results is that even for the
main CMB channels of Planck, the biases due to these
foregrounds are comparable to the 1σ error bar on flocNL from
the temperature bispectrum (we reach a similar conclusion
for forthNL in Appendix B). Of course, component separation
will reduce the nonblackbody contributions to some extent
(and all contributions will be summed in a complex manner
in the synthesis of the final CMB map), but a full modeling
of this procedure is beyond the scope of this paper and best
implemented via simulations.
The other important conclusion from Table I is that for

future experiments aiming to constrain primordial NG from
the CMB bispectrum (e.g., SO and CMB-S4), nonblack-
body foregrounds must be cleaned very precisely to avoid
biases from the tSZ and CIB signals. Furthermore, a non-
negligible bias due to the blackbody ISW-kSZ-kSZ bis-
pectrum must be subtracted, which has not been computed
in the literature to date. Given these complexities, future
NG constraints may be better off relying on CMB polari-
zation, which is much cleaner than temperature on small
scales.
The remainder of this paper is organized as follows. In

Sec. II, we motivate this work in the context of current flocNL
measurements and previous calculations. In Sec. III, we
provide relevant theoretical background related to primor-
dial NG and formalism for bispectra. The following two
sections contain the main results of the paper: Sec. IV

TABLE I. Summary of extragalactic foreground biases on flocNL measurements from the CMB temperature
bispectrum. The top panel gives the biases for an experiment that is cosmic variance limited to a maximum multipole
lmax ¼ 1590 (i.e., Planck), while the bottom panel contains the results for an experiment with lmax ¼ 3000 (i.e.,
Simons Observatory or CMB-S4). These correspond to σðflocNLÞ ¼ 5.0 and 2.6, respectively, assuming a full-sky
measurement (in practice, fsky ≈ 0.75 for Planck and fsky ≈ 0.4 for SO and CMB-S4). We perform these
calculations using the measured Planck bandpasses centered at 100, 143, and 217 GHz, which are the primary CMB
channels of Planck and ground-based experiments, although higher frequencies are considered later in the paper as
well. For brevity, we do not include the ISW-tSZ-CIB bispectrum results in this table, but these biases are computed
in Sec. V C. Note that no multifrequency cleaning is assumed for the nonblackbody foregrounds.

Biases on flocNL for Planck hTTTi: lmax ¼ 1590, σðflocNLÞ ¼ 5.0=
ffiffiffiffiffiffiffiffi
fsky

p

Frequency
ISW-ϕ

(Sec. IVA)
tSZ-ϕ

(Sec. IV B)
CIB-ϕ

(Sec. IV C)
ISW-tSZ-tSZ
(Sec. VA)

ISW-CIB-CIB
(Sec. V B)

ISW-kSZ-kSZ
(Sec. V D)

100 GHz 7.6 −1.2 0.9 −4.5 ≈0 −0.1
143 GHz 7.6 −0.8 1.4 −2.1 ≈0 −0.1
217 GHz 7.6 ≈0 4.3 ≈0 −0.4 −0.1

Biases on flocNL for SO/CMB-S4 hTTTi: lmax ¼ 3000, σðflocNLÞ ¼ 2.6=
ffiffiffiffiffiffiffiffi
fsky

p

Frequency
ISW-ϕ

(Sec. IVA)
tSZ-ϕ

(Sec. IV B)
CIB-ϕ

(Sec. IV C)
ISW-tSZ-tSZ
(Sec. VA)

ISW-CIB-CIB
(Sec. V B)

ISW-kSZ-kSZ
(Sec. V D)

100 GHz 14.9 −3.4 2.2 −47.1 ≈0 −1.7
143 GHz 14.9 −2.4 3.3 −22.5 −1.2 −1.7
217 GHz 14.9 ≈0 10.2 ≈0 −10.0 −1.7
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describes biases related to the correlation of CMB lensing
with other secondary fields, while Sec. V describes biases
generated by the correlation of these fields with the ISW
effect. We discuss the implications of these results in Sec. VI
and conclude in Sec. VII. Appendix A and Appendix B
provide analogous calculations and results for equilateral-
type and orthogonal-type primordial NG, respectively.
We assume a standard flat Λ cold dark matter cosmology

throughout this paper, adopting the following parameters:
matter density Ωm ¼ 0.277, Hubble constant H0 ¼
70.2 km=s=Mpc, baryon density Ωb ¼ 0.0459, spectral
tilt ns ¼ 0.962, and amplitude of density fluctuations
σ8 ¼ 0.817. Our conclusions are weakly sensitive to the
assumed values of these parameters, but we comment
below on a few notable exceptions where they are impor-
tant (related to the tSZ signal).

II. MOTIVATION AND CONTEXT

Non-Gaussian signals from extragalactic foregrounds in
CMB temperature maps have received significant attention
in recent years due to the important biases they can generate
in reconstructed CMB lensing maps (e.g., [18,44–48]).
These biases arise from both nonblackbody (e.g., tSZ and
CIB) and blackbody (e.g., kSZ) foregrounds; accordingly,
some can be reduced by multifrequency component sep-
aration, while some cannot be (although other mitigation
methods can be employed).
Similarly, these non-Gaussian signals will generate

biases in CMB temperature bispectrum estimates of pri-
mordial NG. To date, the ISW-lensing bispectrum has
received significant attention in this context [25–28], but
other biases have been less studied, if at all. For example,
the Planck 2015 NG analysis considers only the ISW-
lensing bispectrum, point source bispectrum, and clustered
CIB auto-bispectrum as contaminants to primordial NG
measurements [13]. An early estimate of the tSZ-lensing
bispectrum bias on flocNL was presented in Ref. [29], but it is
unclear what observational frequencies were considered in
the analysis, and theoretical modeling of the tSZ signal has
significantly evolved in the intervening decade. More
recently, the CIB-lensing bispectrum bias on flocNL was
considered in Ref. [30]; their results for specific Planck
frequency channels are in qualitative agreement with those
presented in Sec. IV C below. However, to our knowledge,
no calculations of ISW-related biases have been presented
in the literature to date, beyond the ISW-lensing bias.
Amongst these contributions is that due to the ISW-kSZ-
kSZ bispectrum, which is blackbody in frequency depend-
ence and therefore must be subtracted from observational
estimates, like the ISW-lensing bias. We provide a first
estimate of this bias on flocNL in Sec. V D.
However, nonblackbody biases are also of significant

concern. Recent analyses indicate that non-negligible
extragalactic foreground contamination has leaked into
the Planck component-separated CMB temperature maps,

which form the foundation of the Planck NG analysis. For
example, Fig. 1 of Ref. [18] demonstrates that the tSZ
signal of optically selected galaxy clusters is present in the
Planck SMICA CMB map with an amplitude nearly
identical to that seen in the Planck 143 GHz map.
Similarly, Ref. [19] uses cross-correlations with optical
galaxy survey data to detect the presence of tSZ residuals in
the Planck NILC CMB map at 54σ significance. Their
overall estimate is that roughly half of the 143 GHz tSZ
signal is present in the NILC map. While these studies are
based on observational estimates, it would be more robust
to estimate the leakage via end-to-end simulations con-
taining all relevant sky signals, an analysis which has not
yet been performed.
In this context, we note that although the Planck 2015

NG analysis used the Full Focal Plane 8 (FFP8) simulations
to perform end-to-end tests of their analysis pipelines, the
FFP8 simulations do not contain the signals responsible for
the biases considered in this paper (with the exception of
the ISW-lensing bias) [49]. In particular, the ISW field is
generated only as part of the primary CMB map (i.e., as a
Gaussian random field), and is not correlated with the tSZ,
kSZ, or CIB fields. Similarly, the CMB lensing field is not
correlated with the tSZ, kSZ, or CIB fields, nor is the CIB
field correlated with the tSZ or kSZ fields. The tSZ and kSZ
fields are partially correlated with one another, but not with
any of the other secondary fields. The ISW-lensing corre-
lation is generated by the algorithm with which the primary
CMB is gravitationally lensed (because the T − ϕ corre-
lation is included in CAMB [50]3 power spectra). Thus, the
NG pipeline verification tests run on the FFP8 simulations
do not test for any of the biases considered in this paper
(except for the ISW-lensing bias). This situation could be
remedied by using sky simulations in which the extra-
galactic fields are properly correlated with one another
(e.g., [51]).
Motivated by the existence of non-negligible extraga-

lactic foreground contamination in the Planck component-
separated CMB temperature maps and the absence of
nearly all relevant foreground bispectra in the FFP8
simulations, we consider the role that these effects might
have on estimates of primordial NG. We note that polariza-
tion-only analyses would be almost entirely immune to these
foreground biases, but the Planck polarization data are not
sufficiently sensitive for such a test [σðflocNLÞ ≈ 30–35 from
polarization data alone, in comparison to σðflocNLÞ ≈ 5–6 from
temperature data alone [13] ]. We focus on local-type NG in
themain text of the paper, but include similar calculations for
equilateral- and orthogonal-type NG in the Appendices. We
defer foreground bias calculations for trispectrum NG
estimators to future work. The most efficient method for
future calculations is likely to simultaneously estimate all

3http://www.camb.info.
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such foreground biases via simulations, rather than compute
each contribution analytically.4

III. PRIMORDIAL NON-GAUSSIANITY
AND THE CMB BISPECTRUM

In the local model of primordial NG, the primordial
potential Φ (where Φ≡ 3

5
ζ, and ζ is the adiabatic curvature

perturbation) is given by [5,55,56]

Φðx⃗Þ ¼ ΦGðx⃗Þ þ flocNLðΦ2
Gðx⃗Þ − hΦ2

GiÞ þ � � � ; ð1Þ

whereΦG is a Gaussian field and flocNL is a constant character-
izing the lowest-order departure fromGaussianity.Multifield
inflationary models, such as the curvaton model, or non-
inflationary early-universe scenarios, such as the ekpyrotic/
cyclic model, can generate local-type NG [57–62]. More
generally, a detection of flocNL ≠ 0 would falsify single-field,
slow-roll inflation [8]. Current data are consistent with
flocNL ¼ 0 [10,13,63,64]. As discussed above, the tightest
error bar (by a factor of a few) comes from the Planck CMB
temperature data, thus motivating careful scrutiny of this
particular observable. It will be possible to further shrink the
CMB-derived error bar on flocNL by a factor of ≈2–3, but
eventually the cosmic variance (CV) limit will be reached.
Further improvements are then expected to come from large-
scale structure data (e.g., [65]).
The nonlinear coupling in Eq. (1) generates a nonzero

bispectrum in the CMB anisotropy. We consider only the
CMB temperature field in the following. The angular
bispectrum Bl1l2l3

is defined via

hal1m1
al2m2

al3m3
i ¼ Bl1l2l3

�
l1 l2 l3

m1 m2 m3

�
; ð2Þ

where alm are the spherical harmonic coefficients of the
CMB temperature field and

�
l1 l2 l3

m1 m2 m3

�

is the Wigner-3j symbol. Equation (2) assumes only
rotational invariance; if we additionally assume parity
invariance (i.e., Bl1l2l3 ¼ 0 if l1 þ l2 þ l3 is odd, and
thus Bl1l2l3 is invariant under all permutations), then we
can define the reduced bispectrum bl1l2l3 via

Bl1l2l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

�
bl1l2l3 : ð3Þ

In the local model of primordial NG, the real-space
coupling in Eq. (1) produces a nonzero Fourier-space
bispectrum in the primordial potential [5]:

hΦ̃ðk⃗1ÞΦ̃ðk⃗2ÞΦ̃ðk⃗3Þi ¼ 2ð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3ÞflocNL

× PΦðk2ÞPΦðk3Þ þ 2 perm; ð4Þ

where Φ̃ðk⃗Þ is the Fourier transform of the primordial
potential, δð3Þ is the 3D Dirac delta function, and PΦðkÞ is
the power spectrum of the primordial potential. This
nonzero bispectrum then yields a nonzero angular bispec-
trum in the CMB anisotropy, Bloc

l1l2l3
. The CMB temper-

ature bispectrum can be computed straightforwardly via
integrals involving the radiation transfer function, spherical
Bessel functions, and PΦðkÞ (see, e.g., Ref. [5] for explicit
formulas). The parameter flocNL characterizes the amplitude
of the bispectrum, as seen in Eq. (4). This bispectrum peaks
in the squeezed limit, in which one of the wave numbers is
much smaller than the other two (e.g., k1 ≪ k2, k3) [2,5].
For weak NG, assuming full-sky CMB temperature data

that is CV limited up to a multipole lmax (with homo-
geneous noise properties), we can define the Fisher matrix
element for two bispectra B, B0 (e.g., [26])5:

FðB;B0Þ ¼ 1

6

Xlmax

l1l2l3

Bl1l2l3B
0
l1l2l3

CTT
l1
CTT
l2
CTT
l3

; ð5Þ

where CTT
l is the lensed primary CMB power spectrum [see

Ref. [28] for useful comments on implementing the sum in
Eq. (5)]. The error bar on the amplitude of a bispectrum B is
then given by the square root of 1=FðB;BÞ. For example,
the error bar on flocNL (in the Gaussian approximation) is

σðflocNLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=FðBloc; BlocÞ

q
: ð6Þ

Similarly, the marginalized error on the amplitude is given
by the square root of the relevant element of the inverted
Fisher matrix (assumed here to be a simple 2 × 2 matrix
with elements for Bloc, a contaminating bispectrum Bcont,
and their cross-term):

σðfloc;marg
NL Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−1ðBloc; BlocÞ

q
: ð7Þ

4In addition, NG estimators can be applied to the data that
allow one to directly reconstruct the bispectra, rather than fit an
overall amplitude to a primordial template bispectrum, as
assumed in this work following Ref. [52] (see, e.g., the skew-
Cl [53] or modal estimators [54] used in Ref. [13]). Such
reconstructions can then be analyzed to determine the origin of
the NG signal(s).

5Fisher matrices for all calculations presented in this paper are
available upon request from the author.
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Finally, the bias on the minimum-variance estimator for
flocNL due to a contaminating bispectrum Bcont is given by a
ratio of Fisher matrix elements (e.g., [26]):

Δfloc;contNL ¼ FðBloc; BcontÞ
FðBloc; BlocÞ : ð8Þ

IV. CMB LENSING-RELATED BIASES

We first compute biases to flocNL associated with the CMB
lensing field. These biases arise from bispectra with a form
identical to that of the standard lensing-ISW bispectrum
[25,26]:

BXϕ
l1l2l3

¼ fl1l2l3C
Xϕ
l2
CTT
l3

þ 5 perm; ð9Þ

where X ∈ fISW; tSZ;CIBg, CXϕ
l is the cross-power spec-

trum of X and the CMB lensing potential, and fl1l2l3 is a
coupling kernel (e.g., [13,26]):

fl1l2l3 ¼
1

2
½−l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ þ l3ðl3 þ 1Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

�
: ð10Þ

Note that BXϕ
l1l2l3

vanishes if X ¼ kSZ due to the equal
probability of positive or negative LOS velocities (in
general, all bispectra involving odd numbers of kSZ fields
vanish for this reason). In Eq. (9), we use the lensed CMB
power spectrum for CTT

l , as this yields a more accurate
result for squeezed triangle configurations than using the
unlensed spectrum [27].
The remaining quantity to be computed in Eq. (9) is the

cross-power spectrum of X and ϕ. To lowest order, the
CMB lensing potential is a weighted sum of the Newtonian
potential along the LOS:

ϕðn̂Þ ¼ −
2

c2

Z
χ�

0

dχ

�
χ� − χ

χ�χ

�
Ψðχn̂; χÞ; ð11Þ

where χðzÞ is the comoving distance to redshift z, χ� is the
comoving distance to the surface of last scattering at
z� ¼ 1090, and Ψ is the 3D gravitational potential. In
the following subsections, we detail our computation of
CXϕ
l for X ∈ fISW; tSZ;CIBg, and calculate the associated

bias on measurements of flocNL.

A. Lensing-ISW bias

The late-time ISW effect [22,23] is generated by
the decay of gravitational potentials due to dark energy.

In linear theory, this effect produces positive (negative)
CMB temperature fluctuations as CMB photons traverse
large-scale overdensities (underdensities) in the late-time
matter field. The fractional temperature shift is given by the
LOS integral of the time derivative of the gravitational
potential:

ΔTISWðn̂Þ
TCMB

¼ 2

c2

Z
LOS

dt
∂Ψðn̂Þ
∂t ; ð12Þ

where TCMB is the mean CMB temperature today. On small
scales, nonlinear growth produces a late-time ISW effect
(the Rees-Sciama effect [23]) with the opposite sign to that
sourced by dark energy on large, linear scales. However,
this effect is much smaller in amplitude than the linear ISW
effect due to dark energy. It has been shown that the change
to the lensing-ISW bispectrum due to the Rees-Sciama
effect is essentially undetectable in the CMB, and that
linear theory is sufficient for precisely computing the
associated bias on flocNL [28,66]. Thus, we only consider
the linear ISW effect throughout this paper.6 We comment
on instances where this may not suffice, particularly for the
ISW-kSZ-kSZ bispectrum in Sec. V D.
In the Limber approximation [67], the CMB lensing-

ISW cross-power spectrum is [68–70]

CISW×ϕ
l ¼ 2

c4

Z
dz

�
χ� − χ

χ�χ3

�∂PΨ

∂z
����
k¼ðlþ1=2Þ=χ

; ð13Þ

where PΨðk; zÞ is the power spectrum of the 3D gravita-
tional potential at wave number k and redshift z. Using the
Poisson equation, we can express this result in terms of the
linear power spectrum of matter density fluctuations
(defined at an arbitrary redshift), PlinðkÞ:

CISW×ϕ
l ¼ 9Ω2

mH4
0

2c4ðlþ 1=2Þ2χ�

Z
dzχðzÞðχ� − χðzÞÞ

× ð1þ zÞ d
dz

�
DðzÞ
aðzÞ

�
DðzÞPlin

�
lþ 1=2
χðzÞ

�
; ð14Þ

where aðzÞ ¼ 1=ð1þ zÞ is the scale factor and DðzÞ is the
linear growth factor, normalized in a manner consistent
with the redshift at which Plin is defined. We compute the
linear matter power spectrum using CAMB. Note that during
matter domination, DðzÞ ∝ aðzÞ, and thus it can be
immediately seen from Eq. (14) that there are no contri-
butions to CISW×ϕ

l from this epoch, as expected.
Figure 1 shows the lensing-ISW cross-power spectrum

(solid blue curve). The signal falls off steeply with l due to
the ðlþ 1=2Þ−2 dependence in Eq. (14), which arises from

6We compare nonlinear and linear-theory predictions for the
lensing-ISW biases on equilateral and orthogonal NG in Appen-
dices A and B (see Figs. 11 and 17).
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the relation between the matter density and gravitational
potential in the Poisson equation. Thus, in Eq. (9), the
multipole associated with CISW×ϕ

l is generally the long-
wavelength mode in squeezed triangle configurations. Note
that the signal is frequency independent in blackbody CMB
temperature units.
Figure 2 shows the bias on flocNL due to the lensing-ISW

bispectrum, computed via Eq. (8) for a CMB temperature
bispectrum measurement that is CV limited up to a
maximum multipole lmax. We show the result calculated
using Eq. (14), as well as a calculation using a less-precise
implementation of the Limber approximation in which all
instances of lþ 1=2 on the right-hand side of Eq. (14) are
replaced with l [73]. This choice has a non-negligible
impact on the resulting bias on flocNL. For Planck, the
inferred bias for the higher-precision calculation is
ΔflocNL ¼ 7.6, which agrees with the value used in the
Planck 2015 NG analysis [13]. For WMAP9, the bias is
ΔflocNL ¼ 2.3, slightly smaller than the value (2.6) quoted in
Ref. [10] (their value is consistent with the “standard”
Limber calculation).
Figure 2 also shows the 1σ uncertainty on flocNL for a full-

sky, CV-limited experiment up to lmax, computed with
Eq. (6). The WMAP9 error bar is σðflocNLÞ ¼ 19.9, while the
Planck 2015 error bar is σðflocNLÞ ¼ 5.7 (temperature data
only). Taking into account the sky masks used by WMAP9

[10] (fsky ¼ 0.75) and Planck [13] (fsky ¼ 0.76), we infer
that lmax ≈ 485 for WMAP9 and lmax ≈ 1590 for Planck,
which are plotted as dashed vertical lines in Fig. 2. Note
that these values of lmax are those appropriate for the
component-separated CMB temperature maps used in the
WMAP9 and Planck NG analyses, i.e., they are effective
lmax values that result from a combination of the noise
properties of multiple frequency channels. Focusing on
Planck in particular, the 100, 143, and 217 GHz channels
all have individual values of lmax that are close to that
shown in Fig. 2 (and in subsequent plots), and thus we omit
the individual channel values for clarity. However, the 353
and 545 GHz channel sensitivities are lower, and accord-
ingly so are their lmax values (although we will simply
quote Planck-related biases at the effective Planck lmax
value given above for brevity). Note that for a full
computation of the combined effect of the frequency-
dependent biases computed in subsequent sections, one
would have to appropriately take into account the noise
properties of each individual Planck channel, rather than
the effective Planck lmax value for the component-sepa-
rated CMB map.

FIG. 1. Cross-power spectra of CMB lensing with other
secondary anisotropy fields, CXϕ

l , with X ∈ fISW; tSZ;CIBg.
The lensing-ISW cross-power spectrum (solid blue) is computed
in linear theory; i.e., the Rees-Sciama effect is not included, but
this has no measurable effect on the associated bias on flocNL. The
lensing-tSZ (dash-dotted) and lensing-CIB cross-power spectra
(dashed) are computed via the halo model as described in
Secs. IV B and IV C, respectively. The halo model calculations
are based on fits to measurements from Planck data in [71]
(lensing-tSZ) and [72] (lensing-CIB). For clarity, these cross-
power spectra are only shown for a subset of the Planck
frequencies. Note that the tSZ signal is negative (positive) at
frequencies below (above) 217 GHz, and vanishes at 217 GHz.

FIG. 2. Bias on flocNL from the lensing-ISW bispectrum for a
CMB temperature measurement that is CV limited to a maximum
multipole lmax. This bias is blackbody in frequency dependence
and cannot be removed via component separation. The solid blue
curve shows the bias when the lensing-ISW cross-power spec-
trum is computed with a higher-precision implementation of the
Limber approximation (i.e., the replacement l → lþ 1=2),
while the dashed orange curve shows the bias for a “standard”
implementation of the Limber approximation. The higher-pre-
cision calculation gives a bias ΔflocNL ¼ 7.6 for Planck, consistent
with the Planck NG analysis [13]. The light green shaded region
shows the 1σ uncertainty on flocNL as a function of lmax using only
information in the CMB temperature bispectrum for a full-sky,
CV-limited experiment. The light blue shaded region shows the
1σ uncertainty on flocNL after marginalizing over the lensing-ISW
bispectrum amplitude; this marginalization has almost no impact
on the sensitivity to flocNL. The dashed vertical lines indicate the
effective lmax for WMAP9 [10] and Planck 2015 [13].
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Finally, Fig. 2 also shows the 1σ uncertainty on flocNL after
marginalizing over the amplitude of the lensing-ISW
bispectrum, computed with Eq. (7). Interestingly, this
marginalization hardly increases the error bar on flocNL, even
though the bias sourced by the lensing-ISW bispectrum is
large. Mathematically, this is due to the fact that the error
bar increase due to marginalization depends only on the
correlation coefficient between the two bispectra (i.e., their
shapes), which is independent of their amplitudes, while
the bias depends explicitly on the amplitudes. Thus, the
error bar increase can be small, even if the bias is large (and
vice versa, as we will see later in the paper). The result
shown in Fig. 2 indicates that the amplitude of the lensing-
ISW bispectrum could simply be simultaneously fit in the
flocNL analysis and marginalized over, even with no prior on
its amplitude. Nevertheless, since the lensing-ISW bispec-
trum amplitude (and shape) can be predicted a priori (up to
a small dependence on cosmological parameters), there is
no need to pay even this small penalty in the flocNL error bar,
and thus it is sensible to instead subtract the effect as a
known bias. For other foreground bispectra considered later
in the paper, this may not be the case, as will be further
discussed.

B. Lensing-tSZ bias

The tSZ effect is generated by the inverse-Compton
scattering of CMB photons off hot, free electrons, which
are predominantly located in galaxy groups and clusters.
Neglecting relativistic corrections (e.g., [74]), the tSZ
signal is characterized by the Compton-y parameter, which
is the LOS integral of the electron pressure [31,32]:

yðn̂Þ ¼ σT
mec2

Z
dχaðχÞPeðχn̂; χÞ; ð15Þ

where σT is the Thomson scattering cross section, mec2 is
the electron rest-mass energy, and Pe is the electron
pressure. The CMB temperature fluctuation due to the
tSZ signal at a given frequency ν is then given by

ΔT tSZðn̂Þ
TCMB

¼ gðνÞyðn̂Þ; ð16Þ

where gðνÞ is the tSZ spectral function:

gðνÞ ¼ x coth

�
x
2

�
− 4; ð17Þ

with x≡ hν=ðkBTCMBÞ.
The cross-correlation between the tSZ and CMB lensing

fields was first measured using Planck data in Ref. [71]. We
adopt a model consistent with this measurement in the
following. The lensing-tSZ cross-power spectrum, Cyϕ

l , can
be computed straightforwardly in the halo model (e.g.,
[75,76]), analogous to the computation of other tSZ

statistics (e.g., [77,78]). We summarize the approach here,
and refer the reader to Refs. [71,78] for full details of these
calculations. The total cross-power spectrum is the sum of
the one-halo and two-halo terms:

Cyϕ
l ¼ Cyϕ;1h

l þ Cyϕ;2h
l ; ð18Þ

where

Cyϕ;1h
l ¼

Z
dz

d2V
dzdΩ

Z
dM

dnðM; zÞ
dM

ỹlðM; zÞϕ̃lðM; zÞ;

ð19Þ

and

Cyϕ;2h
l ¼

Z
dz

d2V
dzdΩ

Plin

�
lþ 1=2
χðzÞ ; z

�

×
Z

dM1

dnðM1; zÞ
dM1

bðM1; zÞỹlðM1; zÞ

×
Z

dM2

dnðM2; zÞ
dM2

bðM2; zÞϕ̃lðM2; zÞ: ð20Þ

Here, d2V
dzdΩ is the comoving volume per steradian, dn=dM is

the halo mass function (number of halos per unit mass per
unit comoving volume), Plinðk; zÞ≡D2ðzÞPlinðkÞ, bðM; zÞ
is the linear halo bias, and ỹlðM; zÞ and ϕ̃lðM; zÞ are the
Fourier transform of the Compton-y and CMB lensing
potential profiles, respectively, of a halo of mass M at
redshift z:

ỹlðM; zÞ ¼ σT
mec2

4πrs;y
l2
s;y

×
Z

dxyx2y
sinððlþ 1=2Þxy=ls;yÞ
ðlþ 1=2Þxy=ls;y

× Peðxyrs;y;M; zÞ; ð21Þ

ϕ̃lðM; zÞ ¼ 2

lðlþ 1Þ
4πrs;ϕ
l2
s;ϕ

×
Z

dxϕx2ϕ
sinððlþ 1=2Þxϕ=ls;ϕÞ
ðlþ 1=2Þxϕ=ls;ϕ

×
ρðxϕrs;ϕ;M; zÞ

ΣcritðzÞ
: ð22Þ

Here, rs;y is a characteristic scale radius of the electron
pressure profile, ls;y ¼ aðzÞχðzÞ=rs;y ¼ dAðzÞ=rs;y is the
multipole moment associated with this scale, and xy ≡
r=rs;y is a dimensionless radial variable for the pressure
profile. Analogously, rs;ϕ is a characteristic scale radius of
the halo density profile ρðr;M; zÞ, ls;ϕ ¼ aðzÞχðzÞ=rs;ϕ ¼
dAðzÞ=rs;ϕ is the multipole moment associated with this
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scale, and xϕ ≡ r=rs;ϕ is a dimensionless radial variable for
the density profile. The quantity ΣcritðzÞ is the critical
surface density for CMB lensing:

ΣcritðzÞ ¼
c2χ�ð1þ zÞ

4πGχðzÞðχ� − χðzÞÞ : ð23Þ

We adopt the electron pressure profile fitting function from
the hydrodynamic simulations of [79,80], the Navarro-
Frenk-White density profile [81], the concentration-mass
relation of [82], and the fitting functions for the halo mass
function and linear halo bias of [83] (updated from [84]).
The concentration-mass relation is required in order to
convert between mass definitions; we define M to be the
virial mass following the definition of Ref. [85]. Further
details of this framework can be found in Refs. [71,78].
The fiducial mass and redshift limits for all halo model

integrals in this paper [e.g., Eqs. (19) and (20)] are
105 M⊙=h < M < 5 × 1015 M⊙=h and 0.005 < z < 8,
respectively. The lower redshift limit is imposed to avoid
unphysical divergences at z ¼ 0. We verify that all calcu-
lations are converged with these choices.
The lensing-tSZ cross-power spectrum computed with

this model is shown in the dash-dotted curves in Fig. 1. The
frequency dependence is evaluated for the Planck channels
using the bandpass-integrated tSZ spectral function values
provided in Ref. [42] (note that the signal is negative
for ν < 217 GHz, positive for frequencies above this, and
effectively vanishes for the 217 GHz channel). The lensing-
tSZ cross-power spectrum is comparable to the lensing-
ISW cross-power spectrum around l ≈ 100, and is much
larger at higher multipoles.
Figure 3 shows the bias on flocNL due to the lensing-tSZ

bispectrum, computed via Eqs. (18), (9), and (8). We show
the bias for the Planck HFI channels from 100–545 GHz,
using the bandpass-integrated tSZ spectral function values
from Ref. [42]. For Planck, the bias is of order jΔflocNLj ≈
1–2 for these channels, except for the 545 GHz channel,
where it is somewhat larger. This conclusion appears to
agree with the results of Ref. [29] (by comparison to their
Fig. 2, after removing the lensing-ISW bias). For an
experiment with lmax ¼ 3000, the bias is comparable to
the 1σ error bar on flocNL at the dominant CMB channels (100
and 143 GHz).
Figure 3 also shows the 1σ uncertainty on flocNL after

marginalizing over the amplitude of the lensing-tSZ
bispectrum, computed with Eq. (7). As in Fig. 2, this
marginalization leaves the error bar on flocNL essentially
unchanged (in fact, the increase after marginalization is even
smaller than in the lensing-ISW case). However, unlike the
lensing-ISW case, there is some modeling uncertainty in the
lensing-tSZ bispectrum shape (and amplitude) due to ICM
astrophysics, and thus additional parameters may have to be
marginalized over. Nevertheless, this result indicates that the

correlation between the lensing-tSZ bispectrum and the local
bispectrum is quite small.
While marginalization over a lensing-tSZ template may

be sensible for a single-frequency flocNL analysis, this is
likely unnecessary for a multifrequency analysis. Unlike
the lensing-ISW bias, the lensing-tSZ bias is nonblackbody
in frequency dependence, and can therefore be mitigated
via multifrequency component separation. In fact, it can be
removed exactly using “constrained” component separation
methods, in which the frequency channel weights are
required to exactly null the tSZ spectral function in
Eq. (17) [17]. However, such constraints were not applied
to the component-separated CMB temperature maps that
were used in the Planck 2015 NG analysis [13,15]. Recent
analyses have presented evidence that these maps have
non-negligible tSZ contamination [18,19]. A precise esti-
mate of the tSZ leakage as a function of angular scale
would be needed to convert the frequency-dependent biases
in Fig. 3 into a final bias for Planck. A simpler method
would be to perform the NG analysis on a component-
separated map in which the tSZ signal has been nulled,
although a statistical penalty in signal-to-noise (S=N) must
be paid accordingly.
Masking individually detected galaxy clusters would

reduce the lensing-tSZ bias to some extent, although not by

FIG. 3. Bias on flocNL from the lensing-tSZ bispectrum as a
function of lmax, as in Fig. 2. The bias is shown for the Planck
HFI channels from 100–545 GHz, with a frequency dependence
arising from the tSZ spectral function. For Planck, the bias takes
values of ΔflocNL ¼ −1.2 (100 GHz), ΔflocNL ¼ −0.8 (143 GHz),
and ΔflocNL ¼ 1.8 (353 GHz). Because of its nonblackbody nature,
this bias could be removed via component separation, but recent
evidence suggests that the non-negligible tSZ signal has leaked
into the Planck component-separated CMB maps [18,19]. No
multifrequency cleaning is assumed here. The light green shaded
region and dashed vertical lines are identical to those in Fig. 2.
The light blue shaded region, which is indistinguishable from the
green region, shows the 1σ uncertainty on flocNL after marginalizing
over the lensing-tSZ bispectrum amplitude; this marginalization
has no impact on the flocNL error bar.
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a large amount, as Cyϕ
l is dominated by halos at lower

masses and higher redshifts [71,86] than are present in the
Planck tSZ catalog [87,88]. Thus, even if such clusters are
masked in the Planck NG analysis, it would not strongly
impact the biases shown in Fig. 3.
Finally, note that Cyϕ

l has a fairly strong dependence on
cosmological parameters, particularly σ8 and Ωm [71], and
thus the associated bias on flocNL will have a strong
dependence as well.7 If we adopt the Planck 2015 CMB
values for these parameters (σ8 ¼ 0.830 and Ωm ¼ 0.316)
[12], the bias would be ≈35% larger than shown in Fig. 3,
assuming Cyϕ

l ∝ σ68Ω1.5
m [71].

C. Lensing-CIB bias

The CIB is sourced by the cumulative emission of dusty,
star-forming galaxies over cosmic time. The emission at
different observational frequencies is generated by galaxies
at somewhat different redshift ranges, but in general the
CIB “redshift kernel” has a broad peak around z ≈ 2,
corresponding to the peak in the star formation rate density
[72,90–92].
CIB statistics can be computed in the halo model,

analogous to the tSZ calculations above, but with a more
complicated prescription for the assignment of infrared flux
to halos. For the lensing-CIB cross-power spectrum, we
simply use the best-fit results of the Planckmeasurement of
this quantity at each of the HFI frequencies [72], in lieu of
implementing a detailed model here. This guarantees that
our calculations are consistent with actual measurements of
CCIB×ϕ
l . The cross-power spectra for three of the Planck

HFI frequencies are shown as dashed curves in Fig. 1. The
strong frequency dependence of the CIB emission is
evident; the cross-power spectrum signal at 353 GHz is
nearly an order of magnitude larger than at 217 GHz.
Figure 4 shows the bias on flocNL due to the lensing-CIB

bispectrum, computed using the CCIB×ϕ
l fits from Ref. [72]

in combination with Eqs. (9) and (8). We show the bias for
the Planck HFI channels from 100–545 GHz. The bias is
strongly frequency dependent, a direct result of the strong
frequency dependence shown in Fig. 1. However, unlike
the lensing-tSZ bias, the lensing-CIB bias has the same sign
at all frequencies (at fixed lmax). At 217 GHz, the bias for
Planck is ΔflocNL ¼ 4.3, while at 353 GHz, it is nearly an
order of magnitude larger. These results are similar to those
presented in Ref. [30] (see their Table 3), but up to a factor
of 2–3 larger than theirs at some Planck frequencies. In this
context, we note that our calculation of CCIB×ϕ

l is directly
drawn from fits to Planck measurements as described

above, rather than a theoretical model. For an experiment
with lmax ¼ 3000, the lensing-CIB bias is comparable to
the 1σ error bar on flocNL at 100 or 143 GHz, and is much
larger than this at higher frequencies.
Figure 4 also shows the 1σ uncertainty on flocNL after

marginalizing over the amplitude of the lensing-CIB bispec-
trum, computed with Eq. (7) (considering only 217 GHz, as
an example case). As in Fig. 3, this marginalization has no
noticeable impact on the flocNL error bar. Like the lensing-tSZ
case, though, there is some astrophysical modeling uncer-
tainty in the lensing-CIB bispectrum shape (and amplitude),
and thus additional parameters may have to be marginalized
over. Nevertheless, this result indicates that the correlation
between the lensing-CIB bispectrum and the local bispec-
trum is quite small.
Like the lensing-tSZ bias, marginalization over the

lensing-CIB bispectrum is likely unnecessary for a multi-
frequency analysis, as the lensing-CIB bias is nonblack-
body in frequency dependence and can therefore be
reduced via component separation. However, unlike the
lensing-tSZ bias, it cannot be fully eliminated, as the CIB

FIG. 4. Bias on flocNL from the lensing-CIB bispectrum as a
function of lmax, as in Fig. 2. The bias is shown for the Planck
HFI channels from 100–545 GHz, with a strong frequency
dependence due to the increase in dust emission intensity at
high frequencies. Note that the 353 and 545 GHz results are
divided by factors of 8 and 80, respectively, to reduce the
dynamic range of the plot. For Planck, the bias takes values
of ΔflocNL ¼ 1.4 (143 GHz), ΔflocNL ¼ 4.3 (217 GHz), and ΔflocNL ¼
38 (353 GHz). This bias is nonblackbody in frequency depend-
ence, and is thus reduced by multifrequency component sepa-
ration techniques (however, it cannot be fully eliminated due to
CIB decorrelation). The extent of this reduction for the Planck
NG analysis is currently unclear. No multifrequency cleaning is
assumed here. The light green shaded region and dashed vertical
lines are identical to those in Fig. 2. The light blue shaded region
shows the 1σ uncertainty on flocNL after marginalizing over the
lensing-CIB bispectrum amplitude, evaluated at 217 GHz (as an
example); this marginalization has no impact on the flocNL error bar.

7In fact, the tSZ-related biases computed in this paper also
depend on the value of flocNL itself: increasing (decreasing) flocNL
increases (decreases) the number of massive clusters in the low-
redshift universe (e.g., [89]), and will therefore modify the tSZ-
related contributions.
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decorrelates across frequency channels to some extent
(because the redshift kernel of the emission is different
at different frequencies) [91,93]. Given the evidence of tSZ
leakage into the Planck component-separated CMB maps,
it is plausible that non-negligible CIB leakage is also
present, although the extent of such contamination is
presently unclear. A simulation-based analysis is necessary
to quantify the total bias on flocNL resulting from the lensing-
CIB cross-correlation. The most robust route may be a
combination of multifrequency cleaning and subsequent
marginalization over a lensing-CIB template.

V. ISW-RELATED BIASES

The ISW effect is a tracer of the late-time gravitational
potential, and therefore it is correlated with other such
tracers that source secondary CMB anisotropies. For our
purposes here, we are primarily concerned with bispectra
involving one ISW “leg” and two “legs” drawn from the
tSZ, CIB, or kSZ fields. These bispectra have strong
contributions in the squeezed limit, as the ISW signal
peaks on large scales (i.e., comprising the long-wavelength
mode of the triangle) while the other fields peak on small
scales (i.e., comprising the two short-wavelength modes of
the triangle). A physical interpretation of these bispectra is
that the long-wavelength ISW field is modulating the
amplitude of the short-wavelength power spectra of the
other fields (e.g., the small-scale tSZ power spectrum). A
long-wavelength overdensity (underdensity) producing a
positive (negative) ISW fluctuation will also contain more
(fewer) massive halos, thereby corresponding to a higher

(lower) amplitude of the small-scale tSZ/CIB/kSZ power
spectra.
We compute these bispectra in the halo model, working

throughout in the Limber approximation for bispectra
[94,95]. In general, the full bispectrum will contain
three-halo, two-halo, and one-halo terms, but here we
focus only on the contributions that are expected to
dominate in squeezed configurations relevant to flocNL.
The primary such contribution arises from a two-“halo”
term, in which one multipole corresponds to a long-
wavelength ISW fluctuation (hence, we use the term halo
loosely here) and the other two multipoles correspond to
short-wavelength tSZ/CIB/kSZ fluctuations. Note that
throughout we consider only the linear-theory ISW effect,
i.e., the Rees-Sciama effect is neglected. Thus, there is
effectively no one-halo contribution to these bispectra
(nonlinear growth would generate a Rees-Sciama one-halo
term, but this is much smaller than the linear-theory ISW
signal). We also neglect the three-halo term, which is
sourced by the tree-level bispectrum, as it is not expected to
contribute strongly to squeezed configurations. One excep-
tion to this may be the three-halo contribution to the ISW-
kSZ-kSZ bispectrum (for which we also neglect other
potentially important contributions—see Sec. V D). We
defer a full calculation to future work, and focus only on the
two-halo contributions in the following.

A. ISW-tSZ-tSZ bias

For CMB temperature maps at three frequencies ν1, ν2,
and ν3, the two-halo contribution to the ISW-tSZ-tSZ
reduced bispectrum is

b
ðTν1

Tν2
Tν3

Þ;2h
l1l2l3;ðISW-tSZ-tSZÞ ¼ gðν2Þgðν3Þ

Z
dzIl1

ðzÞ
�
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2
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dM
dn
dM
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where

IlðzÞ ¼
3ΩmH2

0

c2ðlþ 1
2
Þ2 χ

2ðzÞDðzÞ d
dz

�
DðzÞ
aðzÞ

�
; ð25Þ

and the additional permutations correspond to cases in
which the ISW multipole is either l2 or l3. Here, we have
made the approximation that the contribution from the
internal structure of the halo density profile can be
neglected in the ISW factors, i.e., kISW1 → 0, so that the
Fourier transform of the density profile simply yields a

factor ofM. This approximation is accurate due to the rapid
decline of the ISW signal as l increases. Stated differently,
the ISW signal is effectively sourced only by linear modes
of the density field. For computational efficiency, we set the
ISW signal to zero above lISW;cut ¼ 200 in all of the
following calculations. We verify that our results are
converged with this choice, i.e., higher values of lISW;cut

do not change the derived bias on flocNL for any of these
bispectra. Finally, note that the first term in Eq. (24), in
which both tSZ multipoles belong to the same halo,
dominates by a factor of ≳10–100 over the latter two
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terms, in which the tSZ multipoles are in two distinct halos,
except for configurations in which all three multipoles are
very small (i.e., on very large scales). This is precisely
analogous to the dominance of the one-halo term over the
two-halo term in the tSZ power spectrum for all l≳ 10
[77,78,96]. Nevertheless, we include all terms in the
following calculations.
We use the same models to compute Eq. (24) as used for

the tSZ calculations described in Sec. IV B.8 Figure 5
shows a “slice” through the ISW-tSZ-tSZ bispectrum
[considering only the contributions in Eq. (24)], as well
as the local bispectrum (with flocNL ¼ 1) and the lensing-ISW
bispectrum. The latter two bispectra display acoustic
oscillations arising from the radiation transfer functions,
whereas the ISW-tSZ-tSZ bispectrum is smooth [the
primary temperature power spectrum does not appear in
Eq. (24), in contrast to Eq. (9)]. For this particular slice, the
ISW-tSZ-tSZ bispectrum becomes comparable in ampli-
tude to the local bispectrum at l ≈ 1500, and is much larger
at higher multipoles. This plot also illustrates the origin of
the oscillatory behavior seen for the lensing-ISW bias on
flocNL in Fig. 2 (and to some extent in Figs. 3 and 4): the

lensing-ISW and local bispectra have oscillations that are
not exactly in phase, and the lensing-ISW bispectrum
furthermore oscillates between positive and negative val-
ues. These effects lead to oscillations in the inner product in
the numerator of Eq. (8). In contrast, the smooth shape of
the ISW-tSZ-tSZ bispectrum suggests that the associated
bias on flocNL will be a smoothly increasing function of lmax,
which indeed is the case (see Fig. 6). Finally, while Fig. 5
shows the ISW-tSZ-tSZ bispectrum at an example fre-
quency of 148 GHz, this bispectrum is always positive
when evaluated at a single frequency, due to the quadratic
tSZ spectral function dependence (when evaluated for a set
of different frequencies, it could be negative or positive, but
never crosses zero).
Figure 6 shows the bias on flocNL due to the ISW-tSZ-tSZ

bispectrum, computed via Eqs. (24) and (8). We show the
bias for the Planck HFI channels from 100–545 GHz, using
the bandpass-integrated tSZ spectral function values from
Ref. [42]. We do not plot any cross-frequency biases [i.e.,
involving different values of ν2 and ν3 in Eq. (24)], although
these are present and can be of positive or negative sign. In
contrast, the single-frequency biases are always negative, as
shown in Fig. 6. For Planck, the bias is ΔflocNL ¼ −4.5
(100 GHz), ΔflocNL ¼ −2.1 (143 GHz), and ΔflocNL ¼ −11

FIG. 5. A slice through the ISW-tSZ-tSZ bispectrum at
148 GHz computed via Eq. (24) (blue), the local primordial
bispectrum with flocNL ¼ 1 (orange), and the lensing-ISW bispec-
trum (green), for squeezed configurations with l1 ¼ 10, l2 ≡ l,
and l3 ¼ lþ 10. In contrast to the latter two bispectra, the ISW-
tSZ-tSZ bispectrum is a smoothly increasing function of l. Note
that it peaks in the squeezed limit, as expected.

FIG. 6. Bias on flocNL from the ISW-tSZ-tSZ bispectrum as a
function of lmax, as in Fig. 2. The bias is shown for the Planck
HFI channels from 100–545 GHz, with a frequency dependence
arising from the tSZ spectral function. For Planck, the bias takes
values of ΔflocNL ¼ −4.5 (100 GHz), ΔflocNL ¼ −2.1 (143 GHz),
and ΔflocNL ¼ −11 (353 GHz). Because of its nonblackbody
nature, this bias could be removed via component separation,
but recent evidence suggests that the non-negligible tSZ signal
has leaked into the Planck component-separated CMB maps
[18,19]. No multifrequency cleaning is assumed here. The light
green shaded region and dashed vertical lines are identical to
those in Fig. 2. The light blue shaded region shows the 1σ
uncertainty on flocNL after marginalizing over the ISW-tSZ-tSZ
bispectrum amplitude; this marginalization produces a non-
negligible increase in the flocNL error bar (≈60% increase for
Planck).

8As a cross-check, we also compute the ISW-tSZ cross-power
spectrum and obtain results in general agreement with those of
Ref. [97], although they use a different pressure profile and halo
mass function, which will inevitably lead to some differences. In
particular, the agreement is excellent on large scales (within 10%
at l < 10), but is somewhat discrepant on smaller scales;
however, we note that this qualitatively matches the discrepancy
between the ISW auto-power spectrum of Ref. [97] and that of
CLASS [98], and thus assume that it is related to a numerical
issue in their calculation [99].
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(353 GHz). If a non-negligible fraction of the tSZ signal has
leaked into the component-separated CMBmaps used in the
PlanckNGanalysis, the ISW-tSZ-tSZ bias could thus yield a
shift of order 1σ in the inferred value of flocNL. For an
experiment with lmax ¼ 3000, the bias is many times larger
than the 1σ error bar on flocNL at all of the frequencies
considered (except 217 GHz, where the tSZ null occurs),
including the dominant CMB channels (100 and 143 GHz).
Figure 6 also shows the 1σ uncertainty on flocNL after

marginalizing over the amplitude of the ISW-tSZ-tSZ
bispectrum, computed with Eq. (7). Unlike marginalizing
over the lensing-related foreground bispectra in the pre-
vious section, which hardly increases the flocNL uncertainty,
marginalizing over the ISW-tSZ-tSZ bispectrum amplitude
significantly increases the error bar on flocNL. As discussed in
Sec. IVA, the error bar increase due to marginalization
depends solely on the correlation coefficient between the
local bispectrum and the foreground bispectrum, but not on
their amplitudes. The ISW-tSZ-tSZ bispectrum shape is
strongly correlated with the local bispectrum template,
leading to the significant error bar increase. For Planck,
assuming no prior is placed on the ISW-tSZ-tSZ bispectrum
amplitude, the uncertainty on flocNL increases by ≈60%.
Moreover, given astrophysical uncertainties in the tSZ
modeling, additional parameters (beyond the amplitude)
may have to be marginalized over as well, further increas-
ing the flocNL error bar.
Fortunately, as discussed in Sec. IV B for the lensing-tSZ

bias, the ISW-tSZ-tSZ bias is nonblackbody in nature, and
in fact can be exactly removed via constrained component
separation techniques (at a cost in S=N). It can also be
modeled and subtracted, although modeling it through the
process of (nonconstrained) component separation likely
requires full simulations. The bias will also be reduced to
some extent by masking known galaxy clusters, but since it
is effectively sourced by the small-scale tSZ power spec-
trum, the bias is mostly generated by clusters that are below
the mass threshold for individual detection in Planck (see,
e.g., Refs. [78,80] for breakdowns of the halo mass and
redshift contributions to the tSZ power spectrum).
Amongst the biases considered in this paper, the ISW-

tSZ-tSZ bias is the most sensitive to cosmological param-
eters, as it inherits the strong dependence of the tSZ power
spectrum on σ8 and Ωm (e.g., [77,78]). If we adopt the
Planck 2015 CMB values for these parameters [12], the
bias would be ≈70% larger than shown in Fig. 6, assuming
that the bispectrum in Eq. (24) follows the tSZ power
spectrum parameter dependence: Cyy

l ∝ σ88Ω3
m [78,100]. In

addition, it is sensitive to the modeling of astrophysical
processes in the intracluster medium. Given these param-
eter and modeling dependences, as well as the significant
increase in σðflocNLÞ after marginalizing over the ISW-tSZ-
tSZ bispectrum amplitude, it seems best to simply null the
tSZ spectral function via constrained component separation

when constructing CMB maps for NG analysis, so that this
foreground is not present.

B. ISW-CIB-CIB bias

The two-halo contribution to the ISW-CIB-CIB reduced
bispectrum is identical to Eq. (24), with the replacement

gðνÞỹlðM; zÞ → ĨCIB;νð1þzÞ
l ðM; zÞ, i.e., the tSZ profile of

each halo is replaced by its redshifted infrared emission
profile.9 In lieu of implementing a detailed model for the
infrared emission of each halo, here we adopt a simpler,
approximate approach relying on the very high correlation
coefficient between the CIB field (at 100–1000 GHz) and
the CMB lensing field [72,101,102]. If the correlation
coefficient between these fields were unity at all multipoles,
a CIB map would simply be a rescaled version of a CMB
lensing map, with an l-dependent rescaling factor fl.
Empirically, the correlation coefficient is ≳80% at all
multipoles up to l ≈ 2000 for most Planck HFI frequencies
[72]. For the purpose of approximately estimating biases
to flocNL, we consider this sufficiently close to unity to

simply approximate ĨCIB;νð1þzÞ
l ðM; zÞ ≈ flðνÞϕ̃lðM; zÞ,

where ϕ̃lðM; zÞ is given by Eq. (22). We determine the
rescaling factor flðνÞ for a given frequency channel using
the lensing-CIB cross-power spectrum results of Ref. [72],
i.e., the same fits to CCIB×ϕ

l used in Sec. IV C, in
combination with a theoretical calculation of the CMB
lensing auto-power spectrum:

flðνÞ ¼
CCIBν×ϕ
l

Cϕϕ
l

: ð26Þ

Thus, we approximate the ISW-CIB-CIB bispectrum by
computing Eq. (24) with gðνÞỹlðM; zÞ → flðνÞϕ̃lðM; zÞ,
for both ν2 and ν3. Clearly this approach will not yield
percent-level accuracy, but it suffices to assess the order of
magnitude of the bias on flocNL.
Figure 7 shows the bias on flocNL due to the ISW-CIB-CIB

bispectrum, computed via Eqs. (24), (26), and (8). Because
of the approximate nature of this calculation, we only show
results for three of the Planck HFI channels (143, 217, and
353 GHz). We do not plot any cross-frequency biases [i.e.,
involving different values of ν2 and ν3 in Eq. (24)],
although these also exist. In contrast to the ISW-tSZ-tSZ
bias, the ISW-CIB-CIB bias is always negative, since
the CIB signal is positive at all frequencies. For Planck,
the (approximate) ISW-CIB-CIB bias is ΔflocNL ¼ −0.4
(217 GHz) and ΔflocNL ¼ −33 (353 GHz). The steep
frequency dependence of this bias is expected due to the
strong frequency dependence of the CIB. The result is thus
very sensitive to an assessment of the degree to which CIB

9Additional shot noise terms may also be included, depending
on the details of the underlying CIB halo model.
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emission has leaked into the component-separated Planck
CMBmaps. For an experiment with lmax ¼ 3000, the ISW-
CIB-CIB bias is many times larger than the 1σ error bar on
flocNL, even at 217 GHz.
Figure 7 also shows the 1σ uncertainty on flocNL after

marginalizing over the amplitude of the ISW-CIB-CIB
bispectrum, computed with Eq. (7) (considering only
217 GHz, as an example case). As for the ISW-tSZ-tSZ
bispectrum in Fig. 6, marginalizing over the ISW-CIB-CIB
bispectrum amplitude noticeably inflates the error bar on
flocNL. The ISW-CIB-CIB bispectrum shape is strongly
correlated with the local bispectrum template (although
not quite as strongly correlated as the ISW-tSZ-tSZ
bispectrum), leading to the significant error bar increase.
For Planck, assuming no prior is placed on the ISW-CIB-
CIB bispectrum amplitude, the uncertainty on flocNL
increases by ≈40%. Moreover, given astrophysical uncer-
tainties in our modeling of the CIB signal, additional
parameters (beyond the amplitude) may have to be mar-
ginalized over as well, further increasing the flocNL error bar.
Finally, unlike the tSZ signal, the CIB cannot be completely
removed via component separation, due to decorrelation

across frequencies; thus, some marginalization over
residual contributions from the ISW-CIB-CIB signal must
be necessary. In order to avoid a significant increase in
σðflocNLÞ, a detailed understanding of the residual CIB
emission in the cleaned CMB map is necessary, so that
a strong prior can be placed on the residual ISW-CIB-CIB
bispectrum before marginalizing.

C. ISW-tSZ-CIB bias

Using the models described in the previous two sub-
sections, we can readily compute the ISW-tSZ-CIB bis-
pectrum via Eq. (24). We simply replace only one of the
tSZ factors in Eq. (24) with flðνÞϕ̃lðM; zÞ, rather than
both. Again, we emphasize the approximate nature of the
CIB model used here.
Figure 8 shows the bias on flocNL due to the ISW-tSZ-CIB

bispectrum, computed via Eqs. (24), (26), and (8). We show
results only for a CIB frequency held fixed to 353 GHz,
with the tSZ frequency varying over the Planck HFI
channels from 100–545 GHz. The bias can take on positive
or negative values depending on the tSZ frequency con-
sidered, due to the behavior of the tSZ spectral function
(and it vanishes at 217 GHz, as expected). For Planck, the

FIG. 8. Bias on flocNL from the (approximate) ISW-tSZ-CIB
bispectrum as a function of lmax, as in Fig. 2. The bias is shown
only for the CIB at 353 GHz, with the tSZ frequency varying over
the Planck HFI channels from 100–545 GHz. We reemphasize
the approximate nature of the CIB model used in this calculation
(see Sec. V B). For Planck, the bias takes a value of ΔflocNL ¼ 0.3
(100 × 353 GHz), which should additionally be multiplied by a
combinatorial factor of 2. Note that no multifrequency cleaning is
assumed here. The light green shaded region and dashed vertical
lines are identical to those in Fig. 2. The light blue shaded region
shows the 1σ uncertainty on flocNL after marginalizing over the
ISW-tSZ-CIB bispectrum amplitude, with the CIB evaluated at
353 GHz; although this is not visible on the plot, the margin-
alization produces a ≈70% increase in the flocNL error bar for
Planck.

FIG. 7. Bias on flocNL from the (approximate) ISW-CIB-CIB
bispectrum as a function of lmax, as in Fig. 2. The bias is shown
for only three of the Planck HFI channels (143, 217, and
353 GHz), due to the approximate nature of the model used in
this calculation (see Sec. V B). For Planck, the bias takes values
of ΔflocNL ¼ −0.4 (217 GHz) and ΔflocNL ¼ −33 (353 GHz).
Because of its nonblackbody nature, this bias can be reduced
via component separation, although the extent to which this
reduction has occurred in the component-separated Planck CMB
maps is currently unclear. No multifrequency cleaning is assumed
here. The light green shaded region and dashed vertical lines are
identical to those in Fig. 2. The light blue shaded region shows
the 1σ uncertainty on flocNL after marginalizing over the ISW-CIB-
CIB bispectrum amplitude, evaluated at 217 GHz (as an exam-
ple); this marginalization produces a non-negligible increase in
the flocNL error bar (≈40% increase for Planck).
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bias is generally small, e.g., ΔflocNL ¼ 0.3 (100 × 353 GHz),
although note that an additional combinatorial factor of 2
should also be applied beyond this. Because of the steep
frequency dependence of the CIB, the bias will be much
smaller when evaluating the CIB at any of the Planck
frequencies below 353 GHz. Even for an experiment with
lmax ¼ 3000, the ISW-tSZ-CIB bias never approaches the
1σ error bar on flocNL for the main CMB channels (when
considering the CIB at 353 GHz). The most straightforward
explanation for the smaller bias seen here in comparison to
Figs. 6 and 7 is that the ISW-tSZ-CIB signal is simply
smaller than the ISW-tSZ-tSZ and ISW-CIB-CIB signals,
since it is suppressed by the tSZ-CIB correlation coef-
ficient. Note that if the tSZ signal is nulled via constrained
component separation as suggested earlier, then this bias
will be eliminated (in addition to all other biases involving
the tSZ signal).
Although not visible on the plot, Fig. 8 also shows the 1σ

uncertainty on flocNL after marginalizing over the amplitude
of the ISW-tSZ-CIB bispectrum, computed with Eq. (7)
(for the CIB at 353 GHz). At high l, the increase in the
error bar due to marginalization is small, but at lower l
values, it can be significant. For Planck, if no prior is placed
on the ISW-tSZ-CIB bispectrum amplitude, σðflocNLÞ
increases by ≈70% after marginalization. As emphasized
earlier, this increase depends only on the correlation
coefficient between the ISW-tSZ-CIB and local bispectra,
and not on their amplitudes. Without a precise theoretical
calculation of the ISW-tSZ-CIB signal (which would allow
a strong prior to be placed on its amplitude and therefore
this error bar increase to be mitigated), this result strongly
motivates the use of tSZ-nulled maps for NG analyses.

D. ISW-kSZ-kSZ bias

The final bias that we consider is that due to the cross
bispectrum of the ISW and kSZ effects. Since bispectra
involving odd numbers of kSZ fields vanish, the only such
contribution is the ISW-kSZ-kSZ bispectrum. Like the
other bispectra considered in this section, this bispectrum
can be thought of as the modulation of the small-scale kSZ
power spectrum by a long-wavelength ISW mode.
However, unlike the bispectra involving the tSZ or CIB
signals, this bispectrum is blackbody in frequency depend-
ence. Thus, like the lensing-ISW bias, it cannot be removed
by multifrequency component separation techniques. Its
value must be computed and subtracted from any CMB
temperature-based estimator for primordial NG, or it must
be jointly fit and marginalized over in the NG analysis, at
the cost of increased error bars on the primordial NG
parameters.
The kSZ effect is generated by the Compton-scattering

of CMB photons off free electrons moving with a net LOS
velocity with respect to the CMB rest frame [33–35]. To

lowest order, this produces a Doppler boost in the CMB
temperature:

ΔTkSZðn̂Þ
TCMB

¼ −
1

c

Z
dχaðχÞgðχÞp⃗e · n̂; ð27Þ

where gðχÞ ¼ e−τdτ=dχ is the visibility function, τ is the
optical depth, and p⃗e ¼ ð1þ δeÞv⃗e is the electron momen-
tum. Here, δe ≡ ðne − n̄eÞ=n̄e is the electron overdensity
field, ne is the free electron number density, and v⃗e is the
electron peculiar velocity field.
As in the previous subsections, we compute the ISW-

kSZ-kSZ bispectrum in the halo model, considering only
the two-halo contribution that is expected to dominate in
the squeezed limit. However, in this case, our neglect of
additional contributions (e.g., the three-halo term) may be
less accurate than in the tSZ or CIB cases above. For a
robust assessment of the ISW-kSZ-kSZ bias on flocNL
measurements, a full simulation-based calculation should
be undertaken. We treat the result here as a first estimate of
the order of magnitude of the bias, but emphasize that it is
likely to be an underestimate.
The ISW-kSZ-kSZ bispectrum is sourced by the “hybrid

bispectrum” involving one density fluctuation and two
LOS electron momenta, Bδpn̂pn̂

. Noting that the latter is
p⃗e ≈ v⃗δe on small scales, we follow Refs. [103–106] in
assuming that the term of the form hvvihδδeδei dominates
the hybrid bispectrum on the scales relevant to our analysis.
Thus, the hybrid bispectrum can be approximated as

Bδpn̂pn̂
¼ 1

3
v2rmsBNL; ð28Þ

where v2rms is the 3D velocity dispersion and BNL is the
nonlinear matter bispectrum (to be more precise, the cross
bispectrum of one matter density fluctuation and two
electron density fluctuations). We compute the velocity
dispersion in linear theory, which has been shown to be an
excellent approximation [105–107]:

v2rmsðzÞ ¼
1

2π2

Z
dkðfðzÞaðzÞHðzÞÞ2Plinðk; zÞ; ð29Þ

where f ≡ d lnD=d ln a is the growth rate and we have
used the continuity equation to relate the linear density and
velocity fields.
The remaining ingredient left in the calculation is the

matter bispectrum BNL. As in the previous subsections, we
consider only the two-halo contribution, as this should
dominate squeezed configurations in the ISW-kSZ-kSZ
bispectrum. Putting all of the factors together, the two-halo
contribution to the ISW-kSZ-kSZ reduced bispectrum is
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where IlðzÞ is given by Eq. (25) and τ̃lðM; zÞ is the Fourier transform of the optical depth profile of a halo of mass M at
redshift z:

τ̃lðM; zÞ ¼ σT
4πrs;τ
l2
s;τ

Z
dxτx2τ

sinððlþ 1=2Þxτ=ls;τÞ
ðlþ 1=2Þxτ=ls;τ

neðxτrs;τ;M; zÞ: ð31Þ

In analogy with Eqs. (21) and (22), rs;τ is a characteristic
scale radius of the electron number density profile, ls;τ ¼
aðzÞχðzÞ=rs;τ ¼ dAðzÞ=rs;τ is the multipole moment asso-
ciated with this scale, and xτ ≡ r=rs;τ is a dimensionless
radial variable for the electron number density profile. For
simplicity, we assume that the electron number density
profile of each halo follows the Navarro-Frenk-White
profile, which is rescaled appropriately from matter density
to electron number density assuming a baryon fraction
equal to the cosmological value, a mean molecular weight
per electron of 1.14 (i.e., a primordial composition of H and
He), and a free electron fraction of 0.85. Our calculation is
not particularly sensitive to the details of the profile given
the range of angular scales involved in the calculation, but
fitting functions from hydrodynamical simulations could be
used for improved accuracy [108].
Figure 9 shows the bias on flocNL due to the ISW-kSZ-kSZ

bispectrum, computed via Eqs. (30), (29), and (8). The bias
is frequency independent in CMB blackbody temperature
units. It is always of negative sign, and therefore correcting
for it will increase the inferred value of flocNL. For Planck,
the bias isΔflocNL ¼ −0.1, which is significantly smaller than
the statistical error bar. For an experiment withlmax ¼ 3000,
the bias approaches the 1σ error bar on flocNL. In this context,
we emphasize that this calculation ismissing potentially non-
negligible contributions, and the true bias could be somewhat
larger than estimated here.
There are two main reasons to explain the relative size of

the ISW-tSZ-tSZ and ISW-kSZ-kSZ biases. First, the
small-scale tSZ power spectrum appears to be a factor of
≈2–4 larger than the kSZ power spectrum (at frequencies
where the tSZ spectral function is near unity, e.g.,
150 GHz) [109,110], although the constraints on this ratio
remain weak. Second, more of the small-scale kSZ power is
generated at z > 1 than the tSZ power [80,111,112]; thus,
the correlation of the kSZ power spectrum with the ISW
fluctuations (which predominantly arise at z < 1) is

correspondingly weaker than for the tSZ power spectrum.
In combination, these two effects suppress the ISW-kSZ-
kSZ bispectrum by nearly an order of magnitude compared
to the ISW-tSZ-tSZ bispectrum, leading to a smaller bias
on flocNL.
However, while Eq. (24) likely includes effectively all

relevant contributions to squeezed configurations of the

FIG. 9. Bias on flocNL from the ISW-kSZ-kSZ bispectrum as a
function of lmax, as in Fig. 2. The bias is computed considering
only the contribution in Eq. (30); we caution that this approxi-
mation may neglect important contributions, and thus the results
shown here should be considered an underestimate. For Planck,
the bias estimated here is ΔflocNL ¼ −0.1. Like the lensing-ISW
bias, the ISW-kSZ-kSZ bias is blackbody in frequency depend-
ence and cannot be removed by multifrequency component
separation methods. Thus, it must be computed and subtracted
from flocNL measurements. The light green shaded region and
dashed vertical lines are identical to those in Fig. 2. The light blue
shaded region shows the 1σ uncertainty on flocNL after marginal-
izing over the ISW-kSZ-kSZ bispectrum amplitude; this margin-
alization produces a non-negligible increase in the flocNL error bar
(≈50% increase for Planck).
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ISW-tSZ-tSZ bispectrum, this may not be true for Eq. (30)
and the squeezed ISW-kSZ-kSZ bispectrum. In particular,
for “moderately” squeezed configurations, the approxima-
tion in Eq. (28) may not be particularly accurate (analo-
gously, this type of approximation only suffices to compute
the kSZ power spectrum accurately on very small scales
[113]). Contributions from the three-halo term may also be
non-negligible in the moderately squeezed regime. Finally,
our calculation does not account for correlations that arise
between the velocity field and the ISW field due to the
change in the growth factor (which sources the velocity
field) in the presence of a large-scale void or overdensity.
Thus, Fig. 9 should only be taken as a very approximate
estimate of the order of magnitude of the ISW-kSZ-kSZ
bias on flocNL. A complete calculation, ideally derived from
numerical simulations, should be performed to verify the
robustness of current NG estimates to this bias. Simulations
with the relevant properties have already been constructed
(e.g., [114,115]), and thus there should be no major
obstacle to such a calculation.
Finally, Fig. 9 also shows the 1σ uncertainty on flocNL after

marginalizing over the amplitude of the ISW-kSZ-kSZ
bispectrum, computed with Eq. (7). At all l values
considered, the increase in the error bar due to marginali-
zation is non-negligible. For Planck, if no prior is placed on
the ISW-kSZ-kSZ bispectrum amplitude, σðflocNLÞ increases
by ≈50% after marginalization. As emphasized above, this
increase depends only on the correlation coefficient
between the ISW-kSZ-kSZ and local bispectra, and not on
their amplitudes. Since the kSZ signal cannot be removed by
multifrequency component separation methods, the only
option for mitigating this problem in NG analyses is to
perform a detailed theoretical calculation of the ISW-kSZ-
kSZ bispectrum. One can then choose whether to place a
strong prior on its amplitude (and shape) when jointly
analyzing bispectrum templates in the NG analysis [so as
not to incur a significant penalty on σðflocNLÞ when margin-
alizing], or to directly subtract the theoretically computed
bias on flocNL, and not attempt to marginalize at all. In either
case, additional theoretical or simulation work is needed to
obtain robust constraints on primordial NG.

VI. DISCUSSION

The results in Figs. 3, 4, and 6–9 (summarized in Table I)
suggest that biases due to extragalactic foregrounds may
indeed be large enough to be a worry for the Planck NG
constraints, and are clearly a worry for future constraints.10

To take two examples from the preceding sections, for
Planck (lmax ¼ 1590) the lensing-CIB bias is ΔflocNL ¼ 4.3
at 217 GHz and the ISW-tSZ-tSZ bias is ΔflocNL ¼ −4.5 at
100 GHz. If the effective lmax for Planckwere only slightly

larger (e.g., 2000), some of these biases would have likely
been noticeable above the statistical uncertainty. Of course,
the nonblackbody biases are reduced to some extent by
component separation; for biases that involve two non-
blackbody legs (e.g., ISW-tSZ-tSZ), the reduction is more
efficient (e.g., a 50% scale-independent reduction of the
tSZ signal would suppress the ISW-tSZ-tSZ bias by a factor
of 4).
The overall, combined effect of the biases computed in

this paper is difficult to estimate without performing a
detailed calculation that includes the exact weights applied
to the frequency maps in the component separation
algorithms. Moreover, in most component separation
methods, the weights vary as a function of angular scale
and pixel location, and thus the l dependences of the
nonblackbody foreground bispectra will be modified. This
will affect the associated biases on flocNL, since the shapes of
the bispectra will be modified. For the SMICA component
separation method, this calculation could possibly be done
analytically, since the weights vary only as a function of l
(see Fig. D.1 of Ref. [15]). However, including these effects
analytically is challenging for methods whose weights vary
in pixel space. Thus, numerical simulations are likely a
better approach, but this requires the construction of
simulations with correlations amongst the relevant fields.
Moreover, the modeling of the secondary anisotropy

fields needed to capture these biases via simulations is not
as straightforward as calculating the ISW-lensing bias, for
which linear theory suffices [28]. The tSZ, kSZ, and CIB
fields are all affected by complex baryonic physics. Some
of the biases computed in this paper can likely be modeled
at better than ≲10% accuracy given current knowledge,
e.g., the ISW-tSZ-tSZ bias, which arises from relatively
low-redshift halos whose pressure profiles are well con-
strained (e.g., [116,117]). But this may not be true for other
contributions, e.g., kSZ-related biases, which depend on
the distribution of ionized gas around relatively low-mass
halos (e.g., [46]). Thus, modeling uncertainty for these
biases will need to be carefully investigated, and may
ultimately have to be included in the final error budget on
the primordial NG parameters. The best approach may be to
simply measure as many of the contributions as possible
directly from the data; if the S=N is sufficiently high, then
the measured signal can be directly used to calculate the
bias on primordial NG, as in the lensing-CIB calculation
presented in Sec. IV C. However, for the ISW-related
bispectra, the CV-limited S=N on these measurements is
likely not high (as for the ISW-lensing bispectrum). Note
that the CVon these bispectra should be propagated into the
final error bar on flocNL if theoretically computed biases are
subtracted in the NG analysis.
As discussed throughout the preceding sections, one can

instead modify the primordial NG data analysis by simul-
taneously including the foreground bispectrum templates in

10However, note that polarization is generally free of these
foregrounds, and thus offers a robust route forward.
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the model and marginalizing over their amplitudes.11 This
procedure assumes that the shape of the foreground
bispectra are known a priori, which is not generally the
case (see the discussion in the previous paragraph). Even
when marginalizing solely over the amplitudes of the
foreground bispectra, the error bar on flocNL can nevertheless
still increase substantially. The ISW-related bispectra dis-
cussed in Sec. V are noteworthy in this respect; for Planck,
if no priors are placed on the amplitudes of these bispectra,
the error bar on flocNL increases by ≈50%. This increase is
due to the fact that these foreground bispectrum templates
are highly correlated with the shape of the local-type
bispectrum.
A question that is clearly related to the orthogonality of

the foreground bispectra and primordial bispectra is the
extent to which the foreground biases considered in this
paper would also affect the measured amplitude of the ISW-
lensing bispectrum, AISW−ϕ. If the biases on this amplitude

were large, its value could be used as a cross-check for
Planck or other experiments. Figure 10 shows the result of
this calculation for two representative examples of the
foreground bispectra considered in this paper. To obtain
these results, we simply evaluate Eq. (8) with the replace-
ment Bloc → BISW×ϕ. We consider the ISW-tSZ-tSZ and
lensing-CIB bispectra as contaminants for this exercise. We
also compute the Gaussian error bar on AISW−ϕ using
Eq. (6). We find that the ISW-lensing bispectrum is likely
only a useful diagnostic for extreme foreground contami-
nation, e.g., the ISW-tSZ-tSZ bispectrum evaluated at
545 GHz. At the main CMB channels, the biases are
comparable to or smaller than the error bar on AISW−ϕ.
Thus, consistency with AISW−ϕ ¼ 1 is not a robust guar-
antee against non-negligible foreground biases on flocNL. In
this context, it is interesting to note that in Table 2 of the
Planck 2015 NG analysis [13], all of the temperature-based
estimators for AISW−ϕ return values less than unity (albeit
only at 1σ–1.5σ significance), perhaps providing a weak
indication that residual foregrounds are present.
In this paper, we have only focused on the most

obviously relevant terms for flocNL. There are other fore-
ground bispectra that do not peak in squeezed configura-
tions, but may nonetheless project onto the local template to
some extent, e.g., the tSZ-kSZ-kSZ or CIB-kSZ-kSZ
bispectra. A numerical simulation-based approach could
simultaneously capture the influence of all contributions.
Moreover, similar foreground biases also exist for the other
primordial bispectrum shapes, i.e., the equilateral and
orthogonal templates;we provide analogous (but not exhaus-
tive) calculations for these shapes in Appendices A and B.
Finally, similar biases are guaranteed to exist for estimators
of primordial NG at the trispectrum level (gNL and τNL).
These include blackbody contributions that cannot be
removed by component separation, such as the ISW-ISW-
kSZ-kSZ trispectrum, the lensing-kSZ-kSZ trispectrum, and
the kSZauto-trispectrum.These termsmust be computed and
subtracted to obtain unbiased constraints on gNL and τNL.
We close by noting that the effects considered in this

paper are an excellent example of a situation in which
component separation should be performed so as to
explicitly remove foregrounds that could bias a particular
analysis, even at the cost of somewhat increased statistical
noise.12 In particular, explicit nulling of the tSZ signal
would clearly be beneficial in this instance, and a fiducial
CIB spectrum could be nulled as well. In general, compo-
nent separation should not be viewed as a homogeneous
tool; methods should be adapted and optimized for par-
ticular analysis requirements as needed.
Considering these issues more quantitatively, we can

estimate the extent to which the tSZ and CIB signals must
be removed such that the associated biases on flocNL are less

FIG. 10. Bias on the amplitude of the ISW-CMB lensing
bispectrum, AISW−ϕ, from the ISW-tSZ-tSZ bispectrum (solid
curves) and the CIB-lensing bispectrum (dashed curve) as a
function of lmax, analogous to the flocNL biases computed earlier in
the paper. For the ISW-tSZ-tSZ bispectrum, the bias is shown for
the Planck HFI channels from 100–545 GHz, with a frequency
dependence arising from the tSZ spectral function. For the CIB-
lensing bispectrum, the bias is shown only for the Planck
217 GHz channel, for clarity. With no multifrequency-cleaning
mitigation, these nonblackbody biases would be marginally
detectable in the Planck measurement of the ISW-CMB lensing
bispectrum (disregarding the 545 GHz result). The light shaded
region shows the 1σ uncertainty on AISW−ϕ as a function of lmax

using only information in the CMB temperature bispectrum for a
full-sky, CV-limited experiment. The dashed vertical lines in-
dicate the effective lmax for WMAP9 [10] and Planck 2015 [13].

11This procedure essentially orthogonalizes the primordial NG
estimators with respect to the foreground bispectra, analogous to
the use of “bias-hardened” CMB lensing reconstruction estima-
tors [118,119]. Note that performing the primordial NG analysis
on component-separated maps in which the tSZ and/or CIB
signals have been nulled is one form of such bias hardening. 12CMB lensing reconstruction is another such example.
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than some fraction of the statistical error bar, e.g.,
0.1σðflocNLÞ. For the lensing-tSZ and ISW-tSZ-tSZ biases,
the tSZ signal in the final CMB map must be reduced by a
factor of ≈3 relative to its 100 GHz amplitude to satisfy this
criterion for Planck (with ISW-tSZ-tSZ being more strin-
gent); for SO or CMB-S4 (assuming fsky ¼ 0.4), the
necessary reduction is a factor of ≈10. Of course, the
tSZ effect can be exactly nulled since its frequency
dependence is known from first principles, so these
reduction factors are feasible to achieve, but they do place
requirements on instrumental systematics, such as relative
gain calibration between frequency channels. For the
lensing-CIB and ISW-CIB-CIB biases, the CIB signal in
the final CMB map must be reduced by a factor of ≈10
relative to its 217 GHz amplitude to satisfy the bias
criterion described above for Planck (with lensing-CIB
being more stringent); for SO or CMB-S4 (assuming
fsky ¼ 0.4), the necessary reduction is a factor of ≈25.
Whether such a significant reduction can be achieved
in practice is an open question, particularly given our
current lack of knowledge about decorrelation of the CIB
across frequencies on small scales [91,93]. Finally, we
re-emphasize that the blackbody biases due to ISW,
lensing, and kSZ cannot be removed via multifrequency
component separation.
A related issue is the range of angular scales that is most

important to clean in order to suppress the nonblackbody
biases. In general, the tSZ- and CIB-related biases are
dominated by the smallest-scale modes to which the
experiment is sensitive, as these foreground contributions
only become comparable to the CMB signal at high-l.
Thus, these are likely the most important modes to clean.
However, in this regime, component separation algorithms
must contend with rapidly increasing noise power spectra.
For algorithms that seek to minimize an overall variance
criterion (i.e., with no explicit nulling of any particular
signal), this is likely responsible for the leakage of
secondary foregrounds—which are subdominant to the
noise—into the final map.
Thus, explicitly nulling the nonblackbody foregrounds is

likely to be worthwhile in primordial NG analyses relying
on temperature data, despite the associated penalty in
statistical sensitivity that must be paid. For Planck, the
increase in noise when nulling the tSZ signal is not
particularly severe. Reference [18] compares the noise power
spectra of component-separated Planck CMB maps that do
(LGMCA) or do not (SMICA) null the tSZ signal (the
methods also have algorithmic differences). The LGMCA
noise power is only 22% larger than the SMICA noise power
at l ¼ 2000 (corresponding to a ≲10% decrease in lmax),
thus demonstrating that the penalty for nulling tSZ is not
large. The reason for this small increase is that the 217 GHz
noise power spectrum is almost as low as the 143 GHz noise
power spectrum inPlanck; thus, the 143GHz channel can be
used to remove tSZ, with the 217 GHz channel still available

for measuring the CMB, with only a small noise penalty. For
ground-based experiments, the situation is more challenging
because of the large atmospheric noise contribution at high
frequencies (including 217 GHz). Thus, a larger statistical
penalty may have to be paid. For the CIB, as long as a high-
frequency channel is included that measures the CIB with
highS=N (e.g., the 353, 545, or 857GHz channels inPlanck,
or a 270 GHz channel from the ground), this signal can be
nulled in component separation with little penalty, due to the
very steep CIB SED. However, this requires the assumption
of a CIB SEDmodel and the assumption that the CIB is fully
correlated across frequencies. These assumptions are tenable
at the 10% level, butmaynot hold at the1% level.Overall,we
conclude that forPlanck, nulling the tSZ andCIB signals can
likely be done without drastically lowering lmax, i.e., with
only a small penalty in the error bar on flocNL [Oð10sÞ%]. For
SOandCMB-S4, thismay not be the case, furthermotivating
the use of polarization for primordial NG constraints with
these experiments.

VII. CONCLUSIONS

In this paper, we have considered in detail the role of
extragalactic foregrounds in biasing measurements of local-
type primordial NG from the CMB temperature bispectrum,
including contributions that have not been considered
previously. Some of the contributions are nonblackbody in
nature, and can thus be reduced by component separation
methods, but the extent of this reduction in the Planck
analysis is currently unclear, with evidence suggesting that
extragalactic foregrounds have leaked into the Planck CMB
maps [18,19]. It is alsoworth noting that none of these biases
are present in the Planck FFP8 simulations (except for the
standard ISW-lensing bias) [49], which are used to verify the
Planck NG analysis pipelines. In addition, amongst these
biases, only the ISW-lensing contribution is considered in the
Planck 2015 NG analysis [13]. For future experiments, the
foregroundbiases aremuch larger than the statistical error bar
on flocNL and cannot be neglected; moreover, the nonblack-
bodybiases impose stringent requirements on the component
separation accuracy (see Sec. VI).
Although the largest blackbody contribution (ISW-kSZ-

kSZ) is unlikely to be large enough to significantly bias the
Planck constraint onflocNL, it appears possible that residual tSZ
and CIB signals could lead to biases that are large enough to
shift the inferred value of flocNL by≈1σ (we find similar results
for orthogonal-type NG in Appendix B). As discussed in the
previous section, the overall foreground bias is sensitive to
the component separation details, and thus we do not attempt
an estimate here. A conservative conclusion is that a fore-
ground systematic error bar of order the current statistical
error bar should be assigned to the inferred value of flocNL.
Thus, a central value as large as flocNL ∼ 10 is still plausible.
Alternatively, instead of treating these foreground con-

tributions as biases, the foreground bispectrum templates
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can be included in the NG analysis, and their amplitudes
can be marginalized over when constraining primordial NG
parameters. For lensing-related bispectra, the marginaliza-
tion does not noticeably increase the error bar on flocNL, but
for ISW-related bispectra, the increase can be substantial.
This increase can be avoided by either performing detailed
theoretical calculations that allow strong priors to be placed
on the foreground bispectrum amplitudes (and shapes), or
by relying on multifrequency mitigation techniques (for
nonblackbody foreground bispectra). A notable case is the
ISW-kSZ-kSZ bispectrum, which is blackbody in fre-
quency dependence, and which increases the Planck error
bar on flocNL by ≈50% after marginalization. Additional
study of this foreground bispectrum is clearly needed.
Two paths are available for overcoming the nonblack-

body biases computed in this paper: (1) the tSZ and
(an assumed) CIB spectral dependences can be explicitly
nulled in the component separation process, yielding more
robust constraints on flocNL at some cost in statistical con-
straining power; (2) sky simulations containing all relevant
signals, including correlations amongst them, can be
processed through the component separation and NG
analysis pipelines in order to robustly assess the foreground
biases. Note that some CIB signal will always propagate
through the first approach, due to decorrelation across
frequencies, but a large fraction can likely be removed
explicitly. Blackbody biases will also persist in the first
approach. The second approach has the advantage of
simultaneously capturing the blackbody and nonblackbody
biases. In addition, for trispectrum NG biases, a simulation-
based approach may simply be more efficient than comput-
ing all of the relevant terms analytically. Both paths are
likely to be of use moving forward.
We conclude that the search for evidence of primordial

NG in the Planck data may not yet be complete.
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APPENDIX A: FOREGROUND BIASES
ON EQUILATERAL-TYPE PRIMORDIAL

NON-GAUSSIANITY

In this appendix, we provide foreground bias results for
equilateral-type primordial NG analogous to those given in
the main text for local-type NG. Equilateral NG is a unique

probe of the physics of the early universe; in the context of
inflation, it can be generated by self-interactions of the
inflaton field, amongst other possibilities (e.g., [121–124]).
As the name implies, this bispectrum signal peaks for
equilateral triangle configurations in momentum space. As
for local NG, the Planck 2015 CMB anisotropy data yield
the tightest current constraint on the amplitude of equi-
lateral NG, fequNL : f

equ
NL ¼ −16� 70 (temperature data only)

or fequNL ¼ −4� 43 (temperature and polarization data)
[13]. Note that the polarization data (particularly mixed
bispectra of temperature and E modes) are somewhat more
constraining here than in the local NG analysis, providing a
comparable constraint to that derived from temperature
alone. In the following, we compute foreground biases (and
foreground-marginalized error bars) for fequNL inferred from
the temperature bispectrum alone.
Here, we repeat all of the calculations presented in

Secs. IV and V, but with the replacement Bloc → Bequ; i.e.,
the local bispectrum is replaced by the equilateral bispec-
trum. We calculate Bequ via the explicit formula given in
Eq. (22) of Ref. [123]. We follow the guidance of
Ref. [125] in this calculation, extending the integral over
the comoving distance to χ� þ 500 Mpc=h (rather than the
usual upper limit of χ�) in order to obtain convergence.
We implement the formalism of Sec. III to compute

foreground biases and foreground-marginalized error bars
on fequNL using the models described in Secs. IV and V. The
general conclusion of these calculations is that for the
current Planck analysis, none of these foreground bispectra
are a major concern; however, the lensing-tSZ and lensing-
CIB biases are potentially large for future experiments with
lmax ¼ 3000. Moreover, it is important to note that we are
only considering the foreground contributions that are
likely to dominate in the squeezed limit in this paper,
and these are generally not those expected to dominate in
equilateral configurations. In particular, the tSZ-tSZ-tSZ
and CIB-CIB-CIB (and ISW-ISW-ISW) auto-bispectra are
the foreground bispectra that peak in equilateral configu-
rations (as well as point source bispectra). However, these
are the foreground bispectra that are most heavily sup-
pressed by the multifrequency component separation algo-
rithms (since they include three “cleaning” factors). Of
course, the ISW-ISW-ISW bispectrum is not removed by
multifrequency cleaning, but it is only important at low l
and is unlikely to be a major contaminant to the Planck
analysis. However, note that we have also not computed the
tSZ-kSZ-kSZ and CIB-kSZ-kSZ bispectra (or ISW-ISW-
tSZ or ISW-ISW-CIB bispectra), which are the contribu-
tions least suppressed by the foreground cleaning. These
foreground terms could have non-negligible equilateral
contributions. We leave a calculation of these signals for
future work.
In the remainder of this appendix, we briefly comment

on the foreground biases on fequNL due to the seven bispectra
considered in this paper. Figure 11 shows the fequNL bias and
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foreground-marginalized error bar for the lensing-ISW
bispectrum. It is apparent that the bias is always much
less than the statistical error, and furthermore that margin-
alization over the lensing-ISW amplitude has no effect on
σðfequNL Þ. Figure 11 also includes an additional lensing-ISW
bias prediction (beyond those shown in Fig. 2), in which
nonlinear theory is used to compute the lensing-ISW
bispectrum, via the halo model. This calculation is a test
as to whether the use of linear theory is sufficient for
predicting the fequNL bias due to the lensing-ISW bispectrum
(see Appendix B for an analogous calculation for orthogo-
nal NG). As noted earlier, Ref. [28] performed this check
for the lensing-ISW bias on flocNL, but we are not aware of a

similar check in the literature for fequNL (or forthNL ). Figure 11
shows that the fractional change in the bias prediction is
non-negligible at high multipoles, but since the bias itself is
small compared to the statistical error bar, this change is
nevertheless not important for NG analyses.
Figures 12 and 13 show the fequNL biases and foreground-

marginalized error bars for the lensing-tSZ and lensing-CIB
bispectra, respectively. While these biases have a fortuitous
zero crossing in exactly the neighborhood of the Planck
value of lmax, they subsequently become larger than the
statistical error bar on fequNL at for higher-sensitivity experi-
ments. In particular, the lensing-tSZ bias at 100 or 143 GHz
is larger than σðfequNL Þ for lmax ≳ 2500. The lensing-CIB
bias at 217 GHz is larger than σðfequNL Þ for lmax ≳ 2000, and
even at 100 GHz, it is larger than σðfequNL Þ at lmax ¼ 3000.
Given that some residual CIB signal will always persist in
multifrequency-cleaned CMB maps, the latter bias is
perhaps the most concerning for ongoing and future
experiments. However, Figs. 12 and 13 also show that
the amplitudes of these foreground bispectra can be
marginalized over with little increase in σðfequNL Þ (except
for low-sensitivity experiments).
Figures 14, 15, and 16 show the fequNL biases and fore-

ground-marginalized error bars for the ISW-tSZ-tSZ, ISW-
CIB-CIB, and ISW-kSZ-kSZ bispectra, respectively. We do
not include a plot for the ISW-tSZ-CIB bispectrum, as the
biases and effects of marginalization in this case are even
smaller than those shown in these figures (e.g., for the CIB
at 353 GHz and tSZ signal at 100 GHz, the ISW-tSZ-CIB
bias is ΔfequNL ¼ −0.05 for the Planck value of lmax). For all
of these bispectra, the associated biases on fequNL are far
smaller than the statistical error bar, except when consid-
ering foreground-dominated channels at high sensitivity
(e.g., 545 GHz at lmax ¼ 3000). In addition, the amplitudes

FIG. 11. Bias on fequNL from the lensing-ISW bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 2 for flocNL. All curves and shaded regions are
identical in meaning to those in Fig. 2, with the exception of the
green dot-dashed curve, which shows the effect of using non-
linear theory to compute the lensing-ISW bispectrum.

FIG. 12. Bias on fequNL from the lensing-tSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 3 for flocNL. All curves and shaded regions are
identical in meaning to those in Fig. 3.

FIG. 13. Bias on fequNL from the lensing-CIB bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 4 for flocNL. All curves and shaded regions are
identical in meaning to those in Fig. 4.
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of these bispectra can be marginalized over with no increase
in σðfequNL Þ. These results are expected due to the fact that
none of these bispectra peak in equilateral configurations.
As mentioned earlier, other bispectra that are not considered
herewill likely lead to higher levels of bias for fequNL (e.g., the
tSZ-tSZ-tSZ or tSZ-kSZ-kSZ bispectra).
We conclude that the seven foreground bispectra con-

sidered in this paper do not present serious problems for the
Planck analysis of equilateral NG. However, the lensing-
tSZ and lensing-CIB bispectra could be an issue for
temperature-based fequNL constraints from high-sensitivity
experiments. Finally, we emphasize that a complete cal-
culation including the other foreground terms not consid-
ered here is necessary before a fully robust conclusion can
be reached.

APPENDIX B: FOREGROUND BIASES
ON ORTHOGONAL-TYPE PRIMORDIAL

NON-GAUSSIANITY

In this appendix, we provide foreground bias results for
orthogonal-type primordial NG analogous to those given in
the main text for local-type NG and in Appendix A for
equilateral-type NG. Orthogonal NG was identified in the
context of the effective field theory of inflation as an
additional shape that is naturally generated by operators in
the Lagrangian, but which is effectively orthogonal to the
local and equilateral shapes [125]. The orthogonal bispec-
trum signal peaks in both equilateral and “flattened”
triangle configurations in momentum space (but with
opposite signs), where the latter refers to triangles where
the two shortest sides are exactly half of the longest side. As
for local and equilateral NG, the Planck 2015 CMB
anisotropy data yield the tightest current constraint on
the amplitude of orthogonal NG, forthNL : f

orth
NL ¼ −34� 33

(temperature data only) or forthNL ¼ −26� 21 (temperature
and polarization data) [13]. As for equilateral NG, the
polarization data (particularly mixed bispectra of temper-
ature and E modes) are somewhat more constraining here
than in the local NG analysis, yielding a comparable
constraint to that derived from temperature alone. In the
following, we compute foreground biases (and foreground-
marginalized error bars) for forthNL inferred from the temper-
ature bispectrum alone.
Here, we repeat all of the calculations presented in

Secs. IVandV (and inAppendixA), butwith the replacement
Bloc → Borth, i.e., the local bispectrum is replaced by the
orthogonal bispectrum.WecalculateBorth followingSec. 4 of
Ref. [125], including their guidance on the upper limit in
the integral over comoving distance (as mentioned in
Appendix A).

FIG. 16. Bias on fequNL from the ISW-kSZ-kSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 9 for flocNL. All curves and shaded regions are
identical in meaning to those in Fig. 9.

FIG. 14. Bias on fequNL from the ISW-tSZ-tSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 6 for flocNL. All curves and shaded regions are
identical in meaning to those in Fig. 6.

FIG. 15. Bias on fequNL from the (approximate) ISW-CIB-CIB
bispectrum for an experiment that is CV limited to a maximum
multipole lmax, analogous to Fig. 7 for flocNL. All curves and
shaded regions are identical in meaning to those in Fig. 7.
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We use the formalism of Sec. III to compute foreground
biases and foreground-marginalized error bars on forthNL
using the models described in Secs. IV and V. As for
flocNL (but unlike fequNL ), we find foreground biases that are
potentially concerning for current (Planck) analyses and
clearly an issue for future measurements (considering CMB
temperature only). Furthermore, we again emphasize that
we are only considering the foreground contributions that
are likely to dominate in the squeezed limit in this paper,
which are generally not those expected to dominate in
configurations relevant to orthogonal NG. The most con-
cerning contributions that we have not computed are those
due to the tSZ-kSZ-kSZ and CIB-kSZ-kSZ bispectra (or
possibly the ISW-ISW-tSZ or ISW-ISW-CIB bispectra),
which are the contributions least suppressed by multi-
frequency foreground cleaning. These foreground terms
could have non-negligible orthogonal-type contributions.
We defer a calculation of these signals to future work.
In the remainder of this appendix, we briefly comment

on the foreground biases on forthNL due to the seven bispectra
considered in this paper. Figure 17 shows the forthNL bias and
foreground-marginalized error bar for the lensing-ISW
bispectrum. In agreement with the Planck 2015 NG
analysis [13], we find that the lensing-ISW bias is non-
negligible. For Planck, the bias is ≈2=3 of the statistical
error bar on forthNL and cannot be neglected; for future
experiments with lmax ¼ 3000, the bias is ≈1.5σðforthNL Þ. In
addition, the exact value depends on the accuracy of the
Limber approximation used [compare the solid blue and
dashed orange curves in Fig. 17, corresponding to the use
of k ¼ ðlþ 1=2Þ=χ or k ¼ l=χ in the Limber approxima-
tion, respectively], as well as on the use of linear or
nonlinear theory in the calculation (see the dash-dotted
green curve in the figure). As for fequNL in Fig. 11, the
nonlinear theory calculation is a test as to whether the use of

linear theory is sufficient for predicting the forthNL bias due to
the lensing-ISW bispectrum. For flocNL, linear theory is
known to suffice [28], but for orthogonal NG, Fig. 17
indicates that nonlinear theory should be used, although the
fractional correction is relatively small. Finally, Fig. 17
shows that marginalization over the lensing-ISW bispec-
trum amplitude has no effect on σðforthNL Þ, indicating that the
correlation coefficient between these bispectra is not large.
Figures 18 and 19 show the forthNL biases and foreground-

marginalized error bars for the lensing-tSZ and lensing-CIB
bispectra, respectively. In both cases, we find that the bias
on forthNL can be substantial, even for Planck. For the lensing-
tSZ bispectrum, Fig. 18 shows that the bias on forthNL at
100 GHz is comparable to the 1σ error bar for Planck, and

FIG. 17. Bias on forthNL from the lensing-ISW bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 2 for flocNL and Fig. 11 for fequNL. All curves and
shaded regions are identical in meaning to those in Fig. 11.

FIG. 18. Bias on forthNL from the lensing-tSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 3 for flocNL and Fig. 12 for fequNL. All curves and
shaded regions are identical in meaning to those in Fig. 3.

FIG. 19. Bias on forthNL from the lensing-CIB bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 4 for flocNL and Fig. 13 for flocNL. All curves and
shaded regions are identical in meaning to those in Fig. 4.
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is nearly this large at 143 GHz. For higher values of lmax,
the bias is significantly larger than σðforthNL Þ. These results
strongly motivate the use of tSZ-nulled CMB maps in
orthogonal NG analyses. However, Fig. 18 also shows that
the lensing-tSZ bispectrum amplitude can be marginalized
over with effectively no increase in σðforthNL Þ (except for
experiments with very low lmax).
Figure 19 shows that the bias on forthNL due to the lensing-

CIB bispectrum is also significant. For Planck, the bias is
larger than the 1σ error bar at all HFI frequencies, except
for 100 GHz, although it is still non-negligible at this
frequency. At 217 GHz, the bias is roughly 4 times larger
than the Planck error bar on forthNL . Even for a relatively low
level of CIB leakage into the component-separated CMB
map used in the Planck NG analysis, this bias could be
quite important. For future experiments with lmax ¼ 3000,
the bias is many times larger than the statistical error bar,
and will necessitate very accurate CIB cleaning.
Alternatively, as seen in Fig. 19 (considering the CIB at
217 GHz as an example), the lensing-CIB bispectrum
amplitude can be marginalized over with little penalty
on σðforthNL Þ. To guarantee robustness, marginalizing over
such a template in NG analyses is likely to be advantageous
for ongoing and upcoming CMB experiments. Finally, we
speculate that a combination of the lensing-tSZ and
lensing-CIB biases seen in Figs. 18 and 19 could be
responsible for the weak (≈1σ) preference for negative
forthNL in the Planck 2015 NG analysis, due to the amplitude
and sign of the results presented here.
Figures 20–22 show the forthNL biases and foreground-

marginalized error bars for the ISW-tSZ-tSZ, ISW-CIB-
CIB, and ISW-kSZ-kSZ bispectra, respectively. We do not
include a plot for the ISW-tSZ-CIB bispectrum, as the
biases and effects of marginalization in this case are
extremely small (e.g., for the CIB at 353 GHz and tSZ

signal at 100 GHz, the ISW-tSZ-CIB bias is ΔforthNL ¼
−0.45 for the Planck value of lmax). Of the ISW-related
contributions, only the ISW-tSZ-tSZ bispectrum appears to
present a serious concern. For Planck, the ISW-tSZ-tSZ
bias is much smaller than σðforthNL Þ (except for the fore-
ground-dominated 545 GHz channel); however, for future
experiments with lmax ¼ 3000, the bias is comparable to or
larger than the statistical error bar, even at 143 GHz. Thus,
similar to the lensing-tSZ bias, this result motivates the use
of tSZ-nulled CMB maps in future forthNL analyses. Even for
Planck, this is likely to be worthwhile simply for the
purpose of robustness, since the statistical penalty for
explicitly removing the tSZ signal is not very large with
Planck (see the discussion in Sec. VI). Alternatively,

FIG. 20. Bias on forthNL from the ISW-tSZ-tSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 6 for flocNL and Fig. 14 for fequNL. All curves and
shaded regions are identical in meaning to those in Fig. 6.

FIG. 21. Bias on forthNL from the (approximate) ISW-CIB-CIB
bispectrum for an experiment that is CV limited to a maximum
multipole lmax, analogous to Fig. 7 for flocNL and Fig. 15 for fequNL.
All curves and shaded regions are identical in meaning to those in
Fig. 7.

FIG. 22. Bias on forthNL from the ISW-kSZ-kSZ bispectrum for an
experiment that is CV limited to a maximum multipole lmax,
analogous to Fig. 9 for flocNL and Fig. 16 for fequNL. All curves and
shaded regions are identical in meaning to those in Fig. 9.
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Fig. 20 also shows that the ISW-tSZ-tSZ bispectrum
amplitude can be marginalized over with no increase in
the error bar on forthNL , presenting a mitigation option even
for single-frequency measurements.
Figures 21 and 22 show that the ISW-CIB-CIB and ISW-

kSZ-kSZ bispectra generally yield small biases on forthNL
(except for the ISW-CIB-CIB bispectrum at 353 GHz). For
a future experiment with lmax ¼ 3000, the ISW-CIB-CIB
bias at 217 GHz is ≈0.5σ. However, in both the ISW-CIB-
CIB and ISW-kSZ-kSZ cases, the foreground bispectrum
amplitudes can be marginalized over with no penalty in the
statistical error on forthNL . Overall, we conclude that the ISW-
related bispectra considered here are generally not a major
problem for forthNL analyses from the CMB temperature
bispectrum. However, as mentioned earlier, other bispectra
that are not considered here may lead to higher levels of

bias for forthNL (e.g., the tSZ-kSZ-kSZ or CIB-kSZ-kSZ
bispectra).
We conclude that the lensing-related bispectra considered

in this paper yield potentially serious biases on forthNL , even at
the Planck sensitivity level. Orthogonal NG analyses using
the CMB temperature bispectrum should utilize tSZ- and
CIB-nulled maps, while also accounting for the blackbody
lensing-ISW bias (this bias has been included in the Planck
2015 NG analysis). In contrast, we find that the ISW-related
bispectra do not generally yield significant biases on forthNL . In
all cases, the amplitudes of the foreground bispectra can be
marginalized over with little increase in the error bar on forthNL .
Finally, we emphasize that a complete calculation including
the other foreground terms not considered here is necessary
before a fully robust conclusion can be reached regarding
foregrounds in orthogonal NG analyses.
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[92] A. S. Maniyar, M. Béthermin, and G. Lagache, Astron.
Astrophys. 614, A39 (2018).

[93] D. S. Y. Mak, A. Challinor, G. Efstathiou, and G. Lagache,
Mon. Not. R. Astron. Soc. 466, 286 (2017).

[94] A. Buchalter, M. Kamionkowski, and A. H. Jaffe, As-
trophys. J. 530, 36 (2000).

[95] M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 348, 897
(2004).

[96] E. Komatsu and T. Kitayama, Astrophys. J. Lett. 526, L1
(1999).

[97] C. Creque-Sarbinowski, S. Bird, and M. Kamionkowski,
Phys. Rev. D 94, 063519 (2016).

[98] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astro-
part. Phys. 07 (2011) 034.

[99] S. Bird (private communication).
[100] B. Bolliet, B. Comis, E. Komatsu, and J. F. Macías-Pérez,
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