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We derive the evolution equation for the density matrix of a UV- and IR- limited band of comoving
momentum modes of the canonically normalized scalar degree of freedom in two examples of nearly de
Sitter universes. Including the effects of a cubic interaction term from the gravitational action and tracing
out a set of longer wavelength modes, we find that the evolution of the system is non-Hamiltonian and non-
Markovian. We find linear dissipation terms for a few modes with wavelength near the boundary between
system and bath, and nonlinear dissipation terms for all modes. The non-Hamiltonian terms in the evolution
equation persist to late times when the scalar field dynamics is such that the curvature perturbation

continues to evolve on super-Hubble scales.
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I. INTRODUCTION

In cosmological models for the primordial universe,
the unavoidable quantum fluctuations of matter and of
the linearized gravitational field are the original source
of the rich structure of late-time inhomogeneities observed
today as variations in the temperature of the cosmic
microwave background (CMB) [1] and the distribution
of galaxies [2]. Two goals in cosmology are to use the
classical data collected from the CMB and large-scale
structure to pinpoint the particle physics of the primordial
era, and to understand whether signatures of their quantum
origin may remain observable today.

A major focus of inflation model building in the last
decade or so has been the study of how particle interactions
during or just after inflation may generate non-Gaussianity
in the correlation functions of the inhomogeneities.
Optimistically, this interest was fueled by the notion that
information from statistics beyond the power spectrum
could eventually distinguish among the zoo of particle
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physics mechanisms for inflation. However, the fact that
our cosmological observations today are limited to a finite
volume of space, leaving sufficiently long wavelength
modes fundamentally unobservable, leads to an interesting
conundrum for studies of inflationary particle physics via
postinflation statistics: if fluctuations with wavelengths
observable to us can be coupled to fluctuations on unob-
servable scales, there is additional non-Gaussian sample
variance [3—12] that affects the precision with which
inferences can be made from the data. In nonsingle clock
inflation scenarios (roughly, models where more than one
light degree of freedom (d.o.f.) contributes to the fluctua-
tions) this cosmic variance uncertainty can be equal to or
larger than current observational uncertainty.

Cosmic variance from mode-coupling is a statistical
phenomena at the level of classical correlators, and can be
calculated on any constant time slice after inflation.
However, within the inflationary paradigm, those statistics
are generated in the course of a dynamical, quantum
mechanical process. Considering the full quantum story
of inflation models that couple modes of different wave-
lengths may lead to additional insight into the nature of
information contained in the inflationary fluctuations.
Here, we use the fact of IR-limited observational cosmol-
ogy and the associated issue of classical non-Gaussian
cosmic variance, as motivation to investigate the quantum
evolution equations of a system of cosmological modes
coupled to a bath of these long wavelength modes, during
an inflationary era. For simplicity, we focus our attention on

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.083535&domain=pdf&date_stamp=2018-10-29
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SHANDERA, AGARWAL, and KAMAL

PHYS. REV. D 98, 083535 (2018)

a single cubic interaction term from the Einstein-Hilbert
action that, depending on a choice for the scalar field
dynamics, can support long-short mode-coupling.

The role of gravity in this scenario is three-fold: (1) the
homogeneous, isotropic, time-dependent gravitational
background serves as a zero-momentum pump sourcing
pairs of quanta in two-mode squeezed states; the zero-
momentum nature of the pump ensures a homogeneous and
isotropic amplification of all the momentum modes
k < aH, (2) the inherently nonlinear gravitational action
itself provides the coupling term between system and bath,
and (3) the cosmological horizon of an observer after the
inflationary, quasi-de Sitter era puts a long wavelength limit
to the observable modes and so forces the longer wave-
length modes into the (unobservable) bath.

Our approach is complementary to previous works on
open systems in inflation [13-20] which have so far
considered the opposite case of computing the evolution
for super-Hubble, long wavelength modes in a bath of
sub-Hubble, short wavelength modes. By tracing out the
long-wavelength modes instead, we give a fully quantum
treatment of observables which remains valid even in the
presence of a strong coupling between long- and short-
wavelength modes, i.e., when long wavelength modes
cannot be absorbed by a renormalization of the background
clock. In the semi-classical limit our results should recover
not only the mean late-time curvature correlators that are
usually calculated, but also the full super-cosmic variance
probability distributions for how classical statistics
observed in a single Hubble volume may differ from the
mean statistics of the model [4,5].

The paper is organized as follows. We briefly review the
Hamiltonian for fluctuations in quasi de Sitter space in Sec. II
and describe the evolution equations in the two example
scenarios we consider (slow-roll and nonattractor) in Sec. I11.
These two background evolutions, and the choice of a
particular interaction term, allow us the simplest possible
calculation to examine the difference between models with
and without coupling between modes of very different
wavelengths (system-bath coupling) at late times. We then
describe our open quantum system approach to inflation in
Sec. 1V, construct the modified evolution equation for the
reduced density matrix in section V and examine the time-
dependence of the non-Hamiltonian terms in Sec. VI. We
conclude with a discussion in Sec. VII. Various mathematical
details are relegated to the Appendices.

II. THE MODEL

We work in a quasi-de Sitter space where the expan-
sion is driven by a dynamically evolving scalar field.
The background metric is ds? = —dt* + a*(t)dx* =
—a*(n)[dn* — dx?), where a is the scale factor, t is
cosmological time, and —oo0 <# <0 is conformal time;
dots (primes) indicate derivatives with respect to ¢ (i).
Since the scalar field evolves, its energy density serves as a

“clock” and provides a preferred choice of time slices. Each
slice is spatially isotropic. In an expanding universe, physical
wavelengths are stretched with time, and it is often conven-
ient to work instead with comoving wavelengths, or comov-

ing momenta k= a(n)p, p being the physical momentum,
that remain invariant as a function of time.

The Hubble parameter H = d/a and its derivatives

= —H/H? 6= ¢/(He), describe the time-evolution of
the background. Quasi-de Sitter phases have 0 < € < 1, so
a nearly constant Hubble parameter. When H is nearly
constant we can integrate adn = dt to obtain the useful
relation # ~ —1/(aH). The quadratic action for the Fourier
modes of the (dimensionless) scalar perturbation, {, where
ds> = —a*(n)[dn* — (1 + 20)dx?], is [21-23]

d’k
/ / )3Z élk/z.:/ _02k2€’k§ ) (1)

with 22 = 2ea®?M?3 /c?, where the (reduced) Planck mass
M, is related to Newton’s gravitational constant by M f, =
(87Gy)~" and 0 < ¢, < 1 is the sound speed. To solve the
evolution equations it is convenient to work with the
canonical variable y = z(1)¢. Introducing creation and

A

annihilation operators ¢, ¢ that satisfy [3;(77)75,;(’7)] =

(27)383(k — k') (and using the k — —k symmetry in the
Fourier transform) we can write the Hamiltonian for the
fluctuations [24],

This expression shows that the time-dependent gravita-
tional background acts as a zero-momentum pump sourcing
correlated pairs of y quanta [25,26]. Notice that for a mode
of fixed momentum k, the second line of the Hamiltonian is
more important for 7'/z~d' /a = aH > csk. In other
words, the squeezing interaction term dominates the
evolution when the physical wavelength of a mode is
stretched to a scale larger than the Hubble size, H~!. The
broken time translation invariance ensures both that this
scalar fluctuation cannot be gauged away, and gives an
appropriate axis so that the two-mode squeezing introduced
by the last term in the Hamiltonian is well defined (i.e., the

k and —k modes are distinguishable).

III. SLOW-ROLL VERSUS
NONATTRACTOR EVOLUTION

In typical models of inflation (single-field, slow-roll), one
chooses a slowly varying potential energy for the scalar field so
that e is nearly constant with a value typically of order 0.01 to
0.1. The equation of motion for the evolution of the field
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rapidly becomes independent of any initial velocity. The
second-order differential equation of motion for {; gives rise
to two different time-dependent pieces in the solution. These
are commonly designated the “growing” and “decaying”
modes, although in the case of standard slow-roll the “grow-
ing” mode actually approaches a constant for k < aH while
the decaying mode rapidly becomes a negligible component of
the solution. Then {7 can be considered constant (and C ~0)
roughly from the time & < aH = —1/n, until the end of the
inflationary phase, # = 0. The observed curvature pertu-
rbation, ¢ 2 and its conjugate momentum, T3 sati-
sty [limy,_o-C3 (1), limy,_o-7_;(17)] = 0, making quantum
mechanical effects extremely difficult to observe even in the
absence of any sources of decoherence. Since ¢ is nearly
constant, the canonical field y satisfies Eq. (2) with 7//z =
d'/a to a very good approximation.

A rather different behavior can be found if the potential
for the scalar field has an exactly flat region, but the energy
density is driven to evolve by giving the scalar field an
initial velocity [27]. Such a phase, often called a “non-
attractor phase” would only persist a short time, since the
initial velocity is damped away by Hubble friction. But,
while it lasts, it provides a background metric that is nearly
de Sitter, but with € ~ a=®() far from constant and § = —6
not a small parameter. Assuming c¢; is a constant,
7//z = =2d'/a. Crucially for our purposes, a change in
dynamics affects the solution for {7, which now has one
3 and a second that is constant,
so that C 7 # constant even for k < aH.

For either slow-roll or nonattractor dynamics the evolution
of the canonical field y at quadratic order can be found in
terms of two-mode squeezing and rotation operators. One
first needs to solve for the time-dependence of the ladder
operators using the Heisenberg equation of motion,

contribution that grows as 5~

de; R '
dﬂk = —ilé;, H] = —i<cske; + i%é‘_z), (3)

which can in turn be solved by a Bogoliubov transformation
with a choice of initial condition at time #,, ¢i(n)=

ur(n)ep(no) +Uk(77)5T_,;(’Io>, where |u; (17)> = v ()[*=1.
The Bogoliubov transformation can be written as
(i) = € coshry (i), (4a)
() = €020 sinh 1y (1), (40)

where r, is the squeezing parameter, ¢, is the squeezing
angle, and 0, is an angle rotating the conjugate field and
momenta (which is the same for the k and —k modes). The

leading order time-dependence in the exact de Sitter back-
ground approximation for slow-roll inflation, is given by [26]

1
r3R(n) = —ArcSinh <2c“.k11>’ (5a)

SR () = — % _ L AreTan (=1 b
B = - panTn(5 ) (b

1
, 5
2cxkn> Ge)

while for the nonattractor case we find instead

RR(n) = —kn — ArcTan(

3
rNA(n) = —2ArcSinh (20 ,k11>’ (6a)

z 1 3
T ArcT 6b
4720 an<2csk;7>’ (6b)

3v2
ONA(n) = —kny — 2v/2ArcTan ( 2cskn) )

YA () =

(6¢)

For nonattractors the solution is approximate and only valid
when c kn < 1.

Note that the equation of motion for y is the same
in both, slow-roll and nonattractor models, i.e., )(%4—

(2k? —n%);(; = 0. At any instant of time, however, the
position y; and conjugate momentum p_; can be different

between the two models, as indicated by the distinct time-
dependence of the squeezing parameters above. The

commutator, [yz(1). p_y(n)] = i(27)38%(k — k'), remains
preserved at all times, as expected.

IV. DEFINING THE SYSTEM AND BATH

We use bands of comoving momenta to define the
system and bath, and assume that at some initial (con-
formal) time #n, we can factorize the Hilbert space as'

H =Hyy ® Hobs ® Hnir ® Hir. (7)

We focus only on how the evolution of modes in Hqy,,
which satisfy ki, < kops < kmax 15 affected by interactions
with unobservable modes in the near infrared Hyr, which
satisty kg < knir < kmin- We assume that modes in Hyy
can be properly accounted for with usual renormalization
techniques. We also assume that modes far in the infrared,
k € IR, were accounted for in defining the Hamiltonian at
time 7. This organization is shown diagrammatically in
Fig. 1. Note that the comoving Hubble radius decreases as a
function of time.

Further, we consider a cubic interaction term of the
form, Sy = M3, [ d®xdna*(3e/c3)(c3 — 1)¢8%. Expressed
in terms of the field y in momentum space this reads

'If we worked with physical momenta such a factorization
should remain valid at all times, but, since we are using comoving
momenta and the scale factor a is fluctuating, the factorization
would not quite hold. However, this prescription should capture the
dominant features of the scenario (and we can check the physics
using what is known about gauge issues for {; correlators).
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o n > no
(aH) ™" = kg (aH)™ < kY
FIG. 1. Representation of the system (“observable” modes) and
bath (“near infrared,” NIR, modes) Hilbert space, in terms of
bands of comoving momenta. The comoving Hubble radius
(thick black circle) is larger than all wavelengths of interest at the
initial time 7, but shrinks to be smaller than both bath and system
wavelengths at late times.

AmH; = 8M cav/e Ja l\/ ky 5,

where [, = fd3k)‘ (‘5:)2 é;kf (27)38% (k) +ky+k3 ). The Dirac
delta function enforces that the interacting momenta form a
closed triangle, which is useful for categorizing contribu-
tions to the integral. The terms inside the parenthesis
include all possible momentum conserving combinations
of operators, with some terms appearing with a minus sign
since the interaction term couples the field y and its
conjugate momentum.

We choose this interaction term since it will significantly
couple modes of different wavelengths in the nonattractor
case where C 7 does not become negligible on large scales
[28], but not in the slow-roll case. As with the quadratic
Hamiltonian, the functional form is the same for the
slow-roll and nonattractor cases; the difference is in the
time-dependence of e. The coupling coefficient A(n) =
3(c2 —1)/(8c2a(n)+/e(n)) is dimensionless but time-
dependent (we take ¢, to be constant for simplicity).
Using the fact that e(y) is approximately constant for
slow-roll and ~a~®(57) for nonattractor models, we obtain
the following expressions for the coupling, with all time-
dependence explicitly displayed:

) === Do (%)
MNA>p) = z(cscg 1) (Hn> . (9b)

Under the assumption that A() is abruptly turned on,
and hence no system-bath coupling exists at 7, the initial
density matrix can be written as

5(10)

The full time evolution is then given by &(y) =
U(n.no)6(no) U (n.10), where the time evolution operator
depends on the quadratic Hamiltonian for each mode, plus
the relevant interaction term (6(z) is the Schrodinger picture
density matrix). We note that both the quadratic Hamiltonian,
containing the two-mode squeezing term, and the cubic
interaction are time-dependent. However, for small initial
coupling the full evolution can be approximated as

Te .fo

= [ywnir (10)) [Wobs (10)) (Wobs (110) [ (wnir (m0) |- (10)

(ﬂl)dﬂlT —lf Hyi(my )i,y

U(n.no) = . (11)
where T time-orders the exponentials and H ;i 1s the
interaction Hamiltonian in the interaction picture.

To perform the trace over the near infrared d.o.f., we

introduce two kinds of basis states for the bath_modes:

(i) Fock states defined at 7, grouped into (k, —k) pairs, as
IN) = [ [rexw|mg, n_g). Summing over |[N) amounts
to summing over all possible pairs of integer values for
my and n_;. These are eigenstates of the quadratic
Hamiltonian without the squeezing term.

(i) The two-mode squeezed vacuum for the bath
modes, represented by the action of the propagator,
corresponding to the full quadratic Hamiltonian
for the bath, on the vacuum: UO(”’%)|OE’O—E>E
1SQ(k.n)) = >_,cn'(k.n)|ng. n_z). Note that, unlike
|N), the squeezed vacuum is explicitly time-

dependent due to the time-dependence of (ry, ¢y,
0,) in Egs. (5) and (6).

V. THE EVOLUTION EQUATION

The reduced density matrix for the observable modes, at
any time 7 > 7, is given by

ﬁ( ) = TTNIR5(W)
= Z N|U(n.10)lwsiw (10)) wons (m0))

x <l//0bs(770)|<V/NIR(770)|UT(779 mo)IN). (12)

where U(1, o) is given by Eq. (11). Perturbatively expand-
ing the above equation to second order in the coupling, we
find that (see Appendix A for details)

9,p(n) = —i[HG™ p(n)] — i[Her. p© (77)]
HAW W) + 3 Lwnd L,

+ Lyop O ()L (13)

with? A = A (SQ(n)|H,(n0)|SQ(n)),
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A i PPN PN

Hfjf) = _EZ(LITVILNZ - L;rszNl)’ (14a)
N

a 1 PN PO

Aln) = —iNXL*mLNz +LoLy).  (14b)
and the Lindblad operators given by
Ly (n) = A(n)(N|H,;(10)|SQ(m)) (15a)
Luatn) = [ dmaon) N0 = n)1SQU).— (150)
o

Here [SQ(n)) = [Tien|SQ(k, 7)) and HE™ is defined by
restricting the integral in Eq. (2) to only run over modes
k € Obs. This result in Egs. (13)-(15) is similar to that
of [31], but with additional structure due to the time-
dependent squeezing term at quadratic order.

VI. EVALUATING THE
NON-HAMILTONIAN EVOLUTION

The separation between system and bath is in momentum
space, so we must work there to find explicit expressions
for the non-Hamiltonian terms in the evolution of p(#). As
the first check on the expressions above, suppose all three
momenta are in the NIR bath. Then the Ly; are just
numbers and so Iflgf) =0 and the terms in the last two
lines of Eq. (13) all sum to zero. For momentum configu-
rations containing both system and bath modes, the fact that

|
1M2 / /A
m,; g keNIRk;ékbl

bi

ZNLNI/) Lvaz|

Folded

+19k/ ()

+“9/</ (17)
e 2

x
coshry (n)coshry (11)

X 0, O
+1,n o +1ng
R, TR I, T

i Kinkia,
X{C/zﬂﬂo)[ Yo,

ks

kpa
&M’)
Om- _ O 3 msy
mkh]Jrl,nkb] mkbz+1.nkb2 ( k;,|+

(kbl s ’Y)C;ghz (khZ’ ’1) + Ci” T

all non-Hamiltonian terms in the evolution equation come
with ) ensures they will give nonzero contributions only
when the same number of modes are in the NIR in both L,
and lA,lT\, i+ That, in turn, means all terms in the evolution

equation contain an even number of ¢z, é}; operators for

modes in the observable band.

The momentum configurations that give nonzero non-
Hamiltonian evolution can be conveniently thought of in
the language familiar from the study of non-Gaussianity in
cosmology. They are either (1) “folded” triangles, where
two bath modes interact with one system mode or
(2) “squeezed” triangles, where two system modes interact
with one bath mode. Only system modes with momenta
Kmin < k < 2k, can receive contributions of the folded
type, and even for these selected modes not many con-
figurations are possible. The fact that the same bath state
|N) appears in both Lindblad operators in terms like
Lyip©(n)L},,, enforces conservation of momentum of
the system modes appearing explicitly in the final result.

In Appendix B, we write out the interaction
Hamiltonian and the two Lindblad operators for folded
and squeezed configurations. After specifying the bath
modes for each case, we evaluate all creation, annihilation,
or squeezing operators acting on bath modes. From the
results for folded and squeezed configurations [Egs. (B6),
(B9) and Egs. (B12), (B13) respectively], the sum
S vEnip© ()L}, can be evaluated.

For example, consider a folded triangle with labels l?s, l?bl ,

7 - 77 -
ky, for the momenta in Ly, and kg, ky;, kp, in Lj,. Then,

(g n_g |SQ(k;.)

I]

(SO(k;,
K;ENIR k#k;

Ve
b1’ bZ

n) |m1;;, ”_;:;>

1 1
(p1kp2)/? (K i)

D(mg, + 1)\/ (mg,,

cfr(l] sq cSq
kb2

jr?,;rbz (klev ’/I)

+ 1)(m,;b2 + 1)

sq sq
ny Cm: —Cm. Cpnp ]+
kp1 kpo kp1 o Tkpo

—+—+]

}ﬁ”@ﬂ&d@ﬁa@)

kh2

A > Q g kl k/ * * * * *
X {C%(ﬂo)Rz/x(’?)S;{;(ﬂ)/ dnl/l(’h){ b]'{/ bz[uk,)_(m)(vk;” (nl)vk;ﬂ(nl)ﬁ—uu—v u—uv*)

Mo

+ ok, (++—=)] + - } +ep (’10)&}& (’7)@;(’1)

x / "de){ kﬁ’,ﬁ‘?’z[vzg\_m])(ﬁ——)+uk;<m><++——>]+.-.}},

(16)
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where subscripts “s” denote system modes, subscripts “b” denote bath modes, and S () and R, (n7) are the two-mode squeezing
and rotation operators constructed from (ry, ¢y, ;) in Egs. (5) and (6). Since the same bath state |N) appears in both Lindblad

operators [Eq. (15)], the momenta appearing in either operator must also be the same (e.g., 1?;,1 = l;b, , where the Dirac deltas for
the triangle modes enforce the relative sign in this equality). Using this fact (and replacing the integrals by symmetrized
products (1/3)> ", jk3k3 to maintain the correct dimensionality) gives

A(n)
ZNLNIP L;.V2|Foldcd Z W |<mE’n_E|SQ(kl’n>>| m; +1n 5m~

/A i i kp 1\'},2-"_1’"1\7
g P B GeNIR Ktk ki

)
My

k21k22 + k3k 1+ k§k22:| e+i0"bl (n) e+i9"hz ()
3k21k22

- 1 - 1 k m, k
o) o) " D0, D (1), (k)

ks L

. kpik ; ! . .
e I e B s N N M N Ao

R e k,ifj'[—+—+1] }ﬁ<°><n>sk,,.<n>zek\.<n>

A 5T Q g kyk * * * * *
s { et R 0SE ) [ anatn) P52 0, )0 )+ = 0=
! Mo s

o (1) (++ —=)] + - } +e_g ()R, (mS.(n)

s [ amaton){ [ )+ =) ) ) 1)

This result contains a sum over the bath modes participating in the interaction, whose structure depends on the fact that
the bath is squeezed. (To illustrate how this bath structure is relevant, the left hand panel of Fig. 2 below will contrast the
actual dissipation compared to what results from considering just the ground state of the bath.) In the various terms of the
interaction Hamiltonian, there are several versions of the mode sum that must be performed, but they all have the same form.
For example, the third line of the right-hand side in the previous equation (making use of the Dirac deltas from the first line)
can be simplified using

8000} ' ' ' ' ]

= Relyiy] = Relyin]
S000F ImlyR, ] i 6000 Im{yR, ] ]
—— 0SRe[HOYNA = = Re[H'/}}}]
e[H"¥iin1 ] 4000F . LAI 1
10°Tm[HOYNA ] Im[H i, ]
= 0 N = 2000F ]
=

Ylin,1
(e}

—2000f \ 3
7’
~5000} _ 1

™ —— —4000F ~—

(a) (b)

FIG.2. Example contribution to "Ly (7)1}, () from a folded triangle configuration with momenta [in units of (H/c,)] of k; = 1,
k,; = 0.5 and k;, = 0.54 and bath modes in (a) the quantum ground state, i.e., m; i, =M, = 0, and (b) an arbitrary superposition of

Fock states, i.e., summing over all possible values of m; i and my . For both slow-roll (SR) and nonattractor (NA) dynamics we extract

the dimensionless parameter yy;, ; from f; in Eq. (22), but the nonattractor case is shown in units of H =0 50 as not to obscure the

dependence of the amplitude on this physical number. As seen from Eq. (14), both the real and imaginary parts of this quantity enter the
evolution equation.
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Z Z B T )Cm- (K, n)cm 2(’%27’7) |:Cir?]-(bl+1(kb1’ m)Ch g, 11 (kpa,1) +Cmb Cn?-z
M Omkb
- Cfﬁ;bl+lcir?;,,2 - C;?Zm C;?;MH} = cosh’ry, cosh’ry,, [cq!(kpi.n) — ¢ (kpr.m)][eq! (kpaom) = ¢ (kpoom)] - (18)

The sums in other terms give similar results, but with varying signs in front of the ¢!, ¢}? terms.

Thus, folded triangles lead to terms in | NI: N ﬁ(o)(n)l:jvz that, in terms of operators for system modes only, are of the
form

3
[ G () )3 )R )], () Oso) & o), ()51 (r) s o e similar teems) - (19)

where the functions f; have mass dimension 1. To define a dimensionless quantity yy;, ;, signifying a “dissipation factor” for
each momentum configuration, the integral over the triangle configuration can be simplified, leaving

mm 3(C2 - 1) 2
SR =27~ dk duf - 7 SR
fl ” e b/ u H mm )|:( 862\/_ >:| Vin,i

NA 7.2 3( 2 — 1) 2 NA
—er— " dk, dueH kiin = K°) | =52 g | Vini (20)

Repeating the analysis for squeezed configurations leads to dimensionless nonlinear dissipation factors defined by

3(c2-1)\1?
27r— / duby (ki — )[— (;T\/—)H ktkor X o

—Zn—/ duby mm—ki>[ <3(CSZI)] Vistkor X (21)

Then, the general result for the form of terms in >y Ly p”) (n)ﬁ,T\,2 originating from a cubic interaction between system
and bath modes is

A . Pk o A " .
EN:LMIA)(O) (’7)L1Tv2|Folded ) / 27[)33 5/; (’70),5(0) (ﬂ)SkS(ﬂ)ka (n) [5,2 (o) f1 (ki m) + 5_/; (o) f2(k;, ﬂ)]Rz\. (’7)512 (n), (22)

—~

N N N N

L Bk, .
D Lnid ()L lsqueesea 2 / ) dkok3r2; (n0)er (m0)p (m)Si, (m)Re, ()Si, (m) Ry, (n)
N

x (e (mo)ef (no)qa(kiom) + - IR (0)S;, (m)Ry ()}, (n). (23)

—
[\

where (...) denotes all possible momentum-conserving operator pairs. Besides the time-dependence of the dissipation
factors coming from the interaction Hamiltonian and time-dependent squeezing of the bath modes, the non-Hamiltonian
evolution terms for the density matrix of the system also have time-dependence from the squeezing of the system modes
[the Ry (1), S'kx(n) operators in the equations above].

As evident from the explicit structure of the non-Hamiltonian terms, folded configurations lead to linear (single-mode)
dissipation terms, while squeezed configurations lead to nonlinear (two-mode) dissipation terms. Further in each of the
configurations, there are two classes of terms: (C‘kf)é‘,t, C',tﬁé‘k) and (CypCy, C‘Zi)é‘,t) (here C; = ¢y, for folded and C, =
¢k, Cr, for squeezed configurations). While the former correspond to single/two-photon exchange with thermally
distributed bath modes, the latter terms indicate that these bath modes are squeezed [32].

We show a more quantitative comparison of the time-dependence of these non-Hamiltonian terms between slow-roll and
nonattractor models of inflation in Figs. 2 and 3 for particular choices of the momentum configuration. Figure 2 shows the
time-dependence of yy;, | for both slow-roll and nonattractor inflation when the bath modes are in (a) the quantum ground
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FIG. 3. Example contribution to >y Ly (17)[2;,2(11) from a squeezed triangle configuration with momenta [in units of (H/c,)] of
kg = 0.1, ko = 0.101, and k;, = 0.01 and bath modes in (a) the quantum ground state, i.e., mp = 0, and (b) an arbitrary superposition

of Fock states, i.e., summing over all possible values of my . For both slow-roll (SR) and nonattractor (NA) dynamics we extract the

dimensionless parameter yy; ; from ¢g; in Eq. (23).

state, i.e., m> = m-
kp ki,

position of Fock states, i.e., summing over all occupation
numbers. Figure 3 similarly shows the time-dependence of
yNL.1 When the bath modes are in the quantum ground state,
i.e., mp = 0, or summed over.

In all of the dissipation terms, there is an #; integral, which
can be performed analytically for slow-roll squeezing
parameters and numerically for the nonattractor solution.
For the slow-roll case the result is that the dissipative f; and g;
terms for both the folded and squeezed configurations scale
like ratios of physical (not comoving) quantities times one
factor that goes like the comoving momentum. The non-
attractor result, however, has an additional dependence on
time in the interaction strength, which makes the implications
of a straightforward comparison of the numerical values
between the two scenarios unclear. Rather than choose an
arbitrary numerical value, we plot the quantity H®. The
relative qualitative time-dependence of the two cases is not
affected by this choice: As the figure shows, both the linear
and nonlinear dissipation terms decay with time in the slow-
roll case, but increase in the nonattractor case, when bath
modes are summed over, as 7 — 07. Since the nonattractor
phase cannot last for more than a few e-folds, this increase at
late times does not pose a problem. Further, the real parts of
both the linear and nonlinear dissipation terms generically
change sign as a function of time indicating that the evolution
i1s non-Markovian [33].

L= 0, and (b) an arbitrary super-

VII. DISCUSSION

In this paper, we have presented a fully quantum frame-
work to study the open system dynamics of inflation, with the
short-long mode coupling providing the effective system-
bath interaction. Our goal was to go beyond the question of

standard observables and understand the full dynamics of
quantum systems that have mode-coupling sample variance
in their classical statistics. The results we presented take a
gravitational system that has a horizon, is not static, and
includes well-understood classes of interactions, and pro-
vides a bridge to less-studied quantum aspects of fields in
nontrivial gravitational backgrounds. For any cubic inter-
action, the non-Hamiltonian terms in the evolution of modes
with wavelength below some infrared scale will be of the
form shown in Eq. (22) for folded (two bath modes, one
system mode) configurations, and Eq. (23) for squeezed (one
bath mode, two system modes) configurations. The linear
and nonlinear dissipation coefficients will depend on the
weighted sum of triangle configurations of each type.

The time-dependence for the two cases we considered,
slow-roll and nonattractor inflation, is shown in Figs. 2 and 3,
where we find a late-time growth particular to the non-
attractor scenario. However, several aspects of our results are
quite general: (i) for a system coupled to a long wavelength
bath, folded configurations of the three-point function in
momentum space lead to linear dissipation terms while
squeezed configurations lead to nonlinear dissipation;
(i1) since there are far fewer folded triangles with two modes
in the NIR (restricting system modes in k,;, < k, < 2kpin)
compared to squeezed triangles with one mode in the NIR,
nonlinear dissipation is likely more significant for observable
modes than linear dissipation is; (iii) “dissipation” does not
necessarily imply the loss of coherence; indeed we find the
evolution of system modes to be non-Markovian in general,
irrespective of whether the bath modes are in the quantum
ground state or allowed to occupy any state. Under such an
evolution the system-bath interaction can lead to an exchange
and even bath-mediated amplification of quantum coher-
ences in the system.
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For the interaction we studied, the quantum environment
dynamics lead to a non-Markovian system dynamics in
both single-clock and nonsingle clock models. This implies
that quantum memory of modes outside the horizon may
lead to additional time-dependence of observable correla-
tors, beyond what is uncovered in the usual semiclassical
treatment. While this is not likely to be observable, we
suspect the non-Markovian behavior may be especially
conceptually important in understanding the quantum
dynamics for nonsingle-clock models.

The framework presented here is appropriate for any
cosmological scenario of the primordial universe where
curvature modes evolve outside the horizon (or, where there
is non-Gaussianity that couples modes of different wave-
lengths). It should facilitate a quantum open systems
analysis, and decoherence studies, in the large number
of non-Gaussian scenarios for which {-correlations have
already been computed, but is particularly relevant for any
model with long-short mode coupling. This includes all
inflation beyond single-clock, as well as contracting uni-
verse scenarios. Eventually, it may be possible to move
beyond the lessons of particular models: the evolution
equation we have presented here is a first step toward the
appropriate effective theory [31,34-37] for observables in a
large class of cosmological scenarios consistent with the
current understanding of our universe. Finally, although it
is unlikely that any inflationary model consistent with the
classical data we have already collected will support the
presence of significant late-time quantum information, this
work will also facilitate exploration of whether or not such
a universe is even theoretically possible.
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APPENDIX A: CONSTRUCTING THE
EVOLUTION EQUATION

In this Appendix we provide a few details in the derivation
of Egs. (13)-(15), which give the general form of the
evolution equation for the system of “observable” modes
coupled to a bath of longer wavelength, “near infrared”
modes. The full time evolution of the system is given by

&(n) = U(n.10)8(n0) U (n. o). (A1)
where the time evolution operator depends on the quadratic
Hamiltonian for each mode, plus any interaction term. At
least for small coupling and short times, we can approx-
imately factor out the quadratic evolution and use

" Ho(n)dn Te_i j;; Ay )H i (ny )y
9

Oln.no) = Te o (A22)
UT(r], 710) _ Teif’ll A1) H i (n)dny Teif”l Ho(ny)dn, ’ (A2b)

where (T) T will (anti-) time-order the factors in the
exponential. The operators in the interaction term are in
the interaction picture, defined, for example, by

>

i) = U(T)(’?» ’70)51;(’70)00(771 Mo)s (A3)

g
where Uy(n.n9) = Te ™ S Botwan is the propagator corre-
sponding to the quadratic Hamiltonian. It is useful to divide
the integral over momentum modes in the Fourier-space
quadratic Hamiltonian at the point k = k,,;;, (separating the
observable system modes from the near infrared bath modes)
and write

Ho(n) = HG™ (n) + HY™ (n). (A4)
We can write the states in terms of the number of excitations
for each wave number, using the basis of Fock states defined
at#, foreach k mode and grouped into (1? —12) pairs. Then the
states of all modes in the near infrared band, for example, can
be written as [N) = [ [;enr |77, 7_;). We assume that all
modes start out in the vacuum defined at the time 7, and
denote the initial state of the set of near infrared modes as

lynir (o)) = |NIR). Furthermore, since the quadratic
Hamiltonian is itself time-dependent due to the presence
of the two-mode squeezing term, the action of the corre-
sponding propagator on the NIR vacuum leads to

Uo(n.10)107.0_;) = Sc(m) R ()]0 0_3)

1 o0

= E e~2infetanh rynz, n_;)
cosh ry

n=0

=[S0(k,n))
= alk.y)ng.n_p).

(A5)

where S;(7) and Ry(5) are the two-mode squeezing and
rotation operators respectively, built from the time-dependent
functions ry, ¢y, and 8. There are some different conven-
tions for the phase ¢ in the literature, but notice that
¢ — —¢ — n/2 corresponds to the same squeezing angle
in the quadrature plane (while changing the form of the
equation above to include (—1)"e?"%x). The squeezed state
of the full bath at any given time # can then be defined
as |SQ(n)) = [ Lrenir|SQ(k. n)).

To find the evolution equation of observable modes we
trace over the bath, comprising near infrared modes, in
Eq. (Al) and resolve the time evolution of the reduced
density matrix p(7) = Tryr6(n) at different orders of the
system-bath interaction strength A(#) [introduced in Eq. (8)],
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p(n) = pOn) + am)p"M () + 22 (m)pP (n) + - - - (A6)

Collecting terms at the lowest three orders we obtain:
(i) At lowest order

(i)

(iii)

NIR
0,00 (n) = —ilH*, 50 ()] D (N|Te™ ™00 Ky 2

+p0 ()Y [(N|HF™Te = i TRy (NTR e ™00 gy
N

Hy™ (1) dm

(V[T D iRy (NTR| e HNR|NY]. (A7)

The sum in the first line is equal to one, since the evolved vacuum state is normalized, and the second term,
proportional to p(?), is zero because the matrix elements are Hermitian. Then, as expected, Eq. (A7) simply reduces to

0,7 (n) = =i[HG™ (), P (n)], (A8)

where p (’I) ']:,'OH (m)dmp( >(’70)Tei£’r‘l) HO‘”(m)dm
At first order

p () = =iy (NI[Ho(n). 6V (0)]IN) = i[(SQ(m)|A(n) H 1 (n0)|1SQ(n)). O ()]
= =i (NI[H™ (). 6D ()]IN) = i[H™ (). p ()] = i[(SQ(m) [ A(n) H (0)1SQ(m)). 2V ()] (A9)

Since the states |N) are eigenstates of only the nonsqueezed part of the quadratic Hamiltonian, it may not be
immediately clear that the first term in the last line vanishes. However, denoting H,|N) = (Ey + Hy))|N) =
Ey|N) +|Ng) where Ey is an energy, we can rewrite this term as

Y NI (). 6V (m]IN) = D _(NI[HG"(n). 6V mIIN) = Y_[(N[6 m)IN) = (N6 () IN,,)].  (AL0)

N N N

which vanishes since the matrix element <qu|€;“)(n)|N> is Hermitian. (This is most easily seen by inserting a
complete set of states for all NIR modes, >/ |[N')(N’| = 1, in (N|HY® (1)) (17)|N), and then using the fact that the
Hamiltonian and density matrix are both Hermitian at all times.) Then, the remaining terms define an effective

Hamiltonian, H{i/ = A(n)(SQ(n)| 1 (n0)|SQ(n)).
At second order
We introduce the Lindblad operators,

Lyi(n) = (N|A(n)H (1) |SQ (). (Alla)
Lyala) = " d o (V10 ) S0(0). (AL1b)
which allow us to write
Z{me Ly + Laap O )L Yy = L3y Laap® () = 9O () L3 Lt}

. N —i (" Ay(gy)dn, [T m N N . — i |" Hy(py)dn,
+’Z{<N|Ho(’l)Te Ju Bola)dn / dn, / dna (1) 1 (n)80 () T o040 gy
N
~ - o(m)d Ho(my)dn,
- (N| B ()T~ o B 500) / dn, / dna Ly () Ey ()T Do P

7 —i Ho(ny)dn 7 ~ Ho(ny)dn,
(V| B ()T o) / dny B (1130 (o) / dny iy ()T I o) |N>+H.c.}. (A12)

Mo Mo
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On splitting the last term in {} brackets into two pieces, 17, < i, and 77, > 1; (and exchanging the dummy labels in
the second case), it is clear that this entire term just depends on the second order density matrix,

S ~

3;7/3(2) (n) = Z{imﬁm) (’I)ijvz + isz)(O)(W)ij - ij\ntmﬁ(o) (n) - P (n)ijszNl}
N
— iy (NI[Ho(n). 6% (m)]IN)
N

= Z{imﬁm) (ML, + Lyap® ()L},
N

T

ij\n z1v2ﬁ<0) (71) - »5(0) (W)ﬁjvzim}

=i (NIIHR™ (). PP )]IN) = iy (NIIHF™ (1), 6> m)]IN). (A13)

where again the very last term is zero since the matrix element (Ny|6* ()|N) must be Hermitian. The term
containing the product of Lindblad operators can further be resolved into imaginary and real contributions,

o I SO
—ZLJT\IlLNzP(O)(’I) = Z b (LiaLwi = Ll Lwn) - 3 (Lhilna + LvazLNl)}ﬂ(o) (n)
N N

2) L a n
= {_lHiff) + A(ﬂ)]ﬂ“’) (n), (Al4)
[
by identifying the following Hermitian operators, and in terms of creation and annihilation operators of the
canonical field y, this leads to the interaction Hamiltonian
eff - __Z i‘;\/ Lo I: ﬁ D, (A15a) written in Eq. (8),
N 3(cs -1 kyk
R 1 i _ AMn)H; = SA/(IC \}— \/_2 3(6T_,: 6T_,: ¢ o
An) = —EZ(L;VILNZ + LI, L. (A15b) cia Lo

A At oAt
Combining Egs. (A8), (A9), and (A13), we find the T et ) +Perm-]’ (B1)
evolution equation reported in Eq. (13),

0,00 (n) = —i HOb, 50 ()], (Al6a) Wl,l;/fe N vx;ek have used the shorthand [, =
i o e Gt (27)383(k, + k, + k3). The terms inside

8,7&“)(71) = — [HObS, pl )(;7)] — l[[ilgf), /3(0)(,1)]’ (A16b) the pa.rethesm include all pqss1ble momentum cor}sewipg
combinations of operators, with some terms appearing with

8,p? () = —i[H, p®) ()] - l-m(?f)’ PO ()] a minus sign since the interaction term couples the field y
! R ¢ and its conjugate momentum. The prefactors of the integral
+{A(n).p O (n)} define a dimensionless, but time-dependent coupling coef-

I Z[imf’(o)('l)ijvz + Lo O ()LE,). ficient /1(17)' =3(c? - 1)/(8c2a(n)+/e(n)). Using the fact

N that e(n) is approximately constant for slow-roll and

(Al6c) ~a~%(n) for nonattractor models, we obtain the following
expressions for the coupling,

2
APPENDIX B: LINDBLAD TERMS MR(n) = —Mw, (B2a)
FROM A ¢¢2 INTERACTION 8cive
In this Appendix we show how we evalugte terms in the A 3(c2=1) [ 1\2
Lindbladian, such as > yLy(7)p " (n)Ly,(n), given a A () = s 2 <H_;7> (B2b)
system-bath interaction. The specific interaction we con- ’
sider is the cubic action for the curvature perturbation, For the cubic interaction, we consider cases where one,
Sy = M3 [ dxdna*(3e/c?)(c? — 1)¢8%. In Fourier space  two, or three of the momenta are bath modes, i.e., they
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belong to the NIR band. Notice that since the terms

that depend on Ly, always come with 3", they will
give nonzero contributions only when the same number

of modes are in the NIR in both L; and lA,jvj. That, in
turn, means that there will always be an even number
of ¢z, 62 operators for modes in the observable band.
As the first, trivial case, suppose all three momenta
are in the NIR. Then the Ly, are just numbers and so

H gf) = 0 and the terms in the last line of Eq. (A16) all sum
to zero.

A kp k
Ffold = - b1bH2 - 0 + N eT A At AT
ks k, ki

%hz c—%z;l —1}.172 - C]-('b] c—§b2 B C_I:hl
. Ky k k.k
e SR ] R ] 4
_kx ks kbl

It is helpful to write the interaction Hamiltonian for the
two other cases:
(i) “folded” triangles with two NIR modes and one
observable mode, and
(i1) “squeezed” triangles with one NIR mode and two
observable modes.
Writing

g = M)

Mn)Hy = Aﬂhb%% (B3)

we can write the function F for the folded triangle case as

P

A~ kskb2 kskbl

.| + e i R L

Eekor_ g4, (B4)
ka

where k; =k, and k;,, k;, denote the momenta associated with the system (observable modes) and NIR modes
respectively. Here +, — are a shorthand for the appropriately signed sum of the same combinations of operators as in the first

set of square brackets.
Similarly, for squeezed triangles,

A A kg1ks K kpkg ko k
F*‘*=czlczﬁl b, )y [ )y [S)
6T~ ﬁ'Tﬂ kSlkSZ kkaZ kslkb
_ksl _ks2 k k
kg k k kg1k
P ATﬁ sI%s2, b"s2 s1b
kxlc—kszl\/ G ) k k
ko k kpk kg1k
AT A 51752 b"s2 s1%b
R B Gl - o2 Sy, B5
+c_k“c_kﬂl L (=) + I (+-) + ksz( +) (B5)

where momenta kg, ky, identify the observable modes, and the momentum k; is associated with the NIR mode.

1. Ly, Ly, for folded triangles

For folded triangle configurations, involving one system mode, k,, and two bath modes, &, k;,, we find that

i) =32 [ o

(my . n_; [SQ(k.n))6,

O, 1\ (i, + 1) (g, +1)

—_— o +lng
M, ky1ky)3/? K ENIR ki1 ks o
. kmkbz ) . . ) § S k;kb2
« {Cié,, (o) k_[ it (kprom)ent (ko) + culy coe = Chl ek = Cit q} + ,‘{bl [+ - —+]
ko : kyik kok ksk
IR U | R (’10)[ S R e } (56)
2 o s bl b2

where we have used ¢;(n9)|nz) = k% |(n—
tells us that our ladder operators have dimensions of k=3/2.

1)7); the factor of k=3/2 here is consistent with the commutation relation that

083535-12



OPEN QUANTUM COSMOLOGICAL SYSTEM PHYS. REV. D 98, 083535 (2018)

To evaluate Ly,, we use the interaction picture representation of operators from Eq. (A3),

o ~ Hk ldlA —i [" Ho(K" my)dny i [ Bk )dny =i [ Ho(kpy )
ez.(n) = U3 (n.m0) 27 (n0) Uo (n. 7o) He I e (g He P Em)an _  fy BoEm)in )™ o HolEni
k//
= f?}; ()L ()27 (n0)Se(m)Ric(n) = wic(m)ez(no) + ve(m)é” -(no), (B7)

and we denote
ez, mi =) = Uo(n.n0) Ug(ny.m0)e (n0) Uo(ny. m0) U5 (m. m0)
)R] 7 )
n)

.
= S R(n )81 (10) S () Re () R, ()5, ()
= S0 Re () [ui ()2 0n0) + 0 (1)& 1 (0) IR () S5 (). (B8a)

%>
/-\
=
=

[N
>~
—
=
=

&' m = n) = S Re(n) i (m)e" 1 (n0) + vi(n1) ez (no) Ry (BSb)

where u and v are the complex functions described in Sec. III. Substituting the interaction picture operators in the
expression for Ly, [Eq. (A11)], we obtain

Bm=y | oen  TL g gisotns :
ki —k; ’ mp +1lng Ymp +1, g,
M, S (kp kb2) ki €NTR 2k, o o e e

"0k (1) =10k, ()

A A

xSy () Ry (1)

) Vmg +D(mg, +1D)E (Kym)eit, (ko)

coshry, (n)coshry (i

R N A n ky1k P * * *

X lcl?‘v(”())thx(”)SM”)/ dﬂli(ﬂl){ hllc g, () (v, (1) v, (1) + ' u* = vu* —u v)+vg (m)(++--)]
o s

kskhZ

+
kbl

[, (1) (+ = =) +vp (m) (= ++-)]+ kz;]: [, (1) (4 = +=) + v (m) (= + _+)]}

2 R, 3L ) [ ”dmz(m){ bty ) =) () (4]

kyk kyrk,
T o ) = =) () (= =) [ o ) (=) o (m)(—+—+)]} . (B9
where we have also used the results
Se(mRe(n)[0,0_g) = [SQ(k, n)) chq(k n)|ngn_g), (B10)
lHk
SR I0p 1) = o Z«w L (kmlng. (n+1) ). (B11)

2. Ly, Ly, for squeezed triangles

Following similar steps as in the folded case, we obtain the following expressions for the Lindblad operators for the
squeezed configuration of two system modes, k,;, ks, and one bath mode, k,,
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25 A(n) 1 11 ——
59 — N - -
LNl (l’]) - 1‘4]7 /A (kb)3/2 <mki’ n—ki|SQ(k’ ’1)>5mzh+1,n;b mkb + 1

k;ENIR k;#k;,
koke. o kyk, kyk,
x{ (n0)ég (mo) l\/ 11,,2[ W (kyor) + e (ko)) + ,’:12[+—]+ —Z;H—]]
A . K k, kyk, kyk,
+CT_,;S1(770)CT_,;S2(’70)l et Ty
ko k kyk K,k
A A'['_‘ s1Ms2p bRs2r bRslr,
+ckn(’70)c—kﬁ(’70)l & -]+ Ty [+ + Tk, [+-]
ko k kyk k,k
AT N s17s2 bs2 bs1
3 . ! S hTs2ry o8y , B12
+C_k“(no)ckﬁ(no)l L ]+ ‘. -]+ o [ HH (B12)
o) =y [ s I (mgenglson)s, (k)
n)=—— mg.,n_g N/ ne n
" Mp A (kb>3/2 k;ENIR k;#k,; E . +1 K COSh Tk, ’7) b
X Se, (MR, (0)Si, ()R, () {5,:“ (m0)ez., (o)
ko kg kyk, ko k
/ dmA(n ){ (’71)“@(’11)[ l [Ukb(”l + uz, ()] b5 2(+—)+ =10 b(+_)]
Mo

ks ks kk,
+ g, (), (m)l\/i (++) + b 2(—4) + /
/ k1 k
+ g, (m) vy, (m) l\/— )+ )+ klzb

o, (m1)ug, () l\/> )+ 4 / )+ k kb

+&, (ﬂo)eizm (no) [ dm () {ur, (1) v, () ()] + v*w[(2)] 4w [(3)] + v*v[(4)]}

0

" dman) {oul(1)] + w0 [(2)] + 00*[(3)] + wul(4)]}

S

+ @T_,;“_] (’70)51;\2 (n0)

0

n

+ 6 e () ([ dmAGn) {ool(D)] +wu () + 0w [(3)] + u*v[<4>1}}fe;21 (3]

\
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