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We have explicitly demonstrated that scalar coupled Gauss-Bonnet gravity in four dimensions can have
nontrivial effects on the early inflationary stage of our Universe. In particular, we have shown that the scalar
coupled Gauss-Bonnet term alone is capable of driving the inflationary stages of the Universe without
incorporating slow roll approximation, while remaining compatible with the current observations.
Subsequently, to avoid the instability of the tensor perturbation modes we have introduced a self-
interacting potential for the inflaton field and have shown that, in this context as well, it is possible to have
an inflationary scenario. Moreover, it turns out that presence of the Gauss-Bonnet term is incompatible with
the slow roll approximation and hence one must work with the field equations in the most general context.
Finally, we have shown that the scalar coupled Gauss-Bonnet term attains smaller and smaller values as the
Universe exits from inflation. Thus, at the end of the inflation, the Universe makes a smooth transition to
Einstein gravity.
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I. INTRODUCTION

General relativity describes the gravitational interaction
in its simplest form. Since viability of any theory is based
on its falsifiable predictions and consistency with existing
observations, one can safely argue that general relativity is
the most viable theory of gravitation till date. This is mainly
due to the fact that so far general relativity has passed
the experimental tests with flying colors [1–3]. However,
although necessary for the advancement of theoretical
sciences and despite its enormous successes, general
relativity is also riddled with many open questions.
These are scattered across various length scales and include
the inflationary epoch and big bang singularity in the
context of early universe cosmology [4–13], which we will
concentrate on in this work. In this particular context there
exists several issues among which, flatness of the Universe
at a large scale, uniformity of the temperature of the cosmic
microwave background in superhorizon scales are some
of the important ones. These problems are believed to be
answered in one way or another by the introduction of
various inflationary models of our Universe [4–7,14,15].
According to the standard inflationary paradigm, in the
very early stages the Universe went through an exponen-
tially accelerating expansion, which later on starts to
decelerate and makes path for the standard cosmological
epochs. One of the most popular attempt to achieve the

same is by considering a scalar field with a self-interacting
potential sourcing gravity and assuming that the scalar field
satisfies the “slow-roll” condition (i.e., kinetic energy of the
scalar field is much less than the potential energy) [16–23]
(also see [24,25]). Therefore most of the inflationary
paradigms are driven by a scalar field with a nontrivial
self-interacting potential in Einstein gravity.
A natural pathway through which such a scalar field

can enter the gravitational dynamics at the early universe is
through the coupling of the field with the Gauss-Bonnet
term. The Gauss-Bonnet term is the first nontrivial higher-
curvature correction to the Einstein-Hilbert action [26–29],
leading to second-order field equations and hence avoiding
the Ostrogradsky instability [30]. Even though the Gauss-
Bonnet term alone, in the context of four-dimensional
physics, does not contribute to the gravitational field
equations, the scalar coupling makes the Gauss-Bonnet
term (and hence the field equations) nontrivial. Some
aspects of this scalar coupled Gauss-Bonnet gravity in
the context of early universe physics has been explored in
[31–42]. Below we provide a brief discussion on the results
obtained in these works.
The inflationary paradigm has been explored in [35,36]

only in the context of scalar coupled Gauss-Bonnet gravity,
excluding the Einstein term. While in [38,42], even though
the Einstein term was essential, the self-interacting potential
itself governs the inflation, having no effect of the Gauss-
Bonnet term. On the other hand, in [31–34] both the self-
interacting potential as well as the Gauss-Bonnet coupling
for the inflaton field has been considered, but in the context
of slow-roll approximation (see also [34,39–41,43,44]).
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Thus, nontrivial effects of the scalar coupled Gauss-Bonnet
term in the Einstein-Hilbert action, in the absence of self-
interacting scalar potential in the context of inflationary
paradigm has not been explored before. Besides, even when
the self-interacting potential is added to the action, the
relevant consequences of not incorporating the slow-
roll approximation in the inflationary paradigm deserves
attention.
In this paper, we would like to fill this gap by describing

the inflationary paradigm with the help of scalar coupled
Gauss-Bonnet term in the Einstein-Hilbert action, without
any self-interacting potential for the scalar field. We will
demonstrate that such a scalar coupled Gauss-Bonnet term
alone (of course, in presence of the Ricci scalar) is capable
of driving the exponential expansion of the early universe
and also leads to an exit from the same, while remaining
consistent with the current observations. However, insta-
bility of the tensor perturbation in scalar coupled Gauss-
Bonnet gravity forced us to introduce the self-interacting
potential for the scalar field. In this context as well, without
assuming the slow-roll approximation for the scalar field,
we can trace over the whole inflationary epoch, which
shows an initial de Sitter phase and a final deceleration
phase effecting exit from the inflation.
This paper is organized as follows. In Sec. II, we present

the field equations associated with the scalar coupled
Einstein-Gauss-Bonnet gravity in the context of cosmol-
ogy. Subsequently, in Sec. III, we demonstrate that it is
indeed possible to have inflationary scenario without the
self-interacting potential term, while remaining consistent
with observations. A possible source of instability of this
model has also been presented in Sec. IV. Finally we have
introduced a scalar potential and have demonstrated that
the theory supports two different sets of analytic solutions
for different choices of the scalar field potential and
coupling function of scalar field with the Gauss-Bonnet
term in Sec. V. We finish the paper by providing some
concluding remarks and future directions of exploration.

Throughout this paper, greek indices have been used to
represent four-dimensional quantities. The fundamental
constants c and ℏ have been set to unity, while the
Newton’s constant G has been kept throughout. We have
adopted the mostly positive signature.

II. SCALAR COUPLED EINSTEIN-GAUSS-
BONNET GRAVITY

We consider a scalar coupled theory of gravity involving
higher curvature terms, in which the scalar field is
nonminimally coupled to the Gauss-Bonnet invariant G ¼
R2 − 4RμνRμν þ RαβρσRαβρσ in four-dimensional space-
time. Therefore in the most general setting, the action
for the scalar coupled Einstein-Gauss-Bonnet gravity con-
sists of four terms—(a) the Ricci scalar, (b) the Gauss-
Bonnet invariant coupled to an arbitrary function of the
scalar field, (c) kinetic term of the scalar field, and finally
(d) a self-interaction term for the scalar field, such that

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
fR − ξðΦÞGg

−
1

2
gμν∂μΦ∂νΦ − VðΦÞ

�
; ð1Þ

where R is the Ricci scalar obtained from the metric gμν, Φ
is the scalar field under consideration and G, defined earlier,
is the Gauss-Bonnet invariant. The nontopological charac-
ter of the Gauss-Bonnet term in the above action is ensured
by the coupling function between the scalar field and the
Gauss-Bonnet term, symbolized by ξðΦÞ. One possible
origin of the term ξðΦÞG is from the compactification of
a higher-dimensional spacetime to an effective four-
dimensional description, where Φ plays the role of the
radion field [45].
Variation of the above action, presented in (1), with

respect to the metric and the scalar field results in the
following field equations for gravity and the scalar field
individually,

Gμν þ
1

2
gμνξðΦÞG − 2ξðΦÞ½RRμν − 2RμρR

ρ
ν þ Rμ

ρστRνρστ − 2RμρνσRρσ�
þ 2f∇μ∇νξðΦÞgR − 2gμνf∇2ξðΦÞgR − 4f∇ρ∇μξðΦÞgRρ

ν − 4f∇ρ∇νξðΦÞgRρ
μ

þ 4f∇2ξðΦÞgRμν þ 4gμνfRρσ∇ρ∇σξðΦÞg þ 4f∇ρ∇σξðΦÞgRμρνσ

¼ 8πG

�
∇μΦ∇νΦ − gμν

�
1

2
∇ρΦ∇ρΦþ VðΦÞ

��
; ð2Þ

□Φ −
� ∂ξ
∂Φ

�
G

16πG
−
∂V
∂Φ ¼ 0: ð3Þ

As expected, the gravitational field equations do not contain more than second-order derivatives of the metric and hence is
intrinsically ghost free. We will apply the above general analysis in the context of inflationary paradigm, where the higher
curvature effects are supposed to be important [35,42].
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In the context of inflationary paradigm it is customary to
choose the background spacetime to be described by a
homogeneous, isotropic and spatially flat metric, which
takes the following form,

ds2 ¼ −dt2 þ a2ðtÞfdx2 þ dy2 þ dz2g; ð4Þ

where the scale factor aðtÞ solely governs evolution of the
spacetime structure. For such a metric, the expression for
the Ricci scalar R and the Gauss-Bonnet invariant G can be
easily computed, which results in

R ¼ 6ð2H2 þ _HÞ; G ¼ 24H2ðH2 þ _HÞ; ð5Þ

with H ¼ _a=a and the “dot” denotes a derivative of the
respective quantity with respect to time. In order to be
consistent with the symmetry of the background spacetime
it is necessary that the inflaton field be dependent on the
time coordinate alone, i.e., Φ ¼ ΦðtÞ. Finally, using the
expressions for the Ricci scalar and the Gauss-Bonnet
invariant from (5), along with the Ricci and Riemann tensor
for the spacetime metric presented in (4), the field equations
in absence of potential can be simplified, leading to,

3H2 − 12H3 _ξ ¼ 8πG
�
1

2
_Φ2

�
; ð6Þ

2 _H − 4H2

�̈
ξ −H_ξþ 2

_H
H

_ξ

�
¼ −8πG _Φ2; ð7Þ

Φ̈þ 3H _Φþ 12H2

8πG
ðH2 þ _HÞ ∂ξ∂Φ ¼ 0: ð8Þ

It is evident that due to the presence of the Gauss-Bonnet
term, cubic as well as quartic powers of HðtÞ appear in the
above field equations. Further due to Bianchi identity and
conservation of matter energy momentum tensor, all the
three field equations presented above are not independent,
but one of them can be derived from the other two. For
example, one can derive (7) by differentiating (6) with
respect to the time coordinate and then using (8) to replace
Φ̈. Similarly, using (6) and (7) it is possible to derive (8)
as well.
The best way to describe the inflationary paradigm is

through the slow-roll approximation imposed on the scalar
field, which requires _Φ2 ≪ _Φ and Φ̈ ≪ _Φ. Under these
approximations the gravitational field equation for the scale
factor aðtÞ, presented in (6), simplifies considerably and it
becomes possible to solve for _Φ, yielding

_Φ ¼ 1

4H

�∂ξ
∂Φ

�
−1
: ð9Þ

On the other hand, the field equation for the scalar field, as
in (8), under the slow-roll approximation result into 3H _Φ to

be proportional to H2ð _H þH2Þð∂ξ=∂ΦÞ. Therefore, by
substituting the expression for _Φ from (9) one immediately
obtains the following result for _H þH2,

_H þH2 ¼ −
πG
2H2

� ∂ξ
∂Φ

�
−2
: ð10Þ

The above expression explicitly shows that ä=a ¼ _H þH2

is a negative quantity, since neither H, nor (∂ξ=∂Φ) are
imaginary. The above result ensures that under slow-roll
approximation, it is impossible to arrive at an inflationary
solution for our Universe in this context. One would
therefore tend to introduce a self-interacting potential term
to achieve the desired slow-roll inflation. However, we will
show that even in the absence of such a self-interacting
potential one can still have inflationary solutions compat-
ible with current observations without going into the slow-
roll approximation. This is what we will elaborate in the
next section.

III. INFLATION WITHOUT A
SELF-INTERACTING POTENTIAL

This section is devoted to the study of inflationary
paradigm in the absence of self-interacting potential, but
with a nonminimal coupling of the scalar field with Gauss-
Bonnet invariant. As we have argued before, the slow-roll
approximation can not lead to an inflationary paradigm and
hence we would now like to go beyond this approximation.
To set the stage, let us first ask whether it is possible to have
any solution for ξðΦÞ with constant Hubble parameter in
absence of potential term for the inflaton field. If this can be
achieved then only one can proceed further and try to obtain
a complete inflationary scenario which is compatible with
the current observational constraints.

A. Possibility for constant Hubble parameter

In this section, we will concentrate on the possibility
of having constant Hubble parameter (i.e., HðtÞ ¼
H0 ¼ constant), which is consistent even without the
potential term for the inflaton field. In other words, we
have to use the fact that Hubble parameter is constant, in the
field equations for gravity as well as the scalar field and
then inspect whether a nontrivial solution for ξðΦÞ can be
obtained. Keeping this in mind, we rewrite (6) and (7) in the
following manner,

3H2
0 − 12H3

0
_ξ ¼ 8πG

�
1

2
_Φ2

�
; ð11Þ

4H2
0ð ̈ξ −H0

_ξÞ ¼ 8πG _Φ2: ð12Þ

Given the above equations one can eliminate the _Φ2 term
from both of them and obtain the following second-order
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differential equation for ξðtÞ, 2 ̈ξþ 10H0
_ξ − 3 ¼ 0. It is

straightforward to solve for ξðtÞ given the above equation
and it turns out to be

ξðtÞ ¼ 1

5H0

�
3

2
tþ Ae−5H0t

�
þ B; ð13Þ

where A and B are constants of integration. The above
solution for ξðtÞwhen substituted in (11) immediately leads
to the following first-order differential equation for ΦðtÞ,

8πG _Φ2 ¼ 24AH3
0e

−5H0t −
6H2

0

5
: ð14Þ

The above equation can be readily integrated yielding the
following solution for the inflaton field ΦðtÞ as,

ffiffiffiffiffiffiffiffiffi
8πG

p
ΦðtÞ ¼ 2

ffiffiffi
6

p

5
ffiffiffi
5

p
�
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20AH0e−5H0t − 1

q �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20AH0e−5H0t − 1

q �
: ð15Þ

Note that, in order to have a real solution, it is of utmost
importance to have A > 0; otherwise, the term within the
square root will turn negative. For A > 0 one will have
nontrivial time evolution for the inflaton field as well as
for the coupling ξðΦÞ as evident from (15). Therefore, the
scalar coupled Einstein-Gauss-Bonnet gravity without
any self-interaction term for the scalar field is capable
of producing exponential expansion of the Universe.
However, there is one major shortcoming of the above
result, namely it does not predict when the inflation will
end. It is easy to determine from (15) that after a time
t≡ tf ¼ ð1=5H0Þ lnð20AH0Þ the H ¼ H0 ¼ constant sol-
ution is no longer valid. However, the model can not
explain any natural mechanism to exit from the inflation
before t ¼ tf. Therefore, in order to describe the infla-
tionary era of the early universe consistently it is necessary
for the inflation to end and the duration of inflation,
represented by the number of e-foldings, must be in
consonance with the recent Planck observations.

B. Inflation with an exit

In this section, we will demonstrate that it is indeed
possible to have a proper inflationary phase in the early
universe described by the scalar coupled Einstein-Gauss-
Bonnet gravity without any self-interacting scalar potential.
For this purpose, we first consider the simpler scenario
presented in Sec. III A. As evident from (13) and (15), it is
not possible to write ξ ¼ ξðΦÞ in a closed form, since the
solution forΦðtÞ is a transcendental equation. Therefore, in
the more general context we should not expect a simple
closed form expression for the coupling function ξðΦÞ.

Given this difficulty, we will employ the well known
reconstruction scheme in order to arrive at a viable infla-
tionary model in the present context [46–49]. As a first step
of this reconstruction method, we start with a particular
ansatz for the time dependence of the Hubble parameter
HðtÞ and ensure that it is indeed consistent with the
observational constraints; i.e., it predicts correct value of
the tensor to scalar ratio and the scalar spectral index. Given
the Hubble parameter, one can immediately eliminate _Φ
between (6) and (7), respectively. This results in the
following second-order differential equation for ξðtÞ

̈ξþ
�
5H þ 2

_H
H

�
_ξ −

�
_H

2H2
þ 3

2

�
¼ 0 ð16Þ

One can integrate the above equation by multiplying both
sides by the integrating factor, which reads,

Integrating Factor¼ exp

�Z
dt

�
2
_H
H
þ5H

��
≡eP ð17Þ

Therefore multiplying both sides of (16) by the integrating
factor eP one can immediately integrate the above second-
order differential equation for ξðtÞ yielding

_ξðtÞ ¼ e−PðtÞ
Z

dt0ePðt0Þ
�

_Hðt0Þ
2Hðt0Þ2 þ

3

2

�
þ C1e−PðtÞ ð18Þ

Finally integrating the above differential equation once
again we arrived at,

ξðtÞ ¼
Z

dte−P
Z

dt0ePðt0Þ
�

_Hðt0Þ
2Hðt0Þ2 þ

3

2

�

þ C1

Z
dte−PðtÞ þ C2 ð19Þ

where C1 and C2 are constants of integration. Thus, having
derived the coupling function ξðtÞ the time evolution of the
scalar field follows from the following differential equation

4πG _Φ2 ¼ 3H2 − 12H3

�
e−PðtÞ

Z
dt0ePðt0Þ

�
_Hðt0Þ

2Hðt0Þ2 þ
3

2

�

þ C1e−PðtÞ
�

ð20Þ

At this stage, it deserves mentioning that at initial stages of
the inflation, the Hubble parameter is almost constant and,
hence, one may assumeH ¼ H0 ¼ constant. This situation
has already been discussed in Sec. III A, and one may
derive the relevant results by setting _H ¼ 0 in (19) and (20),
respectively.
So far, we have kept our discussion completely general

and have not specified any particular choice for the Hubble
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parameter HðtÞ. The choice for the Hubble parameter
cannot be arbitrary, as it must satisfy the following
condition: at the onset of inflation the Hubble parameter
must take nearly constant values. Further keeping in mind
that a natural exit from the inflationary dynamics is
necessary, here we propose a time dependent ansatz for
the Hubble parameter as follows:

HðtÞ ¼ ½c − dðt − t�Þ�α; ð21Þ

where c, d and α are the free parameters of the theory. The
time scale t� is assumed to represent the onset of inflation
and as evident from the above ansatz, for t ∼ t� the Hubble
parameter is almost constant with H ∼ cα. Therefore at the
beginning of inflation we have a very small value for _H
which will subsequently grow and will be order of the
Hubble parameter requiring the inflation to end. Therefore,
we may introduce a dimensionless variable ϵðtÞ as − _H=H2.
From the previous discussion it is clear that ϵ ≪ 1 at the
onset of inflation, while ϵ ∼ 1 as the inflation ends. This
ensures that _H þH2 > 0 throughout the course of infla-
tion. Using the explicit form of the Hubble parameter HðtÞ
from (21), the parameter ϵðtÞ can be computed such that,

ϵðtÞ ¼ αdfc − dðt − t�Þg−α−1: ð22Þ

Since the Hubble parameter and hence cα is much larger
than unity it follows that for t ∼ t�, ϵ is much smaller
compared to unity. The above expression of ϵðtÞ can also be
used to determine the end of inflation as well. For this we
assume that the exit time of inflation; i.e., tf is being
determined by the equation ϵðtfÞ ¼ 1. This immediately
leads to the following expression for Δt ¼ tf − t�, corre-
sponding to the duration of inflation as,

Δt≡ tf − t� ¼
1

d
fc − ðαdÞ1=ð1þαÞg: ð23Þ

Moreover, (22) clearly reveals that ϵðtÞ remains less than
unity for t� < t < tf. Therefore the above ansatz for Hubble
parameter can describe the evolution of the Universe during
inflationary epoch quite well. The parameter ϵ starts from a
small value at t ∼ t� and then grows to become order unity
as t ∼ tf and then the Universe exits from inflation. The
above analysis also enables us to estimate the values of
the parameters, namely c and d. This can be obtained by
requiring the above expression for the Hubble parameter in
(21) to remain valid till the end of inflation. This requires
c=d > Δt, which by using the duration of inflation,
demands c=d > 10−7 GeV−1. This also suggests that t�
should have a value ∼10−11 GeV−1. In the present context
we have chosen the ratio c=d ∼ 10−3 GeV−1 so that the
Hubble parameter remain valid throughout the duration
of the inflation. Note that the time scale te for which
ðte − t�Þ > c=dwill never arise, since this would correspond

to a scenario much after the end of inflation, where the above
solution is no longer valid.
In order to be compatible with precision observations

associated with the inflationary paradigm [43,44], it is
crucial to compute various parameters of experimental
interest, for which the number of e-foldings in the present
context reads

N ≡
Z

tf

t�
HðtÞdt ¼ cαþ1

dðαþ 1Þ −
fc − dðtf − t�Þgαþ1

dðαþ 1Þ : ð24Þ

In order to arrive at the last line, the solution for HðtÞ from
(21) has been used in order to perform the integral in the
definition of the number of e-foldings. Substitution of
the time span for inflation from (23) further simplifies
the above expression and one finally obtains the number of
e-foldings as follows:

N ¼ cαþ1

dðαþ 1Þ −
α

αþ 1
: ð25Þ

Having determined the number of e-foldings let us con-
centrate on the possible observables associated with this
model. Before going into the details of computation, let us
briefly recall what these observables essentially measures.
The gravitational perturbation around the Friedman metric
can be decomposed into three categories: scalar perturba-
tions, vector perturbations and finally tensor perturbations.
The vector perturbations generally die down and hence one
normally considers the scalar and the tensor perturbations.
Assuming the perturbations to be Gaussian, one can encode
all the information about the perturbation in the power
spectral density, i.e., how much power is contained for each
length scale or equivalently for each wave mode. From this
it is immediate to compute the power spectrum, whose
Logarithmic derivative with respect to the wave number
provides the corresponding spectral index (also known as
the tilt). The spectral index for scalar perturbation, known
as ns and the ratio of power spectrum of the tensor
perturbation and scalar perturbation, known as tensor-to-
scalar ratio r are the observables we will use. In absence of
potential both the scalar spectral index and the tensor-to-
scalar ratio can be written solely in terms of the parameter ϵ
[50], since all the corrections to them identically vanishes if
the potential is set to zero. Given the above, it turns out that
the associated observables, namely the tensor to scalar ratio
r and the spectral index of curvature perturbation ns, can be
determined using the number of e-foldings and parameter α
appearing in the expression for Hubble parameter. Thus,
using (25) and (21), the tensor to scalar ratio and the scalar
spectral index becomes,

r ¼ 16ϵðt�Þ ¼ 16

�
N

�
αþ 1

α

�
þ 1

�
−1
; ð26Þ
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ns ¼ 1 − 2ϵðt�Þ −
_ϵ

Hϵ

				
t�

¼ 1 −
ð3αþ 1Þ
ðαþ 1Þ

�
N þ α

αþ 1

�
−1
:

ð27Þ

In order to derive (26) and (27), respectively, we have used
the expression for the number of e-foldings that has been
obtained in (25). From current precession cosmology
one has the following bounds on the tensor to scalar ratio
r and the spectral index of curvature perturbation ns: ns ¼
0.968� 0.006 and r < 0.14, respectively. The above con-
straints essentially originate from the joint analysis of
temperature cross correlations in the cosmic microwave
background and the weak gravitational lensing obtained
from Planck satellite [43,44]. Using (26) and (27), it can be
easily shown that in order to have the theoretical estimates
to be consistent with the observational results, N and α
should be equal to 60 and 3

5
, respectively. Putting these values

ofN, α into (26) and (27), we obtain the following numerical
estimates for r and ns such that, r ¼ 0.10 and ns ¼ 0.970,
which arewellwithin the experimental bounds. Therefore the

Hubble parameter as presented in (21) is indeed compatible
with current observational bounds, provided the parameter
α ≃ 3=5. Thus, using the reconstruction scheme,wehavebeen
able to determine a suitable Hubble parameter, which we will
use subsequently to determine the coupling function ξðΦÞ.
Given the Hubble parameter it is straightforward to

obtain the differential equation determining the time
evolution of the coupling function ξðΦÞ using (16). The
computation of individual coefficients of _ξ and the ξ
independent term requires _H, which for the Hubble
parameter presented in (21) with α ≃ 3=5 becomes,
_H ¼ ð−3d=5Þfc − dðt − t�Þg−2=5. Therefore the differen-
tial equation satisfied by the potential ξðΦÞ becomes,

2̈ξþ 2

�
5fc − dðt − t�Þg3=5 −

6d
5fc − dðt − t�Þg

�
_ξ

þ
�

3d

5fc − dðt − t�Þg8=5
− 3

�
¼ 0: ð28Þ

The above second-order linear differential equation can be
solved by evaluating the associated integrating factor,
which in this scenario reads,
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FIG. 1. The variation of the coupling function ξðΦÞ, the contribution from Gauss-Bonnet invariant, i.e., ξðΦÞG and the scalar field Φ,
with time have been presented. Moreover, the variation of ξðΦÞ with Φ has also been depicted. All the plots are drawn by rescaling both
the x and y axis to highlight the essential features. For example, the time coordinate has been rescaled by the definition ðt − t�Þ=t� and
hence has the above range. The coupling function ξðΦÞ is presented by the blue, dashed curve, which shows that it decreases with time,
reaching a minima, while ultimately showing a feeble rise with time. On the other hand, the Gauss-Bonnet invariant G decreases with
time and as a consequence the term ξðΦÞG (depicted by the red, dot-dashed curved) also decreases with time and remained saturated at
the final value. A similar behavior is also seen in the time evolution for the scalar field Φ and is depicted by the green, thick curve.
Finally, the variation of the coupling function ξðΦÞwithΦ has been presented by the dotted, orange curve. See text for more discussions.
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Integrating Factor≡ eP ¼ exp

�Z
dt

�
5fc − dðt − t�Þg3=5 −

6d
5fc − dðt − t�Þg

��

¼ exp

�
−
25

d
½c − dðt − t�Þ�8=5

8
þ 6

5
ln½c − dðt − t�Þ�

�

¼ fc − dðt − t�Þg6=5 exp
�
−
25

8d
fc − dðt − t�Þg8=5

�
: ð29Þ

Therefore, multiplying the second-order differential equa-
tion for the coupling function ξðtÞ, presented in (28), by the
integrating factor it can be integrated once, resulting into,

_ξ¼ e−PðtÞ
Z

t

t�
dt

�
3

2
−

3d

10fc−dðt− t�Þg8=5
�
fc−dðt− t�Þg6=5

×exp

�
−
25

8d
fc−dðt− t�Þg8=5

�
ð30Þ

which will result into incomplete Gamma functions. This in
turn provides the expression for _Φ from (6). However, due
to the complicated nature of the differential equations for
ξðtÞ and ΦðtÞ, as evident from (30), it is not possible to
obtain an analytic solution, unlike the case of constant
Hubble parameter. Therefore, we have solved both the
differential equations for ξðtÞ and ΦðtÞ using numerical
techniques and have presented the results in Fig. 1.
As evident from Fig. 1, the scalar field decreases with

time, which is expected, since at the beginning of the
inflationary paradigm the scalar field was at the Planck
scale, while as the inflation progresses the scalar field
attains lower and lower values. An identical scenario also
takes place for the coupling function ξðΦÞ, which also
shows a decreasing nature with time. Furthermore, if the
Gauss-Bonnet invariant is taken into account, the object
ξðΦÞG starts decreasing with time. This is partly due to the
decrease of ξðΦÞ but also due to the rapid fall of the Gauss-
Bonnet invariant with time, since the curvatures decreases
rapidly with time as the inflation comes to an end. Finally, it
is also clear from Fig. 1 that the coupling function ξðΦÞ
initially decreases with the scalar field, which then starts
increasing. This is because ξðΦÞ decreases with time at a
slower pace than the scalar field itself. Therefore one can
safely say that the Gauss-Bonnet invariant alone is capable
of driving the inflation.

IV. INSTABILITY OF THE MODEL

It would have been really interesting if this becomes the
end of the story. However, unfortunately it turns out that
despite having such intriguing features the above model
faces a serious difficulty, namely stability against pertur-
bations. In particular, for specific choices of the Gauss-
Bonnet coupling function it has been demonstrated that the
tensor perturbations in the above spacetime grow rapidly

[51–53] and results in negative values for the sound speed.
In particular, it was demonstrated in [51,52] that cosmo-
logical solutions in models with only Gauss-Bonnet cou-
pling but without a scalar potential are generically unstable
if they are nonsingular. Later on, in [53], it was demon-
strated that the situation considered in [35,36] is unstable as
the sound speed becomes negative. In the present section,
we would like to present a general expression for the sound
speed for arbitrary ξðΦÞ and explore the stability of tensor
perturbations in absence of slow-roll approximations for
the scalar field. On the other hand, in the context of scalar
coupled Gauss-Bonnet theory, there are no growing scalar
modes and the vector perturbations decrease as the
Universe expands [54]. Thus, to see the instability asso-
ciated with tensor perturbations in a general context, we
would like to analyze the sound speed associated with the
evolution of tensor perturbations given the gravitational
field equations. The tensor perturbations associated with a
flat FRW background are given by:

ds2 ¼ −dt2 þ aðtÞ2ðδij þ hijÞdxidxj ð31Þ

where hijðt; xkÞ stands for the tensor perturbation with
transverse and traceless condition imposed on the same.
Thus, we have ∂jhij ¼ 0 ¼ hii. By substituting the per-
turbed metric presented in (31), in the action of our model
and expanding the action to quadratic order of the gravi-
tational perturbation (in order to obtain field equations
linear in hij) we obtain the “perturbed” action as follows
[51,52,54]:

A ¼ 1

8

Z
d4xa3

��
_hij _hij −

1

a2
hij;khij;k

− ð4 _H þ 6H2 þ _Φ2Þhijhij
�

þ 4 ̈ξ
�
1

a2
hij;khij;k þ 2H2hijhij

�

− 4_ξð−H _hij _hij þ 4Hð _H þH2ÞhijhijÞ
�

ð32Þ

By using the background equations one can simplify the
above action and it turns out to be,
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A ¼ 1

8

Z
d4xa3

�
ð1 − 4H_ξÞ _hij _hij −

1

a2
ð1 − 4̈ξÞhij;khij;k

�
ð33Þ

At this stage it is advantageous to consider Fourier
decomposition of the gravitational perturbation as:
hijðt; xkÞ ¼ hijðtÞ expðiklxlÞ and hence the above expres-
sion of perturbed action (see (33) leads to the following
equation for time dependent part of tensor perturbation as,

ḧij þ
�
3H þ 1

1 − 4H_ξ

d
dt

ð1 − 4H_ξÞ
�
_hij

þ k2

a2

�
1 − 4 ̈ξ
1 − 4H_ξ

�
hij ¼ 0 ð34Þ

from where we can define the effective speed of sound as
follows,

c2s ¼
1 − 4ξ̈

1 − 4H_ξ
; ð35Þ

where _ξ ¼ ð∂ξ=∂ΦÞ _Φ. The expression for ̈ξ can also be
derived from (16) and can be used to obtain,

1 − 4̈ξ ¼ 1 − 4

��
5H þ 2

_H
H

�
_ξ −

�
_H

2H2
þ 3

2

��

¼ ð2ϵ − 5Þð1 − 4H_ξÞ; ð36Þ

where, ϵ is the slow-roll parameter − _H=H2. The above
expression when substituted in (35) for sound speed yields,

c2s ¼ 2ϵ − 5 ð37Þ

Therefore throughout the inflationary epoch, we have
ϵ ≪ 1 and hence c2s is negative. Note that the existence
of instability in tensor perturbations has been inferred
earlier for specific choices of the Gauss-Bonnet coupling
function, while the above derivation is general and holds
for all possible choices of ξðΦÞ and without any slow-roll
approximation. Thus, irrespective of the choice of the
Gauss-Bonnet coupling function ξðΦÞ there is an instability
in the tensor perturbation. As a consequence the fluctua-
tions in the tensor modes will grow rapidly and hence the
above model without a self-interacting potential for the
inflaton field can not lead to a viable inflationary scenario.
Thus, it is necessary to include a self-interacting term in the
Lagrangian in order to explain the behavior of the pertur-
bations in a consistent manner. For completeness we would
like to present the corresponding expression for sound
speed in presence of self-interacting potential. Since the
scalar and vector perturbations were not problematic, wewill
consider tensor perturbations only in our analysis. Regarding
the same, if we go through the same calculational steps as

discussed in the earlier section, we finally end up with the
following expression of “effective speed of sound” in
presence of self-interacting scalar potential VðΦÞ as

c2s ¼ ð2ϵ − 5Þ þ 2VðΦÞ
H2ð1 − 4H_ξÞ ð38Þ

During inflationary era, ϵ is less than unity and hence 2ϵ − 5
remains negative, while due to the presence of the potential
term VðΦÞ, c2s may become positive and thereby leads to a
stable inflationary scenario, unlike the situation of without
the self-interacting potential.

V. INFLATION WITH A SELF-INTERACTING
POTENTIAL

We have just described the instability of the tensor
perturbation in absence of a self-interacting potential for the
scalar field, this being a strong motivation towards intro-
duction of such a self-interacting potential, even though
the scalar coupled Gauss-Bonnet term alone can provide a
consistent inflationary scenario (keeping aside the pertur-
bations). Thus, in this section, we will explore the possible
solutions of the field equations consistent with inflationary
paradigm in presence of such a self-interacting potential.
This will result into modifications of the gravitational field
equations, which in turn will modify (6) and (8), respec-
tively, while (7) will remain unchanged. In particular the
right-hand side of (6) will get modified by the introduction
of 8πGVðΦÞ term, while the left-hand side of (8) will
inherit an additional ∂V=∂Φ term, such that

3H2 − 12H3 _ξ ¼ 8πG

�
1

2
_Φ2 þ VðΦÞ

�
; ð39Þ

2 _H − 4H2

�̈
ξ −H_ξþ 2

_H
H

_ξ

�
¼ −8πG _Φ2; ð40Þ

Φ̈þ 3H _Φþ 12H2

8πG
ðH2 þ _HÞ ∂ξ∂Φþ ∂V

∂Φ ¼ 0: ð41Þ

Given these modifications we are now in a position to
study effect of both these terms on the inflationary epoch.
Alike the previous scenario with the Gauss-Bonnet term
alone, in the present context as well the inflationary
paradigm and slow-roll approximation for the scalar field
are incompatible with each other as we will demonstrate
below. In the slow-roll approximation we neglect Φ̈ and _Φ2

terms in comparison with Φ and hence the field equation as
in (39) yields

_Φ ¼ 3H2 − 8πGVðΦÞ
12H3ð∂ξ=∂ΦÞ : ð42Þ

The above expression for _Φ must be contrasted with the
corresponding situation in absence of the Gauss-Bonnet
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term, where the same equation would result into H2 ∼
VðΦÞ and _Φ ≃ 0. Thus, the presence of the Gauss-Bonnet
coupling essentially makes the time derivative of the scalar
field, namely the term _Φ to be nonzero and finite through-
out the inflationary scenario. On the other hand, _H can be
obtained from (40), such that the slow-roll parameter
becomes

ϵ≡ −
_H
H2

≃
2Hð∂ξ=∂ΦÞ _Φ

1 − 4H _Φð∂ξ=∂ΦÞ ¼
3H2

16πGV
−
1

2
: ð43Þ

Thus, if we neglect the Gauss-Bonnet term, then of course
this is a very small quantity and the normal inflationary
paradigm would follow. But in presence of the Gauss-
Bonnet term the above slow-roll parameter is always
∼Oð1Þ and hence it is not possible to have accelerated
expansion of the Universe while respecting slow-roll
approximation. Thus, one must abandon the slow-roll
approximation if the nontrivial effects of the Gauss-
Bonnet term in the early universe cosmology is asked
for. This suggests to take an identical route as in the
previous scenario. However, due to the complicated nature
of the field equations, unlike the previous situation here we
will not employ the reconstruction scheme, rather should
provide viable choices for the potential VðΦÞ as well as the
coupling function ξðΦÞ for which analytical solutions can
be obtained. We would again like to emphasize that we are
not neglecting the Gauss-Bonnet term while considering
inflationary paradigm, rather we are keeping both the self-
interacting potential and the Gauss-Bonnet term to have an
initial accelerated expansion of the Universe as well as a
final deceleration signifying end of the inflationary epoch.

A. Accelerated expansion with a quadratic potential

As a first choice, it is convenient to consider a quadratic
potential for the scalar field; i.e., the potential function
VðΦÞ involves a constant contribution and a quadratic part
proportional toΦ2. A similar form for the coupling function
ξðΦÞ is also suggestive. However, the field equations
involve a derivative of ξðΦÞ and, hence, the constant term
in ξðΦÞ plays no role. This implies the following form of
the scalar field potential and the coupling function,

V1ðΦÞ ¼ Vð1Þ
0 þ Vð1Þ

1 Φ2; ð44Þ

ξ1ðΦÞ ¼ ξð1Þ0 Φ2; ð45Þ

where the subscript “1” denotes that the above corresponds

to the first set of solutions. Furthermore, Vð1Þ
0 , Vð1Þ

1 and ξð1Þ0

stands for arbitrary parameters in the theory, which needs
to be determined later. Substituting the above form of the
potential function V1ðΦÞ and ξ1ðΦÞ into the field equa-
tions, one easily obtains the following solutions of the
scalar field and the Hubble parameter as,

HðtÞ ¼ H0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGVð1Þ

0

3

s
¼ constant; ð46Þ

ΦðtÞ ¼ Φ0 exp ð−λtÞ: ð47Þ

Here, the unknown parameters namely λ and Vð1Þ
1 can be

obtained in terms of the constant Hubble parameter H0 as

well as ξð1Þ0 as

λ ¼ 8H3
0ξ

ð1Þ
0

8πG − 16H2
0ξ

ð1Þ
0

; Vð1Þ
1 ¼ 24H3

0

8πG
λξð1Þ0 −

λ2

2
; ð48Þ

while the parameter Φ0 remains undetermined.
This solution can also be derived using the reconstruction

scheme advocated in [55] in the context of Einstein-scalar-
Gauss-Bonnet gravity. This is achieved by introducing an
additional quantity WðtÞ, defined as

WðtÞ ¼
Z

t
dt0

1

aðt0Þ
�
_Hðt0Þ
4πG

þ _Φ2ðt0Þ
�
; ð49Þ

in terms of which the scalar potential as well as the coupling
function gets determined. In this particular case, with the
choices of the Hubble parameter HðtÞ and the scalar field
ΦðtÞ as in (46) and (47), the above function becomes,
WðtÞ ¼ A − B expfð−H0 þ 2λÞtg, whereA is an integration
constant andB is dependent onH0, λ andΦ0. Following [55],
one can immediately verify that, the associated scalar
potential and the coupling function has the desired behavior;
i.e., their behaviors are identical to those presented in (44)
and (45), provided A vanishes. Thus, the results presented in
this section are indeed consistent with those presented
in [55].
At this stage, it would be worthwhile to briefly mention

about the attractor nature of the solution presented above.
This essentially implies that even under small perturbations
the solutions will ultimately converge to the ones given
above. In other words, the perturbations must die down as
time progresses. As demonstrated in [32], by rewriting the
gravitational field equations, any perturbations around de-
Sitter background decays with time with additional cor-
rections depending on ϵ. Thus, as long as ϵ is smaller we
will have the perturbations decaying exponentially with
time, resulting into the stability of the de Sitter solution.
Thus, even in the context of Gauss-Bonnet coupled scalar
field the de Sitter solution remains an attractor.
As evident, constant value for the Hubble parameter

ensures that the scale factor scales exponentially with time,
i.e., aðtÞ ¼ expðH0tÞ. Thus, the solution corresponds to
accelerating phase of the Universe. Furthermore it is
straightforward to determine the time evolution of the
self-interacting potential V1ðΦÞ as well as the coupling
function ξ1ðΦÞ using the time evolution of the scalar field.
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This ensures that VðΦÞ has a constant piece and the rest of
the part decays exponentially with time, while ξðΦÞ also
decays exponentially. Thus, at later stages of inflation,
these potentials must be replaced with some other scalar
potentials, allowing for decelerated expansion of the
Universe, which we consider in the subsequent section.

B. Power law expansion and deceleration

In this section, we will discuss another set of solutions
for the scalar field and the scale factor, given some
appropriate form for the scalar potential as well as the
coupling function. We assume that the potential is an
exponentially decaying function of the scalar field, while
the coupling function is an exponentially growing one. The
growing behavior is necessary since we would like to keep
the Gauss-Bonnet term relevant even at the end stages of
inflation. (Note that the Gauss-Bonnet term alone should
have negligible contribution at the end of inflation as the
curvatures has become quite small.) Thus, for our purpose,
we consider a different form of the scalar field potential and
the coupling function,

V2ðΦÞ ¼ Vð2Þ
0 exp ½−2ΦðtÞ=Φ0�; ð50Þ

ξ2ðΦÞ ¼ ξð2Þ0 exp ½2ΦðtÞ=Φ0�; ð51Þ

where the subscript “2” is just to remind us that this
corresponds to the second set of solutions. In the above
expression Vð2Þ

0 , Φ0 and ξð2Þ0 are the model parameters. It
can be easily verified that the field equations for gravity
plus scalar field is satisfied provided the time dependence
of the scale factor and the scalar field corresponds to

ΦðtÞ ¼ Φ0 ln ðt=t0Þ; HðtÞ ¼ n=t; ð52Þ

where n < 1. One can easily check that _H þH2 for this
particular case is negative and, thus, corresponds to the
decelerating scenario at the end of the inflation. Since it
is normally believed that the end of inflation results in a
radiation-dominated universe, it is legitimate to assume
n ¼ 1=2. However, for the moment, we will keep n
arbitrary. The field equations also result into several
constraints connecting the free parameters present in the

model. In particular, the parameter ξð2Þ0 and Vð2Þ
0 gets

determined in terms of the other free parameters as,

ξ0
t20

¼ 8πG
24n3ðn − 1Þ ½ð1 − 3nÞΦ2

0t0 þ 2V0t20�;

V0t30 ¼
ðn − 1Þ

2

�
3n2

8πG
−

Φ2
0t

2
0

2ðn − 1Þ ð1 − 5nÞ
�
: ð53Þ

Finally plugging the solution for the time evolution of the
scalar field into the expressions for the self-interacting
potential as well as coupling function one gets both of them
as a function of time:

V2½ΦðtÞ� ¼ Vð2Þ
0

�
t20
t2

�
; ξ2½ΦðtÞ� ¼ ξð2Þ0

�
t2

t20

�
: ð54Þ

Thus, as in the previous scenario, here also the scalar field
potential decays with time but as a power law, while the
interaction potential depicts a growth with time. This
behavior of the potential as well as that of the coupling
function can again be derived using the reconstruction
scheme advocated in [55]. For example, with the Hubble
parameter and the scalar field presented in (52), following
(49), the functionWðtÞ can be determined to be,Aþ Bt−n−1.
ForA ¼ 0, this reproduces the structure of the scalar potential
and the coupling function as in (50) and (51). This once
again demonstrates the validity of these results even in the
reconstruction scheme.

C. Estimation of parameters associated
with the inflationary scenario

Having described the two situations, one depicting
accelerated expansion of the Universe at the early stages
of inflation and the other providing a decelerating phase
marking the exit from inflationary paradigm, we concen-
trate on estimation of various parameters in the model. The
inflationary paradigm comes into existence at very early
stages of the Universe and it lasted from tin ∼ 10−11 GeV−1

to tend ∼ 6 × 10−8 GeV−1. Thus, we assume that the
potential V1ðΦÞ existed for an initial phase of the infla-
tionary epoch which we choose to be in the range
10−11 GeV−1 < t < 10−8 GeV−1, while the other potential
V2ðΦÞ appeared in the end stages of the inflationary
scenario and was effective for t > 6 × 10−8 GeV−1.
During the regime 10−8 GeV−1 < t < 6 × 10−8 GeV−1,
there must be an intermediate potential interpolating
between these two regimes, which we will determine later
using numerical techniques. Along identical lines the
coupling potential ξðΦÞ also has two different behavior
in the two distinct regimes. We will have ξðΦÞ ¼ ξ1ðΦÞ for
10−11 GeV−1 < t < 10−8 GeV−1, while the coupling func-
tion becomes, ξðΦÞ ¼ ξ2ðΦÞ for t > 6 × 10−8 GeV−1.
In the intermediate region we will numerically construct
an interpolating coupling function that matches with both
ξ1ðΦÞ and ξ2ðΦÞ appropriately at both ends.
The above process of interpolation requires appropriate

choices for the values of the free parameters present in our
model. As far as the first situation is considered, the
relevant parameters are the Hubble parameter H0 and the
decaying parameter λ in the solution of the scalar field
(see (47) for a detailed description), both having mass
dimension one. The choice of these parameters are also
connected with the observational viability of this model and
hence it must have number of e-foldings ∼60. Since the
number of e-foldings correspond to integration of Hubble
parameter over the entire duration of inflation, it follows
that H0 ≃ 6 × 109 GeV.
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Using the scalar field solution presented in (47), one can
immediately verify that the energy density (ρ) of the scalar
field Φ varies as ρ ∼ exp ð−2λtÞ with time. Since, alike the
scale factor, the energy density of the scalar field as well is
supposed to decrease by a factor of ∼1015 starting from the
beginning of the inflationary epoch to its end, it is
legitimate to take λ ∼ 109 GeV, of the same order as the
Hubble parameter. A better estimate for the energy density
of the scalar field would require its equation of state
parameter, which can be used to relate λ to the associated
Hubble parameterH0. Since in this scenario the equation of
state parameter can not be defined in a simple manner, it
must be obtained by numerical evolution of the Einstein’s
equations in the present context. However, as exact
estimations of various parameters are not of much rel-
evance to the present work, we will content ourselves with
the above estimate of the parameter λ. Similarly, using (48),

we immediately obtain both ξð1Þ0 and Vð1Þ
1 in terms of H0

and λ, leading to possible numerical estimates of both these
parameters.
Returning to the post inflationary scenario we concen-

trate on the second set of solution given by the potential
V2ðΦÞ and ξ2ðΦÞ, respectively, presented in (50) and (51).
As evident we can choose the initial time instant to be

located at t0 ∼ 10−8 GeV and hence the parameter Vð2Þ
0 gets

determined from (53) as Vð2Þ
0 t30 ≃ ð1=8πGÞ. The rest of the

parameters can also be accordingly determined. As a
consequence we can interpolate both the potential and
the coupling function in the intermediate region.

D. Numerical solutions in the interpolating region

Given the structure of the potential as well as the
coupling function in the initial and final stages of inflation,
we would like to provide a complete picture by interpolat-
ing between these regions. Due to complicated nature of the
equations governing the evolution of the scalar field and
the scale factor in a general context, we will determine the
interpolating function using numerical techniques and shall
illustrate the same. Let us briefly point out the methods one
may use in order to generate such interpolating solutions. In
the intermediate region, one approximates the behavior of
the physical quantity of interest (e.g., the coupling function
ξðΦÞ or the scalar field Φ) by a polynomial function of
time, with degree of the polynomial kept arbitrary. Then in
the initial epoch one uses the analytic behavior of the
desired physical quantity (e.g., the scalar potential) to
generate numerical estimates of the respective quantity at
various time instants till the description is reliable. Similar
numerical estimations are being made at the end stage of
inflation as well. With these sets of initial and final data
and the polynomial function one can use any standard
interpolation package (e.g., MATHEMATICA) to end up
getting the desired plots. The structure of the plot, of
course, depends on the degree of the polynomial and

desired accuracy level. All the plots in this paper are for
a accuracy level of Oð10−7Þ. This procedure is repeated for
all the remaining variables of interest as well. However,
the details of the interpolation of the curve connecting the
initial instants of inflation to the end stage of inflationary
scenario is an artifact of the procedure followed and admits
possible variations depending on the process of interpola-
tion by numerical techniques. Since our aim is essentially
to demonstrate that interpolating functions satisfying the
initial and the final stages of inflation as modeled here
indeed exists, such indeterminacy in determining the
interpolating function would not affect the results presented
here. Finally when variation of all the variables with time
has been obtained, one can use an analogue of the para-
metric plot to illustrate variation of the scalar potential and
scalar coupling function with scalar field itself. As a further
check of the results, we have verified that the plots
generated by interpolation in the vanishing potential limit
exactly matches with those presented in Sec. III. Thus,
having explained the details of the interpolating procedure,
we now turn to the corresponding implications and present
the variations of all the relevant parameters with time.
In particular, taking the Planck mass to be Mpl ¼

1019 GeV and the expressions for potential in the early
and late stages of inflation, we interpolate the potential
function for 10−11 < t < 6 × 10−8 GeV−1, which has been
presented in Fig. 2. Note that the axes in Fig. 2 are rescaled
according to convenience, namely x-axis corresponds to a
“rescaled” time coordinate obtained as ∼109t which is in
GeV−1 unit, while the y axis corresponds to “rescaled”
potential,which is inGeV4 unit. It is evident that the potential
function is smooth everywhere and decays with time.
Similarly substituting the values of various parameters

presented into (45) and (51), one gets the coupling ξðΦÞ
within the two time scales, 10−11 < t < 10−8 GeV−1 as
well as for ξðΦÞ with t > 6 × 10−8 GeV−1, respectively.

20 40 60 80

0.5

1.0

1.5

2.0

Scalar Poten tial

Tim e

FIG. 2. The self-interacting scalar potential VðΦÞ is being
plotted against time t for the complete duration of inflation. The
initial and final portions are determined analytically, while the
intermediate region is obtained by interpolation. The curve
explicitly shows the decreasing behavior of the scalar potential
with time.
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Using the above two expressions, the time variation of
the coupling function for the intermediate region can also
be determined by interpolation. However, rather than the
coupling function, the combination ξðΦÞG, where G is
the Gauss-Bonnet invariant is of more importance and has
been presented in Fig. 3, where the x axis correspond to
“rescaled” time. As evident from Fig. 3 there exist an
intermediate region where the effect of the coupling
function times the Gauss-Bonnet invariant attains a maxi-
mum value. Thus, during the inflationary epoch, it is not at
all justified to ignore the effect of the Gauss-Bonnet term.
On the other hand, as the Universe exits from the infla-
tionary epoch, the combination attains a fairly constant
value and, thus, one may use it in the context of quintes-
sential inflation. By using these forms of the scalar field
potential and the coupling function, we are next going to
solve the field equations for the Hubble parameter (or,
equivalently the scale factor) as well as the scalar field
numerically to understand their behavior.
Given the gravitational field equations involving only

first-order time derivatives of the Hubble parameter HðtÞ, a
numerical solution of the same requires one boundary
condition. Choosing the initial value of the Hubble para-
meter HðtÞ as the inverse of the duration of the inflationary
epoch, i.e., Hð0Þ ∼ 0.6 × 109 GeV, we obtain the required
solution as depicted in Fig. 4. As in the earlier plots, in
Fig. 4 as well the x and y axes are rescaled such that the
“rescaled” Hubble parameter ∼10−9H in GeV unit. The
figure explicitly demonstrates that the Hubble parameter
at the initial stages remained almost constant, signifying
a very small value for the parameter ϵðtÞ, while at the later
stages the Hubble parameter decreases with time and
finally results in deceleration, signifying an exit from
inflationary paradigm. Thus, we can safely argue that
the numerical solutions obtained above indeed matches
with the analytic one both at the beginning and at the end
of the intermediate region.

The above numerical solution of theHubble parameter can
be immediately integrated providing the evolution of scale
factor aðtÞ with respect to time. However, in the context of
inflation, it is more convenient to depict the solution for ä=a,
the acceleration parameter of the Universe, which has been
presented in Fig. 5. Here the y-axis of Fig. 5 corresponds to
äðtÞ=aðtÞ associated with the “rescaled” Hubble parameter.
From the above figure, one can easily conclude that the
inflation ends near about t̄ ∼ 6 × 10−8 GeV−1 or, equiva-
lently t ≃ 6 × 10−32 sec, after which ä=a becomes negative.
To get a better view of what is happening near the end of the
inflationary epoch, we provide in Fig. 6 a zoomed-in version
of Fig. 5 near t ∼ 6 × 10−8 GeV−1.
Using the form of scalar potential, coupling function and

the Hubble parameter one can easily solve for the only
remaining bit, i.e., the scalar field equation numerically.

20 40 60 80
Time t

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Hubble Parameter H

FIG. 4. Numerical solution of the Hubble parameter H is being
presented with time t. As evident at the onset of inflation, the
Hubble parameter was fixed at a constant value, signifying initial
exponential expansion of the Universe, which then give way to
final power law expansion. The behavior of the Hubble parameter
in the intermediate regime has been obtained by appropriate
interpolation of the initial and final phases.
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FIG. 3. The coupling function ξ multiplied with Gauss-Bonnet
invariant G is being plotted against time t. The figure shows
an initial decrease, with a subsequent increase in value, which
finally decreases and gets saturated. Therefore in the intermediate
region during the inflationary epoch, at some stage (around
t ∼ 4 × 10−8 GeV−1) the additional contribution due to the
Gauss-Bonnet term attains a maximum value.
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FIG. 5. The above figure presents the variation of the accel-
eration parameter ä=awith time. As evident in the initial stages of
inflation, the acceleration was almost constant, while the accel-
eration decreases as time passes by and finally it turns negative
around t ∼ 6 × 10−8 GeV−1. This presents the exit from inflation.
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Given the scalar field potential as a function of time as well
as the scalar field as a function of time one can eliminate
time from the two and hence plot the potential as a function
of the scalar field. This is what we have presented in Fig. 7,
where the scalar field as well as the potential have been
“rescaled” in an appropriate manner.
In order to match the numerical solution for the scalar

field with the analytic ones, we use suitable boundary
conditions onΦ and _Φ, respectively. From Fig. 7, it is clear
that the scalar field rolls down the scalar potential VðΦÞ in a
rapid manner and hence it is completely consistent with
our earlier findings that slow-roll approximations will not
work here. Finally for t > 6 × 10−8 GeV−1, the potential
becomes flat and the field exits from inflation. This is
completely consistent with our analytical estimates as well.
Thus, from (47) and (52), one can easily conclude that just
like the Hubble parameter, the numerical solution of scalar
field also matches with the analytic one near about the
beginning and the end stages of inflation.
For completeness, we have also presented variation of

the coupling function ξðΦÞ with the scalar field Φ. As
expected it presents a rapid fall in the initial stages of

inflation and becomes very small near the end of the
inflation (see Fig. 8), after which it again starts to increase
(see the inset figure of Fig. 8). However, the numerical
value of the coupling function during this late time incre-
ment is very small and hence one can safely argue that after
exit from the inflationary scenario the Gauss-Bonnet term
will have little influence on the dynamics of the Universe.
As a consequence the ratio ðξðtÞG=8πGRÞ ∼Oð10−27Þ just
after the end of the inflation. Thus, once the Universe exits
from inflationary period, the Gauss-Bonnet term (coupled
with the scalar field) can be safely ignored with respect to
the Ricci scalar and hence the Universe is dominated only
by Einstein’s gravity.
Finally, let us briefly comment on possible observational

signatures of the model under consideration. In the context
of inflationary paradigm the key observational parameters
are the tensor to scalar ratio r and the scalar spectral index
ns, both of which have been computed in Sec. III. Similar
numerical values for these two observational parameters
also hold for the present situation as well. Both of these
values are well within the observational bounds advocated
by the Planck mission and hence are consistent with the
current observational estimations. There are several other
possibilities, where the observational feasibility of this
model can be commented upon or some forecast can be
provided, which later on can be verified. For example, an
estimation of the three point correlation function, which in
turn is related to the non-Gaussianity parameter, may lead
to some nontrivial results over and above the standard
inflationary background. Furthermore, the effect of the
nontrivial coupling between the inflaton field and the
Gauss-Bonnet invariant may lead to interesting implica-
tions for polarization modes of the photons originating
from the last scattering surface. These issues deserve
further investigation, which we leave for the future.
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FIG. 7. Scalar potential V has been depicted against the scalar
field Φ. The potential decreases steeply with time and hence the
slow-roll approximation will not work in this context. As the
inflation ends the potential becomes flat and hence having little
influence on dynamics of the Universe.
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FIG. 8. The coupling function ξ has been presented against the
scalar field Φ. As evident the coupling function decreases steeply
as the scalar field reaches larger and larger values. Hence the
slow-roll approximation for the scalar field will not work in this
context. As the inflation ends the potential indeed increases (see
the graph in the inset), but is very small in magnitude and hence
have very little influence on the post-inflationary dynamics of the
Universe.
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FIG. 6. A magnified plot depicting ä=a turning negative near
the end of the inflationary paradigm, where a transition from
acceleration to deceleration takes place. In this context the exit
from inflation happened roughly when t ∼ 6 × 10−8 GeV−1.
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VI. CONCLUDING REMARKS

In this work we set out to explore the influence of the
Gauss-Bonnet term on the inflationary paradigm. In par-
ticular, even though the Gauss-Bonnet term alone in four
spacetime dimensions is topological in nature, a nontrivial
coupling of the same with the inflaton field can influence
the evolution of the Universe. To understand the effect of
the coupling of the Gauss-Bonnet term in some detail we
consider a particular scenario in which the self-interacting
potential for the inflaton field is absent. By solving the
associated field equations we could explicitly show that the
above model indeed exhibits an exponential expansion of
the Universe. Subsequently, using the reconstruction tech-
nique, we have been able to argue that the Gauss-Bonnet
term coupled with a scalar field can indeed drive the
inflation of the Universe, while also providing an exit.
The above model turned out to be consistent with current
observations as well. However, the scalar coupled Gauss-
Bonnet term encounters difficulty when one considers
evolution of tensor perturbations and in general circum-
stances we have been able to demonstrate that it will always
be unstable. This motivates us to introduce the self-
interacting potential for the scalar field. Unlike the results
derived in the earlier literature, here we have considered
the effect of the Gauss-Bonnet invariant as well as the scalar

potential on the inflationary paradigm. Having derived the
initial accelerating phase and the final decelerating phase
we have interpolated the behavior of the Hubble parameter,
the scalar field and the potential between these two phases
numerically. It turns out that in both these contexts, with or
without the potential, the scalar coupling to the Gauss-
Bonnet term gradually decreases to small and constant
value as the Universe exits from inflation. Thus, after the
Universe exits from inflation, the Gauss-Bonnet term has
negligible influence on the dynamics of the Universe.
Hence as the inflation ends the scalar coupled Gauss-
Bonnet term goes out of the dynamical picture, such that
afterwards the evolution of the Universe is governed by the
Einstein term alone.
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