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We derive the evolution equation for the density matrix of a UV- and IR- limited band of comoving
momentum modes of the canonically normalized scalar degree of freedom in two examples of nearly de
Sitter universes. Including the effects of a cubic interaction term from the gravitational action and tracing
out a set of longer wavelength modes, we find that the evolution of the system is non-Hamiltonian and non-
Markovian. We find linear dissipation terms for a few modes with wavelength near the boundary between
system and bath, and nonlinear dissipation terms for all modes. The non-Hamiltonian terms in the evolution
equation persist to late times when the scalar field dynamics is such that the curvature perturbation
continues to evolve on super-Hubble scales.
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I. INTRODUCTION

In cosmological models for the primordial universe,
the unavoidable quantum fluctuations of matter and of
the linearized gravitational field are the original source
of the rich structure of late-time inhomogeneities observed
today as variations in the temperature of the cosmic
microwave background (CMB) [1] and the distribution
of galaxies [2]. Two goals in cosmology are to use the
classical data collected from the CMB and large-scale
structure to pinpoint the particle physics of the primordial
era, and to understand whether signatures of their quantum
origin may remain observable today.
A major focus of inflation model building in the last

decade or so has been the study of how particle interactions
during or just after inflation may generate non-Gaussianity
in the correlation functions of the inhomogeneities.
Optimistically, this interest was fueled by the notion that
information from statistics beyond the power spectrum
could eventually distinguish among the zoo of particle

physics mechanisms for inflation. However, the fact that
our cosmological observations today are limited to a finite
volume of space, leaving sufficiently long wavelength
modes fundamentally unobservable, leads to an interesting
conundrum for studies of inflationary particle physics via
postinflation statistics: if fluctuations with wavelengths
observable to us can be coupled to fluctuations on unob-
servable scales, there is additional non-Gaussian sample
variance [3–12] that affects the precision with which
inferences can be made from the data. In nonsingle clock
inflation scenarios (roughly, models where more than one
light degree of freedom (d.o.f.) contributes to the fluctua-
tions) this cosmic variance uncertainty can be equal to or
larger than current observational uncertainty.
Cosmic variance from mode-coupling is a statistical

phenomena at the level of classical correlators, and can be
calculated on any constant time slice after inflation.
However, within the inflationary paradigm, those statistics
are generated in the course of a dynamical, quantum
mechanical process. Considering the full quantum story
of inflation models that couple modes of different wave-
lengths may lead to additional insight into the nature of
information contained in the inflationary fluctuations.
Here, we use the fact of IR-limited observational cosmol-
ogy and the associated issue of classical non-Gaussian
cosmic variance, as motivation to investigate the quantum
evolution equations of a system of cosmological modes
coupled to a bath of these long wavelength modes, during
an inflationary era. For simplicity, we focus our attention on
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a single cubic interaction term from the Einstein-Hilbert
action that, depending on a choice for the scalar field
dynamics, can support long-short mode-coupling.
The role of gravity in this scenario is three-fold: (1) the

homogeneous, isotropic, time-dependent gravitational
background serves as a zero-momentum pump sourcing
pairs of quanta in two-mode squeezed states; the zero-
momentum nature of the pump ensures a homogeneous and
isotropic amplification of all the momentum modes
k ≤ aH, (2) the inherently nonlinear gravitational action
itself provides the coupling term between system and bath,
and (3) the cosmological horizon of an observer after the
inflationary, quasi-de Sitter era puts a long wavelength limit
to the observable modes and so forces the longer wave-
length modes into the (unobservable) bath.
Our approach is complementary to previous works on

open systems in inflation [13–20] which have so far
considered the opposite case of computing the evolution
for super-Hubble, long wavelength modes in a bath of
sub-Hubble, short wavelength modes. By tracing out the
long-wavelength modes instead, we give a fully quantum
treatment of observables which remains valid even in the
presence of a strong coupling between long- and short-
wavelength modes, i.e., when long wavelength modes
cannot be absorbed by a renormalization of the background
clock. In the semi-classical limit our results should recover
not only the mean late-time curvature correlators that are
usually calculated, but also the full super-cosmic variance
probability distributions for how classical statistics
observed in a single Hubble volume may differ from the
mean statistics of the model [4,5].
The paper is organized as follows. We briefly review the

Hamiltonian for fluctuations in quasi de Sitter space in Sec. II
and describe the evolution equations in the two example
scenarioswe consider (slow-roll and nonattractor) in Sec. III.
These two background evolutions, and the choice of a
particular interaction term, allow us the simplest possible
calculation to examine the difference between models with
and without coupling between modes of very different
wavelengths (system-bath coupling) at late times. We then
describe our open quantum system approach to inflation in
Sec. IV, construct the modified evolution equation for the
reduced density matrix in section V and examine the time-
dependence of the non-Hamiltonian terms in Sec. VI. We
concludewith a discussion in Sec. VII. Variousmathematical
details are relegated to the Appendices.

II. THE MODEL

We work in a quasi-de Sitter space where the expan-
sion is driven by a dynamically evolving scalar field.
The background metric is ds2 ¼ −dt2 þ a2ðtÞdx⃗2 ¼
−a2ðηÞ½dη2 − dx⃗2�, where a is the scale factor, t is
cosmological time, and −∞ ≤ η ≤ 0 is conformal time;
dots (primes) indicate derivatives with respect to t (η).
Since the scalar field evolves, its energy density serves as a

“clock” and provides a preferred choice of time slices. Each
slice is spatially isotropic. In an expanding universe, physical
wavelengths are stretched with time, and it is often conven-
ient to work instead with comoving wavelengths, or comov-
ing momenta k⃗ ¼ aðηÞp⃗, p⃗ being the physical momentum,
that remain invariant as a function of time.
The Hubble parameter H ¼ _a=a and its derivatives

ϵ≡ − _H=H2, δ≡ _ϵ=ðHϵÞ, describe the time-evolution of
the background. Quasi-de Sitter phases have 0 < ϵ < 1, so
a nearly constant Hubble parameter. When H is nearly
constant we can integrate adη ¼ dt to obtain the useful
relation η ≈ −1=ðaHÞ. The quadratic action for the Fourier
modes of the (dimensionless) scalar perturbation, ζ, where
ds2 ¼ −a2ðηÞ½dη2 − ð1þ 2ζÞdx⃗2�, is [21–23]

S ¼ 1

2

Z
dη

Z
d3k
ð2πÞ3 z

2ðζk⃗0ζ0−k⃗ − c2sk2ζk⃗ζ−k⃗Þ; ð1Þ

with z2 ¼ 2ϵa2M2
p=c2s , where the (reduced) Planck mass

Mp is related to Newton’s gravitational constant by M2
p ¼

ð8πGNÞ−1 and 0 < cs ≤ 1 is the sound speed. To solve the
evolution equations it is convenient to work with the
canonical variable χ ¼ zðηÞζ. Introducing creation and
annihilation operators ĉ, ĉ† that satisfy ½ĉk⃗ðηÞ; ĉ†k⃗0 ðηÞ� ¼
ð2πÞ3δ3ðk⃗ − k⃗0Þ (and using the k⃗ → −k⃗ symmetry in the
Fourier transform) we can write the Hamiltonian for the
fluctuations [24],

Ĥ ¼ 1

2

Z
d3k
ð2πÞ3

�
cskðĉk⃗ĉ†k⃗ þ ĉ−k⃗ĉ

†
−k⃗
Þ

− i
z0

z
ðĉk⃗ĉ−k⃗ − ĉ†

k⃗
ĉ†
−k⃗
Þ
�
: ð2Þ

This expression shows that the time-dependent gravita-
tional background acts as a zero-momentum pump sourcing
correlated pairs of χ quanta [25,26]. Notice that for a mode
of fixed momentum k, the second line of the Hamiltonian is
more important for z0=z ≈ a0=a ¼ aH ≫ csk. In other
words, the squeezing interaction term dominates the
evolution when the physical wavelength of a mode is
stretched to a scale larger than the Hubble size, H−1. The
broken time translation invariance ensures both that this
scalar fluctuation cannot be gauged away, and gives an
appropriate axis so that the two-mode squeezing introduced
by the last term in the Hamiltonian is well defined (i.e., the
k⃗ and −k⃗ modes are distinguishable).

III. SLOW-ROLL VERSUS
NONATTRACTOR EVOLUTION

In typical models of inflation (single-field, slow-roll), one
chooses a slowlyvaryingpotential energy for the scalar field so
that ϵ is nearly constant with a value typically of order 0.01 to
0.1. The equation of motion for the evolution of the field
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rapidly becomes independent of any initial velocity. The
second-order differential equation of motion for ζk⃗ gives rise
to two different time-dependent pieces in the solution. These
are commonly designated the “growing” and “decaying”
modes, although in the case of standard slow-roll the “grow-
ing” mode actually approaches a constant for k ≪ aH while
thedecayingmode rapidly becomes anegligible component of
the solution. Then ζk⃗ can be considered constant (and

_ζk⃗ ≈ 0)
roughly from the time k≲ aH ≡ −1=η⋆ until the end of the
inflationary phase, η ¼ 0. The observed curvature pertu-
rbation, ζk⃗, and its conjugate momentum, π−k⃗, sati-
sfy ½limkη→0−ζk⃗ðηÞ; limkη→0−π−k⃗ðηÞ� ¼ 0, making quantum
mechanical effects extremely difficult to observe even in the
absence of any sources of decoherence. Since ϵ is nearly
constant, the canonical field χ satisfies Eq. (2) with z0=z ¼
a0=a to a very good approximation.
A rather different behavior can be found if the potential

for the scalar field has an exactly flat region, but the energy
density is driven to evolve by giving the scalar field an
initial velocity [27]. Such a phase, often called a “non-
attractor phase” would only persist a short time, since the
initial velocity is damped away by Hubble friction. But,
while it lasts, it provides a background metric that is nearly
de Sitter, but with ϵ ∼ a−6ðηÞ far from constant and δ ¼ −6
not a small parameter. Assuming cs is a constant,
z0=z ¼ −2a0=a. Crucially for our purposes, a change in
dynamics affects the solution for ζk⃗, which now has one
contribution that grows as η−3 and a second that is constant,
so that _ζk⃗ ≠ constant even for k≲ aH.
For either slow-roll or nonattractor dynamics the evolution

of the canonical field χ at quadratic order can be found in
terms of two-mode squeezing and rotation operators. One
first needs to solve for the time-dependence of the ladder
operators using the Heisenberg equation of motion,

dĉk⃗
dη

¼ −i½ĉk⃗; Ĥ� ¼ −i
�
cskĉk⃗ þ i

z0

z
ĉ†
−k⃗

�
; ð3Þ

which can in turn be solved by a Bogoliubov transformation
with a choice of initial condition at time η0, ĉk⃗ðηÞ¼
ukðηÞĉk⃗ðη0ÞþvkðηÞĉ†−k⃗ðη0Þ, where jukðηÞj2−jvkðηÞj2¼1.

The Bogoliubov transformation can be written as

ukðηÞ ¼ eiθkðηÞ cosh rkðηÞ; ð4aÞ
vkðηÞ ¼ e−iθkðηÞþ2iϕkðηÞ sinh rkðηÞ; ð4bÞ

where rk is the squeezing parameter, ϕk is the squeezing
angle, and θk is an angle rotating the conjugate field and
momenta (which is the same for the k⃗ and −k⃗ modes). The
leading order time-dependence in the exact de Sitter back-
ground approximation for slow-roll inflation, is given by [26]

rSRk ðηÞ ¼ −ArcSinh
�

1

2cskη

�
; ð5aÞ

ϕSR
k ðηÞ ¼ −

π

4
−
1

2
ArcTan

�
1

2cskη

�
; ð5bÞ

θSRk ðηÞ ¼ −kη − ArcTan

�
1

2cskη

�
; ð5cÞ

while for the nonattractor case we find instead

rNAk ðηÞ ¼ −2ArcSinh
�

3

2cskη

�
; ð6aÞ

ϕNA
k ðηÞ ¼ π

4
−
1

2
ArcTan

�
3

2cskη

�
; ð6bÞ

θNAk ðηÞ ¼ −kη − 2
ffiffiffi
2

p
ArcTan

�
3

ffiffiffi
2

p

2cskη

�
: ð6cÞ

For nonattractors the solution is approximate and only valid
when cskη ≪ 1.
Note that the equation of motion for χ is the same

in both, slow-roll and nonattractor models, i.e., χ00
k⃗
þ

ðc2sk2 − 2
η2
Þχ k⃗ ¼ 0. At any instant of time, however, the

position χ k⃗ and conjugate momentum p−k⃗ can be different
between the two models, as indicated by the distinct time-
dependence of the squeezing parameters above. The
commutator, ½χ k⃗ðηÞ; p−k⃗0 ðηÞ� ¼ ið2πÞ3δ3ðk⃗ − k⃗0Þ, remains
preserved at all times, as expected.

IV. DEFINING THE SYSTEM AND BATH

We use bands of comoving momenta to define the
system and bath, and assume that at some initial (con-
formal) time η0 we can factorize the Hilbert space as1

H ¼ HUV ⊗ HObs ⊗ HNIR ⊗ HIR: ð7Þ

We focus only on how the evolution of modes in HObs,
which satisfy kmin ≤ kObs ≤ kmax, is affected by interactions
with unobservable modes in the near infrared HNIR, which
satisfy kIR < kNIR < kmin. We assume that modes in HUV
can be properly accounted for with usual renormalization
techniques. We also assume that modes far in the infrared,
k ∈ IR, were accounted for in defining the Hamiltonian at
time η0. This organization is shown diagrammatically in
Fig. 1. Note that the comoving Hubble radius decreases as a
function of time.
Further, we consider a cubic interaction term of the

form, S3 ¼ M2
p

R
d3xdηa4ð3ϵ=c2sÞðc2s − 1Þζ _ζ2. Expressed

in terms of the field χ in momentum space this reads

1If we worked with physical momenta such a factorization
should remain valid at all times, but, since we are using comoving
momenta and the scale factor a is fluctuating, the factorization
would not quite hold. However, this prescription should capture the
dominant features of the scenario (and we can check the physics
using what is known about gauge issues for ζk⃗ correlators).
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λðηÞĤI ¼
3ðc2s − 1Þ
8Mpc2sa

ffiffiffi
ϵ

p
Z
△

" ffiffiffiffiffiffiffiffiffi
k2k3
k1

s
ðĉ†

−k⃗1
ĉ†
−k⃗2

ĉ†
−k⃗3

þĉk⃗1 ĉ
†
−k⃗2

ĉ†
−k⃗3

þ � � �Þ þ perm:

#
; ð8Þ

where
R
△
¼R d3k1

ð2πÞ3
d3k2
ð2πÞ3

d3k3
ð2πÞ3ð2πÞ3δ3ðk⃗1þk⃗2þk⃗3Þ. The Dirac

delta function enforces that the interacting momenta form a
closed triangle, which is useful for categorizing contribu-
tions to the integral. The terms inside the parenthesis
include all possible momentum conserving combinations
of operators, with some terms appearing with a minus sign
since the interaction term couples the field χ and its
conjugate momentum.
We choose this interaction term since it will significantly

couple modes of different wavelengths in the nonattractor
case where _ζk⃗ does not become negligible on large scales
[28], but not in the slow-roll case. As with the quadratic
Hamiltonian, the functional form is the same for the
slow-roll and nonattractor cases; the difference is in the
time-dependence of ϵ. The coupling coefficient λðηÞ ¼
3ðc2s − 1Þ=ð8c2saðηÞ

ffiffiffiffiffiffiffiffiffi
ϵðηÞp Þ is dimensionless but time-

dependent (we take cs to be constant for simplicity).
Using the fact that ϵðηÞ is approximately constant for
slow-roll and ∼a−6ðηÞ for nonattractor models, we obtain
the following expressions for the coupling, with all time-
dependence explicitly displayed:

λSRðηÞ ¼ −
3ðc2s − 1Þ
8c2s

ffiffiffi
ϵ

p ηH; ð9aÞ

λNAðηÞ ¼ 3

8

ðc2s − 1Þ
c2s

�
1

Hη

�
2

: ð9bÞ

Under the assumption that λðηÞ is abruptly turned on,
and hence no system-bath coupling exists at η0, the initial
density matrix can be written as

σ̂ðη0Þ ¼ jψNIRðη0ÞijψObsðη0ÞihψObsðη0ÞjhψNIRðη0Þj: ð10Þ

The full time evolution is then given by σ̂ðηÞ ¼
Ûðη; η0Þσ̂ðη0ÞÛ†ðη; η0Þ, where the time evolution operator
depends on the quadratic Hamiltonian for each mode, plus
the relevant interaction term (σ̂ðηÞ is the Schrödinger picture
densitymatrix).We note that both the quadraticHamiltonian,
containing the two-mode squeezing term, and the cubic
interaction are time-dependent. However, for small initial
coupling the full evolution can be approximated as

Ûðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1Te

−i
R

η

η0
ĤI;iðη1Þdη1 ; ð11Þ

where T time-orders the exponentials and ĤI;i is the
interaction Hamiltonian in the interaction picture.
To perform the trace over the near infrared d.o.f., we

introduce two kinds of basis states for the bath modes:
(i) Fock states defined at η0 grouped into ðk⃗;−k⃗Þ pairs, as

jNi ¼ Q
k∈NIRjmk⃗; n−k⃗i. Summing over jNi amounts

to summingover all possible pairs of integer values for
mk⃗ and n−k⃗. These are eigenstates of the quadratic
Hamiltonian without the squeezing term.

(ii) The two-mode squeezed vacuum for the bath
modes, represented by the action of the propagator,
corresponding to the full quadratic Hamiltonian
for the bath, on the vacuum: Û0ðη; η0Þj0k⃗; 0−k⃗i≡
jSQðk; ηÞi ¼ P

nc
sq
n ðk; ηÞjnk⃗; n−k⃗i. Note that, unlike

jNi, the squeezed vacuum is explicitly time-
dependent due to the time-dependence of ðrk;ϕk;
θkÞ in Eqs. (5) and (6).

V. THE EVOLUTION EQUATION

The reduced density matrix for the observable modes, at
any time η ≥ η0, is given by

ρ̂ðηÞ ¼ TrNIRσ̂ðηÞ
¼

X
N

hNjÛðη; η0ÞjψNIRðη0ÞijψObsðη0Þi

× hψObsðη0ÞjhψNIRðη0ÞjÛ†ðη; η0ÞjNi; ð12Þ

where Ûðη; η0Þ is given by Eq. (11). Perturbatively expand-
ing the above equation to second order in the coupling, we
find that (see Appendix A for details)

∂ηρ̂ðηÞ ¼ −i½ĤObs
0 ; ρ̂ðηÞ� − i½Ĥeff ; ρ̂ð0ÞðηÞ�

þ fÂðηÞ; ρ̂ð0ÞðηÞg þ
X
N

½L̂N1ρ̂
ð0ÞðηÞL̂†

N2

þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1�; ð13Þ

with2 Ĥð1Þ
eff ¼ λðηÞhSQðηÞjĤIðη0ÞjSQðηÞi,

FIG. 1. Representation of the system (“observable” modes) and
bath (“near infrared,” NIR, modes) Hilbert space, in terms of
bands of comoving momenta. The comoving Hubble radius
(thick black circle) is larger than all wavelengths of interest at the
initial time η0, but shrinks to be smaller than both bath and system
wavelengths at late times.
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Ĥð2Þ
eff ¼ −

i
2

X
N

ðL̂†
N1L̂N2 − L̂†

N2L̂N1Þ; ð14aÞ

ÂðηÞ ¼ −
1

2

X
N

ðL̂†
N1L̂N2 þ L̂†

N2L̂N1Þ; ð14bÞ

and the Lindblad operators given by

L̂N1ðηÞ ¼ λðηÞhNjĤIðη0ÞjSQðηÞi; ð15aÞ

L̂N2ðηÞ ¼
Z

η

η0

dη1λðη1ÞhNjĤI;iðη1 − ηÞjSQðηÞi: ð15bÞ

Here jSQðηÞi ¼ Q
k∈NIRjSQðk; ηÞi and ĤObs

0 is defined by
restricting the integral in Eq. (2) to only run over modes
k ∈ Obs. This result in Eqs. (13)-(15) is similar to that
of [31], but with additional structure due to the time-
dependent squeezing term at quadratic order.

VI. EVALUATING THE
NON-HAMILTONIAN EVOLUTION

The separation between system and bath is in momentum
space, so we must work there to find explicit expressions
for the non-Hamiltonian terms in the evolution of ρ̂ðηÞ. As
the first check on the expressions above, suppose all three
momenta are in the NIR bath. Then the L̂Ni are just

numbers and so Ĥð2Þ
eff ¼ 0 and the terms in the last two

lines of Eq. (13) all sum to zero. For momentum configu-
rations containing both system and bath modes, the fact that

all non-Hamiltonian terms in the evolution equation come
with

P
N ensures they will give nonzero contributions only

when the same number of modes are in the NIR in both L̂Ni

and L̂†
Nj. That, in turn, means all terms in the evolution

equation contain an even number of ĉk⃗, ĉ
†
k⃗
operators for

modes in the observable band.
The momentum configurations that give nonzero non-

Hamiltonian evolution can be conveniently thought of in
the language familiar from the study of non-Gaussianity in
cosmology. They are either (1) “folded” triangles, where
two bath modes interact with one system mode or
(2) “squeezed” triangles, where two system modes interact
with one bath mode. Only system modes with momenta
kmin < k < 2kmin can receive contributions of the folded
type, and even for these selected modes not many con-
figurations are possible. The fact that the same bath state
jNi appears in both Lindblad operators in terms like
L̂N1ρ̂

ð0ÞðηÞL̂†
N2, enforces conservation of momentum of

the system modes appearing explicitly in the final result.
In Appendix B, we write out the interaction

Hamiltonian and the two Lindblad operators for folded
and squeezed configurations. After specifying the bath
modes for each case, we evaluate all creation, annihilation,
or squeezing operators acting on bath modes. From the
results for folded and squeezed configurations [Eqs. (B6),
(B9) and Eqs. (B12), (B13) respectively], the sumP

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2 can be evaluated.

For example, consider a folded trianglewith labels k⃗s, k⃗b1,

k⃗b2 for the momenta in L̂N1 and k⃗0s, k⃗
0
b1, k⃗

0
b2 in L̂†

N2. Then,

X
N
L̂N1ρ̂

ð0ÞðηÞL̂†
N2jFolded ¼

X
mk⃗bi

;nk⃗bi

λðηÞ
M2

p

Z
△

Z
△0

Y
ki∈NIR;ki≠kb1;kb2

hmk⃗i
; n−k⃗i jSQðki;ηÞi

Y
k0i∈NIR;k

0
i≠k

0
b1;k

0
b2

hSQðk0i;ηÞjmk⃗0i
; n−k⃗0ii

×
e
þiθk0

b1
ðηÞ

coshrk0b1ðηÞ
e
þiθk0

b2
ðηÞ

cosh rk0b2ðηÞ
csqmk⃗0

b1
ðk0b1;ηÞcsqmk⃗0

b2
ðk0b2;ηÞ

1

ðkb1kb2Þ3=2
1

ðk0b1k0b2Þ3=2

× δmk⃗0
b1
þ1;nk⃗0

b1

δmk⃗0
b2
þ1;nk⃗0

b2

δmk⃗b1
þ1;nk⃗b1

δmk⃗b2
þ1;nk⃗b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmk⃗0b1

þ 1Þðmk⃗0b2
þ 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmk⃗b1

þ 1Þðmk⃗b2
þ 1Þ

q

×

(
ĉk⃗sðη0Þ

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s
½csqnk⃗b1 ðkb1;ηÞc

sq
nk⃗b2

ðkb2;ηÞ þ csqmk⃗b1
csqmk⃗b2

− csqnk⃗b1c
sq
mk⃗b2

− csqmk⃗b1
csqnk⃗b2 � þ � � �

#

þ ĉ†
−k⃗s

ðη0Þ
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½þþ−−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½−þþ−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½−þ−þ�

#)
ρ̂ð0ÞðηÞŜk0sðηÞR̂k0sðηÞ

×

(
ĉ†
k⃗0s
ðη0ÞR̂†

k0s
ðηÞŜ†k0sðηÞ

Z
η

η0

dη1λðη1Þ
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

k0b1k
0
b2

k0s

s
½u�k0sðη1Þðv�k0b1ðη1Þv

�
k0b2
ðη1Þ þ uu− v�u− uv�Þ

þ vðk0s;η1Þðþþ−−Þ� þ � � �
)
þ ĉ−k⃗0sðη0ÞR̂

†
k0s
ðηÞŜ†k0sðηÞ

×
Z

η

η0

dη1λðη1Þ
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

k0b1k
0
b2

k0s

s
½v�k0sðη1Þðþþ−−Þ þ uk0sðη1Þðþþ−−Þ� þ � � �

))
; ð16Þ
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where subscripts “s” denote systemmodes, subscripts “b” denote bathmodes, and ŜkðηÞ and R̂kðηÞ are the two-mode squeezing
and rotation operators constructed from ðrk;ϕk; θkÞ in Eqs. (5) and (6). Since the same bath state jNi appears in both Lindblad
operators [Eq. (15)], themomenta appearing in either operatormust also be the same (e.g., k⃗0b1 ¼ k⃗b1, where theDirac deltas for
the triangle modes enforce the relative sign in this equality). Using this fact (and replacing the integrals by symmetrized
products ð1=3ÞPi;jk

3
i k

3
j to maintain the correct dimensionality) gives

X
N
L̂N1ρ̂

ð0ÞðηÞL̂†
N2jFolded ¼

X
mk⃗bi

;nk⃗bi

λðηÞ
M2

p

Z
△

Y
ki∈NIR;ki≠kb1;kb2

jhmk⃗i
;n−k⃗i jSQðki;ηÞij2δmk⃗b1

þ1;nk⃗b1
δmk⃗b2

þ1;nk⃗b2

×

�
k3b1k

3
b2þk3sk3b1þk3sk3b2

3k3b1k
3
b2

�
eþiθkb1 ðηÞ

coshrkb1ðηÞ
eþiθkb2 ðηÞ

coshrkb2ðηÞ
ðmk⃗b1

þ1Þðmk⃗b2
þ1Þcsq�mk⃗b1

ðkb1;ηÞcsq�mk⃗b2
ðkb2;ηÞ

×

�
ĉk⃗sðη0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s
½csqnk⃗b1 ðkb1;ηÞc

sq
nk⃗b2

ðkb2;ηÞþcsqmk⃗b1
csqmk⃗b2

−csqnk⃗b1c
sq
mk⃗b2

−csqmk⃗b1
csqnk⃗b2 �þ � � �

�

þ ĉ†
−k⃗s

ðη0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½þþ−−�þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½−þþ−�þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½−þ−þ�

��
ρ̂ð0ÞðηÞŜksðηÞR̂ksðηÞ

×

�
ĉ†
k⃗s
ðη0ÞR̂†

ks
ðηÞŜ†ksðηÞ

Z
η

η0

dη1λðη1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½u�ksðη1Þðv�kb1ðη1Þv�kb2ðη1Þþuu−v�u−uv�Þ

þvksðη1Þðþþ−−Þ�þ �� �
�
þ ĉ−k⃗sðη0ÞR̂

†
ks
ðηÞŜ†ksðηÞ

×
Z

η

η0

dη1λðη1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½v�ksðη1Þðþþ−−Þþuksðη1Þðþþ−−Þ�þ �� �

��
: ð17Þ

This result contains a sum over the bath modes participating in the interaction, whose structure depends on the fact that
the bath is squeezed. (To illustrate how this bath structure is relevant, the left hand panel of Fig. 2 below will contrast the
actual dissipation compared to what results from considering just the ground state of the bath.) In the various terms of the
interaction Hamiltonian, there are several versions of the mode sum that must be performed, but they all have the same form.
For example, the third line of the right-hand side in the previous equation (making use of the Dirac deltas from the first line)
can be simplified using

(a) (b)

FIG. 2. Example contribution to
P

NL̂N1ðηÞL̂†
N2ðηÞ from a folded triangle configuration with momenta [in units of ðH=csÞ] of ks ¼ 1,

kb1 ¼ 0.5 and kb2 ¼ 0.54 and bath modes in (a) the quantum ground state, i.e., mk⃗b1
¼ mk⃗b2

¼ 0, and (b) an arbitrary superposition of

Fock states, i.e., summing over all possible values of mk⃗b1
and mk⃗b2

. For both slow-roll (SR) and nonattractor (NA) dynamics we extract

the dimensionless parameter γlin;1 from f1 in Eq. (22), but the nonattractor case is shown in units of H−6 so as not to obscure the
dependence of the amplitude on this physical number. As seen from Eq. (14), both the real and imaginary parts of this quantity enter the
evolution equation.
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X∞
mk⃗b1

¼0

X∞
mk⃗b2

¼0

ðmk⃗b1
þ 1Þðmk⃗b2

þ 1Þcsq �mk⃗b1
ðkb1; ηÞcsq �mk⃗b2

ðkb2; ηÞ
h
csqmk⃗b1

þ1ðkb1; ηÞcsqmk⃗b2
þ1ðkb2; ηÞ þ csqmk⃗b1

csqmk⃗b2

− csqmk⃗b1
þ1c

sq
mk⃗b2

− csqmk⃗b1
csqmk⃗b2

þ1

i
¼ cosh3rkb1cosh

3rkb2 ½csq0 ðkb1; ηÞ − csq1 ðkb1; ηÞ�½csq0 ðkb2; ηÞ − csq1 ðkb2; ηÞ� ð18Þ

The sums in other terms give similar results, but with varying signs in front of the csq0 , c
sq
1 terms.

Thus, folded triangles lead to terms in
P

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2 that, in terms of operators for system modes only, are of the
form

Z
d3ks
ð2πÞ3 ĉk⃗sðη0Þρ̂

ð0ÞðηÞŜksðηÞR̂ksðηÞ½ĉ†k⃗sðη0Þf1ðki; ηÞ þ ĉ−k⃗sðη0Þf2ð; ki; ηÞ�R̂
†
ks
ðηÞŜ†ksðηÞðplus twomore similar termsÞ ð19Þ

where the functions fi have mass dimension 1. To define a dimensionless quantity γlin;i, signifying a “dissipation factor” for
each momentum configuration, the integral over the triangle configuration can be simplified, leaving

fSRi ≡ 2π
H2

M2
p

Z
kmin

kIR

dkb

Z
1

−1
duθHðk2min − k̃2bÞ

��
3ðc2s − 1Þ
8c2s

ffiffiffi
ϵ

p
��

2

γSRlin;i;

fNAi ≡ 2π
H2

M2
p

Z
kmin

kIR

dkb

Z
1

−1
duθHðk2min − k̃2Þ

�
3ðc2s − 1Þ

8c2s

�
2

γNAlin;i: ð20Þ

Repeating the analysis for squeezed configurations leads to dimensionless nonlinear dissipation factors defined by

qSRi ¼ 2π
H2

M2
p

Z
1

−1
duθHðk2min − k2bÞ

�
−
�
3ðc2s − 1Þ
8c2s

ffiffiffi
ϵ

p
��

2 ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2

p
γSRNL;i;

qNAi ¼ 2π
H2

M2
p

Z
1

−1
duθHðk2min − k2bÞ

�
−
�
3ðc2s − 1Þ

8c2s

��
2 ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
p

γNANL;i: ð21Þ

Then, the general result for the form of terms in
P

NL̂N1ρ̂
ð0ÞðηÞL̂†

N2 originating from a cubic interaction between system
and bath modes is

X
N

L̂N1ρ̂
ð0ÞðηÞL̂†

N2jFolded ⊃
Z

d3ks
ð2πÞ3 ĉk⃗sðη0Þρ̂

ð0ÞðηÞŜksðηÞR̂ksðηÞ½ĉ†k⃗sðη0Þf1ðki; ηÞ þ ĉ−k⃗sðη0Þf2ðki; ηÞ�R̂
†
ks
ðηÞŜ†ksðηÞ; ð22Þ

X
N

L̂N1ρ̂
ð0ÞðηÞL̂†

N2jSqueezed ⊃
Z

d3ks1
ð2πÞ3

Z
dks2k2s2ĉk⃗s1ðη0Þĉk⃗s2ðη0Þρ̂ð0ÞðηÞŜks1ðηÞR̂ks1ðηÞŜks2ðηÞR̂ks2ðηÞ

× ½ĉ†
k⃗s1
ðη0Þĉ†k⃗s2ðη0Þq1ðki; ηÞ þ � � ��R̂†

ks2
ðηÞŜ†ks2ðηÞR̂

†
ks1
ðηÞŜ†ks1ðηÞ; ð23Þ

where (…) denotes all possible momentum-conserving operator pairs. Besides the time-dependence of the dissipation
factors coming from the interaction Hamiltonian and time-dependent squeezing of the bath modes, the non-Hamiltonian
evolution terms for the density matrix of the system also have time-dependence from the squeezing of the system modes
[the R̂ksðηÞ, ŜksðηÞ operators in the equations above].
As evident from the explicit structure of the non-Hamiltonian terms, folded configurations lead to linear (single-mode)

dissipation terms, while squeezed configurations lead to nonlinear (two-mode) dissipation terms. Further in each of the
configurations, there are two classes of terms: ðĈkρ̂Ĉ

†
k; Ĉ

†
kρ̂ĈkÞ and ðĈkρ̂Ĉk; Ĉ

†
kρ̂Ĉ

†
kÞ (here Ĉk ≡ ĉks for folded and Ĉk ≡

ĉks1 ĉks2 for squeezed configurations). While the former correspond to single/two-photon exchange with thermally
distributed bath modes, the latter terms indicate that these bath modes are squeezed [32].
We show a more quantitative comparison of the time-dependence of these non-Hamiltonian terms between slow-roll and

nonattractor models of inflation in Figs. 2 and 3 for particular choices of the momentum configuration. Figure 2 shows the
time-dependence of γlin;1 for both slow-roll and nonattractor inflation when the bath modes are in (a) the quantum ground
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state, i.e., mk⃗b1
¼ mk⃗b2

¼ 0, and (b) an arbitrary super-
position of Fock states, i.e., summing over all occupation
numbers. Figure 3 similarly shows the time-dependence of
γNL;1 when the bath modes are in the quantum ground state,
i.e., mk⃗b

¼ 0, or summed over.
In all of the dissipation terms, there is an η1 integral, which

can be performed analytically for slow-roll squeezing
parameters and numerically for the nonattractor solution.
For the slow-roll case the result is that thedissipativefi andqi
terms for both the folded and squeezed configurations scale
like ratios of physical (not comoving) quantities times one
factor that goes like the comoving momentum. The non-
attractor result, however, has an additional dependence on
time in the interaction strength,whichmakes the implications
of a straightforward comparison of the numerical values
between the two scenarios unclear. Rather than choose an
arbitrary numerical value, we plot the quantity H6γ. The
relative qualitative time-dependence of the two cases is not
affected by this choice: As the figure shows, both the linear
and nonlinear dissipation terms decay with time in the slow-
roll case, but increase in the nonattractor case, when bath
modes are summed over, as η → 0−. Since the nonattractor
phase cannot last for more than a few e-folds, this increase at
late times does not pose a problem. Further, the real parts of
both the linear and nonlinear dissipation terms generically
change sign as a function of time indicating that the evolution
is non-Markovian [33].

VII. DISCUSSION

In this paper, we have presented a fully quantum frame-
work to study the open systemdynamics of inflation,with the
short-long mode coupling providing the effective system-
bath interaction. Our goal was to go beyond the question of

standard observables and understand the full dynamics of
quantum systems that have mode-coupling sample variance
in their classical statistics. The results we presented take a
gravitational system that has a horizon, is not static, and
includes well-understood classes of interactions, and pro-
vides a bridge to less-studied quantum aspects of fields in
nontrivial gravitational backgrounds. For any cubic inter-
action, the non-Hamiltonian terms in the evolution of modes
with wavelength below some infrared scale will be of the
form shown in Eq. (22) for folded (two bath modes, one
systemmode) configurations, and Eq. (23) for squeezed (one
bath mode, two system modes) configurations. The linear
and nonlinear dissipation coefficients will depend on the
weighted sum of triangle configurations of each type.
The time-dependence for the two cases we considered,

slow-roll and nonattractor inflation, is shown in Figs. 2 and 3,
where we find a late-time growth particular to the non-
attractor scenario. However, several aspects of our results are
quite general: (i) for a system coupled to a long wavelength
bath, folded configurations of the three-point function in
momentum space lead to linear dissipation terms while
squeezed configurations lead to nonlinear dissipation;
(ii) since there are far fewer folded triangles with two modes
in the NIR (restricting system modes in kmin < ks < 2kmin)
compared to squeezed triangles with one mode in the NIR,
nonlinear dissipation is likelymore significant for observable
modes than linear dissipation is; (iii) “dissipation” does not
necessarily imply the loss of coherence; indeed we find the
evolution of system modes to be non-Markovian in general,
irrespective of whether the bath modes are in the quantum
ground state or allowed to occupy any state. Under such an
evolution the system-bath interaction can lead to an exchange
and even bath-mediated amplification of quantum coher-
ences in the system.

(a) (b)

FIG. 3. Example contribution to
P

NL̂N1ðηÞL̂†
N2ðηÞ from a squeezed triangle configuration with momenta [in units of ðH=csÞ] of

ks1 ¼ 0.1, ks2 ¼ 0.101, and kb ¼ 0.01 and bath modes in (a) the quantum ground state, i.e., mk⃗b
¼ 0, and (b) an arbitrary superposition

of Fock states, i.e., summing over all possible values of mk⃗b
. For both slow-roll (SR) and nonattractor (NA) dynamics we extract the

dimensionless parameter γNL;1 from q1 in Eq. (23).
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For the interaction we studied, the quantum environment
dynamics lead to a non-Markovian system dynamics in
both single-clock and nonsingle clock models. This implies
that quantum memory of modes outside the horizon may
lead to additional time-dependence of observable correla-
tors, beyond what is uncovered in the usual semiclassical
treatment. While this is not likely to be observable, we
suspect the non-Markovian behavior may be especially
conceptually important in understanding the quantum
dynamics for nonsingle-clock models.
The framework presented here is appropriate for any

cosmological scenario of the primordial universe where
curvature modes evolve outside the horizon (or, where there
is non-Gaussianity that couples modes of different wave-
lengths). It should facilitate a quantum open systems
analysis, and decoherence studies, in the large number
of non-Gaussian scenarios for which ζ-correlations have
already been computed, but is particularly relevant for any
model with long-short mode coupling. This includes all
inflation beyond single-clock, as well as contracting uni-
verse scenarios. Eventually, it may be possible to move
beyond the lessons of particular models: the evolution
equation we have presented here is a first step toward the
appropriate effective theory [31,34–37] for observables in a
large class of cosmological scenarios consistent with the
current understanding of our universe. Finally, although it
is unlikely that any inflationary model consistent with the
classical data we have already collected will support the
presence of significant late-time quantum information, this
work will also facilitate exploration of whether or not such
a universe is even theoretically possible.
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APPENDIX A: CONSTRUCTING THE
EVOLUTION EQUATION

In this Appendix we provide a few details in the derivation
of Eqs. (13)–(15), which give the general form of the
evolution equation for the system of “observable” modes
coupled to a bath of longer wavelength, “near infrared”
modes. The full time evolution of the system is given by

σ̂ðηÞ ¼ Ûðη; η0Þσ̂ðη0ÞÛ†ðη; η0Þ; ðA1Þ

where the time evolution operator depends on the quadratic
Hamiltonian for each mode, plus any interaction term. At
least for small coupling and short times, we can approx-
imately factor out the quadratic evolution and use

Ûðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1Te

−i
R

η

η0
λðη1ÞĤI;iðη1Þdη1 ; ðA2aÞ

Û†ðη; η0Þ ¼ T̄e
i
R

η

η0
λðη1ÞĤI;iðη1Þdη1 T̄e

i
R

η

η0
Ĥ0ðη1Þdη1 ; ðA2bÞ

where (T̄) T will (anti-) time-order the factors in the
exponential. The operators in the interaction term are in
the interaction picture, defined, for example, by

ĉk⃗;iðηÞ ¼ Û†
0ðη; η0Þĉk⃗ðη0ÞÛ0ðη; η0Þ; ðA3Þ

where Û0ðη; η0Þ ¼ Te
−i
R

η

η0
Ĥ0ðη1Þdη1 is the propagator corre-

sponding to the quadratic Hamiltonian. It is useful to divide
the integral over momentum modes in the Fourier-space
quadratic Hamiltonian at the point k ¼ kmin (separating the
observable systemmodes from the near infrared bathmodes)
and write

Ĥ0ðηÞ ¼ ĤObs
0 ðηÞ þ ĤNIR

0 ðηÞ: ðA4Þ

We can write the states in terms of the number of excitations
for each wave number, using the basis of Fock states defined
at η0 for each k⃗mode andgrouped into ðk⃗;−k⃗Þpairs. Then the
states of all modes in the near infrared band, for example, can
be written as jNi ¼ Q

k∈NIRjmk⃗; n−k⃗i. We assume that all
modes start out in the vacuum defined at the time η0 and
denote the initial state of the set of near infrared modes as
jψNIRðη0Þi ¼ jNIRi. Furthermore, since the quadratic
Hamiltonian is itself time-dependent due to the presence
of the two-mode squeezing term, the action of the corre-
sponding propagator on the NIR vacuum leads to

Û0ðη; η0Þj0k⃗; 0−k⃗i ¼ ŜkðηÞR̂kðηÞj0k⃗; 0−k⃗i

¼ 1

cosh rk

X∞
n¼0

e−2inϕk tanhnrkjnk⃗; n−k⃗i

≡ jSQðk; ηÞi
¼

X
n

csqn ðk; ηÞjnk⃗; n−k⃗i; ðA5Þ

where ŜkðηÞ and R̂kðηÞ are the two-mode squeezing and
rotationoperators respectively, built from the time-dependent
functions rk, ϕk, and θk. There are some different conven-
tions for the phase ϕ in the literature, but notice that
ϕ → −ϕ − π=2 corresponds to the same squeezing angle
in the quadrature plane (while changing the form of the
equation above to include ð−1Þne2inϕk). The squeezed state
of the full bath at any given time η can then be defined
as jSQðηÞi ¼ Q

k∈NIRjSQðk; ηÞi.
To find the evolution equation of observable modes we

trace over the bath, comprising near infrared modes, in
Eq. (A1) and resolve the time evolution of the reduced
density matrix ρ̂ðηÞ ¼ TrNIRσ̂ðηÞ at different orders of the
system-bath interaction strength λðηÞ [introduced in Eq. (8)],
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ρ̂ðηÞ ¼ ρ̂ð0ÞðηÞ þ λðηÞρ̂ð1ÞðηÞ þ λ2ðηÞρ̂ð2ÞðηÞ þ � � � : ðA6Þ

Collecting terms at the lowest three orders we obtain:
(i) At lowest order

∂ηρ̂
ð0ÞðηÞ ¼ −i½HObs

0 ; ρ̂ð0ÞðηÞ�
X
N

jhNjTe−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRij2

þ ρ̂ð0ÞðηÞ
X
N

½hNjHNIR
0 Te

−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRihNIRjT̄ei

R
η

η0
HNIR

0
ðη1Þdη1 jNi

− hNjTe−i
R

η

η0
HNIR

0
ðη1Þdη1 jNIRihNIRjT̄ei

R
η

η0
HNIR

0
ðη1Þdη1HNIR

0 jNi�: ðA7Þ
The sum in the first line is equal to one, since the evolved vacuum state is normalized, and the second term,
proportional to ρ̂ð0Þ, is zero because the matrix elements are Hermitian. Then, as expected, Eq. (A7) simply reduces to

∂ηρ̂
ð0ÞðηÞ ¼ −i½ĤObs

0 ðηÞ; ρ̂ð0ÞðηÞ�; ðA8Þ

where ρ̂ð0ÞðηÞ ¼ Te
−i
R

η

η0
ĤObs

0 ðη1Þdη1 ρ̂ð0Þðη0ÞT̄ei
R

η

η0
ĤObs

0 ðη1Þdη1 .
(ii) At first order

∂ηρ̂
ð1ÞðηÞ ¼ −i

X
N

hNj½Ĥ0ðηÞ; σ̂ð1ÞðtÞ�jNi − i½hSQðηÞjλðηÞĤIðη0ÞjSQðηÞi; ρ̂ð0ÞðηÞ�

¼ −i
X
N

hNj½ĤNIR
0 ðηÞ; σ̂ð1ÞðηÞ�jNi − i½Ĥobs

0 ðηÞ; ρ̂ð1ÞðηÞ� − i½hSQðηÞjλðηÞHIðη0ÞjSQðηÞi; ρ̂ð0ÞðηÞ�: ðA9Þ

Since the states jNi are eigenstates of only the nonsqueezed part of the quadratic Hamiltonian, it may not be
immediately clear that the first term in the last line vanishes. However, denoting Ĥ0jNi ¼ ðEN þ Ĥsq

0 ÞjNi ¼
EN jNi þ jNsqi where EN is an energy, we can rewrite this term asX
N

hNj½ĤNIR
0 ðηÞ; σ̂ð1ÞðηÞ�jNi ¼

X
N

hNj½ĤNIR;sq
0 ðηÞ; σ̂ð1ÞðηÞ�jNi ¼

X
N

½hNsqjσ̂ð1ÞðηÞjNi − hNjσ̂ð1ÞðηÞjNsqi�; ðA10Þ

which vanishes since the matrix element hNsqjσ̂ð1ÞðηÞjNi is Hermitian. (This is most easily seen by inserting a
complete set of states for all NIR modes,

P
N0 jN0ihN0j ¼ 1, in hNjĤNIR

0 ðηÞσ̂ð1ÞðηÞjNi, and then using the fact that the
Hamiltonian and density matrix are both Hermitian at all times.) Then, the remaining terms define an effective

Hamiltonian, Ĥð1Þ
eff ¼ λðηÞhSQðηÞjĤIðη0ÞjSQðηÞi.

(iii) At second order
We introduce the Lindblad operators,

L̂N1ðηÞ ¼ hNjλðηÞĤIðη0ÞjSQðηÞi; ðA11aÞ

L̂N2ðηÞ ¼
Z

η

η0

dη1λðη1ÞhNjĤI;iðη1 − ηÞjSQðηÞi; ðA11bÞ

which allow us to write

∂ηρ̂
ð2ÞðηÞ ¼

X
N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2 þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1 − L̂†
N1L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†
N2L̂N1g

þ i
X
N

�
hNjĤ0ðηÞTe−i

R
η

η0
Ĥ0ðη1Þdη1

Z
η

η0

dη1

Z
η1

η0

dη2ĤI;iðη1ÞĤI;iðη2Þσ̂ð0Þðη0ÞT̄ei
R

η

η0
Ĥ0ðη1Þdη1 jNi

þ hNjĤ0ðηÞTe−i
R

η

η0
Ĥ0ðη1Þdη1 σ̂ð0Þðη0Þ

Z
η

η0

dη1

Z
η1

η0

dη2ĤI;iðη2ÞĤI;iðη1ÞT̄ei
R

η

η0
Ĥ0ðη1Þdη1 jNi

−hNjĤ0ðηÞTe−i
R

η

η0
Ĥ0ðη1Þdη1

Z
η

η0

dη1ĤI;iðη1Þσ̂ð0Þðη0Þ
Z

η

η0

dη2ĤI;iðη2ÞT̄ei
R

η

η0
Ĥ0ðη1Þdη1 jNi þ H:c:

�
: ðA12Þ
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On splitting the last term in fg brackets into two pieces, η2 < η1 and η2 > η1 (and exchanging the dummy labels in
the second case), it is clear that this entire term just depends on the second order density matrix,

∂ηρ̂
ð2ÞðηÞ ¼

X
N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2 þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1 − L̂†
N1L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†
N2L̂N1g

− i
X
N

hNj½Ĥ0ðηÞ; σ̂ð2ÞðηÞ�jNi

¼
X
N

fL̂N1ρ̂
ð0ÞðηÞL̂†

N2 þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1 − L̂†
N1L̂N2ρ̂

ð0ÞðηÞ − ρ̂ð0ÞðηÞL̂†
N2L̂N1g

− i
X
N

hNj½ĤObs
0 ðηÞ; ρ̂ð2ÞðηÞ�jNi − i

X
N

hNj½ĤNIR
0 ðηÞ; σ̂ð2ÞðηÞ�jNi; ðA13Þ

where again the very last term is zero since the matrix element hNsqjσ̂ð2ÞðηÞjNi must be Hermitian. The term
containing the product of Lindblad operators can further be resolved into imaginary and real contributions,

−
X
N

L̂†
N1L̂N2ρ̂

ð0ÞðηÞ ¼
X
N

h1
2
ðL̂†

N2L̂N1 − L̂†
N1L̂N2Þ −

1

2
ðL̂†

N1L̂N2 þ L̂†
N2L̂N1Þ

i
ρ̂ð0ÞðηÞ

≡
h
−iĤð2Þ

eff þ ÂðηÞ
i
ρ̂ð0ÞðηÞ; ðA14Þ

by identifying the following Hermitian operators,

Ĥð2Þ
eff ¼ −

i
2

X
N

ðL̂†
N1L̂N2 − L̂†

N2L̂N1Þ; ðA15aÞ

ÂðηÞ ¼ −
1

2

X
N

ðL̂†
N1L̂N2 þ L̂†

N2L̂N1Þ: ðA15bÞ

Combining Eqs. (A8), (A9), and (A13), we find the
evolution equation reported in Eq. (13),

∂ηρ̂
ð0ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð0ÞðηÞ�; ðA16aÞ

∂ηρ̂
ð1ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð1ÞðηÞ� − i½Ĥð1Þ
eff ; ρ̂

ð0ÞðηÞ�; ðA16bÞ

∂ηρ̂
ð2ÞðηÞ ¼ −i½ĤObs

0 ; ρ̂ð2ÞðηÞ� − i½Ĥð2Þ
eff ; ρ̂

ð0ÞðηÞ�
þ fÂðηÞ; ρ̂ð0ÞðηÞg
þ
X
N

½L̂N1ρ̂
ð0ÞðηÞL̂†

N2 þ L̂N2ρ̂
ð0ÞðηÞL̂†

N1�:

ðA16cÞ

APPENDIX B: LINDBLAD TERMS
FROM A ζ _ζ2 INTERACTION

In this Appendix we show how we evaluate terms in the
Lindbladian, such as

P
NL̂N1ðηÞρ̂ð0ÞðηÞL̂†

N2ðηÞ, given a
system-bath interaction. The specific interaction we con-
sider is the cubic action for the curvature perturbation,
S3 ¼ M2

p

R
d3xdηa4ð3ϵ=c2sÞðc2s − 1Þζ _ζ2. In Fourier space

and in terms of creation and annihilation operators of the
canonical field χ, this leads to the interaction Hamiltonian
written in Eq. (8),

λðηÞĤI ¼
3ðc2s − 1Þ
8Mpc2sa

ffiffiffi
ϵ

p
Z
△

" ffiffiffiffiffiffiffiffiffi
k2k3
k1

s 	
ĉ†
−k⃗1

ĉ†
−k⃗2

ĉ†
−k⃗3

þ ĉk⃗1 ĉ
†
−k⃗2

ĉ†
−k⃗3

þ…


þ perm:

#
; ðB1Þ

where we have used the shorthand
R
△
¼R d3k1

ð2πÞ3
d3k2
ð2πÞ3

d3k3
ð2πÞ3 ð2πÞ3δ3ðk⃗1 þ k⃗2 þ k⃗3Þ. The terms inside

the parenthesis include all possible momentum conserving
combinations of operators, with some terms appearing with
a minus sign since the interaction term couples the field χ
and its conjugate momentum. The prefactors of the integral
define a dimensionless, but time-dependent coupling coef-
ficient λðηÞ ¼ 3ðc2s − 1Þ=ð8c2saðηÞ

ffiffiffiffiffiffiffiffiffi
ϵðηÞp Þ. Using the fact

that ϵðηÞ is approximately constant for slow-roll and
∼a−6ðηÞ for nonattractor models, we obtain the following
expressions for the coupling,

λSRðηÞ ¼ −
3ðc2s − 1Þ
8c2s

ffiffiffi
ϵ

p ηH; ðB2aÞ

λNAðηÞ ¼ 3

8

ðc2s − 1Þ
c2s

�
1

Hη

�
2

: ðB2bÞ

For the cubic interaction, we consider cases where one,
two, or three of the momenta are bath modes, i.e., they
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belong to the NIR band. Notice that since the terms
that depend on L̂Ni always come with

P
N , they will

give nonzero contributions only when the same number
of modes are in the NIR in both L̂Ni and L̂†

Nj. That, in
turn, means that there will always be an even number
of ĉk⃗, ĉ†

k⃗
operators for modes in the observable band.

As the first, trivial case, suppose all three momenta
are in the NIR. Then the L̂Ni are just numbers and so

Ĥð2Þ
eff ¼ 0 and the terms in the last line of Eq. (A16) all sum

to zero.

It is helpful to write the interaction Hamiltonian for the
two other cases:

(i) “folded” triangles with two NIR modes and one
observable mode, and

(ii) “squeezed” triangles with one NIR mode and two
observable modes.

Writing

λðηÞĤI ¼
λðηÞ
Mp

Z
△

F̂ðk1; k2; k3Þ; ðB3Þ

we can write the function F̂ for the folded triangle case as

F̂fold ¼ ĉk⃗s

( ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s h
ĉk⃗b1 ĉk⃗b2 þ ĉ†

−k⃗b1
ĉ†
−k⃗b2

− ĉk⃗b1 ĉ
†
−k⃗b2

− ĉ†
−k⃗b1

ĉk⃗b2

i
þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½þ − −þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½þ −þ−�

)

þ ĉ†
−k⃗s

( ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s
½þ þ −−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½−þþ−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½−þ −þ�

)
; ðB4Þ

where k1 ≡ ks and kb1, kb2 denote the momenta associated with the system (observable modes) and NIR modes
respectively. Hereþ,− are a shorthand for the appropriately signed sum of the same combinations of operators as in the first
set of square brackets.
Similarly, for squeezed triangles,

F̂sq ¼ ĉk⃗s1 ĉk⃗s2

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
ðĉk⃗b þ ĉ†

−k⃗b
Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ðþ−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ðþ−Þ

#

þ ĉ†
−k⃗s1

ĉ†
−k⃗s2

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
ðþþÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ð−þÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ð−þÞ

#

þ ĉk⃗s1 ĉ
†
−k⃗s2

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
ð−−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ð−þÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ðþ−Þ

#

þ ĉ†
−k⃗s1

ĉ−k⃗s2

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
ð−−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ðþ−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ð−þÞ

#
; ðB5Þ

where momenta ks1, ks2 identify the observable modes, and the momentum kb is associated with the NIR mode.

1. L̂N1, L̂N2 for folded triangles

For folded triangle configurations, involving one system mode, ks, and two bath modes, kb1, kb2, we find that

L̂fold
N1 ðηÞ ¼

λðηÞ
Mp

Z
△

1

ðkb1kb2Þ3=2
Y

ki∈NIR;ki≠kb1;kb2

hmk⃗i
; n−k⃗i jSQðk; ηÞiδmk⃗b1

þ1;nk⃗b1
δmk⃗b2

þ1;nk⃗b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmk⃗b1

þ 1Þðmk⃗b2
þ 1Þ

q

×

(
ĉk⃗oðη0Þ

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s h
csqnk⃗b1 ðkb1; ηÞc

sq
nk⃗b2

ðkb2; ηÞ þ csqmk⃗b1
csqmk⃗b2

− csqnk⃗b1c
sq
mk⃗b2

− csqmk⃗b1
csqnk⃗b2

i
þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½þ − −þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½þ −þ−�

#
þ ĉ†

−k⃗o
ðη0Þ

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
kb1kb2
ks

s
½þ þ −−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½−þþ−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kskb1
kb2

s
½−þ −þ�

#)
; ðB6Þ

where we have used ĉk⃗ðη0Þjnk⃗i ¼
ffiffi
n

p
k3=2

jðn − 1Þk⃗i; the factor of k−3=2 here is consistent with the commutation relation that

tells us that our ladder operators have dimensions of k−3=2.
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To evaluate L̂N2, we use the interaction picture representation of operators from Eq. (A3),

ĉk⃗;iðηÞ ¼ Û†
0ðη; η0Þĉk⃗ðη0ÞÛ0ðη; η0Þ ¼

Y
k0
e
i
R

η

η0
Ĥ0ðk⃗0;η1Þdη1 ĉk⃗ðη0Þ

Y
k00
e
−i
R

η

η0
Ĥ0ðk⃗00;η1Þdη1 ¼ e

i
R

η

η0
Ĥ0ðk⃗;η1Þdη1 ĉk⃗ðη0Þe

−i
R

η

η0
Ĥ0ðk⃗;η1Þdη1

¼ R̂†
kðηÞŜ†kðηÞĉk⃗ðη0ÞŜkðηÞR̂kðηÞ ¼ ukðηÞĉk⃗ðη0Þ þ vkðηÞĉ†−k⃗ðη0Þ; ðB7Þ

and we denote

ĉk⃗;iðη1 − ηÞ ¼ Û0ðη; η0ÞÛ†
0ðη1; η0Þĉk⃗ðη0ÞÛ0ðη1; η0ÞÛ†

0ðη; η0Þ
¼ ŜkðηÞR̂kðηÞR̂†

kðη1ÞŜ†kðη1Þĉk⃗ðη0ÞŜkðη1ÞR̂kðη1ÞR̂†
kðηÞŜ†kðηÞ

¼ ŜkðηÞR̂kðηÞ½ukðη1Þĉk⃗ðη0Þ þ vkðη1Þĉ†−k⃗ðη0Þ�R̂
†
kðηÞŜ†kðηÞ; ðB8aÞ

ĉ†
−k⃗;i

ðη1 − ηÞ ¼ ŜkðηÞR̂kðηÞ½u�kðη1Þĉ†−k⃗ðη0Þ þ v�kðη1Þĉk⃗ðη0Þ�R̂†
kðηÞŜ†kðηÞ; ðB8bÞ

where u and v are the complex functions described in Sec. III. Substituting the interaction picture operators in the
expression for L̂N2 [Eq. (A11)], we obtain

L̂fold
N2 ðηÞ¼

1

Mp

Z
△

1

ðkb1kb2Þ3=2
Y

ki∈NIR;ki≠kb1;kb2

hmk⃗i
;n−k⃗i jSQðk;ηÞiδmk⃗b1

þ1;nk⃗b1
δmk⃗b2

þ1;nk⃗b2

× ŜksðηÞR̂ksðηÞ
e−iθkb1 ðηÞ

coshrkb1ðηÞ
e−iθkb2 ðηÞ

coshrkb2ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmk⃗b1

þ1Þðmk⃗b2
þ1Þ

q
csqmk⃗b1

ðkb1;ηÞcsqmk⃗b2
ðkb2;ηÞ

×

"
ĉk⃗sðη0ÞR̂

†
ks
ðηÞŜ†ksðηÞ

Z
η

η0

dη1λðη1Þ
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½uksðη1Þðvkb1ðη1Þvkb2ðη1Þþu�u�−vu�−u�vÞþv�ksðη1Þðþþ−−Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½uksðη1Þðþ−−þÞþv�ksðη1Þð−þþ−Þ�þ

ffiffiffiffiffiffiffiffiffiffiffi
kb1ks
kb2

s
½uksðη1Þðþ−þ−Þþv�ksðη1Þð−þ−þÞ�

)

þ ĉ†
−k⃗s

ðη0ÞR̂†
ks
ðηÞŜ†ksðηÞ

Z
η

η0

dη1λðη1Þ
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

kb1kb2
ks

s
½vksðη1Þðþþ−−Þþu�ksðη1Þðþþ−−Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffi
kskb2
kb1

s
½vksðη1Þðþ−−þÞþu�ksðη1Þð−þþ−Þ�þ

ffiffiffiffiffiffiffiffiffiffiffi
kb1ks
kb2

s
½vksðη1Þðþ−þ−Þþu�ksðη1Þð−þ−þÞ�

)#
; ðB9Þ

where we have also used the results

ŜkðηÞR̂kðηÞj0k⃗; 0−k⃗i ¼ jSQðk; ηÞi ¼
X
n

csqn ðk; ηÞjnk⃗; n−k⃗i; ðB10Þ

ŜkðηÞR̂kðηÞj0k⃗; 1−k⃗i ¼
e−iθkðηÞ

cosh rkðηÞ
X
n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
csqn ðk; ηÞjnk⃗; ðnþ 1Þ−k⃗i: ðB11Þ

2. L̂N1, L̂N2 for squeezed triangles

Following similar steps as in the folded case, we obtain the following expressions for the Lindblad operators for the
squeezed configuration of two system modes, ks1, ks2, and one bath mode, kb,
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L̂sq
N1ðηÞ ¼

λðηÞ
Mp

Z
△

1

ðkbÞ3=2
Y

ki∈NIR;ki≠kb

hmk⃗i
; n−k⃗i jSQðk; ηÞiδmk⃗b

þ1;nk⃗b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk⃗b

þ 1
q

×

(
ĉk⃗s1ðη0Þĉk⃗s2ðη0Þ

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
½csqnk⃗b ðkb; ηÞ þ csqmk⃗b

ðkb; ηÞ� þ
ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
½þ−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks1
ks2

s
½þ−�

#

þ ĉ†
−k⃗s1

ðη0Þĉ†−k⃗s2ðη0Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
½þþ� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
½−þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks1
ks2

s
½−þ�

#

þ ĉk⃗s1ðη0Þĉ
†
−k⃗s2

ðη0Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
½−−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
½−þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks1
ks2

s
½þ−�

#

þĉ†
−k⃗s1

ðη0Þĉk⃗s2ðη0Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
½−−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
½þ−� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks1
ks2

s
½−þ�

#)
; ðB12Þ

L̂sq
N2ðηÞ ¼

1

Mp

Z
△

1

ðkbÞ3=2
Y

ki∈NIR;ki≠kb

hmk⃗i
; n−k⃗i jSQðk; ηÞiδmk⃗b

þ1;nk⃗b

e−iθkb ðηÞ

cosh rkbðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmk⃗b

þ 1Þ
q

csqmk⃗b
ðkb; ηÞ

× Ŝks1ðηÞR̂ks1ðηÞŜks2ðηÞR̂ks2ðηÞ
(
ĉk⃗s1ðη0Þĉk⃗s2ðη0Þ

×
Z

η

η0

dη1λðη1Þ
(
uks1ðη1Þuks2ðη1Þ

" ffiffiffiffiffiffiffiffiffiffiffiffi
ks1ks2
kb

s
½vkbðη1Þ þ u�kbðη1Þ� þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ðþ−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ðþ−Þ

#

þ v�ks1ðη1Þv�ks2ðη1Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
ðþþÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ð−þÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ð−þÞ

#

þ uks1ðη1Þv�ks2ðη1Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
ð−−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ð−þÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ðþ−Þ

#

þv�ks1ðη1Þuks2ðη1Þ
" ffiffiffiffiffiffiffiffiffiffiffiffi

ks1ks2
kb

s
ð−−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
kbks2
ks1

s
ðþ−Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
ks1kb
ks2

s
ð−þÞ

#)

þ ĉk⃗s1ðη0Þĉ
†
−k⃗s2

ðη0Þ
Z

η

η0

dη1λðη1Þfuks1ðη1Þvks2ðη1Þ½ð1Þ� þ v�u�½ð2Þ� þ uu�½ð3Þ� þ v�v½ð4Þ�g

þ ĉ†
−k⃗s1

ðη0Þĉk⃗s2ðη0Þ
Z

η

η0

dη1λðη1Þfvu½ð1Þ� þ u�v�½ð2Þ� þ vv�½ð3Þ� þ u�u½ð4Þ�g
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ðηÞŜ†ks2ðηÞ:

ðB13Þ

[1] P. A. R. Ade et al., Astron. Astrophys. 594, A13
(2016).

[2] S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617
(2017).

[3] N. Bartolo, S. Matarrese, M. Peloso, and A. Ricciardone,
Phys. Rev. D 87, 023504 (2013).

[4] E. Nelson and S. Shandera, Phys. Rev. Lett. 110, 131301
(2013).

SHANDERA, AGARWAL, and KAMAL PHYS. REV. D 98, 083535 (2018)

083535-14

https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1103/PhysRevD.87.023504
https://doi.org/10.1103/PhysRevLett.110.131301
https://doi.org/10.1103/PhysRevLett.110.131301


[5] M. LoVerde, E. Nelson, and S. Shandera, J. Cosmol.
Astropart. Phys. 06 (2013) 024.

[6] S. Nurmi, C. T. Byrnes, and G. Tasinato, J. Cosmol.
Astropart. Phys. 06 (2013) 004.

[7] M. Thorsrud, F. R. Urban, and D. F. Mota, J. Cosmol.
Astropart. Phys. 04 (2014) 010.

[8] M. Thorsrud, D. F. Mota, and F. R. Urban, Phys. Lett. B
733, 140 (2014).

[9] C. T. Byrnes, S. Nurmi, G. Tasinato, and D. Wands, Euro-
phys. Lett. 103, 19001 (2013).

[10] M. LoVerde, Phys. Rev. D 89, 023505 (2014).
[11] B. Bonga, S. Brahma, A.-S. Deutsch, and S. Shandera,

J. Cosmol. Astropart. Phys. 05 (2016) 018.
[12] A.-S. Deutsch, J. Cosmol. Astropart. Phys. 05 (2018) 022.
[13] C. P. Burgess, R. Holman, G. Tasinato, and M. Williams,

J. High Energy Phys. 03 (2015) 090.
[14] C. P. Burgess, R. Holman, and G. Tasinato, J. High Energy

Phys. 01 (2016) 153.
[15] D. Boyanovsky, Phys. Rev. D 92, 023527 (2015).
[16] D. Boyanovsky, Phys. Rev. D 93, 043501 (2016).
[17] E. Nelson, J. Cosmol. Astropart. Phys. 03 (2016) 022.
[18] T. J. Hollowood and J. I. McDonald, Phys. Rev. D 95,

103521 (2017).
[19] J. Martin and V. Vennin, J. Cosmol. Astropart. Phys. 05

(2018) 063.
[20] J. Martin and V. Vennin, J. Cosmol. Astropart. Phys. 06

(2018) 037.
[21] V. F. Mukhanov, Pis’ma Zh. Eksp. Teor. Fiz. 41, 402 (1985)

[JETP Lett. 41, 493 (1985)].
[22] M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

[23] J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219
(1999).

[24] V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Eksp. Teor.
Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

[25] L. P. Grishchuk and Yu. V. Sidorov, in 5th Seminar
on Quantum Gravity, Moscow, USSR (World Scientific,
Singapore, River Edge, 1991), pp. 678–688.

[26] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Phys.
Rev. D 50, 4807 (1994).

[27] W. H. Kinney, Phys. Rev. D 72, 023515 (2005).
[28] X. Chen, H. Firouzjahi, E. Komatsu, M. H. Namjoo,

and M. Sasaki, J. Cosmol. Astropart. Phys. 12 (2013)
039.

[29] A. Berera, I. G. Moss, and R. O. Ramos, Rep. Prog. Phys.
72, 026901 (2009).

[30] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa,
Phys. Rev. Lett. 117, 151301 (2016).

[31] C. Agón, V. Balasubramanian, S. Kasko, and A. Lawrence,
Phys. Rev. D 98, 025019 (2018).

[32] M. O. Scully and M. S. Zubairy, Quantum Optics
(Cambridge University Press, Cambridge, England, 1997).

[33] H. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford, 2002).

[34] R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N.Y.) 24,
118 (1963); 281, 547 (2000).

[35] F. Reiter and A. S. Sørensen, Phys. Rev. A 85, 032111
(2012).

[36] E. Braaten, H.-W. Hammer, and G. P. Lepage, Phys. Rev. D
94, 056006 (2016).

[37] C. Agón and A. Lawrence, J. High Energy Phys. 04 (2018)
008.

OPEN QUANTUM COSMOLOGICAL SYSTEM PHYS. REV. D 98, 083535 (2018)

083535-15

https://doi.org/10.1088/1475-7516/2013/06/024
https://doi.org/10.1088/1475-7516/2013/06/024
https://doi.org/10.1088/1475-7516/2013/06/004
https://doi.org/10.1088/1475-7516/2013/06/004
https://doi.org/10.1088/1475-7516/2014/04/010
https://doi.org/10.1088/1475-7516/2014/04/010
https://doi.org/10.1016/j.physletb.2014.04.028
https://doi.org/10.1016/j.physletb.2014.04.028
https://doi.org/10.1209/0295-5075/103/19001
https://doi.org/10.1209/0295-5075/103/19001
https://doi.org/10.1103/PhysRevD.89.023505
https://doi.org/10.1088/1475-7516/2016/05/018
https://doi.org/10.1088/1475-7516/2018/05/022
https://doi.org/10.1007/JHEP03(2015)090
https://doi.org/10.1007/JHEP01(2016)153
https://doi.org/10.1007/JHEP01(2016)153
https://doi.org/10.1103/PhysRevD.92.023527
https://doi.org/10.1103/PhysRevD.93.043501
https://doi.org/10.1088/1475-7516/2016/03/022
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1088/1475-7516/2018/05/063
https://doi.org/10.1088/1475-7516/2018/05/063
https://doi.org/10.1088/1475-7516/2018/06/037
https://doi.org/10.1088/1475-7516/2018/06/037
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1016/S0370-2693(99)00602-4
https://doi.org/10.1016/S0370-2693(99)00602-4
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.72.023515
https://doi.org/10.1088/1475-7516/2013/12/039
https://doi.org/10.1088/1475-7516/2013/12/039
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1103/PhysRevLett.117.151301
https://doi.org/10.1103/PhysRevD.98.025019
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1006/aphy.2000.6017
https://doi.org/10.1103/PhysRevA.85.032111
https://doi.org/10.1103/PhysRevA.85.032111
https://doi.org/10.1103/PhysRevD.94.056006
https://doi.org/10.1103/PhysRevD.94.056006
https://doi.org/10.1007/JHEP04(2018)008
https://doi.org/10.1007/JHEP04(2018)008

