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The statistical cosmological principle states that observables on the celestial sphere are sampled from a
rotationally invariant distribution. Previously certain large scale anomalies which violate this principle have
been found, e.g., an alignment of the lowest multipoles with the cosmic dipole direction. In this work we
continue the search for possible anomalies using multipole vectors which represent a convenient tool for
this purpose. In order to study the statistical behavior of multipole vectors, we revisit several construction
methods. We investigate all four full-sky foreground-cleaned maps from the Planck 2015 release with
respect to four meaningful physical directions using computationally cheap statistics that have a simple
geometric interpretation. We find that the full-sky SEVEMmap deviates from all the other cleaned maps, as
it shows a strong correlation with the Galactic Pole and Galactic Center. The other three maps
COMMANDER, NILC and SMICA show a consistent behavior. On the largest angular scales, l ≤ 5,
as well as on intermediate scales, l ¼ 20, 21, 22, 23, 24, all of them are unusually correlated with the
cosmic dipole direction. These scales coincide with the scales on which the angular power spectrum
deviates from the Planck 2015 best-fitΛCDMmodel. In the range 2 ≤ l ≤ 50 as a whole there is no unusual
behavior visible globally. We do not find abnormal intramultipole correlation, i.e., correlation of multipole
vectors inside a given multipole without reference to any outer direction.

DOI: 10.1103/PhysRevD.98.083536

I. INTRODUCTION

High-fidelity observations of the cosmic microwave
background (CMB) at the largest angular scales became
available with data from the Wilkinson Microwave
Anisotropy Probe (WMAP) [1]. Previous full-sky analyses
based on data from the Cosmic Background Explorer
(COBE) suffered at the largest angular scales from their
limited capacity (only three frequency bands) to reliably
separate the various foreground components from the
CMB. Once confidence on foreground separation tech-
niques was built, the WMAP data offered the potential to
address the statistical isotropy of the observed temperature
anisotropies at large angular scales. The property of
statistical isotropy is a fundamental assumption in the
analysis of the CMB and for the estimation of cosmological
parameters. It was noted that the quadrupole and octopole
seem to be aligned with each other [2,3] and with the CMB
dipole [3] and an unexpected hemispherical asymmetry
was revealed [4]. More signs of violation of statistical
isotropy have been found in several publications [5–12].
On the other hand, already the WMAP data suggested

that deviations from Gaussianity and from the angular

power spectrum predicted by the ΛCDM model are
negligibly small [13,14]. The analysis of the data from
the Planck satellite confirmed these findings [15–17], but
at the same time confirmed the existence of isotropy
anomalies [18].
The full Planck mission data allowed the Planck team to

construct four precise full-sky maps that use different
cleaning algorithms to remove the influences of the
Milky Way [19,20]. That analysis increases our confidence
that the aforementioned isotropy anomalies are not due to
instrumental effects, mistakes in the analysis pipeline, or
unaccounted foregrounds, which should have been revealed
by the wide frequency coverage of Planck. A recent review
collects the up-to-date knowledge about these isotropy
anomalies [21].
Analyses of the cosmic background radiation are conven-

iently performedbymeans of spherical harmonic coefficients
and angular power spectra, or correlation functions in angular
space. When investigating the CMBwith respect to possible
breaking of statistical isotropy, a third tool has become
popular, namely multipole vectors (MPVs) [6,22,23]. While
spherical harmonic coefficients transform with Wigner’s
symbols under a rotation of the celestial sphere, MPVs
transform like ordinary three-vectors; i.e., they rotate rigidly
with the temperature fluctuations on the spherewhichmakes
them a convenient choice for isotropy analysis.
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In this article we review the common construction
methods for multipole vectors as well as their theoretical
statistical behavior and use the four foreground cleaned
full-sky maps from the Planck 2015 data analysis to
investigate the statistical isotropy of the CMB, especially
alignments of multipole vectors within a multipole or with
external directions. It should be noted that the multipole
vector method can only test for statistical isotropy if
Gaussianity of the temperature fluctuations is assumed to
hold since multipole vector statistics are only sensitive to
deviations from a completely random distribution.
In Sec. II we review the basic definitions and properties

of CMB data analysis by means of the angular power
spectrum and we describe our convention of statistical
isotropy. Then, in Sec. III we give an overview over three
convenient extraction methods for MPVs. In Sec. IV we
review the derivation of the probability distribution of
MPVs. In Sec. V we shortly describe the Planck data used
in the analysis. Section VI is dedicated to the introduction
of the statistics that we use for the analysis. Section VII
introduces the four astrophysical directions used in the
analysis to estimate sources of multipole anomalies. In
Sec. VIII we present the results before discussing them
in Sec. IX and giving a short conclusion and outlook in
Sec. X.

II. ANGULAR POWER SPECTRUM

The relative fluctuations of CMB temperature, which
live on the celestial sphere, are conveniently decomposed
according to the irreducible representations of the group of
three-dimensional spatial rotations SOð3Þ, namely the
orthonormal set of spherical harmonic functions,

δT
T0

ðeÞ ¼
X∞
l¼1

Xl

m¼−l
almYlmðeÞ; ð1Þ

with the radial unit vector e ¼ ðcosðϕÞ sinðθÞ; sinðϕÞ
sinðθÞ; cosðθÞÞ pointing towards the direction of observa-
tion. The contribution from a given integer number l,

flðeÞ ¼
X
m

almYlmðeÞ; ð2Þ

is called a multipole of order l, which describes features at
typical angular scales of about αl ¼ π=l. The coefficients
alm are called spherical harmonic coefficients. Thanks to
the orthonormality of fYlmg, i.e.,

R
YlmY�

l0m0 ¼ δll0δmm0 , the
alm can be calculated from δT=T0 via integration:

alm ¼
Z

d3e
δTðeÞ
T0

Y�
lmðeÞ: ð3Þ

Since temperature fluctuations are real, and Y�
lm ¼

ð−1ÞmYl;−m, the spherical harmonic coefficients obey

a�lm ¼ ð−1Þmal;−m: ð4Þ
The particular pattern of the CMB temperature fluctua-

tions cannot be predicted. Instead, temperature fluctuations
are modeled as a real, random field on the sphere, or
equivalently we model the measured spherical harmonic
coefficients as realizations of an ensemble of random
variables, subject to condition (4).
A fundamental assumption regarding the temperature

fluctuations is statistical isotropy, that means

∀ R ∈ SOð3Þ ∀ e1;…; en ∈ S2 ∀ n ∈ N∶�Yn
i¼1

δT
T0

ðReiÞ
�

¼
�Yn

i¼1

δT
T0

ðeiÞ
�
; ð5Þ

where h:i denotes the expectation value of random fields,
respectively the ensemble average over all “possible uni-
verses.” Correlation functions of temperature fluctuations
at different directions should only depend on the angle
between them, respectively on the scalar products ei · ej.
Here, we take the point of view of an observer in three-

dimensional space that acts with an element of SOð3Þ on
the sky. There exists also the other convention that the three
degrees of freedom (d.o.f.) of three-dimensional rotations
are split into a translation on S2—and invariance under
such a transformation would then be called homogeneity—
and a rotation around a point on S2. The invariance of the
latter would then be associated with isotropy. In our work
all three symmetry operations are viewed as rotations and
thus we only speak about isotropy.
One usually argues that the smallness of the CMB

temperature fluctuations provides empirical evidence for
statistical isotropy of the Universe and cosmological
inflation provides an argument on why the observed patch
of the Universe should be isotropic. But there are a priori
no other reasons and a detailed study of the observed
deviations from isotropy in δT=T0 might reveal that
statistical isotropy could be violated, e.g., due to primordial
anisotropies.
A trivial consequence of the definition of δT is the

vanishing of the one-point function, hδTðeÞ=T0i ¼ 0 or
halmi ¼ 0. Thus the first nontrivial and most interesting
object is the angular two-point correlation or the angular
power spectrum Cl, which for an isotropic ensemble is
given by ha�lmal0m0 i ¼ Clδll0δmm0.
As a result of the initial Gaussianity after inflation and

the following linear evolution, this random field is assumed
to be Gaussian in the standard theory. That means that
higher correlations cannot carry independent information.
Thus in the standard model of cosmology all cosmological
information is encoded in the angular power spectrum Cl.

III. MULTIPOLE VECTORS

MPVs represent a tool for investigating CMB anisotro-
pies in a very natural manner. They behave like ordinary
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three-vectors under rotation and they do not distinguish a
certain reference frame, unlike the spherical harmonics
which incorporate a reference to a chosen z axis in their
definition. In the following, we review different mathemati-
cal approaches to the description of functions on the sphere
via MPVs. This is necessary to provide the appropriate
tools for an analytic study of the statistical distribution of
MPVs on completely random skies. While the algebraic
and tensorial approaches yield recursive relations for direct
calculation of the MPVs from a given spherical harmonic
decomposition, the coherent state approach gives the MPVs
as roots of a complex polynomial. With the help of the latter
one can calculate analytically the joint probability density
given a fixed multipole.

A. Origin and Sylvester’s theorem

MPVs date back to Maxwell who introduced them in
[24], in the study of interactions between monopoles. A
monopole creates an electric potential proportional to 1=r.
Maxwell argued that the potential of two opposite-signed
monopoles can be written as a directional derivative of the
monopole potential Dvð1=rÞ, where v denotes the linking
vector between the point charges. He continued to the case
of 3; 4;… interacting monopoles and received a potential of
the form Dv1…Dvlð1=rÞ if l monopoles are involved. Later
on it has been noticed that any real, harmonic and
homogeneous polynomial on R3 can be represented in that
form.
Let f∶ R3 → R be a real, harmonic and homogeneous

polynomial of degree l in the variables x, y, z. That
means ΔR3f ¼ 0, implying ΔS2f ¼ −lðlþ 1Þf, and
fðλx; λy; λzÞ ¼ λlfðx; y; zÞ. Any such polynomial defines
a polynomial f̃ ¼ fjS2∶ S2 → R on the sphere and vice
versa. Maxwell’s MPV representation states that there exist
l unique unit directions v1;…; vl, such that f takes on the
following form:

fðx; y; zÞ ¼ ðv1 · ∇Þ…ðvl ·∇Þ 1

rðx; y; zÞ
with rðx; y; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
: ð6Þ

This statement is known as Sylvester’s theorem [25].
The expression (6) is equivalent to the in practice more

useful expression

fðθ;ϕÞ¼Cðeðθ;ϕÞ ·v1Þ…ðeðθ;ϕÞ ·vlÞþ r2Fðθ;ϕÞ; ð7Þ

where θ and ϕ describe the sphere in spherical coordinates
and eðθ;ϕÞ ¼ ðxðθ;ϕÞ; yðθ;ϕÞ; zðθ;ϕÞÞ=rðx; y; zÞ, and F
is a homogeneous polynomial in the variables x, y, z of
degree ≤ l − 2. Due to the fact that spherical harmonics
provide a basis for harmonic functions, each multipole of a
spherical harmonic decomposition of CMB fluctuations on
the sky can be identified uniquely with a set of MPVs.

B. Extraction of multipole vectors

There exist several approaches to MPVs and their
calculation from a spherical harmonic decomposition, three
of which we will review briefly in the following. While the
approach via coherent states appears to be best suited for
the investigation of statistical properties, in this work the
tensorial approach has been used to calculate the MPVs
numerically [26].

1. Tensorial construction

Copi et al. first applied the long-forgotten method of
MPVs to the analysis of CMB data in [22].
Let the fragments fl be as in Eq. (2). They are harmonic

and homogeneous polynomials of degree l in x, y, z and
thus flðx; y; zÞ ¼ Fi1���ile

i1…eil . In order to guarantee the
uniqueness of this expression, it is inevitable to impose
further restrictions on the coefficients Fi1���il , which can be
regarded as coefficients of a tensor F, and on the product
ei1…eil . Both factors have to be trace-free and symmetric:

flðeÞ ¼ FðlÞ
i1���il ½ei1 � � � eil �≕AðlÞ½vðl;1Þi1

� � � vðl;lÞil
�½ei1 � � � eil �:

ð8Þ

The brackets denote the symmetric trace-free part of the
interior. Equation (8) defines the MPVs, which can be
calculated uniquely, up to rescaling, from the spherical
harmonic data. One recovers F from fl via integration,

FðlÞ
i1���il ¼

ð2lþ 1Þð2lÞ!
ð4πÞ2lðl!Þ2

Z
S2

deflðeÞ½ei1 � � � eil �; ð9Þ

and afterwards peels off the first MPV by writing

FðlÞ
i1���il ¼ ½vðl;1Þi1

aðl;1Þi2���il �; ð10Þ

where aðl;1Þ is a rank l − 1 tensor. In the same manner one
can peel off the secondMPV from aðl;1Þ leaving a rank l − 2
tensor. Repeating this procedure until a rank 1 tensor is left
yields all l MPVs. By performing a more detailed math-
ematical calculation one can write down a system of
equations that relates the alm and the vðl;jÞ; for more details
see [22]. Copi’s MPV calculation program [26], which was
used by the authors, evaluates this system and returns
the MPVs.
Finally note that no information is lost in the transition

from spherical harmonics to MPVs. For each l there are
2lþ 1 real d.o.f. in the spherical harmonic decomposition,
namely the real and imaginary parts of all alm with m ≥ 0.
On the other hand, l unit vectors and an amplitude
constitute as well 2lþ 1 real d.o.f. since due to the
normalization condition a single unit vector in R3 has
2 d.o.f., and the amplitude is just a scalar which contributes
one further d.o.f.
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2. Algebraic construction

Katz and Weeks [23] applied Bézout’s theorem from
algebraic geometry to proof Sylvester’s theorem. The
advantage of this approach is its mathematically sophisti-
cated nature. Furthermore, like the tensorial approach, it
yields an iterative prescription calculating the MPVs, and
even an explicit expression for the residual polynomial F
can be obtained. This approach has a long history dating
back to Hilbert and Courant; see [27].
A homogeneous polynomial P of degree l on R3 may be

written uniquely up to reordering and rescaling as

Pðx; y; zÞ ¼ λða1xþ b1yþ c1zÞ � � � � � � ðalxþ blyþ clzÞ
þ ðx2 þ y2 þ z2ÞR; ð11Þ

where R denotes a residual polynomial which is homo-
geneous of degree l − 2. If l < 2 one sets R≡ 0, and for
l ¼ 2 the zero can be replaced by a nonvanishing constant.
Let now f be an arbitrary, especially not necessarily

homogeneous, polynomial of degree l restricted to the two-
sphere. It can be written as a sum of homogeneous
polynomials of degree i, fi, via f ¼ P

l
i¼0 fi. According

to (11), up to reordering and rescaling fi can be decom-
posed into linear factors and a residual polynomial fi¼
λi
Q

i
j¼1ðvðl;jÞx xþvðl;jÞy yþvðl;jÞz zÞþRi−2ðx;y;zÞ. Since Ri−2 is

homogeneous of degree i − 2, the sum f0i−2 ≔ fi−2 þ Ri−2
is again homogeneous of degree i − 2. Applying (11)
recursively on the rest of the sum eventually results in

fðx; y; zÞ ¼
Xl

i¼0

λi
Yi
j¼1

ðvði;jÞx xþ vði;jÞy yþ vði;jÞz zÞ on S2:

ð12Þ

The scalar product of MPVs with the unit vector in the
ðθ;ϕÞ direction is given by the i ¼ l term while the rest of
the sum constitutes the residual polynomial F. For more
details we refer to [23].

3. Construction via Bloch coherent states

Dennis used a very physical approach to proof
Sylvester’s theorem and associate MPVs to spherical
harmonics [28]. A complex spin state in nonrelativistic
one-particle quantum mechanics with spin 1=2 can be
represented via one point on the two-sphere. This concept
is known as the Bloch sphere. Extending this concept to
higher integer spins and assuming the state is real yields
Sylvester’s theorem. The big advantage of this approach is
the capability of calculating a joint probability density for
the MPVs using techniques from random polynomial
theory. An analytic result for the joint probability density
in principal allows us to compute confidence levels for
certain CMB statistics analytically.

A similar approach, but with slightly different focus, was
used in [6]. By rotating the highest weight spin state one
receives Bloch coherent states, i.e., those coherent states
associated to SO(3), and the overlap of such a coherent
state at rotation angles θ and ϕ with a normalized spin state
gives, after stereographic projection, the Majorana poly-
nomial below. Using the Bloch states one can define an
extended version of the von Neumann entropy, called
Wehrl entropy, which measures quantum randomness.
The formalism below has already been used by Schupp

in 1999 in the proof of some special cases of Lieb’s
conjecture for the Wehrl entropy of Bloch coherent states;
see [29].
Let jΨi denote a quantum mechanical state with definite

integer spin l, i.e., an eigenstate of the total angular
momentum operator L̂2. It corresponds to a harmonic
function in the language of the previous subsections.
The eigenstate property allows us to expand the state in
terms of eigenstates of the z component of the angular
momentum operator L̂z

jΨi ¼
Xl

m¼−l
Ψmjm; li; Ψm ∈ C; ð13Þ

which in position space is nothing other than the spherical
harmonic decomposition. Let R̂zðϕÞ denote the operator
which executes a rotation by the angle ϕ around the z axis
and R̂yðθÞ the rotation by θ around the y axis and define

jm; l; θ;ϕi ≔ R̂zðϕÞR̂yðθÞjm; li: ð14Þ
This is an eigenstate of the eðθ;ϕÞ-parallel component of
L̂. The spherical harmonics are then given by

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
h0; l; θ;ϕjm; li: ð15Þ

The state jΨi can now be expressed via spherical harmonics
by projecting on the rotated m ¼ 0 state:

Ψðθ;ϕÞ ≔ h0; l; θ;ϕjΨi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Xl

m¼−l
ΨmYlmðθ;ϕÞ:

ð16Þ
After stereographic projection from the south pole

ζðθ;ϕÞ ¼ tanðθ=2Þ expðiϕÞ; ð17Þ
and using some group theory, the spin spate jΨi can be
decomposed according to the SLð2;CÞ basis functions
μk−lζ

k with k ∈ N0

fΨðζÞ ≔ h−l; l; ζjΨi ¼ expð−il argðζÞÞ
ð1þ jζj2Þl

Xl

m¼−l
Ψmμmζ

lþm;

ð18Þ
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with the numerical factor μm ¼ ð−1Þlþm
ffiffiffiffiffiffiffiffiffiffi
ð 2l
lþmÞ

q
. The rep-

resentation (18) of the state is called the Majorana function.
It is a product of a ζ-dependent factor and a polynomial of
degree 2l in ζ which contains all the information about the
original state. This polynomial is called the Majorana
polynomial and it determines the roots of the Majorana
function. Since it is a polynomial of degree 2l in the
complex variable ζ, it possesses 2l complex roots according
to the fundamental theorem of algebra, and therefore it can
be factorized:

fΨðζÞ ¼
expð−il argðζÞÞ
ð1þ jζj2Þl ð−1Þ2lΨm¼l

Y2l
n¼1

ðζ − ζnÞ: ð19Þ

The 2l roots can be backprojected onto the Riemannian
sphere S2¼̃ Ĉ ¼̃C ∪ f∞g. These backprojected roots
vðζnÞ are called Majorana vectors. In the case of a real
Ψðθ;ϕÞ they are identical to the MPVs,

vðl;jÞ ≡ vðζjÞ; ð20Þ
for a given l.
The Majorana function of the rotated state obeys

fR̂v;θΨðζÞ ¼ fΨðMTðζÞÞ, where MT denotes a unitary
Möbius transformation. Consequently its zeros also trans-
form under a unitary Möbius transformation. After back-
projection this transformation corresponds to a rotation
through SOð3Þ. Majorana vectors rotate rigidly like ordi-
nary three-vectors.
A further property of Majorana vectors is their appear-

ance in antipodal pairs if the original state is real:

fΨð−1=ζ�Þ ¼ fΨðζÞ�: ð21Þ
Hence, ζ is a root of the Majorana function if and only if
−1=ζ� is a root, but −1=ζ� is the image under the stereo-
graphic projection of the antipode of the Majorana vector
determined by ζ. This property does not hold if the original
state is complex. Complex functions on the sphere cannot
be represented by l MPVs.
There have been several further approaches to MPVs,

e.g., by investigating their topological implications in [30].

IV. STATISTICAL PROPERTIES OF
MULTIPOLE VECTORS

The spherical harmonic coefficients alm of the CMB
temperature fluctuations are attached with a notion of
randomness implied by inflationary fluctuations. Standard
inflationary scenarios lead to Gaussianity of these coeffi-
cients. Whether they are really Gaussian or not, they
definitely constitute a set of random variables. The MPVs,
which depend only on these coefficients, inherit the random-
ness from these coefficients. One may now ask what kind
of probability distribution they obey exactly.

Dennis and Land attended to this question first in [31],
followed up by [32]. For this purpose the coherent state
approach turns out to be especially useful because MPVs
are the roots of a complex polynomial whose coefficients
are the alm times some numerical factor. Therefore we have
to deal with the probability density of roots of random
polynomials which is currently a much studied field of
statistical mathematics.
In Appendix B we present some first ideas on how to

apply results from random matrix theory and the theory of
Gaussian analytic functions to the problem of the joint
probability distribution of MPVs. Future advances in this
direction could allow for determining p-values with arbi-
trary precision in short computing time.
This section is intended to provide a review of the

derivation of the MPV joint probability distribution. The
essential properties are the statistical decoupling of MPVs
at different angular scales and the nontrivial correlation
between MPVs at a given angular scale π=l. Furthermore, it
is important to note that even if the underlying temperature
fluctuation field is Gaussian, the MPV distribution is not
and hence it is not enough to consider only one- and two-
point functions, but one needs the full set of all n-point
functions, where n ¼ 1;…; l for a given l. Although an
explicit expression for the probability distribution of the
MPVs has been found before in [31], it turns out to be of
limited use for practical purposes, except for the lowest
multipoles l ¼ 1, 2, 3. In this work we use Monte Carlo
methods, which appear to yield results faster than numeri-
cal integration of the analytic expression. Nevertheless, the
following review yields a solid understanding of what kind
of behavior one should expect.

A. Isotropy and Gaussianity

Let us first focus on the description of isotropy and
Gaussianity in the CMB data and the difference between
both.
The temperature fluctuation field is Gaussian if for all

n ∈ N and all ei ∈ S2 with i ¼ 1;…; n the probability
distribution of δT=T0 follows

pðδT=T0Þ ¼
1

N
exp

�
−
1

2

X
ij

�
δT
T0

�
i
ðD−1Þij

�
δT
T0

�
j

�
;

ð22Þ

with ðδT=T0Þi ¼ δTðeiÞ=T0 and some normalization con-
stant N . The matrix D is the correlation matrix Dij ¼
hðδT=T0ÞiðδT=T0Þji. The Gaussianity of δT implies
Gaussianity of the alm that obey

pðfalmgÞ ¼
1

N 0 exp
�
−
1

2

X
l;l0;m;m0

a�lmðC−1Þlml0m0al0m0

�
;

ð23Þ
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with Clml0m0 ¼ ha�lmal0m0 i and N 0 some normalization con-
stant which is in general different fromN . A Gaussian field
is fully characterized by its correlation matrix and if we
demand isotropy additionally, then Clml0m0 ¼ δmm0δll0Cl.
In this case we have

pðfalmgÞ ¼
Y
lm

expð−jalmj2=ð2ClÞÞffiffiffiffiffiffiffiffiffiffi
2πCl

p ; ð24Þ

i.e., the alm are identically and independently distributed
complex Gaussian random variables with variance Cl, or
alternatively all real and imaginary parts ℜalm, ℑalm as
well as al0 are identically and independently distributed
real Gaussian random variables with variance Cl.
Isotropy and Gaussianity do not necessarily imply each

other. Consider e.g., a distribution which is gained by an
isotropic and Gaussian distribution via introducing a cutoff
for large values of jalmj. By this we mean pðalmÞ ¼ 0 if
jalmj > κ ∈ R for all l and m. This distribution is not fully
Gaussian any longer but does not lose its isotropy. On the
other hand a general Gaussian distribution does not need to
be isotropic.

B. Probability distribution

It turns out that the joint probability density for the
MPVs of fixed angular momentum l is the same for all
so-called completely random sets of alm. This means that
the probability density of the coefficients, pðalmÞ, depends
only on the sum

P
mjalmj2, respectively on the power

spectrum estimator Ĉl; see [31,32]. An isotropic and
Gaussian distribution is of course included in the set of
completely random distributions; see Fig. 1. Note that
complete randomness does not require the alm to be
statistically independent. Rather, if they are statistically
independent and completely random, they automatically

have to be Gaussian. Gaussianity itself in combination with
complete randomness implies statistical isotropy, but not
vice versa, and therefore we shall insist on complete
randomness for the rest of this publication and treat it as
a basic assumption which incorporates statistical isotropy if
Gaussianity is given. The most important class of distri-
butions for cosmology is given by the intersection of
completely random and Gaussian alm, which we call
“standard cosmology” in Fig. 1. Since no sizable deviations
from Gaussianity have been observed so far (see e.g., [13]
or [17]), assuming that Gaussianity holds true allows for
investigating isotropy solely.
For fixed l the set of Gaussian distributions is described

by a finite number of d.o.f., since due to Wick’s theorem the
expectation values halmi and the two-point functions
halma�lm0 i uniquely determine the distribution. Respecting
the reality condition a�lm ¼ ð−1Þmal;−m yields 2lþ 1þ
ð2lþ 1Þ2 ¼ ð2lþ 1Þð2lþ 2Þ real d.o.f. The sets of sta-
tistically isotropic as well as completely random distribu-
tions are a priori not bounded in their d.o.f. Any n-point
function, with n ∈ N, contributes to the knowledge of
the distribution. Hence both distributions have at least a
countably infinite set of d.o.f. The intersection of the
completely random case and the Gaussian case coincides
with the intersection of the isotropic and Gaussian case.
Nevertheless, there exist completely random alm which are
not Gaussian, as e.g., a delta distribution δðĈlÞ. In principle
there can also exist statistically isotropic, non-Gaussian
distributions which are not completely random. An exam-
ple is provided by forming some rotationally invariant
quantity Q –which shall not be a function of the Cl– out of
the alm and considering its distribution pðQÞ. That com-
pletely random distributions form a subset of statistically
isotropic ones can be seen as follows: since a rotation R̂ acts
onC2lþ1 as a special unitary transformation, its determinant
vanishes and therefore�Y

i

OiðR̂ðeiÞÞ
�

¼
Z Y

m

dalm
Y
i

OiðfalmgÞpðfR̂−1almgÞ:

ð25Þ

The property of statistical isotropy reduces to the rotational
invariance of the joint probability. In the completely
random case we have pðfalmgÞ ¼ pðPmjalmj2Þ. Let the
unitary operator corresponding to R̂−1 acting on C2lþ1 be
denoted by D (which is related to Wigner’s D-matrix;
see [33]) and write the set of alm for fixed l as a vector
al ∈ C2lþ1; then

R̂

�X
m

jalmj2
�

¼
X
m

jR̂ðalmÞj2 ¼ ðDalÞ† · ðDalÞ

¼
X
m

jalmj2; ð26Þ
FIG. 1. Visualization of the relation among Gaussianity, stat-
istical isotropy and complete randomness. Dotted lines denote
infinite extension.
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due to the unitary representation of SOð3Þ as SUð2Þ. Hence,
completely random sets of alm always obey statistical
isotropy.
For CMB analysis one needs the joint probability

distribution of MPVs because inside one multipole they
are not independent of each other. This stems directly from
the behavior of random roots which tend to repel each
other. Contrary to this, the MPVs from different multipoles
are perfectly independent.
The first calculation of the joint probability densities of

random spin-l states was performed in 1995 by Hannay; see
[34]. He notes that the Majorana function equals exactly the
Bargmann function of the spin state in the Segal-Bargmann
space [35]. This representation of quantum states can be
seen as a third leg of standard quantum mechanics
accompanying Heisenberg’s matrix and Schrödinger’s
wave function quantum mechanics.
It turns out that in the completely random case the

n-point density can be written as a normalized permanent,

pl
nðζ1;…; ζn; ζlþ1 ¼ −1=ζ�1;…; ζlþn ¼ −1=ζ�nÞ

¼ 1

πn
perðC − B†A−1BÞ

detðAÞ ; ð27Þ

with

fi ≔ fΨðζiÞ Majorana function evaluated at the root

Aij ¼ hfif�ji

¼isotropy Xl

m;m0¼−l

ð−1Þmþm0
��

2l

lþm

��
2l

lþm0

��
1=2

· halma�lm0 i|fflfflfflfflffl{zfflfflfflfflffl}
¼Clδmm0

ζlþm
i ðζ�jÞlþm0

¼ Clð1þ ζiζ
�
jÞ2l ð28Þ

Bij ¼ hfif0j�i ¼isotropy
Cl2lζið1þ ζiζ

�
jÞ2l−1 ð29Þ

Cij ¼ hf0if0j�i ¼isotropy
Cl2lð1þ 2lζiζ�jÞð1þ ζiζ

�
jÞ2l−2; ð30Þ

where the second equalities only hold in the isotropic case;
see also [32]. The matrices A, B, C are (2n × 2n) matrices.
Calculating A−1 and inserting the explicit formulas from
(28)–(30) yields the joint probability density of 1 ≤ n ≤ l
MPVs. Note that here the function f can in principle be
complex. Isotropy and Gaussianity enter the gamewhen the
precise expressions (28)–(30) are inserted. Even though the
function f can be complex, one should remember that
the representation of the function by MPVs is possible only
for real functions.
An alternative derivation of the full joint density (n ¼ l),

made by Dennis in [32], uses the fact that the coefficients of
any polynomial can be expressed by a symmetric polynomial
of its roots leading to the full joint density:

pl
lðfζigÞ ¼

ð2l − 1Þ!!Q2l
j¼1 j!

ð2πÞll!Ql
j¼1 jζjj2

·

Q
2l
j;k¼1;j<k jζj − ζkj

ðPσ∈S2l

Q
2l
j¼1ð1þ ζjζ

�
σðjÞÞÞlþ1=2 : ð31Þ

When projecting back to the sphere, the Jacobi determinant
for this transformation has to be further taken into account.
Note that f has to be real for Eq. (31) to be valid, since the
result was obtained by implicitly setting ζlþi ¼ −1=ζ�i which
is only true for real Majorana polynomials.
In the case n ¼ 1 the distribution of MPVs on one

hemisphere of the two-sphere simplifies to a uniform
distribution

pl
1ð½v�Þ ¼ pðθ;ϕÞ ¼ 1

2π
ð32Þ

according to the surface measure. So when drawing MPVs
from an ensemble of alm, the first MPVone draws is always
uniformly distributed. For a derivation of (32) see
Appendix A.
Since MPVs rotate rigidly their density depends only on

the relative angle. Thus, for l ¼ n ¼ 2 one of the two
vectors can be fixed to an arbitrary direction, without loss
of generality to the north pole, and the second one encloses
an angle Θ with the first one. The two-point density is then
given by [32]

p2
2ðΘÞ ¼

27sin3ðΘÞ
ð3þ cos2ðΘÞÞ5=2 : ð33Þ

For comparison imagine a world in which the MPVs are
uniformly and independently distributed on the upper
hemisphere. Then the first MPV can again be fixed to

FIG. 2. Comparison of the two-point density of MPVs drawn
from a Gaussian ensemble of alm and identically uniformly
distributed pseudo-MPVs for l ¼ 2.
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the north pole and the second is still uniformly distributed
on the upper hemisphere. In this case the two-point density
would be puniðΘÞ ¼ sinðΘÞ=2. Both probability densities
are normalized in a way such that

R π=2
0 dΘpðΘÞ ¼ 1.

In Fig. 2 the two densities are plotted together. One can
see that the interaction of MPVs leads to repulsion. Bigger
angles are more probable in the case of real MPVs than in
the case of uniformity and independence. Such a behavior
is characteristic for roots of random polynomials.
The results from (27) are a priori complicated expres-

sions, even for the case n ¼ 3, whose integration does not
allow for a faster numerical computation of confidence
levels than a full Monte Carlo simulation.

V. CMB DATA

For our analysis we make use of the Planck 2015 full-sky
CMB intensity maps (see [36]) with Nside ¼ 2048 and treat
it within HEALPy, which is a HEALPix [37] implementa-
tion for PYTHON (see [38]).
The Planck full-sky maps are provided in nine different

frequency bands. These maps have been foreground cleaned
to produce best estimates of intensity and polarization of the
measured CMB signal from the sky after instrumental and
known systematical effects, like the dipole and quadrupole
(DQ) inducedby themotion of theSunandEarthwith respect
to the cosmic frame; the light from the zodiac cloud; andmost
important galactic foregrounds (synchrotron radiation, free-
free emission, thermal dust, carbon monoxide lines, anoma-
lous microwave radiation) have been removed. Using
four different cleaning algorithms, foreground cleaned
full-skymaps of CMB temperature intensity are constructed;
for the details of the component separation process we refer
to [19]. These different cleaning algorithms are called
COMMANDER, NILC, SEVEM and SMICA.

The four maps have been used to extract the MPVs up
to l ¼ 50 by using a tensorial algorithm [26]; see also
Sec. III B 1. A list of the MPVs for the multipoles l ¼ 2,
3, 4, 5 can be found in Table I; text files containing theMPVs
for higher l are provided in [39].

VI. STATISTICS AND SIMULATIONS

A. Statistics

One needs statistics that deliver information about both
intramultipole alignments and alignments of multipoles with
some given astrophysical direction, which in the following
will be referred to as the outer direction. Furthermore,
possible statistics are not allowed to depend on the ordering
of MPVs for a fixed l since this ordering is completely
arbitrary and contains no information. Additionally, the
statistics may not depend on the hemisphere, since MPVs
are lines rather than vectors. Eventually, they may not be
sensitive to the equator since the gluing mechanism at the
equator should be hidden. In the following, intramultipole
statistics are sometimes also referred to as inner statistics and
statistics that investigate correlations with outer directions as
outer statistics.
We used the following two outer statistics:

SjjDðlÞ ≔
1

l

Xl

i¼1

jvðl;iÞ ·Dj ð34Þ

SvDðlÞ ≔
2

lðl − 1Þ
X

1≤i<j≤l
jðvðl;iÞ × vðl;jÞÞ ·Dj; ð35Þ

where vðl;iÞ denotes the ithMPVbelonging tomultipole l and
D some outer direction, which will be specified in Sec. V.

TABLE I. MPVs from l ¼ 2 to l ¼ 5 in galactic coordinates ðl; bÞ in deg with the precision of one decimal. All
MPVs have been taken to lie in the northern hemisphere and for a given multipole they were ordered according to
their value of the galactic longitude. MPVs in the same line cannot necessarily be identified with each other since
they are not a priori ordered inside of a given multipole.

l COMMANDER NILC SEVEM SMICA

2 (6.9, 21.2) (12.8, 20.3) (13.3, 26.2) (5.7, 23.7)
(119.1, 18.2) (117.5, 20.1) (83.6, 12.3) (121.5, 21.9)

3 (25.6, 8.8) (23.2, 9.3) (33.0, 5.4) (22.1, 8.8)
(86.3, 38.4) (86.8, 37.7) (61.3, 35.0) (88.1, 38.8)
(317.7, 5.0) (315.3, 7.9) (140.5, 0.6) (314.8, 10.5)

4 (69.5, 3.2) (69.9, 4.5) (71.1, 19.2) (68.8, 2.2)
(207.5, 72.6) (203.9, 70.5) (189,4, 73.0) (207.8, 38.5)
(211.2, 36.7) (212.6, 40.0) (201.7, 38.0) (214.8, 69.9)
(333.4, 29.1) (333.5, 27.7) (336.5, 27.3) (335.9, 26.1)

5 (43.3, 33.3) (44.2, 35.8) (51.5, 28.2) (44.3, 36.7)
(98.7, 35.7) (96.8, 36.1) (79.8, 35.3) (98.3, 36.2)
(174.0, 3.9) (175.2, 3.4) (174.2, 3.8) (175.7, 3.3)
(232.1, 54.2) (232.4, 55.3) (232.1, 58.2) (234.9, 55.3)
(287.4, 31.6) (286.1, 31.6) (290.1, 18.9) (285.2, 32.8)
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Furthermore, we use two inner statistics:

SjjðlÞ ≔ 2

lðl − 1Þ
X

1≤i<j≤l
jvðl;iÞ · vðl;jÞj ð36Þ

SvðlÞ ≔ 6

lðl − 1Þðl − 2Þ
X

1≤i<j<k≤l
jðvðl;iÞ × vðl;jÞÞ · vðl;kÞj:

ð37Þ
All statistics are normalized such that they take values in

the unit interval [0, 1]. Each summand in every statistic
ranges from 0 to 1 while the number of summands is

l ¼ ðl
1
Þ for SjjD, lðl − 1Þ=2 ¼ ðl

2
Þ for Sjj and SvD, and

lðl − 1Þðl − 2Þ=6 ¼ ðl
3
Þ for Sv.

The statistic SjjD measures the alignment of a multipole
with an outer direction while SvD measures the orthogonality
of a multipole with respect to this outer direction. The
statistic Sjj measures the possible linearity of the respective
multipole itself while Sv measures possible planarity.
Let Xl;i ≔ jvðl;iÞ ·Dj; then the expectation value of SjjD is

hSjjDðlÞi ¼
1

l

Xl

i¼1

hXl;ii ¼ 1

2
: ð38Þ

This result holds for all types of completely random alm.
Due to the correlation of MPVs inside one multipole the

variance of SjjD is

VarðSjjDðlÞÞ¼
1

l2

�
l
12

−
lðl−1Þ

4
þ2

X
1≤ij≤l

hXl;iXl;ji
�
; ð39Þ

where for the calculation of hXl;iXl;ji one uses the two-
point density (33), yielding

VarðSjjDð2ÞÞ ¼
1

4

�
−
1

3
þ 2

3

�
6 −

10ffiffiffi
3

p
�
π

�
≈ 0.035: ð40Þ

If the MPVs are not correlated but are all independent, SjjD
would follow a slightly modified Irwin-Hall distribution
(see [40,41]),

pSjjDðlÞ
ðsÞ ¼ l

2ðl − 1Þ!
Xl

k¼0

ð−1Þk
�
l

k

�
ðls − kÞl−1sgnðls − kÞ;

ð41Þ

which would result in a variance of SjjDð2Þ of about 0.042
which is slightly larger than the variance in the completely
random case, showing again that the intramultipole corre-
lation tightens confidence regions. Note that in our analysis
we do not use analytical results, since the numerical
computation of confidence levels using the full joint
probability (31) turns out to be numerically more demand-
ing than a simple Monte Carlo simulation.

In order to compare the analytical results with the
numerics, we consider 1000 maps from isotropic and
Gaussian random alm and compare their MPV statistics
with the one from the cleaned Planck maps. From Fig. 6(a)
one deduces that the theoretical result (40) for the variance
is compatible with the numerical result for the 1σ region
because

ffiffiffiffiffiffiffiffiffiffiffi
0.035

p
≈ 0.187.

To characterize and quantify a possible violation of the
completely random hypothesis, we introduce a notion of
likelihood suggested in [42]. Let us first define what we
mean by the p-value: let Si;l be the data point of statistic
SiðlÞ received by one of the four Planck maps, where i ∈
f1; 2; 3; 4g runs through the four statistics. Define the p-
value of this data point as

PðSi;lÞ ≔
Z

Si;l

0

dspSiðlÞðsÞ; ð42Þ

i.e., small (≪ 1) as well as large (≈1) p-values indicate
unusual behavior. Now let SMi;l denote a data point as above
received from mapM (COMMANDER, NILC, SEVEM or
SMICA). We define the outer likelihood

Louter
l;D ðMÞ ≔ 42

Y
outer

PðSMl;iÞð1 − PðSMl;iÞÞ; ð43Þ

as well as the inner likelihood

Linner
l ðMÞ ≔ 42

Y
inner

PðSMl;iÞð1 − PðSMl;iÞÞ; ð44Þ

and the alignment likelihood

Ljj
l;DðMÞ ≔ 42

Y
jj
PðSMl;iÞð1 − PðSMl;iÞÞ: ð45Þ

The inner likelihood measures anomalies inside a given
multipole, while the outer likelihoodmeasures the anomalies
with respect to some outer direction. Eventually, the align-
ment likelihood measures the combined effect of alignment
with an outer direction and intramultipole alignment.
Before studying the Planck maps we need to understand

the correlation between statistics. For low l Fig. 3 shows
that the outer as well as the inner statistics are highly (anti)
correlated. For higher l the linear correlation of inner
statistics vanishes; the outer statistics keep their correlation
on a wide range of scales. Apart from statistical fluctuations
the alignment statistics show nearly no correlation at all.
Naively one would expect the inner and outer correlations
to effect the behavior of the likelihoods, but the distribution
of likelihoods in the range 2 ≤ l ≤ 50 is nearly the same for
all three considered types of likelihoods.

B. Simulations

We generate a fixed set of 1000 ensembles of Gaussian
and isotropic random alm on the range 2 ≤ l ≤ 50 while
assuming Planck 2015 best-fit cosmological data to be
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fixed. Then we use the MPV calculation program [26] to
extract MPVs for each of the 1000 ensembles and for the
four full-sky foreground cleaned Planck 2015 CMB maps.
From the MPVs we calculate the statistics described before.
Then, using the fixed set of 1000 random ensembles we
calculate mean values, confidence levels, p-values and like-
lihoods and use them for analysis of all four Planck maps.

VII. TEST DIRECTIONS

We use the following four physical directions, whose
possible influences should have different and independent
physical reasons:

(i) The cosmic dipole ðl;bÞ¼ð264.00°;48.24°Þ [with an
amplitude ðδT=T0Þdip ¼ ð3.3645� 0.002Þ × 10−3],
taken from [15]. The CMB dipole is assumed to be
due to the peculiar motion of the Solar System
with respect to the cosmic comoving frame [43].
A correlation with this direction could imply that the
nature of the kinematic dipole is not fully understood
yet, that it has not been removed from the data
properly, that the CMB contains an intrinsic dipole
for itself, or that the calibration pipeline is odd.

(ii) The Galactic Pole ðl; bÞ ¼ ð0°; 90°Þ. Galactic fore-
grounds which are aligned with the disk of the
Milky Way could give rise to an alignment with the
Galactic Pole.

(iii) The Galactic Center ðl; bÞ ¼ ð0°; 0°Þ. The foreground
pollution due to the inner part of theMilkyWay could
still be present in the cleanedmaps. A correlationwith
this direction would indicate that these residuals still
play an important role in data analysis.

(iv) The ecliptic pole ðl; bÞ ¼ ð96.38°; 29.81°Þ (trans-
formed from ecliptic to Galactic coordinates with

the NASA conversion tool [44]). The lowest multi-
poles are known to correlate unusually with the
ecliptic. Foreground pollution from the Solar System
could cause such a correlation.

In Fig. 4 we plot the MPVs for all pipelines at l ¼ 2
together with the four outer directions and the intersection
of the plane orthogonal to the cosmic dipole with the
celestial sphere in stereographic projection from the south
pole. One should note that the stereographic projection
does not preserve distances. Arcs close to the south pole get
stretched with respect to arcs close to the north pole. But
since we only consider one hemisphere, distances of points
on the sphere are approximately conserved. Despite this
disadvantage the stereographic projection was chosen
because it allows for a simple and straightforward inter-
pretation and has a nice geometrical meaning. Note that due
to the identification of antipodal MPVs, opposite points on
the unit circle in stereographic projection have to be
identified. For l ¼ 2 the plot already shows one feature
that we will encounter in Sec. VIII, namely that the MPVs
nearly lie in the plane orthogonal to the cosmic dipole.
In Appendix C further stereographic projection plots for

l ¼ 3, 4 (Fig. 18) and l ¼ 48, 49 (Fig. 19) can be found.
l ¼ 2, 3, 4 are plotted because at these multipoles the most
anomalous behavior can be observed and l ¼ 48, 49 have
been chosen because they depict two higher multipoles
which are orthogonal in the sense that one is especially
unlikely and one is especially normal.

VIII. RESULTS

The four statistics mentioned in Sec. VI were calculated
for all four full-sky maps using all test directions and
compared to the statistics of 1000 Monte Carlo ensembles
of Gaussian and isotropic alm. We provide a qualitative

FIG. 3. Linear correlation coefficients of statistics based on a
Monte Carlo simulation with 1000 ensembles of alm. The
combination Sv − SvD is the one mainly used in previous studies
by means of correlations between area vectors. It shows only
slight correlation at the largest angular scales.

FIG. 4. MPVs for l ¼ 2 and physical directions in stereo-
graphic projection. The violet curve shows the plane orthogonal
to the cosmic dipole.
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description of the results in Secs. VIII B 1–VIII B 5 before
summarizing the findings in more precise statistical state-
ments in Sec. VIII B 6.

A. Reproduction of known large scale anomalies
and investigation of intermediate scales with

outer vertical statistic

It has been observed in previous studies that on the largest
angular scales, i.e., the quadrupole and octupole, the MPVs
correlate with the cosmic dipole. Figure 5(a) shows that this
correlation is due to a strong orthogonality of theMPVs and
the dipole direction. The area vectors of the quadrupole and
octupole in COMMANDER, NILC and SMICA show an
alignment with the dipole at a 2σ level. By visualizing the
quadrupole as a plane, this means that the cosmic dipole
direction is nearly perfectly orthogonal to this plane which

cannot be achieved in about 96% of random ensembles of
Gaussian and isotropic temperature fluctuation fields. The
quadrupole value of SEVEM seems less anomalous, but as
we will argue later, we find hints that SEVEM still shows
residual foreground effects via a correlation of the MPVs
with the Galactic Center and especially with the Galactic
Pole. That theMPVs of the quadrupole are almost normal to
the dipole direction is also shown in Fig. 4.
Figure 5(b) shows the vertical outer statistic for smaller

angular scales. The region 20 ≤ l ≤ 24 sticks out just like
the largest angular scales. At these scales data points
outside the 1σ regions cluster. Both scale ranges show a
similar behavior; first the MPVs are too close to the plane
orthogonal to the Cosmic Dipole, and then they are too far
away from this plane. It should be noted that the two
suspicious scales (large and intermediate) coincide with the
scales at which the measured angular power spectrum
deviates from the best-fit ΛCDMmodel of the Planck 2015
analysis [15]. This hints towards a connection between the
power spectrum deviation and the peculiar motion of the
Solar System with respect to the cosmic frame.

B. Comparison of directions and pipelines
using aligned statistics

In Figs. 6–9 we plot the outer statistic SjjD for each of the
five directions including the 1σ to 3σ regions from the
Monte Carlo simulations in the range of large angular
scales 2 ≤ l ≤ 11 and in the range of smaller angular scales
12 ≤ l ≤ 50, comparing in each plot all four pipelines.
Figure 10 shows the same for the inner statistic Sjj.
Figure 17 shows the outer likelihood as a function of l
for the cosmic dipole. In Table II we present multinomial
probabilities and respective p-values.

1. Cosmic dipole

One observes [see Fig. 6(a)] that the large scale anti-
correlation of the quadrupole and octupole with the cosmic
dipole—see e.g., the review [21]—is still present in the
second release data. While for SEVEM the antialignment is
more pronounced at l ¼ 3 than at l ¼ 2, both multipole
data points are equally unusual in the other three pipelines
(both nearly 2σ). It turns out that for l ¼ 4 an even less
expected alignment of the COMMANDER, NILC and
SMICA data with the dipole is present. Except for SEVEM
each of the lowest multipoles l ¼ 2, 3, 4, 5 shows an
unexpected behavior with respect to the cosmic dipole.
The large multipole behavior [see Fig. 6(b)] already

shows a clear deviation of SEVEM from the other three
pipes. On the whole range 12 ≤ l ≤ 50 SEVEM is less
aligned with the cosmic dipole than the other cleaned maps
and it admits more unlikely data points.
Concerning COMMANDER, SMICA and NILC, all in

all 17 out 49 multipoles are outside of the 1σ region.
Despite the large angular scale 2 ≤ 5 there is no other

(a)

(b)

FIG. 5. Comparison of the MPV statistic SvD with D the cosmic
dipole for all four foreground cleaned maps. The expectation
value and 1, 2, 3σ regions from Monte Carlo simulations are
included. The top panel shows the multipoles corresponding to
large angular scales (2 ≤ l ≤ 12), the bottom panel shows smaller
angular scales corresponding to multipoles up to l ¼ 50.
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clustering of at least four unlikely multipoles in a row.
The conclusion here is that for l ≥ 5 the data follow the
statistically expected behavior. Furthermore neither align-
ment nor antialignment is preferred.
Eventually we state that COMMANDER, NILC and

SMICA show a very similar behavior and deviate less from
each other than one would naively expect. It seems that for
this type of data analysis the cleaning algorithms (except
for SEVEM) all have the same quality on the considered
range of scales and that the precise choice of the cleaning
algorithm does not affect our results. Since the three
algorithms use different frequency bands and different
masks the strong coincidence surprises.

2. Galactic Pole

The large scale behavior with respect to the Galactic
Pole is as expected (even in the SEVEM map); see

Fig. 7(a). When referring to larger multipoles [see
Fig. 7(b)], SEVEM shows even stronger deviations from
the other maps than in the other directions. From l ¼ 12
on SEVEM is tremendously aligned with the Galactic
Pole. Eight out of 39 data points lie even outside of the
3σ region. Again, we state that this behavior might be a
hint towards Milky Way residuals in the SEVEM map.
When comparing Fig. 7 to Fig. 20(a) from Appendix D,

where the statistic SjjD is plotted for the Galactic Pole for all
four pipelines but with the SEVEMmask applied to the map,
it becomes obvious that the strong alignment of SEVEMwith
theGalactic Pole is solely due to themasked region.When the
mask is applied, all fourmaps show a similar behavior and the
deviation of SEVEM from the others vanishes nearly com-
pletely, especially in the high l regime. This is not surprising
since it is assumed by the Planck Collaboration itself that
SEVEM carries residual effects of the Galactic Plane.

(a)

(b)

FIG. 7. Comparison of the MPV statistic for SjjD with D the
Galactic Pole. Expectation value and 1, 2, 3σ regions from
Monte Carlo simulations are included. Top and bottom panels as
in Fig. 5.

(a)

(b)

FIG. 6. Comparison of the MPV statistic for SjjD with D the
cosmic dipole. The expectation value and 1, 2, 3σ regions from
Monte Carlo simulations are included. Top and bottom panels as
in Fig. 5.
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Hence, one concludes that one should be careful when
using SEVEM for full-sky analyses. A more detailed
investigation of the precise cleaning algorithm needs to
be taken into account.
Finding such a strong deviation of the SEVEMmap from

complete randomness is a confirmation of the power of
MPV to identify alignment effects.
Concerning the other maps neither alignment nor anti-

alignment is preferred.
Altogether, on the whole range 2 ≤ l ≤ 50 the Galactic

Pole incorporates more low probability multipoles than the
Galactic Center or the ecliptic pole but approximately as
many as the cosmic dipole.

3. Galactic Center

The behavior with respect to the Galactic Center tends to
be less unexpected than the cosmic dipole on large angular

scales; see Fig. 8(a). Only l ¼ 2, 7 and 9 lie just outside of
1σ. Again SEVEM deviates clearly from the other maps on
smaller angular scales [see Fig. 8(b)], this time showing a
stronger alignment with the Galactic Center, especially on
the midrange scales which correspond approximately to the
angular size of the Galactic core.
There are three multipoles far away from the expectation

in the non-SEVEMmaps. The multipoles l ¼ 16, 18 and 47
have data points outside of the 2σ regions and l ¼ 16 is
nearly at 3σ.

4. Ecliptic pole

On large angular scales [see Fig. 9(a)], the data show an
even more expected behavior with respect to the ecliptic
pole than with respect to the cosmic dipole.
On smaller angular scales [see Fig. 9(b)], SEVEM again

clearly deviates from the other maps, showing more
antialignment with the ecliptic pole. For the other maps,

(a)

(b)

FIG. 8. Comparison of pipelines for SjjD with D the Galactic
Center. Expectation value and 1, 2, 3σ regions from Monte Carlo
simulations are included. Top and bottom panels as in Fig. 5.

(a)

(b)

FIG. 9. Comparison of pipelines for SjjD withD the ecliptic pole.
The expectation value and 1, 2, 3σ regions from Monte Carlo
simulations are included. Top and bottom panels as in Fig. 5.
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the ecliptic seems to show less correlation with the CMB
data than the dipole.

5. Inner alignment

The inner statistic Sjj comes equippedwith amuch smaller

variance than the outer statistic SjjD, as can be seen in Fig. 10.
Hence, the inner statistic is more susceptible to computa-
tional errors or minor fluctuations than the outer statistic, but
nevertheless the plots paint a distinct picture: the inner
statistic of COMMANDER, NILC and SMICA lies inside
1σ formost of themultipoles and does not leave 2σ one single
time. No strong outliers are present, either in the low l or in
the large l regime. If anomalies are present in the CMB, they
seem to be mainly caused by correlation with outer direc-
tions, while no remarkable intramultipole correlation of
MPVs can be observed. Note that other methods than ours
could reveal hidden intramultipole correlations that cannot
be observed with our simple method.

6. Multinomial p-values

In Table II we gather the number of multipoles in the
range 2 ≤ l ≤ 50 lying within 1σ (n1), between 1σ and
2σ (n2) as well as outside of 2σ (n3) and the probability of
that based on a multinomial distribution

pðn1; n2; n3Þ ¼
�

49

ðn1; n2; n3Þ

�
ð0.68Þn1ð0.28Þn2ð0.04Þn3

ð46Þ

for the statistics SjjD and Sjj. We also define a corresponding
multinomial p-value, which is the probability to find at least
n2 and n3 multipoles at 1σ to 2σ and above 2σ deviation
from expectation, i.e.,

multinomial p-value¼
Xn1
i¼0

Xiþn2

k¼0

pðn1− i;n2þ i−k;n3þkÞ:

ð47Þ

The smaller the p-value the more the data deviate from the
expectation concerning the number of outliers. An alter-
native definition of the p-value as the sum over all multi-
nomial probabilities that are smaller than the given
probability would result in higher p-values, but would
be inadequate for our purposes since it would involve
configurations which are unlikely normal, as e.g.,
ðn1; n2; n3Þ ¼ ð49; 0; 0Þ as well.
Inspecting Table II, the first thing to note is that SEVEM

is strongly (anti)correlated with the Galactic Pole, as it
shows a p-value of 10−26%. The correlation with the
Galactic Center is also significant with a p-value of
0.14%. All non-SEVEM maps behave as expected with
respect to the Galactic Pole and the ecliptic pole. Regarding
the inner alignment a slight deviation of COMMANDER
from the other maps can be observed. While NILC and
SMICA do not possess any data point outside of 2σ,
COMMANDER contains some data points shifted from 1σ
to beyond 2σ. Concerning the Galactic Center NILC seems
more normal than COMMANDER and especially SMICA.
However, the deviations are not extremely large and taking
into account the other two directions, the similarity of all
non-SEVEMmaps emerges again. The cosmic dipole is the
only considered direction for which all maps show p-values
below 10%. Next, we investigate from which ranges this
slight correlation of data and dipole stems.
The correlation of MPVwith the cosmic dipole is studied

in more detail in Fig. 11. It shows the dependence of the
multinomial p-value on lmax as one enlarges the considered
multipole range from [2, 2] to ½2; lmax�. Here we addition-
ally take into account statistic SvD, which measures ortho-
gonality of a multipole to the given direction, and only
focus on the NILCmap (it is most normal with respect to all
the other tests considered here). We find that the correlation

(a)

(b)

FIG. 10. Comparison of pipelines for Sjj. The expectation value
and 1, 2, 3σ regions from Monte Carlo simulations are included.
Top and bottom panels as in Fig. 5.
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with the cosmic dipole is due to the largest angular scales
and the region around l ¼ 20. The p-value of the aligned
statistics drops to 0.4% for the range [2, 5], while the
p-value of the vertical statistic is below 2% for [2, 3].
Around l ¼ 20 the p-value curve shows a dip with a
minimum at l ¼ 22 and p-value of 0.7% for the aligned
statistic and a drop in the vertical statistic with a minimum at
l ¼ 24. A third region where the p-value of both statistics
clearly drops is around l ¼ 42, but with higher multinomial

p-value than at l around 20. It is remarkable that these three
regions are exactly those regions where the power spectrum
deviates from the best-fit Planck value [15].
We conclude that there are threemain features found in our

investigation: the SEVEM map is affected by the Galactic
Pole and Galactic Center directions and when used for full-
sky analyses a careful treatment of its processing algorithm
should be taken into account. The other three maps agree
remarkably well, except with respect to their alignment
towards the Galactic Center. The cosmic dipole is the only
considered physical direction, for which we are able to
identify an effect on all full-sky maps. The alignments are
localized in multipole space and stem from three ranges:
l ∈ ½2; 5�, l around 20 and l around 42.

C. Comparison of directions using likelihood
histograms

By plotting histograms for the likelihoods introduced in
Eqs. (43) and (44) on logarithmic intervals [0, 1), [1, 10),
[10, 100] for the real CMB full-sky data and comparing
them to the expectation from Gaussian and isotropic Monte
Carlo simulations, we obtain a measure of anisotropy on the
whole range 2 ≤ l ≤ 50. The results confirm the findings of
the last section. Furthermore, combining two statistics into
one likelihood compresses the information content.

1. SEVEM

The large deviations from the expectation, which have
been observed by investigating the alignment statistics

TABLE II. Number of multipoles lying inside the 1σ region, between the 1σ and 2σ boundaries and outside of the

2σ region for all maps and directions for statistic SjjD as well as for statistic Sjj. In the last two columns we give the
multinomial probability for these distributions of multipoles amongst the σ regions in percent up to two digits and
the respective p-values.

Direction Map <1σ 1 − 2σ >2σ pmulti (%) Multinomial p-value (%)

Cosmic dipole COMMANDER 31 14 4 1.06 6.41
NILC 32 13 4 1.12 8.11
SMICA 28 19 2 0.84 5.64
SEVEM 32 12 5 0.42 3.16

Galactic Pole COMMANDER 37 11 1 2.33 79.30
NILC 36 12 1 2.96 73.90
SMICA 33 16 0 1.42 51.46
SEVEM 10 11 28 10−26 10−26

Galactic Center COMMANDER 32 14 3 2.25 16.77
NILC 34 13 2 3.48 41.87
SMICA 29 17 3 1.15 6.16
SEVEM 26 17 6 0.04 0.14

Ecliptic pole COMMANDER 32 15 2 3.15 27.59
NILC 36 10 3 1.33 28.80
SMICA 34 12 3 2.15 24.10
SEVEM 29 17 3 1.15 6.16

Inner alignment COMMANDER 30 16 3 1.58 9.19
NILC 32 17 0 1.13 39.43
SMICA 32 17 0 1.13 39.43
SEVEM 32 15 2 3.15 27.59

FIG. 11. Multinomial p-values for outer statistics SjjD and SvD
with D the cosmic dipole. The p-value is calculated from l ¼ 2 to
l ¼ lmax using the NILC map.
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alone, can be seen more easily from the likelihood histo-
grams of the inner likelihood (see Fig. 12) and the outer
likelihood (see Fig. 13).
The bin [0, 1) in Fig. 12 contains too many multipoles at

the 2σ level, while the bin of largest multipoles [10, 100]
contains too few multipoles between the 1 and 2σ level.
This shows that likelihoods are shifted from the largest to
the smallest values.
SEVEM’s strange behavior becomes even more pro-

nounced when considering the outer likelihoods; see
Fig. 13. While the ecliptic pole and the cosmic dipole
show anomalous behavior at the 2σ level, the Galactic
Center (3σ) and especially the Galactic Pole (≫3σ) are far
off from the expectation. Altogether, 21 out of 49 values for

the Galactic Pole have a likelihood which is smaller than
1%, which is far beyond 3σ.
Hence, we can conclude that SEVEM shows a slight

anomaly with respect to intramultipole correlations, while it
shows an enormous anomaly with respect to outer corre-
lations with the Galactic Center and most strongly with the
Galactic Pole, whose statistics correspond to measures of
the influence of the Galactic Plane. The combination of the
Galactic Pole and Center anomalies evokes the conjecture
that SEVEM is influenced by the Milky Way when no
masking procedure is considered.

2. NILC

Now, we exclude SEVEM and only consider the other
three maps: COMMANDER, NILC and SMICA. It turns
out, as already conjectured in the investigation of the pure
statistics, that all three maps deviate only marginally. While
COMMANDER tends to be the map with slightly larger
likelihoods than the other two maps, NILC is equipped
with the smallest confidence mask and therefore we
choose to present only the NILC results and mention that
COMMANDER seems to be closer to the expectation
while SMICA is slightly further away than NILC. Here
again the striking similarity of all three maps, despite their
very different cleaning procedures, is quite remarkable. For
(nonlogarithmic) likelihood histograms of the other maps
we refer to [45].
The overall structure of inner likelihoods (see Fig. 14) is

remarkably normal except for the fact that the number of
multipoles in the likelihood bin [1, 10) is too low at the 1σ
level while the single multipole in the lowest bin equals the
expectation value. It seems that some artificial intramulti-
pole isotropy could have been induced in the course of data
processing, resulting in a lack of variance in intramultipole

FIG. 12. Inner likelihood histogram for SEVEM. Gaussian,
isotropic expectation and 1=2=3σ regions (black, gray, and light
gray, respectively) are included.

FIG. 13. Outer likelihood histogram for SEVEM. Gaussian,
isotropic expectation and 1=2=3σ regions (black, gray, and light
gray, respectively) are included.

FIG. 14. Inner likelihood histogram for NILC. Gaussian,
isotropic expectation and 1=2=3σ regions (black, gray, and light
gray, respectively) are included.
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correlations. Apart from this, the inner likelihoods do not
show any further noticeable feature.
The aligned likelihood (see Fig. 15) shows expected

behavior for all directions but the cosmic dipole. The
number of multipoles with aligned likelihoods in the bin
[1, 10) for the cosmic dipole as outer direction is higher
than one would expect from a Gaussian and isotropic set of
alm at approx. 1.5σ.
The outer likelihood (see Fig. 16) shows the same

behavior as the aligned likelihood but with an additional
excess of likelihoods in the ½0; 1Þ-bin at the 1σ level for the
cosmic dipole, the Galactic Pole and the ecliptic pole, and
at the 2σ level for the Galactic Center. Considering both
bins of small likelihoods ½0; 1Þ and ½1; 10Þ together, the
cosmic dipole sticks out most again. The similar behavior

of the outer and aligned likelihoods confirms the robustness
of the likelihood definition against correlations of the
included statistics.
Figure 17 shows the outer likelihoods for the cosmic

dipole. It is clearly shown that there is a range, 25 ≤ l ≤ 34,
that does not include any unlikely data point regarding the
cosmic dipole. Hence, using the method applied here, we
cannot identify any statistically significant effect of the
cosmic dipole on the data on angular scales of about 5.3
to 7.2 deg. But once again one sees that in the ranges 2 ≤
l ≤ 5 and 20 ≤ l ≤ 24 low likelihoods cluster. Comparing

the two statistics SvD and SjjD one sees that the contribution to
low likelihoods in this range mainly stems from the vertical
statistic. We conclude that the slight excess of low like-
lihoods regarding the cosmic dipole in the range 2 ≤ l ≤ 50
mainly stems from the two regions 2 ≤ l ≤ 5 and
20 ≤ l ≤ 24.

IX. DISCUSSION

We find that SEVEM strongly deviates from
COMMANDER, NILC and SMICA in every regard. It
is strongly aligned with the Galactic Center and especially
the Galactic Pole and antialigned with the dipole and the
ecliptic pole in the SjjD statistic. The alignment with the
Galactic Center is most prominent on midrange multipoles,
indicating a residual effect of the Galactic Core that has not
been removed in the cleaning process. Furthermore, the
deviation of SEVEM from the other maps is most present
at l ≥ 12, which indicates that the central part of the
Milky Way is the dominating source of distraction in
SEVEM. Nevertheless, the correlation with the cosmic
dipole, that is present in the other maps, could also be seen
in SEVEM. It is just overshadowed by the sizable galactic
residuals. Since none of the above observations surprised

FIG. 15. Aligned likelihood histogram for NILC. Gaussian,
isotropic expectation and 1=2=3σ regions (black, gray, and light
gray, respectively) are included.

FIG. 16. Outer likelihood histogram for NILC. Gaussian,
isotropic expectation and 1=2=3σ-regions (black, gray, lightgray)
included.

FIG. 17. Comparison of outer likelihoods in dependence of l for
the range 2 ≤ l ≤ 50 and the cosmic dipole as the outer direction.
SEVEM has been excluded.
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us, SEVEMserves us as a controlmap. The fact that wewere
able to identify the expected residual foreground features of
SEVEM with our method shows that our method yields
geometrically easily interpretable results and that the heu-
ristic geometric intuition of the used statistics is correct.
Hence, we propose that the outer statistics truly measure the
influence of the given directions that are included.
COMMANDER, NILC and SMICA show a similar

behavior, deviating only marginally on the observed range.
While with respect to the Galactic Center and Pole and the
ecliptic pole the data do not show abnormal statistical
behavior, a correlation with the cosmic dipole is visible,
concentrating mainly on largest angular scales 2 ≤ l ≤ 5
and on intermediate scales l ¼ 20, 21, 22, 23, 24. The
behavior of the aligned statistic shows an analogue scheme at
both ranges; first there is antialignment, and then alignment.
The correlation with the cosmic dipole at the lowest

multipoles is present both in antialignment (l ¼ 2, 3, 5) and
alignment (l ¼ 4), but also the range 35 ≤ l ≤ 45 seems
slightly conspicuous, while the range 25 ≤ l ≤ 34 is
surprisingly normal with the absence of small likelihoods.
The large scale (anti)alignments might imply that we do not
yet fully understand the true nature of the dipole, i.e., the
relative motion of the Solar System with respect to the
cosmic frame. Since these anomalies are present in all of
the maps such a physical origin could be more likely than
data processing reasons.
It should be noted that the SMICA algorithm assumes

isotropy and Gaussianity from the beginning and thus it is
biased. Furthermore some assumptions on the spectrum on
synchrotron and free-free emission in the physics-based
cleaning process of COMMANDER as well as its noise
model might induce a bias on isotropy. In a weak sense also
NILC might be biased. SEVEM is the only map where an
a priori bias on isotropy and Gaussianity can be excluded.
This fact might influence the interpretation of the results.

X. CONCLUSION

The purpose of this work was to study the complete
randomness of the microwave sky by means of multipole
vectors (MPV) in the hope of identifying deficits in our
understanding or the data analysis of CMB full-sky maps.
We gave an overview over different extraction methods

for MPVs and their statistical properties. MPVs can be
represented via a symmetric and trace-free tensor applied to
the symmetric and trace-free product of unit vectors, which
yields an algorithm for extracting MPVs from the spherical
harmonic decomposition. Alternatively methods from alge-
braic geometry can be used to identify MPVs as lines in
CP2. A third approach uses the extension of the Bloch
sphere to higher spin and the stereographic projection.
The resulting polynomial can be understood as the scalar
product of a spin state with Bloch coherent states. The latter
approach can be used to assign joint probability densities to
MPVs. It turns out that the explicit expression for the joint

probability density is the same for the set of all distributions
of completely random alm. This set forms a subset of
statistical isotropic distributions and the intersection of
completely random and Gaussian distributions yields the
regime of standard cosmology.
Using different simple statistics we observed numeri-

cally a correlation of the full-sky cleaned maps with the
cosmic dipole on the largest angular scales 2 ≤ l ≤ 5 and
intermediate angular scales l ¼ 20, 21, 22, 23, 24.
Furthermore around l ¼ 40 low likelihoods cluster and
the multinomial p-value drops. These are the same multi-
pole numbers which also deviate from the theoretical
expectation in the angular power spectrum [15]. To the
authors’ knowledge, this “conspiracy” of MPV and power
spectrum has not been observed before. Other covariances
of CMB anomalies have recently been investigated in [46].
One main conclusion we draw is that the SEVEMmap is

still strongly correlated with the Galactic Center and
especially the Galactic Pole in our analysis. The cross-talk
between MPVs and masked skies needs to be studied in
more detail before one can use the foreground cleaned
maps with small galactic masks for MPV analysis.
In the future, one could also study cross-multipole

correlations on the observed range of scales and investigate
if the previously observed large scale correlations precede
down to smaller scales.
Furthermore one needs more insight about possible

physical reasons for CMB anomalies. One should especially
focus on detailed studies of the dipole and reveal its true
nature. Analyses of the radio sky with galaxy surveys hint
towards an increased radio dipole amplitude [47–50], which
could be caused by an intrinsic, nonkinematic CMB dipole.
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APPENDIX A: DERIVATION OF
ONE-POINT DENSITY

For l ¼ 1 we get from (31)

p1

�
ζ;
−1
ζ�

�
¼ 1

π

1

jζj2
jζ þ 1

ζ� j
ðð1þ jζj2Þð1þ j1=ζ�j2ÞÞ3=2

¼ 1

π

1

ð1þ jζj2Þ2 :
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Using ζ ¼ tanðθ=2Þ expðiϕÞ we receive




�∂ðζ; ζ�Þ
∂ðθ;ϕÞ

�



 ¼ tanðθ=2Þð1þ tan2ðθ=2ÞÞ

⇒ dΩ ¼ 2 sinðθ=2Þ cosðθ=2Þ
tanðθ=2Þ

dζdζ�

1þ jζj2

¼ 2dζdζ�

ð1þ jζj2Þ2 ;

where dΩ ¼ sinðθÞdθdϕ denotes the solid angle element

and jð∂ðζ;ζ�Þ∂ðθ;ϕÞÞj the Jacobi determinant of the change of

coordinates. Hence we have

p1ðθ;ϕÞ
2dζdζ�

ð1þ jζj2Þ2 ¼
!
p1ðζ;−1=ζ�Þdζdζ�

⇒ p1ðθ;ϕÞ ¼
1

2π
:

APPENDIX B: JOINT PROBABILITY
DISTRIBUTION OF MULTIPOLE VECTORS:
CONNECTION TO GAUSSIAN ANALYTIC

FUNCTIONS AND RANDOM MATRIX THEORY

The Majorana polynomial in (18) is a special case of the
wide class of Gaussian analytic functions (GAFs); see [51].
In general, a GAF is defined as a random field on Cn such
that for each z1;…; zn the quantity fðz1;…; znÞ is a
normally distributed random variable.
For every L ∈ N the function

fðzÞ ¼
XL
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
L

L − n

�s
anzn; ðB1Þ

with identically and independently distributed zero mean
and unit variance complex random variables an, is a GAF
whose zero set is invariant under the action of SO(3).
Its covariance kernel is given by CovðfðzÞ; fðwÞÞ ¼
Kðz; wÞ ¼ ð1þ zw�ÞL. The Majorana polynomial equals
this GAF up to a factor ð−1Þl which can be combined into
Ψm, and with L ¼ 2l and substituting n ¼ mþ l, yielding
Ψm ¼ amþl. TheΨm do not have unit variance, but variance
Cl. By rescaling Ψm a common factor for all Ψm can be
pulled out of the sum. This does not change the behavior of
the zeros.
The general density (27) holds for every GAF, while the

one-point density (32) can be expressed as

p1ðzÞ ¼ Δ logðKðz; zÞÞ=4π; ðB2Þ

for a general GAF. This equals—up to a different
normalization—the one-point density of the Majorana
polynomial in C which was used in the proof of (32).

The formula above is known as the Edelman-Kostlan
formula; see [52].
One can show that one-point statistics, which are

compactly supported, are asymptotically normal regarding
rotationally invariant GAFs. Let ϕ ∈ C2cðΛÞ and

LLðϕÞ ≔
X

z∈f−1ð0Þ
ϕðzÞ; ðB3Þ

then the following asymptotic behavior is valid:

ffiffiffiffi
L

p
ðLLðϕÞ − hLLðϕÞiÞ ⟶

l→∞;distribution
Nð0; κðϕÞÞ; ðB4Þ

where κðϕÞ denotes some number that depends on the
function ϕ. Unfortunately, the above is a priori not true
for functions ϕ with arbitrary support. Hence, it does not
apply to the statistics in Sec. VI. Since we are dealing
with one hemisphere, one could restrict the scalar
products appearing in those statistics to the unit disc.
This cutoff compactifies the statistic but unfortunately it
destroys any kind of differentiability. Nevertheless the
result above could be used to study local statistics on
certain patches on the sky in the large l limit in future
investigations.
Remember that the Majorana polynomial has covariance

kernel Kðz; wÞ ¼ ð1þ zw�Þ2l. The following statement
will show that MPVs as zeros of the isotropic GAF and
eigenvectors of Gaussian random matrices are tightly
connected: let A, B be independent (n × n) random
matrices with identically and independently distributed
complex standard Gaussian entries. Then the eigenvalues
of A−1B form a determinantal point process on C with
covariance kernel Kðz; wÞ ¼ ð1þ zw�Þn−1 with respect to
the measure n=ðπð1þ jzj2Þnþ1Þ · dmðzÞ and the eigenvec-
tors are distributed as

pðfzigÞ ¼
1

n!

�
n
π

�
n Yn
k¼1

Q
i<jjzi − zjj2

ð1þ jzkj2Þðnþ1Þ ðB5Þ

according to the Lebesgue measure on Cn.
One can see that the covariance kernel of these

eigenvalues and the covariance kernel of the Majorana
polynomial are equal for n ¼ 2lþ 1 and that the proba-
bility density above and the one in (31) look similar, but
still different. The reason for this difference is of course
that the zeros of the spherical GAF do not follow a
determinantal process, but rather some kind of perma-
nental process. In fact, the only case of a GAF whose zero
set is known to follow a determinantal process is the
following one:

fðzÞ ¼
X∞
n¼0

anzn: ðB6Þ
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This is a special case of a hyperbolically invariant GAF
and there are some striking results considering this special
function. Unfortunately, the rotationally invariant GAF
has not yet been confirmed to imply a determinantal
process.
A better understanding of the possible relationship

between Gaussian random matrices and MPVs would help
in investigating CMB anomalies with MPVs. Two-point
functions of eigenvalues are known simple expressions
while in principle the joint probability density of the MPVs
(27) is computable as well.

APPENDIX C: STEREOGRAPHIC PROJECTION

Here we show the stereographical projection of multi-
pole vectors for all full-sky cleaned maps together with the
stereographic projection of four physical directions for

l ¼ 3, 4, 48, 49. We choose to show the small multipoles
l ¼ 3, 4 in Fig. 18 because the statistics in the main text
show that in all maps the quadrupole is unusually weakly
aligned with the cosmic dipole and l ¼ 4 is unusually
strongly aligned with the cosmic dipole. We also choose to
plot the stereographic projection for two higher values of l
in Fig. 19, one of which (l ¼ 48) is close to the expectation
regarding alignment with the cosmic dipole and one of
which (l ¼ 49) is especially weakly aligned with the
cosmic dipole.

APPENDIX D: ALIGNMENT STATISTICS
FOR MASKED MAPS

In Fig. 20 we show the aligned statistics for all maps after
the SEVEM confidence mask has been applied to all four
maps collectively.

FIG. 18. Multipole vectors and physical directions in stereo-
graphic projection for l ¼ 3 (top) and l ¼ 4 (bottom). The violet
curve shows the plane orthogonal to the cosmic dipole.

FIG. 19. Multipole vectors (only NILC) and physical directions
in stereographic projection for l ¼ 48 (top) and l ¼ 49 (bottom).
The violet curve shows the plane orthogonal to the cosmic dipole.
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FIG. 20. Aligned statistics – SjjD with D the Galactic Pole (top) and Sjj (bottom) – for the Planck data with the SEVEM mask applied
and without Monte Carlos from l ¼ 2 to l ¼ 50. Once the Galactic Center is properly masked, all four foreground cleaned maps agree
very well with each other. The strong deviation of the aligned statistics from the generic expectation for small l is due to the mask, which
is the reason why masked maps cannot be used for the analysis of statistical isotropy of the lowest multipole moments.
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