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We examine the class of initial conditions that give rise to inflation. Our analysis is carried out for several
popular models including Higgs inflation, Starobinsky inflation, chaotic inflation, axion-monodromy
inflation, and noncanonical inflation. In each case we determine the set of initial conditions that give rise to
sufficient inflation, with at least 60 e-foldings. A phase-space analysis is performed for each of these
models and the effect of the initial inflationary energy scale on inflation is studied numerically. This paper
discusses two scenarios of Higgs inflation: (i) the Higgs is coupled to the scalar curvature, and (ii) the Higgs
Lagrangian contains a noncanonical kinetic term. In both cases we find Higgs inflation to be very robust
since it can arise for a large class of initial conditions. One of the central results of our analysis is that, for
plateau-like potentials associated with the Higgs and Starobinsky models, inflation can be realized even for
initial scalar field values that lie close to the minimum of the potential. This dispels a misconception related
to plateau potentials prevailing in the literature. We also find that inflation in all models is more robust for
larger values of the initial energy scale.
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I. INTRODUCTION

Since its inception in the early 1980s, the inflationary
scenario has emerged as a popular paradigm for describing
the physics of the very early Universe [1–5]. A major
reason for the success of the inflationary scenario is that, in
tandem with explaining many observational features of our
Universe—including its homogeneity, isotropy, and spatial
flatness—it can also account for the existence of galaxies,
via the mechanism of tiny initial (quantum) fluctuations
which are subsequently amplified through gravitational
instability [6–9].
An important issue that needs to be addressed by a

successful model of inflation is whether the Universe can
inflate starting from a sufficiently large class of initial
conditions. This issue was affirmatively answered for
chaotic inflation in Refs. [10,11]. Since then, the inventory
of inflationary models has rapidly increased. In this paper
we attempt to generalize the analysis of Refs. [10,11] to
other popular inflationary models, including Higgs infla-
tion, Starobinsky inflation, etc., emphasizing the distinction
between power-law potentials and asymptotically flat
“plateau-like” potentials. As we will show, our results

for asymptotically flat potentials do not provide support to
the “unlikeliness problem” raised in Ref. [12].1

Our paper is organized as follows. We introduce our
method of analysis in Sec. II. Section III discusses power-
law potentials and includes chaotic inflation and mono-
dromy inflation. Section IV discusses Higgs inflation in the
context of both the nonminimal as well as the noncanonical
framework.2 Section V is devoted to Starobinsky inflation.
Our results are presented in Sec. VI.
We work in the units c;ℏ ¼ 1 and the reduced Planck

mass is assumed to be mp ¼ 1ffiffiffiffiffiffi
8πG

p . The metric signature is

ð−;þ;þ;þÞ. For simplicity we assume that the preinfla-
tionary patch which resulted in inflation was homogeneous,
isotropic, and spatially flat. An examination of inflation
within a more general cosmological setting can be found
in Ref. [15].

II. METHODOLOGY

The action for a scalar field that couples minimally to
gravity has the following general form:

S½ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LðF;ϕÞ; ð1Þ
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1See Ref. [13] for an analysis of other problems with plateau-
like potentials raised in Ref. [12].

2As pointed out in Ref. [14], noncanonical scalars permit the
Higgs field to play the role of the inflaton.
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where the Lagrangian density Lðϕ; FÞ is a function of the
field ϕ and the kinetic term

F ¼ 1

2
∂μϕ∂μϕ: ð2Þ

Varying Eq. (1) with respect to ϕ results in the equation of
motion

∂L
∂ϕ −

�
1ffiffiffiffiffiffi−gp

�
∂μ

� ffiffiffiffiffiffi
−g

p ∂L
∂ð∂μϕÞ

�
¼ 0: ð3Þ

The energy-momentum tensor associated with the scalar
field is

Tμν ¼
�∂L
∂F

�
ð∂μϕ∂νϕÞ − gμνL: ð4Þ

Specializing to a spatially flat Friedmann-Robertson-
Walker (FRW) universe and a homogeneous scalar field,
one gets

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð5Þ

Tμ
ν ¼ diagð−ρϕ; pϕ; pϕ; pϕÞ; ð6Þ

where the energy density ρϕ and pressure pϕ are given by

ρϕ ¼
�∂L
∂F

�
ð2FÞ − L; ð7Þ

pϕ ¼ L; ð8Þ

and F ¼ −ðϕ̇2=2Þ. The evolution of the scale factor aðtÞ is
governed by the Friedmann equations:

�
ȧ
a

�
2

¼
�
8πG
3

�
ρϕ; ð9Þ

ä
a
¼ −

�
4πG
3

�
ðρϕ þ 3pϕÞ; ð10Þ

where ρϕ satisfies the conservation equation

ρ̇ϕ ¼ −3Hðρϕ þ pϕÞ; H ≡ ȧ
a
: ð11Þ

For a canonical scalar field

LðF;ϕÞ ¼ −F − VðϕÞ; ð12Þ

Substituting Eq. (12) into Eqs. (7) and (8), we find

ρϕ ¼ 1

2
ϕ̇2 þ VðϕÞ; pϕ ¼ 1

2
ϕ̇2 − VðϕÞ: ð13Þ

Consequently, the two Friedmann equations (9) and (10)
become

H2 ¼ 8πG
3

�
1

2
ϕ̇2 þ VðϕÞ

�
; ð14Þ

ä
a
¼ −

8πG
3

½ϕ̇2 − VðϕÞ�: ð15Þ

Noting that Ḣ þH2 ¼ ä=a, one finds Ḣ ¼ −4πGϕ̇2 < 0,
which informs us that the expansion rate is a monotonically
decreasing function of time for canonical scalar fields that
couple minimally to gravity. The scalar field equation of
motion follows from Eq. (3),

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0: ð16Þ

Within the context of inflation, a scalar field rolling down
its potential is usually associated with the Hubble slow-roll
parameters [5]

ϵH ¼ 2m2
p

�
H0ðϕÞ
HðϕÞ

�
2

; ηH ¼ 2m2
p
H00ðϕÞ
HðϕÞ ð17Þ

and the potential slow-roll parameters [5]

ϵ ¼ m2
p

2

�
V 0

V

�
2

; η ¼ m2
p
V 00

V
: ð18Þ

For small values of these parameters ϵH ≪ 1, ηH ≪ 1, one
finds ϵH ≃ ϵ and ηH ≃ η − ϵ. The expression for ϵH in
Eq. (17) can be rewritten as ϵH ¼ − Ḣ

H2, which implies that
the universe accelerates (ä > 0) when ϵH < 1. For the
scalar field models discussed in this paper Ḣ ¼ −4πGϕ̇2,
so that ϵH ¼ 4πGϕ̇2=H2, which reduces to ϵH ≃ 3

2
ϕ̇2=V

when ϕ̇2 ≪ V.
The slow-roll parameters play an important role in

determining the spectral index of scalar perturbations,
since3 nS − 1 ¼ −6ϵþ 2η. Observations indicate that nS ≃
0.97 [16], which suggests that ϵ; η ≪ 1 on scales associated
with the present cosmological horizon. The fact that ϵ, η are
required to be rather small might appear to imply that
successful inflation can only arise under a very restricted
set of initial conditions, namely, those for which
ϕ̇2=VðϕÞ ≪ 1. This need not necessarily be the case. As
originally demonstrated in the context of chaotic inflation
[10,11], a scalar field rolling down a power-law potential
can arrive at the attractor trajectory ϵ; η ≪ 1 from a very
wide range of initial conditions. In this paper we shall
apply the methods developed in Refs. [10,11,17] to several
inflationary models with power-law and plateau-like

3Here, nS − 1≡ d lnPS
d ln k , where PS is the power spectrum of

scalar curvature perturbations.
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potentials in order to assess the impact of initial conditions
on these models.
In addition to the field equations developed earlier, we

will find it convenient to work with the parameter

Ne ¼ log
aðtendÞ
aðtinitialÞ

¼
Z

te

ti

Hdt≡ −
Z

ϕ

ϕe

�
H

ϕ̇

�
dϕ; ð19Þ

which describes the number of inflationary e-foldings since
the onset of inflation. For our purpose it will also be
instructive to rewrite the Friedman equation (14) as

R2 ¼ X2 þ Y2; ð20Þ
where

R¼
ffiffiffi
6

p H
mp

; X¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp
m2

p
; Y¼ 1

m2
p

dϕ
dt

; ð21Þ

where ϕ̂ ¼ ϕ
jϕj is the sign of ϕ (this definition ensures that X

and ϕ have the same sign). Clearly, by holding R fixed and
varying X and Y, one arrives at a set of initial conditions
that satisfy the constraint equation (20) defining the
boundary of a circle of radius R. Adequate inflation is
then qualified by the range of initial values of X and Y for
which the universe inflates by at least 60 e-foldings,
i.e., Ne ≥ 60.
We begin our discussion of inflationary models by an

analysis of power-law potentials which are usually asso-
ciated with chaotic inflation [11,18].

III. INFLATION WITH POWER-LAW
POTENTIALS

A. Chaotic inflation

We first consider the potential [18]

VðϕÞ ¼ 1

2
m2ϕ2; ð22Þ

where m ≃ 5.97 × 10−6mp is assumed, in agreement with
observations of the cosmic microwave background (CMB)
[16,19] (see Appendix A). The generality of this model is
studied by plotting the phase-space diagram (Y vs X) and
determining the region of initial conditions which gives rise
toNe ≥ 60. Equations (15), (16), and (19) have been solved
numerically for different initial energy scales Hi. The
phase-space diagram corresponding to Hi ¼ 3 × 10−3mp

is shown in Fig. 1.
To study the effect of different energy scales on inflation,

we take different values of R (≡ ffiffiffi
6

p
Hi=mp) and determine

the range of initial values of ϕ that lead to adequate inflation
with Ne ≥ 60. [The initial value of ϕ̇ is conveniently
determined from the consistency relation (20).] Our results
are summarized in Fig. 3. The solid blue lines correspond to
initial values, ϕi, which always result in adequate inflation

(irrespective of the sign of ϕ̇i). The dashed red lines
corresponding to ϕi ∈ ½−ϕB;−ϕA� ∪ ½ϕA;ϕB� result in
adequate inflation only when ϕ̇i points in the direction of
increasing VðϕÞ (represented by blue arrows). Inadequate
inflation is associated with the region ϕi ∈ ½−ϕA;ϕA�. If the
initial scalar field value falls within this region then one
does not get adequate inflation irrespective of the sign
of ϕ̇i. This region is shown in Fig. 3 by the solid red line.
The dependence ofϕA andϕB on the initial energy scaleHi is
given in Table I.
To determine the fraction of initial conditions that do not

lead to adequate inflation (we call this the “degree of
inadequate inflation”), we consider a uniform measure on
the distribution of initial conditions for Yið≡ϕ̇iÞ and
Xið≡ϕ̂i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕiÞ

p Þ. These initial conditions are described
by a circle of circumference l ¼ 2πR with R ¼ ffiffiffi

6
p

Hi (in
Planck units), which is illustrated in Fig. 4. The degree of
inadequate inflation and marginally adequate inflation
(corresponding, respectively, to ϕA and ϕB in Fig. 3) is
2 ΔlA

l and 2 ΔlB
l , where ΔlA and ΔlB are illustrated in Fig. 4.

FIG. 1. This figure illustrates the phase-space of chaotic
inflation described by the potential (22). Y (¼ ϕ̇) is plotted
against X (¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

) for different initial conditions, all of
which begin on the circumference of a circle (blue) with radius
R ¼ ffiffiffi

6
p

Hi=mp corresponding to the initial energy scale

Hi ¼ 3 × 10−3mp. (ϕ̂ ¼ ϕ
jϕj is the sign of field ϕ.) One finds

that, beginning from the circle, the different inflationary trajec-
tories rapidly converge towards one of the two inflationary
separatrices (green horizontal lines). After this, the scalar field
moves towards the minimum of the potential VðϕÞ at X ¼ 0,
Y ¼ 0. The thin vertical central band (red) corresponds to the
region in phase space that does not lead to adequate inflation
(Ne < 60). This central region is shown greatly magnified in
Fig. 2.
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The dependence of ϕA, ϕB and ΔlA
l ,

ΔlB
l on the beginning

scale of inflation is shown in Table I. We see that the
fraction of initial conditions that lead to inadequate
inflation, 2 ΔlA

l , decreases with an increase in the initial
energy scale Hi. This result is also illustrated in Figs. 11(a)
and 11(b) where we compare chaotic inflation with
monodromy inflation.

B. Monodromy inflation

A straightforward extension of chaotic inflation, called
axion-monodromy inflation, was discussed in Refs. [20,21]
in the context of string theory4 and tested against the CMB
in Refs. [16,25]. The potential for monodromy inflation,
which contains a monomial term along with axionic
sinusoidal modulations, is given by

VðϕÞ ¼ V0

���� ϕ

mp

����p þ Λ4

�
cos

ϕ

f
− 1

�
ð23Þ

for 0 < p ≤ 1, where f is the axion decay constant while
Λ is the scale corresponding to nonperturbative effects. In
this paper our focus will be on two values of p, namely,
p ¼ 1; 2

3
. (However, our methods are very general and

easily carry over to other values of p.)
Demanding the monotonicity of the potential (23),

one gets

b

���� ϕ

mp

����1−p sinϕf < 1; ð24Þ

where b ¼ 1
p
Λ4

V0

mp

f . Since p ≤ 1 and the observable period
of inflation corresponds to ϕ > mp, the monotonicity
condition (24) implies b < 1. Furthermore, for b < 1
observational constraints [25] from the CMB (combined
with microphysical constraints from string theory) require
b ≪ 1 and f ≪ mp. This implies that the amplitude of

modulation Λ4 ¼ V0
f
mp

bp is much smaller than the mono-

mial term, i.e., Λ4 ≪ V0. In other words, the sinusoidal
axionic term has a negligible effect on the background
dynamics so that, in an analysis of inflation, one can safely
approximate the potential by its monomial term, namely,5

VðϕÞ ¼ V0

���� ϕ

mp

����p: ð25Þ

FIG. 3. Initial field values ϕi that lead to adequate inflation with
Ne ≥ 60 (blue), marginally adequate inflation (dashed red), and
inadequate inflation (red) are schematically shown for chaotic
inflation [Eq. (22)]. The blue lines represent regions of adequate
inflation. Initial values of ϕi lying in the blue region result in
adequate inflation irrespective of the sign of ϕ̇i. The red lines are
either dashed or solid and correspond to the following two
possibilities. (i) The solid red line represents initial values of ϕi
for which inflation is never adequate irrespective of the direction
of ϕ̇i. (ii) In the region shown by the dashed red line one gets
adequate inflation only when ϕ̇i is directed towards increasing
values of VðϕÞ (shown by blue arrows). Note that only a small
portion of the full potential is shown in this figure which
corresponds to the initial energy scale Hi ¼ 3 × 10−3mp.

FIG. 2. A zoomed-in view of the central region of Fig. 1. Note
that ϕ̂ ¼ ϕ

jϕj gives the sign of ϕ. Inflationary trajectories (black)
corresponding to different initial values of ϕ and ϕ̇ first converge
onto the slow-roll inflationary separatrices (green horizontal
lines) before spiraling towards the center.

4See Refs. [22–24] for a field-theory analogue of monodromy
inflation.

5Note that for b ≥ 1, the monodromy potential (23) can have
quite complicated but interesting features. However, in this work
we shall confine ourselves to the case b < 1 as discussed in
Refs. [16,25].
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It is important to mention that for p ≤ 1 the potentials (23)
as well as Eq. (25) are not differentiable at the origin. This
might lead to problems when ϕ rapidly oscillates around
ϕ ¼ 0 after the end of inflation at ϕ ¼ ϕend. We circumvent
this problem with the following useful generalization6 of
Eq. (25):

VðϕÞ ¼ V1

���� ϕϕc

����pWðϕÞ; ð26Þ

where WðϕÞ ¼ ½1þ ðϕc
ϕ Þn�

p−2
n , V1 ¼ V0ðϕc=mpÞp, and

n > 1 is an integer (we assume n ¼ 4 in the ensuing
analysis). In this expression the value of ϕc is chosen so
that VðϕÞ ∼ jϕjp for jϕj ≫ jϕcj, whereas VðϕÞ ∼ ϕ2 for
jϕj ≪ jϕcj. It is well known that inflation ends when the
slow-roll parameter ϵ in Eq. (18) grows to unity. Substituting
Eq. (25) into Eq. (18) and setting ϵ ≃ 1, one finds ϕend ¼
pffiffi
2

p mp which can be used as a reference to set a value for ϕc,

namely, ϕc ≪ ϕend. One should note that the monomial parts
of the actual potentials of axion-monodromy inflation for
p ¼ 1; 2

3
do not have cusps at the origin. For example, for

p ¼ 1 the monomial term has the form [21] VðϕÞ ¼
V0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ=mpÞ2 þ ðϕc=mpÞ2

q
− ðϕc=mpÞ

	
which displays

smooth quadratic behavior near ϕ ¼ 0. Likewise, for a
general value of the monodromy parameter p, it is

FIG. 5. This figure shows a portion of the phase space of
monodromy inflation V ∝ jϕj. The variable Y (¼ ϕ̇) is plotted
against X (¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

). (ϕ̂ ¼ ϕ
jϕj is the sign of field ϕ.) The

initial conditions are specified on arcs which form the blue
colored boundary. Note that these arcs correspond to a very small
portion of the full “initial conditions” circle R, and therefore
appear to be straight lines. In this analysis we assume
R ¼ ffiffiffi

6
p

Hi=mp, with Hi ¼ 3 × 10−3mp. We find that, beginning
at the boundary, most solutions quickly converge to the two slow-
roll inflationary separatrices (green horizontal lines) before
traveling to the origin where fϕ̇;ϕg ¼ f0; 0g. A zoomed-in view
of the central portion of this figure is shown in Fig. 6.

TABLE I. Dependence of ϕA, ϕB,
ΔlA
l , and

ΔlB
l on the initial

energy scale Hi for quadratic chaotic inflation; see Fig. 4. Here
l ¼ 2πR≡ 2π

ffiffiffi
6

p
Hi=mp. Note that the fraction of initial condi-

tions that lead to inadequate inflation, 2 ΔlA
l , decreases as Hi is

increased. The same is true for the fraction of initial conditions
giving rise to marginally adequate inflation, 2 ΔlB

l . The fraction of
initial conditions leading to adequate inflation, with Ne ≥ 60, is
given by 1 − 2 ΔlB

l . Thus inflation proves to be more general for
larger values of the initial energy scale Hi, since a larger initial
region in phase space gives rise to adequate inflationwithNe ≥ 60.

Hi (in mp) ϕA (in mp) ϕB (in mp) 2 ΔlA
l 2 ΔlB

l

3 × 10−3 11.22 19.55 5.80 × 10−3 1.01 × 10−2

3 × 10−2 9.33 21.38 4.83 × 10−4 1.11 × 10−3

3 × 10−1 7.47 23.27 3.86 × 10−5 1.20 × 10−4

FIG. 4. This figure illustrates how one can determine the degree
of adequate/inadequate inflation for power-law potentials char-
acterizing chaotic inflation and monodromy inflation. The
fraction of initial conditions (corresponding to ϕA and ϕB in
Fig. 3) that leads either to inadequate inflation or marginally
adequate inflation is given by 2 ΔlA

l and 2 ΔlB
l , respectively, where

l ¼ 2πR. Adequate inflation with Ne ≥ 60 is described by the
fraction 1 − 2 ΔlB

l (ϕ̂ ¼ ϕ
jϕj is the sign of field ϕ).

6See Ref. [26] for a similar modification of Eq. (25).
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convenient to modify the potential around ϕ ¼ 0 without
changing any of the results for the background dynamics, as
done in Ref. [26]. Our introduction of a smoothing kernelW
in Eq. (26) follows a similar line of reasoning. It is important
to emphasize that our results are quite insensitive to the
values of n and ϕc in Eq. (26) provided ϕc ≪ ϕend
and n > 1.
Next, we proceed with a generality analysis for

p ¼ 1 which will be followed by a similar analysis
for p ¼ 2=3.

C. Linear monodromy inflation

Consider first the linear potential

VðϕÞ ¼ V0

���� ϕ

mp

����; ð27Þ

where V0 ≃ 1.97 × 10−10m4
p is in agreement with the CMB

[16] (see Appendix A). The phase-space diagram for this
potential, shown in Fig. 5, was obtained by solving
Eqs. (15), (16), (19), and (27) numerically for the initial
energy scale Hi ¼ 3 × 10−3mp.
Initial values of ϕ that lead to adequate or inadequate

inflation are schematically shown in Fig. 7. Inadequate
inflation arises when the scalar field originates in the region
ϕi ∈ ½−ϕA;ϕA�, shown by the solid red line. Blue lines
represent initial field values ϕi ∈ ð−ϕm;−ϕBÞ ∪ ðϕB;ϕmÞ,
which always result in adequate inflation. Note that ϕm is
the maximum allowed value of ϕi for a given initial energy

scale, as determined from the consistency equations (14)
and (20). Initial conditions ϕi ∈ ½−ϕB;−ϕA� ∪ ½ϕA;ϕB�,
shown by dashed red lines, lead to adequate inflation only
when ϕ̇i points in the direction (shown by blue arrows) of

FIG. 6. A zoomed-in view of the phase space of monodromy
inflation with V ∝ jϕj. Note that scalar field trajectories initially
converge towards the slow-roll inflationary separatrices (hori-
zontal green lines), moving from there towards ϕ ¼ 0, where the
field oscillates.

TABLE II. Dependence of ϕA, ϕB,
ΔlA
l , and

ΔlB
l on the initial

energy scale Hi for monodromy inflation V ∝ jϕj. Here l ¼
2πR≡ 2π

ffiffiffi
6

p
Hi=mp and ΔlA

l ,
ΔlB
l were defined in Fig. 4. Note that

the fraction of initial conditions that lead to inadequate inflation,
2 ΔlA

l , decreases as Hi is increased. The same is true for the
fraction of initial conditions giving rise to marginally adequate
inflation, 2 ΔlB

l . The fraction of initial conditions leading to

adequate inflation, with Ne ≥ 60, is given by 1 − 2 ΔlB
l . Thus

inflation proves to be more general for larger values of the initial
energy scale Hi, since a larger initial region in phase space gives
rise to adequate inflation with Ne ≥ 60.

Hi (in mp) ϕA (in mp) ϕB (in mp) 2 ΔlA
l 2 ΔlB

l

3 × 10−3 6.45 15.29 4.37 × 10−3 6.73 × 10−3

3 × 10−2 4.58 17.18 3.68 × 10−4 7.13 × 10−4

3 × 10−1 2.69 19.06 2.84 × 10−5 7.51 × 10−5

FIG. 7. This figure schematically shows initial field values that
result in adequate inflation with Ne ≥ 60 (blue), marginally
adequate inflation (dashed red), and inadequate inflation (red)
for the monodromy potential V ∝ jϕj. The initial energy scale is
Hi ¼ 3 × 10−3mp. As earlier, blue lines represent regions of
adequate inflation. The red lines are either dashed or solid and
correspond to the two possible initial directions of ϕ̇. The solid red
line represents initial values of ϕ for which inflation is never
adequate irrespective of the direction of ϕ̇i. In the region shown by
the dashed line one gets adequate inflation only when ϕ̇i points in
the direction (shown by blue arrows) of increasing VðϕÞ. Note that
only a small portion of the full potential is shown in this figure.
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increasing VðϕÞ. The dependence of ϕA and ϕB on the
initial energy scale Hi is shown in Table II.

The values of 2 ΔlA
l and 2 ΔlB

l in Table II have been
determined by assuming a uniform distribution of initial
values of Y ¼ ϕ̇ and X ¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

on the circular
boundary (20). We find that 2 ΔlA

l and 2 ΔlB
l decrease with

an increase in Hi, as expected.

D. Fractional monodromy inflation

Next we consider

VðϕÞ ¼ V0

���� ϕ

mp

����
2
3

; ð28Þ

where CMB constraints imply V0 ¼ 3.34 × 10−10m4
p [16]

(see Appendix A). The phase-space diagram for this
potential, shown in Fig. 8, was obtained by solving
Eqs. (15), (16), and (19) numerically for the initial energy
scale Hi ¼ 3 × 10−3mp.

FIG. 8. This figure shows a portion of the phase space of
monodromy inflation with V ∝ jϕj2=3. The variable Y (¼ ϕ̇) is
plotted against X (¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

). (ϕ̂ ¼ ϕ
jϕj is the sign of field ϕ.)

Initial conditions are specified on arcs which form the blue
colored boundary. Note that since these arcs correspond to a
very small portion of the full “initial conditions” circle R,
they appear to be straight lines. As in the previous analysis
for chaotic inflation we again assume R ¼ ffiffiffi

6
p

Hi=mp, with Hi ¼
3 × 10−3mp. One finds that, beginning at the boundary, most
solutions quickly converge to the two slow-roll inflationary
separatrices (green horizontal lines) before traveling to the origin
where fϕ̇;ϕg ¼ f0; 0g. A zoomed-in view of the central portion
of this figure is shown in Fig. 9.

FIG. 9. A zoomed-in view of the phase space of monodromy
inflation with V ∝ jϕj2=3. One notes that the motion of the scalar
field is initially towards the slow-roll inflationary separatrices
(horizontal green lines) and from there towards ϕ ¼ 0, where the
field oscillates.

FIG. 10. This figure schematically shows initial field values
which result in adequate inflation with Ne ≥ 60 (blue), marginally
adequate inflation (dashed red), and inadequate inflation (red) for
the monodromy potential (28). The initial energy scale is
Hi ¼ 3 × 10−3mp. As earlier, blue lines represent regions of
adequate inflation. The red lines are either dashed or solid and
correspond to the two possible initial directions of ϕ̇. The solid red
line represents initial values of ϕ for which inflation is never
adequate irrespective of the direction of ϕ̇i. In the region shown by
the dashed red line one gets adequate inflation only when ϕ̇i points
in the direction (shown by blue arrows) of increasing VðϕÞ. Note
that only a small portion of the full potential is shown in this figure.
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Initial values of ϕ that lead to adequate or inadequate
inflation are schematically shown in Fig. 10. Inadequate
inflation arises when the scalar field originates in the region
ϕi ∈ ½−ϕA;ϕA�, shown by solid red lines. Blue lines re-
present initial field values ϕi ∈ ð−ϕm;−ϕBÞ ∪ ðϕB;ϕmÞ,
which always result in adequate inflation. Note that ϕm is
the maximum allowed value of ϕ for a given initial energy
scale, as determined from the consistency equations (14) and
(20). The initial conditions ϕi ∈ ½−ϕB;−ϕA� ∪ ½ϕA;ϕB�,
shown by dashed red lines, lead to adequate inflation only
when ϕ̇i points in the direction (shown by blue arrows) of
increasing VðϕÞ. We refer to this as marginally adequate

inflation. The dependence of ϕA and ϕB on the initial energy
scale Hi is shown in Table III.
As in the case of chaotic inflation, we determine the

fraction of initial conditions that do not lead to adequate
inflation (the degree of inadequate inflation) by assuming a
uniform distribution of initial values of Y ¼ ϕ̇ and X ¼
ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

on the circular boundary (14) and (20) with
VðϕÞ given by Eq. (28). Our results are given in Table III.
As was the case for quadratic chaotic inflation, we once
more find that ΔlA

l and ΔlB
l decrease with an increase in Hi;

see Table III, and Figs. 11(a) and 11(b).

E. Comparison of power-law potentials

In this subsection we compare the generality of inflation
for the power-law family of potentials, V ∝ jϕjp, by
plotting the fraction of initial conditions that do not
lead to adequate inflation (2 ΔlA

l and 2 ΔlB
l ) in Figs. 11(a)

and 11(b); also see Tables I–III. These figures demonstrate
that the set of initial conditions that give rise to adequate
inflation (with Ne ≥ 60) increases with the energy scale of
inflation, Hi. We also find that inflation is sourced by a
larger set of initial conditions for the monodromy potential
V ∝ jϕj23, which is followed by V ∝ jϕj and V ∝ ϕ2,
respectively. Finally, we draw attention to the fact that
our conclusions remain unchanged if we determine the
degree of inflation by a different measure such as ΔϕA

ϕmax
and

ΔϕB
ϕmax

, where ϕmax is the maximum allowed value of ϕ for a
given inflationary energy scale.

TABLE III. Dependence of ϕA, ϕB,
ΔlA
l , and

ΔlB
l on the initial

energy scale Hi for monodromy inflation with p ¼ 2
3
. Here l ¼

2πR≡ 2π
ffiffiffi
6

p
Hi=mp and ΔlA

l ,
ΔlB
l were defined in Fig. 4. Note that

the fraction of initial conditions that lead to inadequate inflation,
2 ΔlA

l , decreases as Hi is increased. The same is true for the
fraction of initial conditions giving rise to marginally adequate
inflation, 2 ΔlB

l . The fraction of initial conditions leading to

adequate inflation, with Ne ≥ 60, is given by 1 − 2 ΔlB
l . Thus

inflation proves to be more general for larger values of the initial
energy scale Hi, since a larger initial region in phase space gives
rise to adequate inflation with Ne ≥ 60.

Hi (in mp) ϕA (in mp) ϕB (in mp) 2 ΔlA
l 2 ΔlB

l

3 × 10−3 4.29 13.45 3.64 × 10−3 5.33 × 10−3

3 × 10−2 2.41 15.33 3.0 × 10−4 5.56 × 10−4

3 × 10−1 0.61 17.22 2.08 × 10−5 5.78 × 10−5

FIG. 11. This figure shows the fraction of initial conditions that lead to (a) inadequate inflation (2 ΔlA
l ) and (b) marginally adequate

inflation (2 ΔlB
l ) plotted against the initial energy scale of inflation Hi. For the definition of ΔlA

l and ΔlB
l , see Fig. 4. The red curve shows

results for V ∝ ϕ2 while the blue and green curves represent monodromy potentials with V ∝ jϕj; jϕj2=3, respectively. The decrease in
2 ΔlA

l and 2 ΔlB
l , which accompanies an increase in Hi, is indicative of the fact that the set of initial conditions that give rise to adequate

inflation (with Ne ≥ 60) increases with the energy scale of inflation, Hi. This figure also demonstrates that inflation is sourced by a
larger set of initial conditions for the monodromy potential V ∝ jϕj23, which is followed by V ∝ jϕj and finally V ∝ ϕ2.
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IV. HIGGS INFLATION

It would undoubtedly be interesting if inflation could be
realized within the context of the Standard Model (SM) of
particle physics. Since the SM has only a single scalar
degree of freedom, namely, the Higgs field, one can ask
whether the Higgs field (30) can source inflation.
Unfortunately, the self-interaction coupling of the Higgs
field [λ in Eq. (30)] is far too large to be consistent with the
small amplitude of scalar fluctuations observed in the
cosmic microwave background [16].
This situation can however be remedied if either of the

following possibilities is realized: (i) the Higgs couples
nonminimally to gravity, or (ii) the Higgs field is described
by a noncanonical Lagrangian.7

Indeed, as first demonstrated in Ref. [28], inflation can
be sourced by the SM Higgs potential if the Higgs field is
assumed to couple nonminimally to the Ricci scalar. The
resultant inflationary model provides a good fit to obser-
vations and has been extensively developed and examined
in Refs. [28–32]. A different means of sourcing inflation
through the Higgs field was discussed in Ref. [14] where it
was shown that the SMHiggs potential with a noncanonical
kinetic term fits the CMB data very well by accounting for
the currently observed values of the scalar spectral index nS
and the tensor-to-scalar ratio r. We shall proceed to study
Higgs inflation first in the nonminimal framework in
Sec. IVA, followed by the same in the noncanonical
framework in Sec. IV E.

A. Initial conditions for Higgs inflation in the
nonminimal framework

Inflation sourced by the SM Higgs boson was first
discussed in Ref. [28]. In this model the Higgs non-
minimally couples to gravity with a moderate value of
the nonminimal coupling8 [29,30]. The model does not
require an additional degree of freedom beyond the SM and
fits the observational data quite well [16]. Reheating after
inflation in this model has been studied in detail [30,31,33]
and quantum corrections to the potential at very high
energies have been shown to be small [32]. In this section
we assess the generality of Higgs inflation (in the Einstein
frame) and determine the range of initial conditions that
give rise to adequate inflation (with Ne ≥ 60) for a given
value of the initial energy scale.

B. Action for Higgs inflation

The action for a scalar field ϕ that couples nonminimally
to gravity (i.e., in the Jordan frame) is given by [28,29,34]

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðϕÞR −

1

2
gμν∂μϕ∂νϕ −UðϕÞ

�
; ð29Þ

where R is the Ricci scalar and gμν is the metric in the
Jordan frame. The potential for the SM Higgs field is
given by

UðϕÞ ¼ λ

4
ðϕ2 − σ2Þ2; ð30Þ

where σ is the vacuum expectation value of the Higgs field,

σ ¼ 246 GeV ¼ 1.1 × 10−16mp; ð31Þ

and the Higgs coupling constant has the value λ ¼ 0.1.
Furthermore,

fðϕÞ ¼ 1

2
ðm2 þ ξϕ2Þ; ð32Þ

where m is a mass parameter given by [34]

m2 ¼ m2
p − ξσ2:

ξ is the nonminimal coupling constant whose value

ξ ¼ 1.62 × 104 ð33Þ

agrees with observations [16] (see Appendix A). For the
above values9 of σ and ξ, one finds m ≃mp, so that

fðϕÞ ≃ 1

2
ðm2

p þ ξϕ2Þ ¼ m2
p

2

�
1þ ξϕ2

m2
p

�
: ð34Þ

We now transfer to the Einstein frame by means of the
following conformal transformation of the metric [34]:

gμν → ĝμν ¼ Ω2gμν; ð35Þ

where the conformal factor is given by

Ω2 ¼ 2

m2
p
fðϕÞ ¼ 1þ ξϕ2

m2
p
: ð36Þ

After the field redefinition ϕ → χ the action in the Einstein
frame is given by [34]

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
m2

p

2
R̂ −

1

2
ĝμν∂μχ∂νχ − VðχÞ

�
; ð37Þ

where

7Another means of reconciling the 1
4
λϕ4 (λ ∼ 0.1) potential

with observations is through a field derivative coupling with the
Einstein tensor of the form Gμν∂μ∂νϕ=M2. This approach has
been discussed in Ref. [27].

8The value of the dimensionless nonminimal coupling ξ ∼ 104,
though quite large, is much smaller than the ratio ðmp

MW
Þ2 ≃ 1034,

where MW ∼ 100 GeV is the electroweak scale.

9Note that the observed vacuum expectation value of the Higgs
field σ ¼ 1.1 × 10−16mp is much smaller than the energy scale of
inflation and hence we neglect it in our subsequent calculations.
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VðχÞ ¼ U½ϕðχÞ�
Ω4

ð38Þ

and

∂χ
∂ϕ ¼ � 1

Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2ϕ2

m2
p

s
: ð39Þ

Equation (37) describes general relativity in the presence of
a minimally coupled scalar field χ with the potential VðχÞ.
(The full derivation of the action in the Einstein frame is
given in Appendix B.)

C. Limiting cases of the potential
in the Einstein frame

From Eqs. (36) and (39) one finds the following
asymptotic forms for the potential (38) (for details see
Appendix C and Refs. [28,30]):
(1) For ϕ ≪

ffiffi
2
3

q
mp

ξ , one finds

χ¼�ϕ; VðχÞ≃ λ

4
χ4; jχj≪

ffiffiffi
2

3

r
mp

ξ
: ð40Þ

(2) For
ffiffi
2
3

q
mp

ξ ≪ ϕ ≪ mpffiffi
ξ

p ,

χ ¼ �
ffiffiffi
3

2

r
ξϕ2

mp
; VðχÞ ≃

�
λm2

p

6ξ2

�
χ2;

ffiffiffi
2

3

r
mp

ξ
≪ jχj ≪

ffiffiffi
3

2

r
mp: ð41Þ

(3) For ϕ ≫ mpffiffi
ξ

p ,

χ ¼ �
ffiffiffi
6

p
mp log

� ffiffiffi
ξ

p
ϕ

mp

�
;

VðχÞ ≃
λm4

p

4ξ2

ð1þ exp½−
ffiffi
2
3

q
jχj
mp
�Þ2

;

jχj ≫
ffiffiffi
3

2

r
mp: ð42Þ

A good analytical approximation to the potential which can
accommodate both Eqs. (41) and (42) is

VðχÞ ≃ V0

�
1 − exp

�
−

ffiffiffi
2

3

r
jχj
mp

��2

; jχj ≫
ffiffiffi
2

3

r
mp

ξ
;

ð43Þ

where V0 is given by (Appendix A)

V0 ¼
λm4

p

4ξ2
¼ 9.6 × 10−11m4

p: ð44Þ

D. Generality analysis of Higgs inflation
in the Einstein frame

As we have seen, Higgs inflation in the Einstein frame
can be described by a minimally coupled canonical scalar
field χ with a suitable potential VðχÞ. We have analyzed
two different limits of the potential VðχÞ which is asymp-
totically flat and has plateau-like arms for jχj ≫ 1. One
notes that when jχj → 0, VðχÞ has a tiny kink with
amplitude λ

4
σ4 ∼ 10−66m4

p. This kink is much smaller than
the maximum height of the potential and can be neglected
for all practical purposes. (This is simply a reflection of the
fact that the inflation energy scale is much larger than
the electroweak scale.) We have numerically evaluated the
potential defined in Eqs. (38) and (39) and compared it with
the approximate form given in Eq. (43); see Fig. 12. The
difference between the two potentials is shown in Fig. 13.
One finds that the maximum fractional difference between
the two potentials is only 0.16% which justifies the use of
Eq. (43) for further analysis.
During Higgs inflation, the slow-roll parameter is

given by

ϵ ¼ m2
p

2

�
1

V
dV
dχ

�
2

¼ 4

3

1�
exp

� ffiffi
2
3

q
jχj
mp

	
− 1

	
2
; ð45Þ

and since slow roll ends when ϵ ≃ 1, one finds

FIG. 12. This figure shows the potential for Higgs inflation (in
the Einstein frame) in units ofm4

p. The (solid) red curve shows the
numerically determined value of the potential from Eqs. (38) and
(39), while the (dashed) green curve shows the approximate

potential VðχÞ ¼ V0

�
1 − exp

h
−

ffiffi
2
3

q
jχj
mp

i	
2
. Clearly the approxi-

mate form matches the exact one very well.
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jχj ≃ 0.94mp ∼mp:

We study the generality of Higgs inflation in the Einstein
frame by plotting the phase-space diagram for the potential
(43) and determining the region of initial conditions that
lead to adequate inflation (i.e., Ne ≥ 60). Our results are
shown in Fig. 14 and a zoomed-in view is presented in
Fig. 15.
We see that the phase-space diagram for Higgs inflation

has very interesting properties. The asymptotically flat
arms result in robust inflation, as expected. However, it is
also possible to obtain adequate inflation if the inflaton
begins from χ ≃ 0. This is because the scalar field is able to
climb up the flat wings of VðχÞ. This property is illustrated
in Fig. 14 by lines originating in the central region, which
are slanted and hence can converge to the slow-roll infla-
tionary separatrices resulting in adequate inflation. This
feature is not shared by chaotic inflation where one cannot
obtain adequate inflation by starting from the origin
(provided the initial energy scale is not too large, i.e.,
Hi < mp.)
However, this does not imply that all possible initial

conditions lead to adequate inflation in the Higgs scenario.
As shown in Fig. 16, there is a small region of initial field
values denoted by jχAj < jχij < jχBj that does not lead to
adequate inflation if χi and χ̇i have opposite signs (dashed
red lines). By contrast, the solid blue lines in the same
figure show the region of χi that results in adequate
inflation independently of the direction of the initial
velocity χ̇i. The dependence of χA and χB on the initial

energy scale is shown in Table IV (also see Fig. 16). Note
the surprising fact that the value of χB − χA remains
virtually unchanged as Hi increases.
The results of Figs. 14, 15, and 16 lead us to conclude

that there is a region lying close to the origin of VðχÞ,
namely, χi ∈ ð−χA; χAÞ, where one gets adequate inflation
regardless of the direction of χ̇i. One might note that this
feature is absent in the power-law family of potentials
described in the previous section (compare Fig. 16 with
Figs. 3, 7, and 10). We therefore conclude that a wide range
of initial conditions can generate adequate inflation in the
Higgs case,10 which does not support some of the con-
clusions drawn in Ref. [12].

FIG. 13. This figure shows the absolute value of the difference
between the numerically determined Higgs potential (38)–(39)
and the approximate form (43). We see that the maximum
difference is near χ ∼mp and its fractional value is only 0.16%.

FIG. 14. This figure shows the phase space of Higgs inflation in
the Einstein frame. Y ¼ dχ=dt is plotted against X ¼ χ̂

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðχÞp

for the initial energy scale Hi ¼ 3 × 10−3mp. (χ̂ ¼ χ
jχj is the sign

of field χ.) We see that, beginning from a fixed initial energy
(shown by the blue boundary lines), most solutions rapidly
converge towards the two inflationary separatrices (horizontal
green lines) corresponding to slow-roll inflation. We therefore
find that inflation for the Higgs potential is remarkably general
and can begin from a very wide class of initial conditions. Note
that trajectories lying close to the origin, i.e., within the vertical
band marked by ð−XA; XAÞ, are strongly curved. This property
allows them to converge to the inflationary separatrices giving
rise to adequate inflation with Ne ≥ 60. It is interesting to
contrast this behavior with that of chaotic inflation, shown in
Fig. 1, for which there is a small region with inadequate inflation
near the center. Because of this property, the Higgs scenario
displays adequate inflation over a slightly larger range of initial
conditions when compared with chaotic inflation.

10See Refs. [35,36] for an analysis of classical and quantum
initial conditions for Higgs inflation.
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Finally, we would like to draw attention to the fact that
the phase-space analysis performed here for Higgs inflation
is likely to carry over to the T-model α-attractor potential
[37], since the two potentials are qualitatively very similar.

E. Initial conditions for Higgs inflation in the
noncanonical framework

The class of initial conditions leading to sufficient
inflation widens considerably if we choose to work with
scalar fields possessing a noncanonical kinetic term.
The Lagrangian for this class of models is [38]

Lðϕ; FÞ ¼ −F
�

F
M4

�
α−1

− VðϕÞ; ð46Þ

where F ¼ 1
2
∂μϕ∂μϕ,M has the dimensions of mass, and α

is a dimensionless parameter. The associated energy
density and pressure in a FRW universe are given by
[14,38]

ρϕ ¼ −ð2α − 1ÞF
�

F
M4

�
α−1

þ VðϕÞ; ð47Þ

pϕ ¼ −F
�

F
M4

�
α−1

− VðϕÞ; F ¼ −
1

2
ϕ̇2; ð48Þ

which reduce to the canonical forms ρϕ ¼ −F þ V; pϕ ¼
−F − V when α ¼ 1. The two Friedmann equations now
acquire the forms

H2 ¼ 8πG
3

�
−ð2α − 1ÞF

�
F
M4

�
α−1

þ VðϕÞ
�
; ð49Þ

ä
a
¼ −

8πG
3

�
−ðαþ 1ÞF

�
F
M4

�
α−1

− VðϕÞ
�
; ð50Þ

and the equation of motion of the scalar field becomes

ϕ̈þ 3

2α − 1
Hϕ̇þ

�
V 0ðϕÞ

αð2α − 1Þ
��

2M4

ϕ̇2

�
α−1

¼ 0; ð51Þ

which reduces to Eq. (16) when α ¼ 1.

TABLE IV. Dependence of χA and χB on the initial energy scale
Hi for Higgs inflation (also see Fig. 16).

Hi (in mp) χA (in mp) χB (in mp) χB − χA (in mp)

3 × 10−3 0.28 11.11 10.83
3 × 10−2 2.16 12.99 10.83
3 × 10−1 4.04 14.87 10.83

FIG. 15. A zoomed-in view of the central region in Fig. 14. We
see that most trajectories (associated with different initial con-
ditions) initially converge towards the horizontal slow-roll infla-
tionary separatrices (green lines) before spiraling in towards the
center. (The spiral reflects oscillations of the inflaton about the
minimum of its potential.)

FIG. 16. This figure shows initial field values χi that either lead
to adequate inflation (solid blue lines) or partially adequate
inflation (dashed red lines). The region corresponding to χi ∈
½−χB;−χA� ∪ ½χA; χB� (dashed red) leads to partially adequate
inflation. Initial field values originating in this region result in
inadequate inflation only when χ̇i is directed towards decreasing
values of VðχÞ. The alternative case, with χ̇i directed towards
increasing VðχÞ, leads to adequate inflation for the same subset
χi ∈ ½−χB;−χA� ∪ ½χA; χB�. This figure is shown for an initial
energy scale Hi ¼ 3 × 10−3mp. The precise values of χA and χB
depend on the initial energy scale Hi, as shown in Table IV. Note
that only a small portion of the full potential is shown in this
figure.
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Before discussing Higgs inflation in the noncanonical
framework, we first examine the inflationary slow-roll
parameter ϵnc which, for noncanonical inflation, is given
by [14]

ϵnc ¼
�
1

α

� 1
2α−1

�
3M4

V

� α−1
2α−1ðϵcÞ α

2α−1; ð52Þ

where ϵc is the canonical slow-roll parameter (18). Note
that ϵnc < ϵc for 3M4 ≪ V. This suggests that for a fixed

potential V, the duration of inflation can be enhanced
relative to the canonical case (α ¼ 1) by a suitable choice
of M.

1. The higgs potential

It is well known that the standard model Higgs boson,
when coupled minimally to gravity, cannot provide a
working model of inflation due to the large value of the
coupling constant, λ ≃ 0.1, in the potential

VðϕÞ ¼ λ

4
ðϕ2 − σ2Þ2; ð53Þ

where σ is the vacuum expectation value of the Higgs field
(31). Indeed, λ ≃ 0.1 is many orders of magnitude larger
than the CMB-constrained value λc ≃ 1.43 × 10−13 in the
canonical framework (see Appendix A). Additionally, the
potential (53) gives too small a value for the inflationary
scalar spectral index nS and too large a value for the tensor-
to-scalar ratio r, to be in accord with observations.
However, the situation changes when one examines

the potential (53) in the noncanonical framework. The
expression for the inflationary scalar spectral index now
becomes [14]

nS ¼ 1 −
�

γ þ 4

Neγ þ 2

�
; ð54Þ

where

γ ≡ 2ð3α − 2Þ
2α − 1

: ð55Þ

Since γ increases from γ ¼ 2 for α ¼ 1 to γ ¼ 3 for α ≫ 1,
the scalar spectral index increases from the canonical value
nS ¼ 0.951 (α ¼ 1; Ne ¼ 60) to nS ¼ 0.962 in noncanoni-
cal models (with α ≫ 1).

(a) (b)

FIG. 17. This figure shows (a) the scalar spectral index nS and (b) the tensor-to-scalar ratio r as functions of the noncanonical
parameter α and described, respectively, by Eqs. (54) and (56). Three values of the number of e-foldings, Ne ¼ 50, 55, and 60, are
chosen. One finds that larger values of α result in higher values of nS and lower values of r. The black dot in both figures indicates the
value of α, and the corresponding values of nS and r, used in our subsequent analysis.

FIG. 18. This figure illustrates the relation between the non-
canonical parametersM and α, given by Eq. (57), which results in
the self-coupling value λ ¼ 0.1 in Eq. (53). Results for three
different e-folding values Ne ¼ 50, 55, 60 are shown. The green
dot indicates the values of M and α that are used in our
subsequent analysis.
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Similarly, one can show that the tensor-to-scalar ratio
declines in noncanonical models. For the Higgs potential
one gets [14]

r ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p
��

32

Neγ þ 2

�
; ð56Þ

which demonstrates that the value of r decreases with an
increase in the noncanonical parameter α. Figure 17 shows
nS and r plotted as functions of α. One finds that
nS ≃ 0.96, r < 0.1 for α ≥ 3, which agrees well with
CMB observations.
The relation between the value of the Higgs self-

coupling λ ≃ 0.1 in the noncanonical framework and the
corresponding canonical value λc is given by [14]

λ¼4

�
32λcðNeþ1Þ3ffiffiffiffiffiffiffiffiffiffiffiffi

2α−1
p

�
α

4

�
1

6

m4
p

M4

�
α−1

� 2
3α−2

�
1

Neγþ2

�γþ4
γ

�3α−2
α

;

ð57Þ

where consistency with CMB observations suggests
λc ∼ 10−13.
Figure 18 describes the values of the noncanonical

parameters α and M that yield λ ≃ 0.1 in Eq. (53)—the
relation between M and α being provided by Eq. (57). In
our subsequent analysis we choose α ¼ 5 for simplicity.
This is shown by the black dot in Figs. 17(a) and 17(b).
(The corresponding value of M is shown by the green dot
in Fig. 18.)
As in the case of canonical scalar fields (20), one can

rewrite the Friedman equation for noncanonical scalars (49)
as follows:

R2 ¼ Y2
nc þ X2; ð58Þ

where

R ¼
ffiffiffi
6

p H
mp

; X ¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp
m2

p
;

Ync ¼
�
2ð2α − 1Þ

�
−

F
m4

p

��
F
M4

�
α−1

�
1=2

: ð59Þ

Therefore, by beginning at some initial value of R
(≡ ffiffiffi

6
p

H=mp) one can set different initial conditions by
varying X and Ync. Since X and Ync satisfy the constraint
equation (58), they lie on the boundary of a circle.
We probe the robustness of this model to initial con-

ditions by plotting its phase-space diagram (Ync vs X) and
determining the region of initial conditions that give rise to
adequate inflation (Ne ≥ 60) for values of M and α that
satisfy CMB constraints (shown by the green dot in
Fig. 18). The phase-space diagram corresponding to an
initial energy scale Hi ¼ 3 × 10−3mp is shown in Fig. 19.

The fraction of initial conditions that give rise to
inadequate inflation (2ΔlAl ) and partially adequate inflation
(2ΔlBl ) are shown in Table V. (As earlier, a uniform
distribution of X and Ync on the boundary of initial
conditions has been assumed.) From this table one finds
that the values of ϕA and ϕB associated with an initial
energy scaleHi are much smaller than their counterparts for
canonical inflation [see Figs. 20(a), 20(b), and 21]. This is a

TABLE V. Dependence of ϕA, ϕB,
ΔlA
l , and

ΔlB
l on the initial

energy scale Hi for noncanonical Higgs inflation. Here l ¼
2πR≡ 2π

ffiffiffi
6

p
Hi=mp.

Hi (in mp) ϕA (in mp) ϕB (in mp) 2 ΔlA
l 2 ΔlB

l

3 × 10−3 8.74 × 10−3 9.07 × 10−3 1.48 × 10−3 1.59 × 10−3

3 × 10−2 8.66 × 10−3 8.99 × 10−3 1.45 × 10−4 1.57 × 10−4

3 × 10−1 8.58 × 10−3 8.91 × 10−3 1.43 × 10−5 1.54 × 10−5

FIG. 19. This figure shows the phase-space of Higgs inflation
in the noncanonical framework described by Eq. (53). Ync, given
by Eq. (59), is plotted against X (¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

) for different
initial conditions, all of which begin on the (blue) circle which
represents the initial energy scale Hi ¼ 3 × 10−3mp. (ϕ̂ ¼ ϕ

jϕj is
the sign of field ϕ.) One finds that, beginning from the circle,
different inflationary trajectories rapidly converge to one of the
two inflationary separatrices (green horizontal lines) before
proceeding towards the center, which corresponds to the mini-
mum of the potential. The thin vertical central red band
corresponds to the region in phase space that does not lead to
adequate inflation. Note that this band is very small, which is
indicative of the robustness of Higgs inflation in the noncanonical
framework. The arc length of the red band, when divided by the
circumference of the circle with radius =

ffiffiffi
6

p
Hi=mp, gives the

fraction of initial conditions 2ΔlA
l that lead to inadequate inflation.
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consequence of the fact that for identical potentials, the
slow-roll parameter in the noncanonical case is much
smaller than its canonical counterpart (ϵnc ≪ ϵc), which
permits inflation to begin from smaller values of the
inflaton field in the noncanonical case. We also find that
the fraction of noninflationary initial conditions, ΔlA

l ,
decreases with an increase of Hi, as expected.

In Fig. 21 we compare values of ΔlAl and ΔlB
l for canonical

inflation with VcðϕÞ ¼ λc
4
ϕ4 and noncanonical inflation11

with VðϕÞ ¼ λ
4
ϕ4, where λ and λc are related by Eq. (57).

(a) (b)

FIG. 20. Initial field values ϕi that lead to adequate inflation with Ne ≥ 60 (blue), marginally adequate inflation (dashed red), and
inadequate inflation (red) are schematically shown for the Higgs inflation with the quartic potential (53) (a) in the noncanonical
framework and (b) in the canonical framework. The blue lines represent regions of adequate inflation. The red lines are either dashed or
solid and correspond to the two possible initial directions of ϕ̇i. The solid red line represents initial values of ϕ for which inflation is
never adequate irrespective of the direction of ϕ̇i. In the region shown by the dashed line one gets adequate inflation only when ϕ̇i points
in the direction of increasing VðϕÞ. We note that for the noncanonical case, the values of ϕA and ϕB are extremely small, as shown in
Table V. (Only a small portion of the full potential is shown in this figure, which corresponds to the initial energy scale
Hi ¼ 3 × 10−3mp.)

(a) (b)

FIG. 21. This figure compares the values of (a) ΔlA
l and (b) ΔlB

l for canonical and noncanonical scalar fields with the potential
VðϕÞ ∝ ϕ4. ΔlAl and ΔlB

l are shown as functions of the initial energy scale of inflationHi. The red and blue curves correspond to canonical
and noncanonical quartic inflation, respectively. The smaller amplitude of the blue curve in both panels indicates that noncanonical
inflation arises for a larger class of initial conditions than canonical inflation (red). The decrease in ΔlA

l and ΔlB
l with an increase in Hi is

indicative of the fact that the set of initial conditions that give rise to adequate inflation (with Ne ≥ 60) increases with the energy scale of
inflation Hi.

11Note that the Higgs potential in Eq. (53) can be rewritten as
VðϕÞ ≃ λ

4
ϕ4, since σ ≪ mp.
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We find that the values of ΔlA
l and ΔlB

l are significantly
smaller for noncanonical inflation, which implies that
inflation arises from a larger class of initial conditions in
the noncanonical framework.

V. STAROBINSKY INFLATION

A. Action and potential in the Einstein frame

Starobinsky inflation [1] is based on the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p m2
p

2

�
Rþ 1

6m2
R2

�
; ð60Þ

where m is a mass parameter. The corresponding action in
the Einstein frame is given by [39–41]

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

p

2
R̂ −

1

2
ĝμν∂μϕ∂νϕ − VðϕÞ

�
; ð61Þ

where the inflaton potential is

VðϕÞ ¼ 3

4
m2m2

pð1 − e−
ffiffi
2
3

p
ϕ
mpÞ2 ð62Þ

and m ¼ 1.13 × 10−5mp is required from an analysis of
scalar fluctuations [41] (see Appendix A). The potential
(62) is shown in Fig. 22.
As shown in Fig. 22, the potential for Starobinsky

inflation is asymmetric about the origin. One should

note that the flat right wing of the potential has the
same functional form as the Higgs inflation potential
in the Einstein frame. However, the left wing of VðϕÞ is
very steep. The slow-roll parameter for this potential is
given by

ϵ ¼ 4

3

�
exp

� ffiffiffi
2

3

r
ϕ

mp

�
− 1

�−2
:

Inflation occurs for ϵ ≤ 1, which corresponds to ϕ ≥
0.94mp and implies that no inflation can happen on the
steep left wing of the potential (for which ϕ < 0).

B. Generality of Starobinsky inflation

The distinctive properties of the Starobinsky potential
discussed above result in an interesting phase space, which
is shown in Figs. 24, 25, and 26 for an initial energy scale
Hi ¼ 3 × 10−3mp. A deeper appreciation of this phase
space is obtained by dividing the potential in Eq. (62) into
four regions A, B, C, and D, as shown in Fig. 23. Note that
adequate inflation is marked by blue arrows while

FIG. 22. The effective potential in Starobinsky inflation (62) is
plotted in units of m4

p. The potential is asymmetric about the
origin and has a steep left wing and plateau-like right wing.
Inflation occurs along the flat plateau-like right wing, with the
steep left wing being unable to sustain inflation.

FIG. 23. This figure schematically shows initial field values
that lead to adequate and inadequate Starobinsky inflation. The
initial energy scale is Hi ¼ 3 × 10−3mp. The solid blue line
represents the region of adequate inflation, while the solid red line
displays the region of inadequate inflation. (Note that ϕ is
unbounded on the right.) For initial field values lying in the
interval ϕi ∈ ½ϕB;ϕC� (red dashed line), one gets adequate
inflation only if the initial velocity ϕ̇i is positive. This figure
shows that it is easy for inflation to begin from the flat right wing
of the potential. Note that only a small portion of the full potential
is shown in this figure.
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inadequate inflation is marked by red arrows (this notation
has been consistently used throughout our paper). One
gets adequate inflation in region D independently of the
direction of ϕ̇i (illustrated by blue arrows in region D).
Similarly, one gets inadequate inflation in region A inde-
pendently of the direction of ϕ̇i (red arrows). However, one
gets adequate inflation in region B (called Bþ) and C
(called Cþ) provided ϕ̇i is positive (blue arrows), whereas
negative ϕ̇i values in these regions (B− and C−) lead to
inadequate inflation (red arrows). With this basic picture in
mind, we now proceed to discuss the nature of the phase
space in Figs. 24, 25, and 26.
The asymmetry of the potential (62) is reflected in the

asymmetry of the phase space shown in Figs. 24, 25,
and 26. The phase space associated with region A on the
steep left wing of VðϕÞ does not exhibit slow-roll behavior
and consequently does not possess an inflationary sepa-
ratrix; see Fig. 24. The flat right wing of VðϕÞ, on the other
hand, has a slow-roll inflationary separatrix “S” (shown by
the green line in Figs. 25 and 26), towards which most
trajectories converge; see Figs. 25 and 26. Some of the
lines beginning from the left wing with ϕ̇ > 0 initially,
represented by Bþ in Fig. 23 (the brown line in Fig. 26),
are also able to meet the inflationary separatrix giving

rise to adequate inflation. These interesting features of
Starobinsky inflation have been summarized in Fig. 23. In
this figure, the solid blue line corresponding to ϕi ≥ ϕC
shows trajectories that lead to adequate inflation regardless
of the initial direction of ϕ̇i. By contrast, the red region
corresponding toϕi ≤ ϕB reflects inadequate inflation. The
intermediate region ϕi ∈ ½ϕB;ϕC� leads to adequate infla-
tion only when the initial velocity is positive, i.e., ϕ̇i > 0
(dashed line). The dependence of ϕB and ϕC on the initial
energy scale Hi is shown in Table VI.
From Table VI one observes that ϕB shifts to lower (more

negative) values as the initial energy scale of inflationHi is
increased. This is indicative of the fact that inflation can
begin even from the steep left wing of VðϕÞ provided the
scalar field initially has a sufficiently large positive velocity,
which would enable the inflaton to climb up the flat right
wing and result in inflation.12

It may be noted that our results do not support some of the
claims made in Ref. [12] that inflation in plateau-like

FIG. 24. This figure illustrates the phase space associated with
the regions A and B− on the steep left wing of the potential (62)
illustrated in Fig. 23. As earlier, Y ¼ ϕ̇ is plotted against X ¼
ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

for the fixed initial energy scale Hi ¼ 3 × 10−3mp

(blue line). (ϕ̂ ¼ ϕ
jϕj is the sign of field ϕ.) Note that the horizontal

slow-roll inflationary separatrix is absent which reflects the fact
that, by beginning from region A (and B−) in Fig. 23, one cannot
get adequate inflation from the steep left wing of the Starobinsky
potential.

FIG. 25. This figure illustrates the phase space associated with
the flat right wing of the potential (62). Y ¼ ϕ̇ is plotted against
X ¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

for the fixed initial energy scale Hi ¼
3 × 10−3mp (denoted by blue lines at the boundary). (ϕ̂ ¼ ϕ

jϕj
is the sign of field ϕ.) Note that trajectories beginning at the
boundary with ϕ̇i > 0 (region Cþ in Fig. 23) converge to the
inflationary separatrix “S” before spiraling around the center
(shown in detail in the next figure). By contrast, trajectories
beginning on the right wing of VðϕÞ with ϕ̇i < 0 in the region C−
in Fig. 23 do not lead to inflation.

12Preinflationary initial conditions for Starobinsky inflation
have also been studied in Ref. [42] in the context of loop quantum
gravity.
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potentials suffers from an unlikeliness problem since only a
small range of initial field values lead to adequate inflation.
The authors of Ref. [12] made this claim on the basis of a flat
Mexican hat potential. Our analysis, based on more realistic
models including Higgs inflation and Starobinsky inflation,
has shown that, on the contrary, a fairly large range of initial
field values (and initial energy scales) can give rise to
adequate inflation, as illustrated in Figs. 16 and 23.
Finally, we would like to draw attention to the fact that

the phase-space analysis performed here for Starobinsky
inflation is likely to carry over to the E-model α-attractor
potential [43], since the two potentials are qualitatively
very similar.

VI. DISCUSSION

In this paper we have addressed the issue of the
robustness of inflation to different choices of initial
conditions. We considered a wide range of initial kinetic
and potential terms 1

2
ϕ̇i

2 and VðϕiÞ for a given initial
energy scale of inflation and determined the fraction of
initial conditions that give rise to adequate inflation
(Ne ≥ 60). Our analysis has primarily focused on the
following models: (i) chaotic inflation and its extensions
such as monodromy inflation, (ii) Higgs inflation, and
(iii) Starobinsky inflation. For class (i) we have shown that
inflation becomes more robust for lower values of the
exponent n in the inflaton potential V ∝ jϕjn. This is
illustrated in Fig. 11. Concerning class (ii), it is well
known that Higgs inflation can arise from a nonminimal
coupling of the Higgs field to the Ricci scalar. In this case
the effective inflaton potential in the Einstein frame is
asymptotically flat and has plateau-like features for large
absolute values of the inflaton field. This is also true in the
Einstein-frame representation of the Starobinsky poten-
tial, but in this case one of the wings of VðϕÞ is flat while
the other is steep (and cannot sustain inflation). A
remarkable feature shared by (nonminimally coupled)
Higgs inflation and Starobinsky inflation is that one
can get adequate inflation (Ne ≥ 60) even if the inflaton
begins to roll from the minimum of the potential (ϕ ¼ 0)
and not from its periphery. This remarkable property is
typical of asymptotically flat potentials and is not shared
by the power-law potentials commonly associated with
chaotic inflation. This new insight forms one of the central
results of our paper.13

We also showed that inflation can be sourced by a Higgs-
like field provided the Higgs has a noncanonical kinetic
term. In this case noncanonical inflation is more robust, and
arises for a larger class of initial conditions, than canonical
inflation.
Using phase-space analysis, we have shown that the

fraction of trajectories that inflate increases with an
increase in the value of the energy scale at which inflation
begins. This observation appears to be generic and applies
to all of the models that have been studied in this paper.
One might note that our analysis in this paper assumed a

specific measure on the space of initial conditions. Namely,
we assumed that X ¼ ϕ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

(ϕ̂ ¼ ϕ
jϕj is the sign of

field ϕ) and Y ¼ ϕ̇ are distributed uniformly at the
boundary where initial conditions are set. Following this,
we determined the degree of inflation. While this approachTABLE VI. Dependence of ϕB and ϕC on the initial energy

scale Hi for Starobinsky inflation.

Hi (in mp) ϕB (in mp) ϕC (in mp)

3 × 10−3 −0.28 11.11
3 × 10−2 −2.16 12.99
3 × 10−1 −4.04 14.87

FIG. 26. A zoomed-in view of the phase space of Starobinsky
inflation which highlights the existence of the slow-roll infla-
tionary separatrix on the flat right wing (green line marked “S”
in Fig. 23). Most trajectories beginning on the right wing (from
regions Cþ and D) converge to “S” before spiraling in towards
the minimum of VðϕÞ. (The spirals correspond to post-infla-
tionary oscillations.) Such an inflationary separatrix does not
exist for the steep left wing of the potential. However, note the
brown trajectory which is able to meet the inflationary sepa-
ratrix on the right wing even though it begins from region Bþ of
VðϕÞ (but with ϕ̇i > 0), as shown in Fig. 23. The brown
trajectory describes the motion of the field ϕ as it rolls up
the potential.

13Our results for Higgs and Starobinsky inflation are likely
to carry over to the (α-attractor-based) T-model [37] and
E-model [43], respectively, due to the great similarity between
the potentials of Higgs inflation and the T-model on the
one hand, and Starobinsky inflation and the E-model on the
other.
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follows the seminal work of Ref. [10], it is also possible to
construct alternative measures. For instance, one could
assume instead that ϕ and ϕ̇ were distributed uniformly at
the initial boundary. In this case the boundary will no
longer be a circle, as it was for chaotic inflation in Fig. 1.
Instead, its shape will crucially depend on the form of
VðϕÞ. However, we feel that as long as the initial phase-
space distribution is not sharply peaked near specific values
of ϕi and ϕ̇i the broad results of our analysis will remain in
place. (In other words, we suspect that inflation is likely to
remain generic for a large class of potentials, although we
cannot prove this assertion.)
For the sake of simplicity, we have confined our

analysis of inflationary initial conditions to a spatially
flat FRW universe. The reader should note that by
restricting ourselves to homogeneous and isotropic cos-
mologies we do not address the larger problem of
inflation in an inhomogeneous and anisotropic setting.
Indeed, the issue as to whether inflation can successfully
arise in a universe that is either inhomogeneous or
anisotropic (or both) is rather complex and has been
discussed in several papers including the recent review
[15]. In the case of a positive cosmological constant, it is
well known that classical fluctuations in a FRW universe
redshift and disappear and the space-time approaches de
Sitter space asymptotically [44]. This result was extended
to a “no-hair” theorem by a consideration of more general
space-times including the spatially homogeneous but
anisotropic Bianchi I–VIII family, which was shown to
rapidly isotropize and (locally) approach de Sitter space
in the future, provided all matter (with the exception of
the cosmological constant) satisfies the strong energy
condition [45]. The no-hair theorem was subsequently
extended to inflationary cosmology in Ref. [46].
However, these studies primarily focused on anisotropic
models and did not include the effects of inhomogeneity
for which even a semianalytical treatment is difficult.
A recent discussion of this issue within a numerical
setting suggests that, for plateau-like potentials, infla-
tionary expansion can arise even when the scale of
inhomogeneity exceeds the Hubble length provided the
mean spatial curvature is not positive [47] (also see
Ref. [48]). The exception to this rule is associated with
scalar field variations that exceed the inflationary plateau
region and regions with large positive spatial curvature.14

Overall it appears that the robustness of inflation (in
relation to inhomogeneous initial data) is related to the
fact that while strongly inhomogeneous overdense
regions collapse to form black holes, underdense regions
continue to expand, enabling inflation to eventually
begin. It therefore appears that for inhomogeneous
models the inflationary slow-roll regime is a local but
not global attractor [15].
Finally, it is important to note that since the simplest

models of inflation are not past-extendible [51], the origin
of the inflationary scenario remains an important open
question.
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APPENDIX A: THE VALUES OF nS AND r FOR
SEVERAL INFLATIONARY MODELS

For single-field slow-roll inflation, the amplitude of
scalar fluctuations in given by [5]

Δ2
S ¼

1

24π2
Vðϕ�Þ
m4

p

1

ϵðϕ�Þ
; ðA1Þ

where ϕ� is the value of ϕ atNe e-foldings before the end of
inflation. CMB observations [16] imply Δ2

S ¼ 2.2 × 10−9

so that

1

24π2
Vðϕ�Þ
m4

p

1

ϵðϕ�Þ
¼ 2.2 × 10−9: ðA2Þ

Similarly, for single-field slow-roll inflation, the scalar
spectral index is given by [5]

nS ¼ 1þ 2ηðϕ�Þ − 6ϵðϕ�Þ; ðA3Þ

and the tensor-to-scalar ratio is given by [5]

r ¼ 16ϵðϕ�Þ: ðA4Þ

14The latter can prove problematic for plateau-like potentials
since, if the universe emerges from an initial Planck scale era with
a large positive value of the curvature, then the latter would make
the universe contract long before the energy density of the
inflaton dropped to that of the inflationary plateau. A possible
resolution of this problem is provided by potentials that, in
addition to possessing a plateau-like region, also have monomial/
exponential wings which allow inflation to begin from Planck-
scale densities [49,50].

INITIAL CONDITIONS FOR INFLATION IN AN FRW … PHYS. REV. D 98, 083538 (2018)

083538-19



Values of the CMB normalized parameters nS and r for
some of the inflationary models discussed in this paper are
listed in Table VII, assuming Ne ¼ 60. The corresponding
r vs nS plot is shown in Fig. 27.
For Higgs inflation, substitution of the value V0 ¼ 9.6 ×

10−11mp into Eq. (44) gives ξ ¼ 1.62 × 104 for the non-
minimal coupling parameter, which is in agreement with
Eq. (33).

APPENDIX B: JORDAN TO EINSTEIN FRAME
TRANSFORMATION FOR HIGGS INFLATION

A derivation of Eqs. (38) and (39) is given below. Our
derivation is similar to that given in Ref. [34]; however, we
calculate the field transformation ϕ → χ explicitly. We
begin with the Jordan frame action (29), namely,

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðϕÞR −

1

2
gμν∂μϕ∂νϕ −UðϕÞ

�
; ðB1Þ

which is described by the metric gμν. The Einstein frame is
described by ĝμν, where

ĝμν ¼ Ω2gμν; ðB2Þ

with the conformal factor being given by

Ω2 ¼ 2

m2
p
fðϕÞ ¼ 1þ ξϕ2

m2
p
: ðB3Þ

Furthermore,
ffiffiffiffiffiffi−gp

transforms as

ffiffiffiffiffiffi
−g

p
→

ffiffiffiffiffiffi
−ĝ

p
¼ Ω4 ffiffiffiffiffiffi

−g
p ðB4Þ

and the Ricci scalar transforms as

R → R̂ ¼ 1

Ω2

�
R −

1

Ω
□Ω

�
; ðB5Þ

where

□Ω ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΩÞ:

As a result, the action (B1) transforms to

FIG. 27. The values of the tensor-to-scalar ratio r and the
corresponding values of scalar spectral index nS are plotted in this
figure for different inflationary potentials considered in this paper
corresponding to Ne ¼ 60. Note that the values of r and nS for
Starobinsky inflation (62) and Higgs inflation in the nonminimal
framework (43) are the same since both potentials have the same
functional form as far as the flat inflationary wing is concerned.
The value for the noncanonical λϕ4 potential has been determined
assuming α ¼ 5 in Eq. (46).

TABLE VII. This table lists the CMB normalized value of the parameter, scalar spectral index nS, and tensor-to-
scalar ratio r for different single-field slow-roll inflationary models considered in this paper.

Model VðϕÞ Parameter nS r

Nonminimal Higgs V0

�
1 − e−

ffiffi
2
3

p jϕj
mp

	2 V0 ¼ 9.6 × 10−11m4
p 0.967 0.003

Starobinsky 3
4
m2m2

p

�
1 − e−

ffiffi
2
3

p
ϕ
mp

	2 m ¼ 1.13 × 10−5mp 0.967 0.003

Fractional Monodromy V0j ϕ
mp

j2=3 V0 ¼ 3.34 × 10−10m4
p 0.978 0.044

Linear Monodromy V0j ϕ
mp

j V0 ¼ 1.97 × 10−10m4
p 0.975 0.066

Quadratic Chaotic 1
2
m2ϕ2 m ¼ 5.97 × 10−6mp 0.967 0.132

Quartic Chaotic λc
4
ϕ4 λc ¼ 1.43 × 10−13 0.951 0.262

MISHRA, SAHNI, and TOPORENSKY PHYS. REV. D 98, 083538 (2018)

083538-20



S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
m2

p

2
R̂ −

1

2
ĝμν

�
1

Ω2
∂μϕ∂νϕ

þ 6m2
p

Ω2
∂μΩ∂νΩ

�
−
UðϕÞ
Ω4

�
: ðB6Þ

Notice that the coupling of the scalar field to gravity has
become minimal. However, the kinetic term is noncanoni-
cal. In order to change this to the canonical form one
redefines the field ϕ → χ such that

1

2
ĝμν

�
1

Ω2
∂μϕ∂νϕþ 6m2

p

Ω2
∂μΩ∂νΩ

�
þ UðϕÞ

Ω4

¼ 1

2
ĝμν∂μχ∂νχ þ VðχÞ; ðB7Þ

where

VðχÞ ¼ U½ϕðχÞ�
Ω4

: ðB8Þ

Consequently, the action in the Einstein frame becomes

SE ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
m2

p

2
R̂ −

1

2
ĝμν∂μχ∂νχ − VðχÞ

�
:

Note that by assuming a homogeneous and isotropic space-
time one can drop the spatial derivative terms in Eq. (B7)
to get

1

Ω2
½ϕ̇2 þ 6m2

pΩ̇2� ¼ χ̇2 ⇒
1

Ω2

�
ϕ̇2 þ 6m2

p

�∂Ω
∂ϕ

�
2

ϕ̇2

�

¼
�∂χ
∂ϕ

�
2

ϕ̇2 ⇒
�∂χ
∂ϕ

�
2

¼ 1

Ω4

�
Ω2 þ 6ξ2ϕ2

m2
p

�
⇒

∂χ
∂ϕ

¼ � 1

Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2ϕ2

m2
p

s
;

which corresponds to Eq. (39). Note that the � sign here
leads to the symmetric potential in Fig. 16.

APPENDIX C: DERIVATION OF ASYMPTOTIC
FORMS OF THE HIGGS POTENTIAL IN

THE EINSTEIN FRAME

Equations (39) and (B8) can be rewritten as

∂χ
∂ϕ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ2

m2
p
þ 6ξ2ϕ2

m2
p

q
1þ ξϕ2

m2
p

; ðC1Þ

VðϕÞ ¼ U½ϕðχÞ�
Ω4

≃
λ
4
ϕ4

ð1þ ξϕ2

m2
p
Þ2
: ðC2Þ

Using these two equations we proceed to derive the
following useful asymptotic formulas:15

(1) For ϕ ≪
ffiffi
2
3

q
mp

ξ one finds ∂χ
∂ϕ ≃�1, and consequently

Eq. (C2) simplifies to

VðχÞ ≃ λ

4
χ4: ðC3Þ

(2) For ϕ ≫
ffiffi
2
3

q
mp

ξ one finds ∂χ
∂ϕ ≃�

ffiffi
6

p ξϕ
mp

Ω2 , where

Ω2 ¼ 1þ ξϕ2

m2
p
. Hence, in this case

χ ≃�
ffiffiffi
3

2

r
mp logΩ2ðϕÞ: ðC4Þ

For
ffiffiffiffiffi
2
3ξ2

q
≪ ϕ

mp
≪ 1ffiffi

ξ
p , Eq. (C4) reduces to

χ ≃�
ffiffiffi
3

2

r
ξϕ2

mp
; ðC5Þ

and consequently the potential in Eq. (C2) acquires
the form

VðχÞ ≃
�
λm2

p

6ξ2

�
χ2: ðC6Þ

Finally, for
ffiffi
ξ

p
ϕ

mp
≫ 1 one finds, from Eq. (C4),

ϕ ≃
mpffiffiffi
ξ

p exp

� �χffiffiffi
6

p
mp

�
; ðC7Þ

where theþ sign is taken for χ > 0 and the − sign is
taken for χ < 0, since the above solution is valid
only in the limit when j

ffiffi
ξ

p
ϕ

mp
j ≫ 1. Consequently, we

can rewrite our solution as

ϕ ≃
mpffiffiffi
ξ

p exp

� jχjffiffiffi
6

p
mp

�
; ðC8Þ

and the potential in Eq. (C2) is given by

VðχÞ ≃ λm4
p

4ξ2

�
1þ exp

�
−

ffiffiffi
2

3

r
jχj
mp

��−2

: ðC9Þ

To summarize, the relation between χ and ϕ in the
three asymptotic regions is given by

χ

mp
¼

8>>>>><
>>>>>:

� ϕ
mp

; ϕ
mp

≪
ffiffiffiffiffi
2
3ξ2

q
;

�
ffiffi
3
2

q
ξð ϕ

mp
Þ2;

ffiffiffiffiffi
2
3ξ2

q
≪ ϕ

mp
≪ 1ffiffi

ξ
p ;

� ffiffiffi
6

p
log

� ffiffi
ξ

p
ϕ

mp

	
; ϕ

mp
≫ 1ffiffi

ξ
p :

15This analysis has been carried out assuming ξ ¼
1.62 × 104 ≫ 1.
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