
 

Renormalization of Lagrangian bias via spectral parameters

Alejandro Aviles*

Departamento de Física, Instituto Nacional de Investigaciones Nucleares,
Apartado Postal 18-1027, Colonia Escandón, Ciudad de México 11801, México
and Consejo Nacional de Ciencia y Tecnología, Avenida Insurgentes Sur 1582,

Colonia Crédito Constructor, Delegacion Benito Jurez, 03940 Ciudad de México, México
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We extend the definition of Lagrangian local bias proposed by Matsubara [Phys. Rev. D 78, 083519
(2008).] to include curvature and higher-derivative bias operators. Evolution of initially biased tracers using
perturbation theory (PT) generates multivariate bias parameters as soon as nonlinear fluctuations become
important. We present a procedure that reparametrizes a set of spectral parameters, the arguments of the
Fourier transformed Lagrangian bias function, from which multivariate renormalized biases can be derived
at any order in bias expansion and PT. We find our method simpler than previous renormalization schemes
because it only relies on the definition of bias, fixed from the beginning, and in one equation relating
renormalized and unrenormalized spectral parameters. We also show that our multivariate biases can be
obtained within the peak background split framework; in that sense this work extends that of Schmidt,
Jeong and Desjacques [Phys. Rev. D 88, 023515 (2013).]. However, we restrict our method to Gaussian
initial conditions. Nonlinear evolution also leads to the appearance of products of correlators evaluated at
the same point, commonly named contact terms, yielding divergent contributions to the power spectrum. In
this work we present an explicit method to remove these divergences by introducing stochastic fields.
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I. INTRODUCTION

Upcoming galaxy surveys such as DESI [1], Euclid [2]
and WFIRST [3] will impact our understanding of the
evolution of the Universe by measuring with high precision
the cosmological parameters at low redshifts, and also they
are likely to answer more fundamental questions such as
the value of the mass of neutrinos or even the test of gravity
at cosmological scales. As the depth and size of the surveys
increases they cover scales where quasilinear effects are
more relevant and the tools of perturbation theory (PT)
become even more important. To fully exploit the already
existing and forthcoming wealth of data within analytical
and semianalytical methods, a concise theory of clustering
is needed. With the exception of weak lensing, the dark
matter clustering is not observable directly, but it should be
deduced from the clustering of galaxies, Ly-alpha forest,
and other biased tracers of the underlying matter content
[4,5]. PTof matter fluctuations is well understood within its
range of validity [6], but this is not the case for the PT of
tracers, which requires the inclusion of information about
halos and galaxy formation and evolution. Given that this a
highly nonlinear process it is apparently out of the reach
of PT. However, biased tracers can be described within PT
as an effective field theory (EFT) with a set of unknown

parameters (the bias parameters) that are in principle free
and should be determined by observations or simulations.
The situation becomes more complicated since the bias
parameters evolve in general with time and scale [7,8]. An
EFT smooths the relevant fields by removing out of the
theory their small scales. Since the smoothing scale RΛ (or
equivalently Λ ¼ 1=RΛ) is arbitrary, and hence unphysical,
it should not appear in observables such as statistics of
tracers; this reasoning led McDonald to propose a renorm-
alization procedure of bias parameters [9]. The first
description of bias relied on locally expanding the over-
density of tracers in powers of the matter overdensities δm
[4,10–12]. Soon, several authors realized that this pro-
cedure had some theoretical flaws, since e.g., quantities
such as ½δm�2 were not necessarily smaller than δm; thus the
introduction of nonlocal bias operators in the bias expan-
sion was required and the process of renormalization has
been extended [13–16].
The bias expansion can be performed on either evolved

or initial density fields; the former is named “Eulerian bias”
and the latter as “Lagrangian bias.” In the Lagrangian
approach it is assumed that the initial overdensities are
linear at all scales of interest, such that one can guarantee
that δmðtiniÞ ≪ 1, and a local expansion in matter densities
is at least well defined; other contributions such as tidal bias
can be generated by subsequent nonlinear evolution [17].
This does not mean Lagrangian tidal bias or other nonlinear*avilescervantes@gmail.com
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biases should not be incorporated, because nonlinearities,
although negligibly small, are still present and will even-
tually dominate the clustering of matter. Moreover, if we let
tidal contributions be generated only by the gravitational
evolution, they will appear in the evolved fields carrying
the local bias parameters, while in principle they should
carry their own bias parameters. Lagrangian tidal bias has
been considered by some authors [18–20] and currently
there is good evidence that it is nonzero [21]. In this work
we will not consider tidal bias, but we foresee no obstacles
to introduce it following the path of [19].
The main subject of this work is the local (in mass

density) Lagrangian description and that, as has been noted
by Schmidt et al. [15], besides standard renormalization
that removes zero-lag correlators, it needs the inclusion of
curvature ∇2δ and higher derivatives ∇2Nδ in order to
remove subleading dependencies on the smoothing scale
RΛ. Our approach assumes the existence of a Lagrangian
bias function relating overdensities of matter and tracers,
1þ δX ¼ Fðδ;∇2δ;∇4δ;…Þ; each argument generates a
set of univariate bias parameters: cn00… for δ; c0m0… for
∇2δ, and so on. As long as the evolution remains linear
those are all the parameters we need, but when nonlinear
fluctuations become important multivariate biases cnm…

with both m and n different from zero should be included.1

Typically, the cnm… are derivatives of the function F
evaluated at zero values of the arguments. This description
leads to the renormalization of the cnm biases, in a similar
way to the univariate bias cn.
In [25], Matsubara put forward a closely related pro-

cedure for local bias parameters which takes as its most
important object the argument of the Fourier transformed
local Lagrangian bias function F̃ðλÞ, that we name here the
local spectral bias parameter λ. The bias local parameters
at n order in the bias expansion are obtained by simple
integrations of powers of λ. It turns out that the local bias
derived in this way is automatically renormalized in the
sense that N-point statistics have no zero-lag correlators.
In this work we generalize this procedure to multivariate
biases; hence our principal objects of interest are a set of
spectral bias parameters λ; η∇2δ; η∇4δ, corresponding to the
arguments of the Fourier transformed nonlocal Lagrangian
function. Although describing bias in terms of “space” or
spectral parameters is equivalent, we find the latter eco-
nomically simpler; e.g., a relation between bar and renor-
malized local bias can be obtained in a single line [see
Eq. (15)]. However, we shall note that the multivariate
biases obtained in this way need renormalization, unlike
the bn ¼ cn0… obtained from the spectral parameter λ only.
In this work we present a renormalization method that
reparametrizes directly the spectral parameters, instead of

the bias parameters themselves, with the advantage that it
only needs one relation [Eq. (48)] to renormalize any
multivariate bias parameter cn1n2…nN. We further show that
our renormalized bias parameters can be obtained within
the framework of peak background split [4,26,27], where
the bias parameters measure the changes of the mean
abundance of tracers against small constant shifts in
background density and in curvature [15].
We use Lagrangian perturbation theory (LPT) [28–31] to

evolve the initially biased tracers, and the resummations
leading to standard perturbation theory (SPT) [32] and
convolution Lagrangian perturbation theory (CLPT) [33] to
obtain the one-loop SPT power spectrum and CLPT
correlation function, respectively. Nonlinear evolution of
fluctuations leads to the appearance of the product of
correlators evaluated at the same point, commonly named
“contact terms” following the usage in field theory. When
Fourier transformed, these terms have UV divergences that
as is well known can be removed by the introduction and
a posteriori renormalization of stochastic fields [12,34,35]
and corresponding bias parameters [13,16]. In this work we
present a systematic procedure to remove the UV diver-
gences from any contact term by adding a finite collection
of counterterms that are “absorbed” by the stochastic fields.
We organize this work as follows. In Sec. II we present

results for locally biased tracers and its nonlinear evolution
within PT. Some of these results are known from the works
of [25,32,33], but we give some insights in order to
generalize them in the subsequent sections. We further
present the renormalization of the first contact term,
following Ref. [9]. In Sec. III we generalize the definition
of bias to include curvature and higher-derivative terms;
thereafter we present our method of renormalization via
spectral bias parameters. In Sec. IV we discuss the UV
divergences in the power spectrum coming from Fourier
transformed contact terms and we show how these can be
removed by stochastic fields. We conclude in Sec. V.

II. LOCALLY BIASED TRACERS AND THEIR
NONLINEAR EVOLUTION

We consider particles with (Lagrangian) position q at
some early time tini; the (Eulerian) position xðq; tÞ at a later
time t is given by the transformation rule

xðq; tÞ ¼ qþΨðq; tÞ; ð1Þ

where Ψ is the Lagrangian displacement vector and
Ψðq; tiniÞ ¼ 0. Matter conservation allows us to write the
fluid overdensities as [31]

δmðkÞ ¼
Z

d3qe−ik·qðe−ik·Ψðq;tÞ − 1Þ; ð2Þ

as long as the initial overdensities are sufficiently small,
δðqÞ ≪ 1. The transverse piece of the Lagrangian

1We notice that the name “multivariate bias” and the notation
cnm have been used in different contexts [14,15,22–24], as in bias
from non-Gaussianity and the peak model.
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displacement is nonzero starting at third order in PT if
velocity dispersions and higher momenta can be neglected
[36–38]. In this work we deal with two-point statistics (up
to one loop) of cold dark matter particles; hence we can
treat Ψ as longitudinal. We further assume that the linear
displacement field is drawn from a Gaussian distribution.
To linear order in fluctuations we get

Ψð1Þ
i;i ðq; tÞ ¼ −δLðq; tÞ ð3Þ

where δLðq; tÞ is the linearly extrapolated initial matter
overdensity δLðq; tÞ ¼ DþðtÞδðqÞ, with Dþ the linear
growth function. A local Lagrangian bias is introduced
for initial, yet linear density fields as

1þ δXðqÞ ¼ FðδRðqÞÞ ð4Þ

where δXðqÞ is the overdensity of tracer X and δRðq; tÞ is
the initial density field linearly extrapolated up to time t
and smoothed by a window function over a scale RΛ,
δRðqÞ ¼

R
d3q0Wðjq − q0j=RΛÞδLðq0; tÞ. The bias can be

made nonlocal in several ways, e.g., by promoting the
function F to a nonlocal functional [14,39] or by including
other operators as arguments [15,19]. In Sec. III we will
add curvature and higher-derivative (∇2δR;∇4δR;…) argu-
ments to F with the purpose of removing RΛ dependencies
on tracer statistics. The choice of local Lagrangian bias
leads inevitably to nonlocal Eulerian bias since nonlinear
evolution of smoothed fields is nonlocal. By the same
reason an Eulerian local bias evolves into a nonlocal
bias; thus Eulerian local bias is not expected to hold in
nature. Using tracer conservation, ð1þ δXðxÞÞd3x ¼
ð1þ δXðqÞÞd3q, it is found that [25]

ð2πÞ3δDðkÞþδXðkÞ¼
Z
d3qe−ik·ðqþΨðqÞÞ

Z
dλ
2π

F̃ðλÞeiλδRðqÞ;

ð5Þ

where F̃ðλÞ is the Fourier transform of FðδRÞ. We will call λ
the local bias spectral parameter. The power spectrum is

ð2πÞ3δDðkÞ þ PXðkÞ ¼
Z
d3qeik·q

Z
dλ1
2π

dλ2
2π

F̃ðλ1ÞF̃ðλ2Þhei½λ1δ1þλ1δ2þk·Δ�i; ð6Þ

where q ¼ q2 − q1, δ1;2 ¼ δRðq1;2Þ and Δi ¼ Ψiðq2; tÞ −Ψiðq1; tÞ is the difference of displacements at two Lagrangian
coordinates. With the aid of the cumulant expansion theorem we may write heiXi ¼ exp ð− 1

2
hX2ic − i

6
hX3icÞwhich is valid

up to third order in fluctuations; in our case

X ¼ λ1δ1 þ λ2δ2 þ k · Δ: ð7Þ

We will further adopt the definitions [33]

Umn
i ðqÞ ¼ hδm1 δn2Δiic; Amn

ij ðqÞ ¼ hδm1 δn2ΔiΔjic; WijkðqÞ ¼ hΔiΔjΔkic; ð8Þ
U≡ U01 ¼ U10, Aij ≡ A00

ij , and write

−
1

2
hX2ic ¼ −

1

2
kikjAij −

1

2
ðλ21 þ λ22Þσ2R − λ1λ2ξR − ðλ1 þ λ2ÞkiUi; ð9Þ

−
i
6
hX3ic ¼ −

i
2
ðλ21 þ λ22ÞkiU20

i − iλ1λ2kiU11
i −

i
2
ðλ1 þ λ2ÞkikjA10

ij −
i
6
kikjkkWijk; ð10Þ

where we used A10
ij ¼ A01

ij and U02
i ¼ U20

i . Explicit ex-
pressions for these q-functions can be found in [33]. ξRðqÞ
is the correlation function of smoothed density fields and
σ2R ¼ ξRð0Þ their variance. Lagrangian displacements, on
the other hand, are not smoothed since they enter directly
through the coordinate transformation of Eq. (1). The
strategy is to expand some terms out of the exponential;
if we keep exponentiated the variances of matter smoothed
overdensities we can introduce the bias parameters as [25]

bn ≡
Z

∞

−∞

dλ
2π

F̃ðλÞe−λ2σ2R=2ðiλÞn ð11Þ

which will let us replace the λ integrals for bias in Eq. (6).2

Forcing this definition to operate in Eq. (5) we obtain

2This approach is the same taken by Matsubara [25], but
we write it here slightly different to generalize it in Sec. III.
Following the identityZ

∞

−∞

dλ
2π

F̃ðλÞe−λ2σ2R=2ðiλÞn ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2R

p Z
∞

−∞
dδe−δ

2=2σ2R
dnFðδÞ
dδn

¼ hFðnÞi ð12Þ
we can identify bn ¼ hFðnÞi for Gaussian fields.
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ð2πÞ3δDðkÞ þ δðkÞ ¼
Z

d3qe−ik·ðqþΨÞ
�
b0 þ

�
b1 −

1

2
σ2Rb3

�
δRðqÞ þ

1

2
b2ððδRðqÞÞ2 − σ2RÞ þ

1

6
b3ðδRðqÞÞ3 þ � � �

�
: ð13Þ

On the other hand, the “bare” local bias parameters are
given by [14]

cn ≡ hFðnÞð0Þi ¼
Z

∞

−∞

dΛ
2π

F̃ðλÞðiλÞn: ð14Þ

We can find a relation between the bare and renormalized
biases by expanding the exponential in Eq. (11) and using
Eq. (14):

bn ¼
X∞
k¼0

σ2kR
2kk!

cnþ2k; ð15Þ

from which we obtain the standard relations b0 ¼
c0 þ 1

2
σ2Rc2 þ � � �, b1 ¼ c1 þ 1

2
σ2Rc3 þ � � �, b2 ¼ c2 þ � � �,

b3 ¼ c3 þ � � �, where we neglected bias beyond third order.
Moreover, for Gaussian fields b0 ¼ hFi ¼ 1 and we get
a constraint equation for even bare bias parameters,P∞

k¼0
σ2k

2kk! c2k ¼ 1. Hence, we interpret the renormalized
bias expansion as a resummation of the unrenormalized

biases that removes zero-lag correlators. Indeed, for initial
density fields, such that Ψðq; tiniÞ ¼ 0, from Eq. (6) we
obtain the correlation function

ξX;LðqÞ ¼
X∞
n¼1

b2n
n!

ðξR;LðqÞÞn; ð16Þ

which has no zero-lag correlators. The label “L”means that
at the end of the process we have evolved linearly the
correlations in the right-hand side (rhs) of the above
equation, and not that ξX;LðqÞ is the linear correlation
function for tracers. That is, the theory is regulated by two
scales, the scales of nonlinearity kNL for fluctuations, and
the scale Λ ¼ 1=RΛ associated to the bias expansion.
Hereafter, we will suppress that label under the under-
standing that terms composed of smoothed fields evolve
linearly, and we use it only to distinguish between the linear
and loop contributions of quantities. Now, allowing non-
linear evolution of Lagrangian displacements in Eq. (6) and
using Eqs. (8) we have

ð2πÞ3δDðkÞ þ PLPT
X ðkÞ ¼

Z
d3qeik·qe−

1
2
kikjAij−i

6
kikjkkWijk

�
1þ b21ξR þ 2ib1kiUi þ

1

2
b22ξ

2
R

− ðb2 þ b21ÞkikjUiUj þ 2ib1b2ξRkiUi þ ib21kiU
11
i þ ib2kiU20

i − b1kikjA10
ij

�
: ð17Þ

This is the exact expression for the one-loop LPT power
spectrum with a second order local bias expansion. Since
the exponential is highly oscillatory it is challenging to
numerically solve the integral; this has been done for matter
in [40,41] adopting different methods. The idea of CLPT is
to perform a further expansion keeping only quadratic
terms in k in the exponential, in such a way that one can
perform the Fourier transform and get an analytical
expression for the correlation function by performing

several multivariate Gaussian integrals. Different schemes
are possible, but in order to preserve Galilean invariance
these reduce to essentially two. In Ref. [33], the contribu-
tion A ¼ AL þ Aloop is kept exponentiated while W is
expanded. In order to treat in equal footing linear and
loop contributions we follow [42] and expand also the
nonlinear piece Aloop. By doing this to Eq. (17) and Fourier
transforming we obtain

1þ ξCLPTX ðrÞ ¼
Z

d3q

ð2πÞ3=2jALj1=2
e−

1
2
ðA−1

L Þijðqi−riÞðqj−rjÞ
�
1 −

1

2
Aloop
ij Gij þ

1

6
ΓijkWijk − b1ð2Uigi þ A10

ij GijÞ

þ b21ðξR −UiUjGij − U11
i giÞ − b2ðU20

i gi þUiUjGijÞ − 2b1b2ξRUigi þ
1

2
b22ξ

2
R

�
; ð18Þ

with

gi ¼ ðA−1
L Þijðqj − rjÞ; Gij ¼ ðA−1

L Þij − gigj; Γijk ¼ ðA−1
L Þfijgkg þ gigjgk; ð19Þ
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taking the form of a Gaussian convolution. Indeed, the
integrand at large fixed r is very close to a Gaussian
centered at q ¼ r with a width ∼20 Mpc=h. A nice feature
of the CLPT correlation function is that it preserves the
Zel’dovich approximation as its lower order contribution,
corresponding to the “1” in between the parentheses. The
different contributions to the above equation are plotted in
Fig. 1 at redshift z ¼ 0.
In Ref. [33], by using Eq. (18) directly, it was shown that

the linear correlation function for tracers is

ξXðrÞ ¼ ð1þ b1Þ2ξLðrÞ; ð20Þ

following the identification bE1 ¼ 1þ b1, where E refers to
the Eulerian bias. This result is in apparent contradiction
with Eq. (16). Nevertheless, by allowing linear evolution of
the Lagrangian displacement in Eq. (13), we find3 ξXðrÞ¼
b21hδRðxþrÞδRðxÞiþ2b1hδRðxþrÞδðxÞiþhδðxþrÞδðxÞi.
Recovering Eq. (20) at scales we can neglect the smoothing
(ideally this is for r > RΛ), but we will find this inequality
to be more restrictive. Some works attach the smoothing
filter to the bias by defining b1ðkÞ ¼ b1W̃ðkRÞ in Fourier
space [14,39]; that approach makes Eq. (20) consistent at
any scale beyond RΛ.

The SPT power spectrum is obtained by expanding all
terms out of the exponential in Eq. (17) and by performing
the q integral, obtaining [25]

PSPT
X ðkÞ ¼ PLðkÞ þ P22ðkÞ þ P13ðkÞ

þ b1a10ðkÞ þ b2a01ðkÞ þ b21a20ðkÞ
þ b1b2a11ðkÞ þ b22a02ðkÞ; ð22Þ

with

P22ðkÞ ¼
9

98
Q1ðkÞ þ

3

7
Q2ðkÞ þ

1

2
Q3ðkÞ;

P13ðkÞ ¼
10

21
R1ðkÞ þ

6

7
R2ðkÞ − σ2Lk

2PLðkÞ; ð23Þ

a10ðkÞ¼2PLðkÞþ
10

21
R1ðkÞþ

6

7
R1þ2ðkÞþ

6

7
R2ðkÞþ

6

7
Q5ðkÞ

þ2ðQ7ðkÞ−σ2Lk
2PLðkÞÞ; ð24Þ

a01ðkÞ ¼ Q9ðkÞ þ
3

7
Q8ðkÞ;

a20ðkÞ ¼ PLðkÞ þ
6

7
R1þ2ðkÞ þQ9ðkÞ

þQ11ðkÞ − σ2Lk
2PLðkÞ; ð25Þ

a11ðkÞ ¼ 2Q12ðkÞ; a02ðkÞ ¼
1

2
Q13ðkÞ; ð26Þ

σ2L ¼ 1

3
δijhΨið0ÞΨjð0Þi ¼

1

6π2

Z
dpPLðpÞ: ð27Þ

FIG. 1. Bias components for the CLPT correlation function [Eq. (18)] and SPT power spectrum [Eq. (22)]. We are also showing the
contribution of curvature bias with bias parameter b01 ¼ b∇2δ of Secs. III and IV. For the correlation function this is the term that
contains c10c01∇2ξR in Eq. (40); the second term in that equation is degenerated with this one, while the rest are subdominant. For the
power spectrum we are showing −k2PLðkÞ. We fix cosmological parameters to the best fit of the WMAP nine-year results [43] and
consider redshift z ¼ 0.

3This can be done by notingZ
d3qeik·ðqþΨÞ ¼

Z
J−1d3xeik·x ¼

Z
d3xeik·xð1 − Ψi;i þ � � �Þ;

ð21Þ
where J is the Jacobian determinant of the coordinate trans-
formation, Eq. (1).
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In Fig. 1 we show the different contributions to Eq. (22).
TheQðkÞ and RðkÞ functions are computed for Einstein–de
Sitter (EdS) evolution in [25,32]; however, they can differ
in more general cosmologies [44]. In particular, in ΛCDM
we have that R1 þ R2 ≃ R1þ2 is a good approximation,
holding exactly in EdS. The claim that Eq. (22) contains the
standard pieces in the unbiased SPT power spectrum was
proven in [32] for EdS and more generally in [41].
We notice Eq. (22) is the SPT power spectrum for locally

biased tracers at initial time, which we emphasize differs
from the power spectrum of Eulerian local biased tracers,
because smoothing and nonlinear evolution do not com-
mute. To linear order in fluctuations, Eulerian and
Lagrangian bias descriptions are simple related because
PXLðkÞ ¼ ð1þ b1Þ2PLðkÞ, which is consistent with
Eq. (20). However, at large scales the biased power
spectrum does not reduce to the linear one; instead we have

PSPT
X ðk → 0Þ ¼ ð1þ b1Þ2PLðkÞ þ

1

2
b22

Z
d3p
ð2πÞ3 ðPLðpÞÞ2:

ð28Þ
The constant term arises from the last term in Eq. (22),

a02ðkÞ ¼
1

2

Z
d3p
ð2πÞ3 PLðpÞPLðjk − pjÞ; ð29Þ

which is potentially harmful. For power law power spectra
with PL ∝ kn, a02ðkÞ is UV divergent for n ≥ −3=2
(instead of Ploop, whose UV divergence appears for
n ≥ −1). The filtering makes a02ðkÞ convergent but sen-
sible to the cutoff Λ ¼ 1=RΛ. Thus, scales below Λ receive
arbitrary corrections from the small scales that were
integrated out of the theory. Exactly the same constant
contribution to the power spectrum is present in the biased
SPT power spectrum with already renormalized Eulerian
bias, that is cured by considering the addition of a constant
shot noise to the biased power spectrum [9], which at this
point we introduce as PX → PX þ N0. The white noise N0

arises from stochastic—uncorrelated with long wavelength
overdensities—contributions to the density fields of tracers,
and it is renormalized to absorb the term a02ðk ¼ 0Þ.
Slightly more formally, in Eq. (7) we may add a contri-
bution Xϵ ¼ λϵ;1ϵ0ðq1Þ þ λϵ;2ϵ0ðq2Þ that comes from sto-
chasticity of small scales, inducing the constant
N0 ¼ b2ϵhϵ0ðkÞϵ0ðk0Þi contribution to the power spectrum
(see Sec. IV). Thereafter, the bias parameter bϵ absorbs the
constant a02ðk ¼ 0Þ, leading to a renormalized function

a02ðkÞ → a02ðkÞ − a02ð0Þ

¼ 1

2

Z
d3p
ð2πÞ3 PLðpÞðPLðjk − pjÞ − PLðpÞÞ; ð30Þ

which is safe from UV divergences for n < −1=2. By
taking the inverse Fourier transform of the renormalized

function a02ðkÞ, the constant shift only contributes with a
Dirac delta function at r ¼ 0 in the correlation function.
There are other divergences in Eq. (22). Q3ðkÞ has IR

divergences when the internal momentum goes to zero and
when it approaches the external momentum; both diver-
gences are canceled by the term 2σ2Lk

2PL [44]. Functions
Q7ðkÞ andQ11ðkÞ present the same IR divergence when the
internal momenta go to zero, but we note that they are
accompanied by σ2Lk

2PL terms; hence these divergences
cancel out, becoming IR safe for the spectral index n > −3.
All the other functions in Eq. (22) are well behaved.

III. CURVATURE BIAS AND RENORMALIZATION

A. Density curvature bias

To some extent, we have removed the RΛ dependence
from statistics in the sense that they lack zero-lag corre-
lators. However, there still exist some residual dependen-
cies. Consider the linear correlation function of smoothed
density fields [15]

ξRðqÞ ¼
Z

d3k
ð2πÞ3 e

ik·qjW̃ðkRΛÞj2PLðkÞ

¼ ξðqÞ þ 2R2
Λ∇2ξðqÞ þOðR4

Λ∇4ξðqÞÞ; ð31Þ

where we expanded the smoothing filter as W̃ðkRΛÞ ¼
1 − R2

Λk
2 þ � � � for illustration purposes, though our results

do not depend in this particular choice. Equation (31)
shows that the linear correlation function will be RΛ
independent as long as R2

Λ∇2ξðrÞ ≪ ξðrÞ. For a featureless
correlation function this holds as long as RΛ ≪ r, but in our
Universe where the baryonic acoustic bump with a width
Δr ∼ 20 Mpc=h is present at a scale r ∼ 100 Mpc=h, the
condition becomes RΛ ≪ Δr, which is highly undesirable,
especially for the description of massive halos where the
smoothing scale is typically identified with its Lagrangian
radius. In this section, following closely the work of
Ref. [15], we remove the subleading scale dependencies
by introducing the Laplacian of the density as an argument
in the Lagrangian bias function,

1þ δX ¼ FðδR;∇2δRÞ; ð32Þ

which generalizes the LPT power spectrum for tracers,

ð2πÞ3δDðkÞ þ PXðkÞ ¼
Z

d3qeik·q
Z

d2Λ1

ð2πÞ2
d2Λ2

ð2πÞ2
× F̃ðΛ1ÞF̃ðΛ2Þhei½Λ1·D1þΛ2·D2þk·Δ�i;

ð33Þ

where

Λ ¼ ðλ; η̄Þ; D ¼ ðδR;∇2δRÞ ð34Þ

ALEJANDRO AVILES PHYS. REV. D 98, 083541 (2018)

083541-6



are vectors and F̃ðΛÞ ¼ F̃ðλ; η̄Þ is the Fourier transform of FðδR;∇2δRÞ with respect to both arguments. In the same way
that λ is the spectral bias parameter of matter overdensities, η̄ is the (bare) spectral bias parameter for the curvature operator
∇2δR. We introduce the bivariate bias parameters as a generalization of Eq. (11):

cnm ≡
Z

d2Λ
ð2πÞ2 F̃ðΛÞe

−1
2
ΛTΣΛðiλÞnðiη̄Þm ¼

Z
d2D

2πjΣj1=2 e
−1
2
DTΣ−1D ∂nþmFðδR;∇2δRÞ

∂δn∂ð∇2δÞm ¼
�∂nþmFðδR;∇2δRÞ

∂δn∂ð∇2δÞm
�
: ð35Þ

The components of the covariance matrix are given by
zero-lag correlators as Σ11 ¼ hδ2Ri ¼ σ2R, Σ12 ¼ Σ21 ¼
hδR∇2δRi, and Σ22 ¼ hð∇2δRÞ2i. Standard notation is
recovered by identifying

bn ¼ cn0; and cð∇2δÞm ¼ c0m: ð36Þ

We see below that parameters cnm require renormalization,
unlike the bn of the previous section. For initial density
fields, we get the correlation function for tracers

ξXðqÞ¼c210ξRðqÞþ2c10c01∇2ξRðqÞþc201∇4ξRðqÞ; ð37Þ
which extends Eq. (16) by including curvature bias, but
simplifies it by considering only linear fluctuations. It is
good to keep in mind that cnm has units of ½length�2m,
reflecting the nonlocality of the bias description.
In this subsection, we are interested in removing the RΛ

dependencies of the ξR and ξ2R terms of Eq. (18).4 This can
be achieved by considering the following contributions to
the LPT power spectrum5:

ð2πÞ3δDðkÞ þ PLPT
X ðkÞ ⊃

Z
d3qeik·qe−

1
2
kikjAij−i

6
kikjkkWijkð2c10c01∇2ξRðqÞ − 2ic01ki∇iξRðqÞ

þ 2iðc20c01 þ c10c11Þ∇2ξRkiUi þ 2c20c11ξR∇2ξRÞ; ð38Þ

with

∇2ξRðqÞ ¼ −
Z

d3k
ð2πÞ3 e

ik·qk2jW̃ðkRÞj2PLðkÞ ¼ ∇2ξðqÞ þ 2R2
Λ∇4ξðqÞ þ � � � ; ð39Þ

where we expanded the filterW in powers of R2
Λk

2. By expanding loop contributions out of the exponential in Eq. (38) and
performing the Fourier transform, we arrive at

ξCLPTX ðrÞ ⊃
Z

d3q

ð2πÞ3=2jALj1=2
e−

1
2
ðA−1

L Þijðqi−riÞðqj−rjÞð2c10c01∇2ξRðqÞ þ 2c01∇iξRðqÞgi
− 2ðc20c01 þ c10c11Þ∇2ξRgiUi þ 2c20c11ξR∇2ξR þ � � �Þ: ð40Þ

A similar result is presented in [19], where the authors
additionally consider tidal bias and EFT contributions; the
latter are degenerated with the curvature bias. By compar-
ing Eqs. (37) and (40) we note an interesting fact: once
nonlinear evolution takes place, bivariate bias parameters
cnm, with both n ≠ 0 and m ≠ 0, should be considered, and
the description with only univariate biases cn0 and c0m
becomes incomplete. Clearly, this feature is shared by the

SPT power spectrum, but we postpone its discussion to
Sec. IV.
Joining this result with the ξR in Eq. (18) and using

Eq. (31), the combination

c210ðξðqÞ þ 2R2
Λ∇2ξðqÞÞ þ 2c10c01∇2ξðqÞ

¼ c210ξðqÞ þ 2c10ðc10R2
Λ þ c01Þ∇2ξðqÞ ð41Þ

appears in the correlation function. That is, the curvature
bias operator has introduced the precise term in order to
absorb the R2

Λ term in the above equation, since we can
reparametrize b01 ¼ c01 þ c10R2

Λ. In this sense, the addi-
tion of a curvature bias is not a choice; it should be included
to make the theory independent of (or less sensible to) the
details of the smoothing.

5The whole second order bias expansion, including all second
order terms c10, c01, c20, c11 and c02, is computed in the
Appendix. Equation (38) is a subset of Eq. (A5).

4Contrary to ξR, Ui and A10
ij functions are sufficiently smooth

at large scales, such that when expanded analogously to Eq. (31),
terms such as R2

Λ∇2Ui can be neglected for q > RΛ.
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Another contribution to Eq. (18) sensible to RΛ is ξRgiUi. We can pair it with the term ∇2ξRgiUi in Eq. (40), leading to

½2c10c20ðξþ 2R2
Λ∇2ξÞ þ 2ðc20c01 þ c10c11Þ∇2ξ�giUi ¼

�
2c10c20ξþ 2c20

�
2c10R2

Λ þ c01 þ
c11c10
c20

�
∇2ξ

�
giUi: ð42Þ

One of the c10R2’s is absorbed by c01 as in Eq. (41), while
the other is absorbed by c11c10

c20
. That is, we can reparametrize

b11 ¼ c11 þ c20R2
Λ.

Analogously, the contribution 1
2
c220ξ

2
R to Eq. (18) is

expanded as

1

2
c220ξ

2
R ¼ 1

2
c220ξ

2 þ 2c220ξR
2
Λ∇2ξþOðR4

Λ∇4ξÞ: ð43Þ

We join up the second term in the rhs of the above equation
with the term 2c20c11ξR∇2ξR in Eq. (40); the sum of both is

2
c220
c10

�
c10R2

Λ þ c11c10
c20

�
ξ∇2ξþ � � � ; ð44Þ

and consistently with Eq. (42), the term c11c10
c20

absorbs

c10R2
Λ.

B. Renormalization of curvature and higher order
bias via spectral parameters

The renormalization presented in the previous subsection
is a special case of a more general method; that is the
subject of this subsection. We can guarantee that our results

are RΛ independent if we are able to remove any RΛ
dependence in the function X [Eq. (7)]. We focus on just
one term, Xδ ¼ λδR, and use

δRðqÞ ¼
Z

d3k
ð2πÞ3 e

ik·qW̃ðkRΛÞδðkÞ

¼
X∞
n¼0

ð−1ÞnWnR2n
Λ ∇2nδðqÞ ð45Þ

where we assumed that the filter can be Taylor expanded as
W̃ðkRÞ ¼ P∞

n¼0WnðkRΛÞ2n; we notice that normalization
of the window function,

R
d3xWðxÞ ¼ 1, implies W0 ¼ 1.

To absorb the smoothing scale we add a (formally infinite)
collection of counterterms

Y ¼
X∞
m¼1

η̄∇2mδ∇2mδRðqÞ; ð46Þ

where η̄∇2mδ is a set of unrenormalized spectral parameters;
in the notation of the previous subsection η̄ ¼ η̄∇2δ.
Inserting Eq. (45) in Eq. (46) and summing to Xδ we get

Xδ þ Y ¼ λδðqÞ þ
X∞
n¼1

�
ð−1ÞnλWnR2n

Λ þ
Xn
m¼1

ð−1Þn−mWn−mR
2ðn−mÞ
Λ η̄∇2mδ

�
∇2nδðqÞ ð47Þ

where we used the double sum identity
P∞

m¼1

P∞
n¼0 ¼P∞

i¼1

P
i
m¼1 with i ¼ mþ n, and relabel i → n.

We introduce the renormalized bias spectral para-
meters as

η∇2nδ¼ð−1ÞnWnR2n
Λ

�
λþ

Xn
m¼1

ð−1Þm Wn−m

WnR2m
Λ

η̄∇2mδ

�
; ð48Þ

from which

Xδ þ Y ¼ λδðqÞ þ
X∞
n¼1

η∇2nδ∇2nδðqÞ ð49Þ

becomes RΛ independent.
We have introduced an infinite set of counterterms; in

this case zero-lag correlators in the covariance matrix Σ
diverge for common linear power spectra. In practice, only
a finite set of counterterms can be introduced, let us say up

to n ¼ N, keeping dependencies ∼OðR2ðNþ1Þ
Λ ∇2ðNþ1ÞδRÞ,

and as one approaches the smoothing scale, the theory
loses its validity.
We now come back to the case in which only the

counterterm∇2δR is introduced. From Eq. (48), the spectral
renormalized parameter η ¼ η∇2δ is

η ¼ η̄ −W1R2
Λλ: ð50Þ

We define the bivariate renormalized bias parameters as

bnm ≡
Z

dΛ
ð2πÞ2 e

−1
2
ΛTΣΛF̃ðΛÞðiλÞnðiηÞm; ð51Þ

where we note that we still have Λ ¼ ðλ; η̄Þ. Replacing η̄
for η, we get
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bnm ¼
Xm
k¼0

�
m

k

�
ð−W1ÞkR2k

Λ cnþk;m−k; ð52Þ

which relates renormalized and unrenormalized bivariate
biases. We immediately have bn0 ¼ cn0 and

b01 ¼ c01 −W1R2
Λc10; b11 ¼ c11 −W1R2

Λc20: ð53Þ

By settingW1 ¼ −1, as in the previous subsection, we note
that these are the precise relations we need to make the RΛ
cancellations in Eqs. (41), (42) and (44).
We can extend the definitions of bivariate bias in

Eqs. (35) and (51) to include higher-derivative terms.
That is, we introduce the bare and renormalized multivari-
ate bias parameters as

cn1n2���nN ¼
Z

dΛ
ð2πÞN e−

1
2
ΛTΣΛF̃ðΛÞðiλÞn1ðiη̄∇2δÞn2 � � � ðiη̄∇2NδÞnN ; ð54Þ

bn1n2���nN ¼
Z

dΛ
ð2πÞN e−

1
2
ΛTΣΛF̃ðΛÞðiλÞn1ðiη∇2δÞn2 � � � ðiη∇2NδÞnN ; ð55Þ

with Λ¼ðλ;η̄∇2δ;…;η̄∇2NδÞ and Σij ¼ h∇2ði−1ÞδR∇2ðj−1ÞδRi.
Analogous relations to Eq. (52) follow from substituting
Eq. (48) in Eq. (55). To check consistency with earlier
work, we consider the case

b∇2Nδ ≡ b00…1|fflffl{zfflffl}
Nþ1

: ð56Þ

Using the spectral bias parameter relation of Eq. (48), we
quickly find the relation between renormalized and bare
bias parameters:

b∇2Nδ ¼
XN
m¼0

ð−1ÞN−mWN−mR
2ðN−mÞ
Λ c∇2mδ; ð57Þ

which is the same result presented in Eq. (B14) of Ref. [15],
with ½Wn�here ¼ ½ð−1Þnfnð2nþ1Þ!�that work.
The connection between our formalism and the peak

background split bias (PBS) framework [15,26] is deeper
than the above result. In the PBS formalism the bias
parameters are defined as responses of the mean abundance
of tracers to small changes of background density and
curvature. If the background density ρ̄ is shifted by a
constant amount Δρ̄ ¼ ρ̄D, the smoothed overdensity is
shifted as

ρ̄ → ρ̄þ ρ̄D∶ δR → δR þD: ð58Þ

On the other hand, a constant shift on the curvature ∇2δ →
∇2δþ α induces a shift on the Laplacian of the smoothed
density and on the smoothed density itself:

∇2δ→∇2δþ α∶ ∇2δR →∇2δR þ α; δR → δR −W1R2
Λα;

ð59Þ

where the last relation holds if the density field δ
is evaluated at the center of the window function (see
[15]); otherwise subdominant terms should be added. For
bivariate bias parameters we simply take the combined
transformation, δR → δR þD −W1R2

Λα, ∇2δ → ∇2δþ α.
Since in this work we have defined F through Eq. (32), the
mean abundance of tracers nX at position x is given by
nXðxÞ ¼ hnXixF, and the PBS biases are

bPBSnm ¼
�∂nþmFðδþD −W1R2

Λα;∇2δþ αÞ
∂nD∂mα






α¼0;D¼0

�
:

ð60Þ

We want to show that this coincides with our definition of
bias in Eq. (51). First, we have

FðδþD −W1R2
Λα;∇2δþ αÞ ¼

Z
dΛ
2π

dη
2π

eiλδþiη̄∇2δFðλ; η̄ÞeiDλþiαðη̄−W1λR2
ΛÞ: ð61Þ

By taking derivatives with respect to D and α,

∂nþmFðδþD −W1R2
Λα;∇2δþ αÞ

∂nD∂mα






α¼0;D¼0

¼
Z

dΛ
2π

dη
2π

eiλδþiη̄∇2δFðλ; η̄ÞðiλÞnðiη̄ − iW1R2
ΛÞm

¼
Z

dΛ
ð2πÞ2 e

iΛ·DFðΛÞðiλÞnðiηÞm; ð62Þ
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where in the last equality we have used η ¼ η̄ −W1R2
Λ,

consistently with Eq. (50). Now, we assume ergodicity and
Gaussianity to obtain the PBS biases; that is, integration of
Eq. (62) against

R
dDð2πjΣj1=2Þ−1e−1

2
DTΣ−1D yields

bPBSnm ¼
Z

dΛ
ð2πÞ2 e

−1
2
ΛTΣΛF̃ðΛÞðiλÞnðiηÞm ¼ bnm; ð63Þ

which shows the equivalence of our renormalized bias with
the PBS biases.

We emphasize that our results rely on the reparametri-
zation of spectral bias parameters of Eq. (48). Any
multivariate renormalized bias parameter is found through
Eq. (55), and to find the relation between the cn1n2… and
bn1n2… one uses Eq. (48) and performs combinatorial
algebra.

IV. RENORMALIZATION OF CONTACT TERMS

The SPT power spectrum corresponding to Eq. (38) is

PSPT
X ðkÞ ∋ −2ð1þ b10Þb01k2PLðkÞ − 2ðb20b01 þ b10b11Þ

Z
d3p
ð2πÞ3

ðk − pÞ2k · p
p2

PLðjk − pjÞPLðpÞ

− 2b20b11

Z
d3p
ð2πÞ3 p

2PLðjk − pjÞPLðpÞ: ð64Þ

The last contribution, named here as Ī ð0;2ÞðkÞ, is analogous
to the function a02ðkÞ that we found in Sec. II. But, this
time the UV divergence cannot be removed by a white
noise absorbing a constant Ī ð0;2Þðk ¼ 0Þ ¼ R

p p
2P2

LðpÞ. It
is clear that the situation will still get worse as higher
derivatives are considered. For example, in Eq. (A5) we
find the term b202ð∇4ξÞ2, leading to a SPT power spectrum
contribution

R
jpj<Λðk − pÞ4p4PLðjk − pjÞPLðpÞ, which

scales as Λ10þ2n, with n the spectral index of the linear
power spectrum at small scales. The same divergences are
present in the Eulerian treatment of bias [16], and it is well
known that these can be absorbed by the stochastic bias.
The subject of this section is to provide a systematic
procedure to remove these divergences.
Stochastic fields are, by construction, uncorrelated with

long wavelength perturbations and among themselves at

scales beyond r > 1=Λ [12]. In principle, they contain all
the nonlinear processes that we have smoothed, as much
as in the EFTofLSS [45]. In Fourier space its two-point
function is commonly written as [5,13]

hϵðkÞϵðk0Þi0 ¼ N0 þ N1k2 þ N2k4 þ � � � : ð65Þ
The departure of a white noise arises because stochasticity
is not localized at a single point; instead it is a nonlocal
process with a range of coherence ∼1=Λ, and for the same
reason the above description breaks down for k ∼ Λ. The
absence of odd powers of k comes from the spherical
symmetry of the filter.
The last term in Eq. (64) is the Fourier transform of one

of the many products of correlators evaluated at the same
point (commonly named contact terms) we find in the
correlation function. In full generality, we find integrals as

Ī ðs;tÞðk;ΛÞ≡ ð−1ÞtþsF ½ð∇2sξðqÞÞð∇2tξðqÞÞ� ¼
Z

d3p
ð2πÞ3 jk − pj2tp2sPLðjk − pjÞPLðpÞ; ð66Þ

where we have written explicitly the cutoff dependence. For
the scale invariant power spectrum, PL ∝ pn, Ī ðs;tÞ scales
as Λ2ðnþsþtþ1Þ. Our goal is to find a renormalized function
I ðs;tÞ with two properties: first, that it is UV safe (for
n < −1=2, for example), and second, that it can be written
as the sum of the bare function [Eq. (66)] and a finite set of
counterterms:

I ðs;tÞðkÞ ¼ Ī ðs;tÞðk;ΛÞ þ I ðs;tÞ
ct ðk;ΛÞ; ð67Þ

with counterterms

I ðs;tÞ
ct ðk;ΛÞ ¼ I0ðΛÞ þ I1ðΛÞk2 þ � � � þ ImðΛÞk2m; ð68Þ

for some integer m and with I iðΛÞ depending only on the
cutoff Λ. In such a way, the counterterms can be absorbed
by stochastic bias terms. We first write the expansion

jk − pj2tPLðjk − pjÞ ¼ p2tPLðpÞ
X∞
l¼0

clðμl; μl−2;…Þ k
l

pl ;

ð69Þ

where we have assumed psPðsÞ
L ðpÞ ∝ PLðpÞ, which is a

good approximation for large p and holds exactly for scale
invariant universes. The cl are polynomials of μ ¼ k̂ · p̂
with c0 ¼ 1 and containing only even (odd) powers of μ if
l is even (odd). We propose the counterterms
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I ðs;tÞ
ct ðk;ΛÞ ¼ −

Z
d3p
ð2πÞ3 p

2ðsþtÞðPLðpÞÞ2
X2ðsþtÞ

l¼0

clðμl; μl−2;…Þ k
l

pl : ð70Þ

Thus our candidate for renormalized I is

I ðs;tÞðkÞ ¼
Z

d3p
ð2πÞ3 p

2sPLðpÞ
�
jk − pj2tPLðjk − pjÞ − p2tPLðpÞ

X2ðsþtÞ

l¼0

clðμl; μl−2;…Þ k
l

pl

�
: ð71Þ

By plugging in the expansion (69) into the above equation we get

I ðs;tÞðkÞ ¼
X∞

l¼2ðsþtÞþ1

kl
Z

d3p
ð2πÞ3 clðμ

l; μl−2;…Þp2ðsþtÞ−lðPLðpÞÞ2 ¼ αk2ðsþtÞþ2

Z
d3p
ð2πÞ3

ðPLðpÞÞ2
p2

þ � � � ; ð72Þ

where the first term in the sum of the first equality vanishes
when performing the angular integral because c2ðsþtÞþ1 is
odd in μ. The last equality shows that the renormalized
function I is UV safe for the spectral index n < −1=2 (the
rest of the terms, not shown, are even more convergent);
here α ¼ 2

R
1
−1 dμc2ðsþtÞþ2 is a number. To complete the

proof that I ðs;tÞ is indeed the renormalized function we are
searching for, we need to show that the counterterms can be
written in the form of Eq. (67). This follows immediately
from Eq. (70) because contributions with l odd vanish, and
we can write

I ðs;tÞ
ct ðk;ΛÞ¼−

Xsþt

i¼0

αik2i
Z

d3p
ð2πÞ3p

2ðsþt−iÞðPLðpÞÞ2: ð73Þ

At this point one may wonder if this procedure can be
continued indefinitely by cutting the sum in Eq. (70) at
some N > 2ðsþ tÞ and making the renormalized function
I as close to zero as desired. While this is true, it would
require an arbitrary number of stochastic bias operators, as
we see below.

We can accommodate the stochastic fields in the
approach we have followed by adding ϵðqÞ as a new
argument to the Lagrangian bias function F, which intro-
duces a spectral bias λϵ and corresponding bias parameters
bϵ; bϵ2 ;…. Thereafter we expand similarly to Eq. (45),
ϵðqÞ ≃ ϵ0ðqÞ þ αR2

Λ∇2ϵ0ðqÞ þ � � �, with α a number whose
value is not important for our discussion. This suggests
introducing a second stochastic bias operator ∇2ϵ with its
own bias spectral parameter η∇2ϵ and a set of bias
parameters fbð∇2ϵÞNg. Since the stochastic terms are uncor-
related with long wavelength overdensities and among
themselves at large scales, we have hϵðq1Þϵðq2Þijqj>RΛ

¼ 0

and hϵðq1ÞδRðq2Þi ¼ 0, and equivalent equations for ∇2ϵ.
Accordingly, the covariance matrix Σ will have an isolated
block including only zero-lag correlators of stochastic
fields, and connected correlators of stochastic fields will
be singled out in tracer statistics.6 Up to second order in
stochastic bias expansion we found terms up to
ðbð∇2ϵÞ2h∇2ϵ∇2ϵiÞ2; more precisely, we get the SPT power
spectrum for stochastic fields

PϵðkÞ ¼
Z

d3qe−ik·q
�
b2ϵξϵ þ bϵb∇2ϵ∇2ξϵ þ b2∇2ϵ

∇4ξϵ þ
1

2
b2
ϵ2
ξ2ϵ þ ðbϵ2bð∇2ϵÞ2 þ b2ϵb2∇2ϵ

Þð∇2ξϵÞ2 þ
1

2
b2ð∇2ϵÞ2ð∇4ξϵÞ2

þ 2b2ϵbϵ;∇2ϵξϵ∇2ξϵ þ b2
ϵ;∇2ϵ

ξϵ∇4ξϵ þ bϵ;∇2ϵbð∇2ϵÞ2∇2ξϵ∇4ξϵ

�

¼ ða0 þ a1k2 þ a2k4ÞF ½ξϵ� þ ðb0 þ b1k2 þ b2k4 þ b3k6 þ b4k8ÞF ½ξ2ϵ � ð74Þ

with

ξϵðqÞ≡ hϵ0ðq1Þϵ0ðq1 þ qÞi; ð75Þ

and a0;…; b4 combinations of the stochastic bias param-
eters. Since ξϵðqÞ vanishes quickly for q > RΛ, we expect
that F ½ξϵ� and F ½ξ2ϵ � depend weakly on k for k ≪ Λ, being
effectively constants at large scales. It is common to assign

ξϵðqÞ ¼ Pf0g
ϵ δDðqÞ [5], leading to F ½ξϵ� ¼ Pf0g

ϵ , but ill
defined for F ½ξ2ϵ �.

6This is not entirely true because we still have contributions, as
hϵΔii, different from zero at small scales.
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The derivation of Eq. (74) was informal because our
model for stochasticity is far from being rigorous. Hence it
should be considered as indicative, almost illustrative;
cf. Sec. 2.8 of [5]. However, our objective was to point
out that with the introduction of two stochastic bias
operators ϵ and ∇2ϵ and with a second order bias
expansion, we obtain powers up to k8 in Eq. (74). This
is the equivalent to Eq. (A5) where we consider bias
operators δ and ∇2δ and we have contact terms up to
b202ð∇4ξÞ2, which has sþ t ¼ 4, and Eq. (73) contains
powers up to k8 also. Therefore, to remove the UV
divergences of contact terms we consider a Lagrangian
bias function Fðδ;∇2δ; ϵ;∇2ϵÞ. If we add an argument∇4δ,
in order to preserve the same level of convergence we
should add ∇4ϵ as well.

V. CONCLUSIONS

In this work we proposed a novel method of renorm-
alization of Lagrangian bias, consisting of a reparametri-
zation of a set of spectral parameters, which we define as
the arguments of the Fourier transformed Lagrangian bias
function F̃ðλ; η∇2δ;…Þ. From this renormalized spectra one
can easily find any multivariate bias parameter as a function
of the bare biases. Our definition for nonlocal bias is an
extension of the local case introduced by Matsubara [25] in
order to include curvature and higher-derivative operators.
We noticed that the local bias was already renormalized in
the sense that two-point statistics of biased tracers contain
only connected moments. However, we find the necessity
of add curvature bias to remove subleading dependencies
on the smoothing scale. We have restricted our discussion
to Gaussian fields and two-point functions nonlinearly
evolved by PT, but it would be attractive to generalize
our results to N-point statistics and non-Gaussian initial
conditions.
We checked the consistency of our results by comparing

to the PBS biases of [15]. In fact, our multivariate bias
parameters are shown to be equivalently obtained from the
PBS argument in the case of initial Gaussian fields. We
believe that our renormalization is simpler than previous
methods because it only relies on one relation between bare

and bias spectral parameters—Eq. (48), which is a key
result of this work.
We further developed a systematic procedure to remove

UV divergences of Fourier transformed contact terms.
Although it was known from previous works that this is
doable due to stochasticity, to our knowledge this is the first
time that an explicit method to do it is presented. Our model
for stochasticity is primitive, but we find it well motivated,
and indeed it provides the necessary contributions to the
power spectrum in order to absorb the UV divergences
coming from contact terms.
An obvious extension of this work is to additionally

consider nonlinear biases such as tidal bias. We do not
foresee major complications for doing so following the
same path of Ref. [19]. Another interesting direction is to
pursue similar methods to the case of Eulerian bias
renormalization; such an endeavor would require the
introduction of all bias operators consistent with the
symmetries of the fluid equations up to the desired order
in PT, including operators that cannot be expressed in terms
of matter overdensities [16].
Finally, we note that similar renormalization schemes

(such as that of contact terms) are required in the
EFTofLSS; hence we believe the methods developed here
can find applicability in that theory.
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APPENDIX: SECOND ORDER IN CURVATURE
AND LOCAL BIAS EXPANSION

In this appendix we provide an equation for the LPT
power spectrum with local and curvature bias up to second
order in bias expansion. We replace Eq. (7) by

X ¼ λ1δ1 þ λ2δ2 þ η1∇2δ1 þ η2∇2δ2 þ k · Δ ðA1Þ

and define

σ2R ¼ hðδRÞ2ic; σ2
δ∇2δ

¼ hδR∇2δRic; σ2∇2δ
¼ hð∇2δRÞ2ic: ðA2Þ

With this, we get

−
1

2
hX2ic ¼ −

1

2
ðλ21 þ λ22Þσ2R −

1

2
ðη21 þ η22Þσ2∇2δ

− ðλ1η1 þ λ2η2Þσ2δ∇2δ
− λ1λ2ξR − ðλ1 þ λ2ÞkiUi −

1

2
kikjAij

− ðλ1η2 þ λ2η1Þ∇2ξR þ ðη1 þ η2Þki∇iξR þ η1η2∇4ξR; ðA3Þ

and
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−
i
6
hX3ic ¼ −

i
2
ðλ21 þ λ22ÞkiU2000

i −
i
2
ðη21 þ η22ÞkiU0020

i − iλ1λ2kiU1100
i − iη1η2kiU0011 − iðλ1η1 þ λ2η2ÞkiU1010

− iðλ1η2 þ λ1η2ÞkiU1001 −
i
2
ðλ1 þ λ2ÞkikjA1000

ij −
i
2
ðη1 þ η2ÞkikjA0010

ij : ðA4Þ

The LPT power spectrum is

ð2πÞ3δDðkÞ þPLPT
X ðkÞ ¼

Z
d3qeik·qe−

1
2
kikjAij−i

6
kikjkkWijk ½1þ b210ξþ 2ib10kiUi þ 2b10b01∇2ξ− 2ib01ki∇iξþ b201∇4ξ

þ 1

2
b220ξ

2 − ðb210 þ b20ÞkikjUiUj þ ðb20b02 þ b211Þð∇2ξÞ2 − ðb02 þ b201Þkikj∇iξ∇jξþ
1

2
b202ð∇4ξÞ2

þ 2ib10b20ξkiUi þ 2b20b11ξ∇2ξ− 2ib10b11ξki∇iξþ b211ξ∇4ξþ 2iðb20b01 þ b10b11Þ∇2ξkiUi

þ 2ðb11 þ b10b01Þkikj∇iξUj þ 2ib11b01kiUj∇4ξ− 2iðb11b01 þ b10b02Þki∇iξ∇2ξ

þ 2b11b02∇2ξ∇4ξ− 2ib01b02ki∇iξ∇4ξþ ib20kiU2000
i þ ib02kiU0020

i þ ib210kiU
1100
i þ ib201kiU

0011

þ 2ib11kiU1010 þ 2ib10b01kiU1001 − b10kikjA1000
ij − b01kikjA0010

ij � ðA5Þ

where we defined, as generalizations of Eq. (8),

Upqrs
i ðqÞ ¼ hδp1δq2ð∇2δ1Þrð∇2δ2ÞsΔiic; Apqrs

ij ¼ hδp1δq2ð∇2δ1Þrð∇2δ2ÞsΔiΔjic: ðA6Þ

The following identities are valid:

U2000 ¼ U0200 ¼ U20; U1100 ¼ U11; U0020 ¼ U0002 ðA7Þ

U1010 ¼ U0101; U1001 ¼ U0110 ðA8Þ

A1000
ij ¼ A0100

ij ¼ A10
ij ; A0010

ij ¼ A0001
ij : ðA9Þ

We note that we have used the renormalized bias as written in Eq. (A5) instead of cnm and get rid of the label R in the linear
correlation function. That is, we have assumed that all dependencies on RΛ were removed for q > RΛ. We also omitted
writing the stochastic field contributions.
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