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We combine model-independent reconstructions of the expansion history from the latest Pantheon
supernovae distance modulus compilation and measurements from baryon acoustic oscillation to test some
important aspects of the concordancemodel of cosmology namely the Friedmann-Lemaître-Robertson-Walker
(FLRW)metric and flatness of spatial curvature.We then use the reconstructed expansion histories to fit growth
measurement from redshift-space distortion and obtain constraints on (Ωm, γ, σ8) in a model independent
manner. Our results show consistency with a spatially flat FLRWUniversewith general relativity to govern the
perturbation in the structure formation and the cosmological constant as dark energy. However, we can also see
some hints of tension among different observationswithin the context of the concordancemodel related to high
redshift observations (z > 1) of the expansion history. This supports earlier findings of [G.-B. Zhao, Nat.
Astron. 1, 627 (2017), V. Sahni, A. Shafieloo, and A. A. Starobinsky, Astrophys. J. 793, L40 (2014)] and
highlights the importanceofprecisemeasurementof expansionhistory andgrowthof structure at high redshifts.
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I. INTRODUCTION

The concordance model of cosmology is based on
Einstein’s general theory of relativity (GR), which enabled
us to build a theory of theUniverse that is testable and can be
falsified. The concordance flat ΛCDM model, which is
based on GR and the assumptions of isotropy and homo-
geneity of the Universe, has been very successful at explain-
ing various astronomical observations from a very early
epoch (at least, from thebigbangnucleosynthesis time).This
predictivemodel explains the dynamics of theUniversewith
only 6 free parameters. Ωb and Ωdm (baryonic and dark
matter densities) are the matter parameters. Assuming a flat
universe and cosmological constant being responsible for
late time acceleration of the Universe, we can derive
ΩΛ ¼ 1 − ðΩb þ ΩdmÞ. τ representing the epoch of reioni-
zation,H0 the Hubble parameter, ns the spectral index of the
primordial spectrum and As the overall amplitude of the
primordial spectrumare the other 4 parameters of thismodel.
Out of these parameters, the first four dictate the dynamic of
the Universe and the other two represent the initial condition
through the primordial fluctuations given by PRðkÞ ¼
Asð kk�Þns−1, where k� is the pivot point. Having the form of
the primordial fluctuations and the expansion history of the

Universe one can determine the growth of structure for this
model on linear scales following the linearized perturbation
equation and also runN-body simulations to study the small
scales and nonlinear regime. Despite the simplicity of the
model, most astronomical observations are in great agree-
ment with the concordance model and so far there has not
been any strong observational evidence against it [e.g.,
[1–3]]. In this paper we test some important aspects of the
concordance model of cosmology in light of the most recent
cosmological observations in a model-independent manner.
At the background level, we derive theH0rd parameter, test
dark energy as the cosmological constantΛ, the Friedmann-
Lemaître-Robertson-Walker (FLRW)metric and the flatness
of theUniverse. At the perturbation level, we then usemodel
independent reconstruction of the expansion history from
supernovae data to fit growth of structure data and putmodel
independent constraints on some key cosmological param-
eters, namely Ωm, γ, and σ8. In Sec. II we describe the
background expansion and our tests on Λ dark energy,
FLRWmetric and flatness of the spatial curvature. Analysis
on the growth of structure and testing general theory of
relativity are presented in Sec. III, and our conclusions are
drawn in Sec. IV.

II. BACKGROUND EXPANSION: TESTING Λ, THE
FLRW METRIC, AND THE CURVATURE

At the background level, it is possible to test dark energy
as Λ, the FLRW metric, and the curvature of the Universe.
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In a FLRW universe with a dark energy component of
equation of state wðzÞ, the luminosity distance can be
written for any curvature Ωk

dLðzÞ ¼
c
H0

ð1þ zÞDðzÞ; ð1Þ

where

DðzÞ ¼ 1ffiffiffiffiffiffiffiffiffi
−Ωk

p sin

� ffiffiffiffiffiffiffiffiffi
−Ωk

p Z
z

0

dx
hðxÞ

�
ð2Þ

is the dimensionless comoving distance, and

h2ðzÞ ¼
�
HðzÞ
H0

�
2

¼ Ωmð1þ zÞ3 þ Ωkð1þ zÞ2

þ ð1 − Ωm −ΩkÞ exp
�
3

Z
z

0

1þ wðxÞ
1þ x

dx

�
ð3Þ

is the expansion history. Having different observables
of the cosmic distances and expansion history one can
then introduce novel approaches to examine the FLRW
metric, flatness of the Universe and Λ dark energy in a
model-dependent [e.g., [4]] or independent way [5–11].
Note that one can also test the metric and the curva-
ture using gravitational lensing [e.g., [12,13]] or cosmic
parallaxes [14].

A. Model-independent reconstruction of the expansion
history from the Pantheon compilation

In order to reconstruct the DðzÞ, D0ðzÞ and hðzÞ at any
given redshift, we apply the iterative smoothing method
[9,15–17] to the latest compilation of supernovae distance
modulus [Pantheon, [3]]. Pantheon is the latest compilation
of 1048 SNIa, extending previous compilations with
confirmed SNIa from the Pan-STARRS1 survey.
The method of smoothing is a fully model independent

approach to reconstruct the DðzÞ relation directly from the
supernova data, without assuming any particular model or a
parametric form. The only parameter used in the smoothing
method is the smoothing width Δ, which is constrained
only by the quality and quantity of the data. The smoothing
method is an iterative procedure with each iteration
providing a better fit to the data. It has been discussed
and shown that the final reconstructed results are indepen-
dent of the assumed initial guess [15–17]. In our analysis
we start the smoothing procedure from various arbitrary
choices of the initial guess models and while their final
results converge to the same reconstruction, we select
within the process, a nonexhaustive samples of the recon-
structions that have a χ2 better than the best fit ΛCDM
model. In [17] the method of smoothing was modified to
incorporate the data uncertainties and hence making the
approach error sensitive. However, the formalism in [17]
could take in to account only the diagonal terms of the error

matrix. While the quality of the data is improving con-
tinuously and nondiagonal terms of the covariance matrices
can play an important role in likelihood estimations, in this
work we modify the smoothing method further by incor-
porating the whole covariance matrix of the data in to the
smoothing procedure. While this improvement might look
like a minor modification, it is in fact a very important step
to make this model independent reconstruction approach
complete and comprehensive to deal with highly corre-
lated data.
In order to take into account the nondiagonal terms of the

covariance matrix, we modified the method in the follow-
ing way. Starting with some initial guess μ̂0, we iteratively
calculate the reconstructed μ̂nþ1 at iteration nþ 1:

μ̂nþ1ðzÞ ¼ μ̂nðzÞ þ
δμTn ·C−1

SN ·WðzÞ
1T ·C−1

SN ·WðzÞ ; ð4Þ

where the weight W and residual δμn are defined as

WiðzÞ ¼ exp

�
−
ln2ð1þz

1þzi
Þ

2Δ2

�
ð5Þ

δμnji ¼ μi − μ̂nðziÞ; ð6Þ

1T ¼ ð1;…; 1Þ; ð7Þ

and CSN is the covariance matrix of the data (in our case,
Pantheon data). In case of uncorrelated data (Cij ¼ δijσ

2
i ),

we recover the formula introduced in [17] used recently
in [9].
The χ2 of the reconstruction μ̂nðzÞ is then defined as

χ2n ¼ δμTn ·C−1
SN · δμn; ð8Þ

and in this work we only consider reconstructions with
χ2 < χ2ΛCDMbest-fit.
The result of the smoothing procedure is thus

H0d̂LnðzÞ ¼ 10ðμ̂n−5Þ=5. Under the assumption of a flat
Universe, we can obtain hnðzÞ ¼ 1=ðdDnðzÞ=dzÞ.
We should clarify here that our selected reconstructions

of the expansion history from the iterative smoothing
method are not posterior samples within a Bayesian
framework. We in fact obtain a nonexhaustive sample of
plausible expansion histories, directly reconstructed by
supernova data and with no model assumption, which all
give a better χ2 to the Pantheon data than the best-fit
ΛCDM model. This enables us to explore regions of the
physical space of the expansion history beyond the flex-
ibility of the concordance model (or other parametric
functional forms) that can fit the data reasonably well.
Note that the formalism given in this paper for the method
of smoothing is self-contained and has all needed infor-
mation. Equations (4)–(8) contain the full formalism of the
iterative smoothing method including the full covariance
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matrix of the data, which is now simply written in a
matricial way (which is more compact). However, for more
details and better understanding of the method one can
follow the given references.

B. BAO measurements of cosmic distances
and expansion history

The radial mode of the BAO measures HðzÞrd, while the
transverse modes provide dAðzÞ=rd, where

rd ¼
cffiffiffi
3

p
Z

1=ð1þzdragÞ

0

da

a2HðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Ωb

4Ωr
a

q ð9Þ

is the sound horizon at the drag epoch zdrag. We combined
the Baryon Oscillation Spectroscopic Survey (BOSS) DR12
consensus values [2] and the extended-BOSS (eBOSS)
DR14Q measurements [18]. We note that both BOSS
DR12 and eBOSS DR14Q provide HðzÞrd=rd;fid and
dAðzÞrd;fid=rd with rd;fid ¼ 147.78 Mpc. We also include
the Dark Energy Survey DR1 (DES DR1) measurement of
dA=rd at z ¼ 0.81 [19]. We use these BAO data along with
our reconstructions of the expansion history from supernova
data as two independent sets of observations to test some key
aspects of the concordance model.

C. Testing Λ dark energy

The solid black lines in Fig. 1 show the different recon-
structed DðzÞ, hðzÞ ¼ 1=D0ðzÞ, and OmðzÞ from Pantheon
supernovae compilation where OmðzÞ is defined as [7]:

OmðzÞ ¼ h2 − 1

ð1þ zÞ3 − 1
ð10Þ

We also show in Fig. 1 the BAO data points for these
quantities. Since the BAO measure HðzÞrd and dAðzÞ=rd,
to have a good sense of comparison within the context
of the concordance model, we normalize them by H0rd
from Planck 2015 (TTTEEEþ LowPþ Lensing) best fit
ΛCDM model, and show on the top panel DðzÞ ¼
ð1þ zÞH0rddAðzÞ=ðcrdÞ, in the middle panel hðzÞ ¼
HðzÞrd=H0rd and the corresponding OmðzÞ on the bottom
panel. The magenta solid line shows the corresponding
DðzÞ, hðzÞ, and OmðzÞ for the best-fit Planck 2015 Flat-
ΛCDM model.
While the reconstructed expansion history hðzÞ from

SNIa are fully consistent with the BAO data points at low
redshifts (z ≤ 1.2), some tension seems to arise at higher
redshifts (z ≥ 1.5) where the reconstructed expansion
histories from the BAO data suggest lower hðzÞ with
respect to the best fit ΛCDM model from Planck. While
the error bars are still quite large, the BAO data seem to
follow the same trend in suggesting lower values of hðzÞ
(with respect to the best fit ΛCDM model from Planck) at
high redshifts. For illustration purpose we also show the

measurement of hðz ¼ 2.33Þ from the Lyman-α forest [20]
which seems to agree with other BAO data points sug-
gesting lower hðzÞ with respect to Planck best fit ΛCDM
model, although we did not include this data point in our
analysis since the supernovae data do not reach such a high
redshift. This data point is consistent with the previous
result from SDSS III [21]. This tension is also visible
clearly looking at the Om diagnostic in bottom plot of
Fig. 1, which is also consistent with the finding of [22]. If
dark energy is a cosmological constant (and if the Universe
is flat), the Om diagnostic should be constant in redshift.
Therefore, having different values from different observa-
tions suggests some tension among the data within the
framework of the concordance model.
Meanwhile, the comoving distancesDðzÞ from BAO and

SNIa are fully consistent together and with the best-fit
Planck cosmology. Combining these results of the comov-
ing distances and expansion histories may show some
inconsistency with flatness as we will see later in this work.

D. Estimating H0rd
Reference [9] estimated H0rd in a model-independent

way by combining BAOmeasurements and reconstructions

FIG. 1. BAO data points normalized byH0rd from Planck 2015
best fit ΛCDM model. The solid lines are the reconstructed
expansion histories from the Pantheon data which are fully model
independent, and the purple line is the prediction from [1] for the
best-fit concordance ΛCDM model. They are color-coded by
their Δχ2 with respect to the best-fit ΛCDM model, with earlier
iterations having less negative δχ2 (yellow), and later iterations
more negative Δχ2 (dark blue).
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of the expansion history from supernovae. H0rd is an
important parameter combining physics of the early (sound
horizon at the drag epoch) and late Universe (expansion
rate). For each reconstruction n, we can calculate H0rd in
two different ways

H0rdjdA;n ¼
c

1þ z
DnðzÞ

rd
dAðzÞ

ð11aÞ

H0rdjH;n ¼
HðzÞrd
hnðzÞ

; ð11bÞ

and their associated errors

σH0rd jdA;n ¼
c

1þ z
DnðzÞ

σdA=rdðzÞ
ðdAðzÞ=rdÞ2

ð12aÞ

σH0rd jH;n ¼
σHrdðzÞ
hnðzÞ

; ð12bÞ

where, assuming a flat-FLRW universe, hðzÞ ¼ 1=D0ðzÞ.
Figure 2 shows our estimation of H0rd at the different

BAO data points for the two estimations. In green is shown
the ΛCDM value from Planck 2015 [1]. We can then define
two error bars. The first one is the error due to the
supernova. At fixed redshift, we define hH0rdiX as the
median over all reconstructions for method X ∈ fdA; Hg.
We can then define the upper and lower limit as the minimal
and maximal values of H0rdjX;n. This error bar is shown as
a dashed line in Fig. 2. The second error is due to the
uncertainty on the BAO [Eqs. (12a) and (12b)], and
is the uncertainty of the central value for a given
reconstruction n. For each reconstruction n and method
X, we have an error σH0rd jX;n. They are of the same order for

each reconstruction, so we define the final BAO error as the
maximum value over all reconstructions. This error bar is
shown as a solid error bar in Fig. 2.
For the first method (in orange), the measurements of

H0rd from combination of supernova and SDSS BAO data
are fully consistent with Planck. The DES data point, also
using the transverse BAO mode, is an independent con-
firmation at intermediate redshift. However, for the second
method, while at low redshift, the measurements are
consistent with Planck, the eBOSS data points are system-
atically lower than the Planck best fit at z ≥ 1.2 while the
error bars become very large at this range. This can be
understood by the following remarks.
The first method yields very consistent results thanks to

the use of the transverse BAO mode, which has smaller
error bars, coupled with direct reconstructions DðzÞ which
do not use derivative.
The second method however, uses the line-of-sight mode

of the BAO, together with hðzÞ from supernovae data which
is a derivative. Since the Pantheon data become scarce at
z ≥ 1, the estimation of hðzÞ becomes less precise at this
range having large error bars. Combination of these two
results to large uncertainties for H0rd from the second
method. On the other hand, it can be seen from Fig. 1 that
while hðzÞ from SNIa are higher than the best-fit Planck
ΛCDM model, hðzÞ from the BAO (scaled with best fit
Planck ΛCDM model) are actually lower. This explains the
lower values of HðzÞrd=hðzÞ at the eBOSS redshifts with
respect to the other measurements.
We can then estimate, for each reconstruction n and

method X ∈ fdA; Hg, the weighted average

hH0rdiX;n ¼
1T ·C−1

n ·H0rdjX;n
1T ·C−1

n · 1
; ð13Þ

where H0rdjX;n is a vector constituted of estimations of
H0rd at different redshifts for iteration n, and Cn is the
associated covariance matrix (due to the correlation in the
BAO data). We report our results in Table I. The Planck
2015 value of H0rd for the ΛCDM model is ð9944.0�
127.4Þ km:s−1 Mpc−1. We should note an important inter-
pretation of this result. While all our reconstructions of the
expansion history from supernovae data have better χ2 with
respect to the best fit ΛCDM model, our large uncertainties
on H0rd indicates that tight constraints on this quantity
from model dependent approaches (such as assuming

FIG. 2. Model-independent measurement of H0rd estimated at
the different BAO data points. The dotted error bars show the
range of possible central values from different reconstructions
(SN error), while the solid error bars show the uncertainty on the
central value (BAO error).

TABLE I. Weighted average of H0rd from the H and dA
methods.

Method H0rd Error SN Error BAO

hH0rdidA ðkm s−1Þ 101 20.42 þ33.79
−59.12 �103.92

hH0rdiH ðkm s−1Þ 9162.80 þ875.06
−921.02 �166.39
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ΛCDM model) have limitations in expressing the reality of
the universe and estimating its key parameters.

E. Test of the FLRW metric and the curvature

Reference [9] reformulated the Ok diagnostic [6] by
introducing the Θ diagnostic so that it now only depends on
the BAO and supernovae observables:

OkðzÞ ¼
Θ2ðzÞ − 1

D2ðzÞ ð14aÞ

ΘðzÞ ¼ hðzÞD0ðzÞ ¼ 1þ z
c

HðzÞrd
dAðzÞ
rd

D0ðzÞ
DðzÞ : ð14bÞ

For a FLRW Universe, OkðzÞ≡Ωk, and in case of
flatness, OkðzÞ≡ 0 and ΘðzÞ≡ 1. We can then calculate
for each reconstruction n the associated Ok;nðzÞ and ΘnðzÞ.
We calculated the median of Ok and Θ over all recon-
structions, and defined the SN error as the minimal and
maximal values, and the BAO error as the maximal error
over all reconstructions. Figure 3 shows ΘðzÞ (top) and
OkðzÞ (bottom). Both are consistent with a flat FLRW
metric up to z ≃ 1.2.
However, at high redshift, some deviation from flatness

can be seen. Again, this can be explained by the previous
remarks. In addition to the scarcity of the SN data at
z ≥ 1.5, which results in into poor constraints on hðzÞ, the
BAO seem to show some internal tensions. While dAðzÞ=rd
are consistent with the Planck best fit, HðzÞrd are lower
than expected. However, the Θ and Ok statistics assume a
FLRW metric, where dA and H are related to each other.
Thus, discrepancy between dA and H combined with the
higher h values at high-redshift (z ≥ 1) yields lower values
for Θ and Ok. We should also note that in the case of

supernova data, the Malmquist bias (if not treated carefully)
can pull down the DðzÞ relation at high redshifts. This
might explain the large swing upward of hðzÞ and OmðzÞ
(with respect to the best-fit ΛCDM case) that we can see
in Fig. 1, and consequently the apparent deviation from
flatness observed in Θ and Ok. While it is certainly
important to study further this effect in the case of the
Pantheon data, it is beyond the scope of this paper.

III. GROWTH OF STRUCTURE VERSUS
EXPANSION: TESTING GR

At the perturbation level, the cosmological growth of
structure can also serve as a test of gravity [10,23–34]. In
the linear regime, the growth of structure in GR follows

δ̈þ 2H _δ − 4πGρ̄δ ¼ 0; ð15Þ

where δ ¼ ρ=ρ̄ − 1 is the density contrast with respect to
the mean density of the Universe ρ̄. The growth rate

fðaÞ ¼ d ln δ
d ln a

ð16Þ

can be approximated for a wide range of cosmologies
by [35–37]

fðzÞ ¼ Ωγ
mðzÞ; ð17Þ

where

ΩmðzÞ ¼
Ωmð1þ zÞ3

h2ðzÞ : ð18Þ

In general relativity (GR), γ ≃ 0.55. fσ8 is thus a powerful
probe of gravity. Observationally, redshift-space distortion
enables to measure the combination [e.g., [24]]

fσ8ðzÞ ≃ σ8Ω
γ
mðzÞ exp

�
−
Z

z

0

Ωγ
mðxÞ dx

1þ x

�
; ð19Þ

where σ8 ¼ σ8ðz ¼ 0Þ is the rms fluctuation in 8 h−1Mpc
spheres. Following this formalism, having model indepen-
dent reconstructions of the expansion history and fσ8ðzÞ
data, one can obtain constraints on Ωm,γ, and σ8 [38]. Note
that we consider the estimated fσ8 data from BAO surveys
as an independent and uncorrelated measurements with
respect to the supernova data that we used to reconstruct the
expansion history.
Note, however, that one should keep in mind that

Eq. (17) is an approximate fit only. In particular, γ may
not be exactly constant for quintessence—dark energy
modeled by a scalar field with some potential minimally
coupled to gravity [39]. Still both for ΛCDM and for
quintessence-CDM this fit is good since dγ

dz is small as
far as Ωm is not too small, see also [40]. For modified

FIG. 3. FLRW and curvature test: ΘðzÞ (top) and OkðzÞ
(bottom). The dotted error bars show the range of possible
central values from different reconstructions (SN error), while the
solid error bars show the uncertainty on the central value (BAO
error). For a flat-FLRW Universe, ΘðzÞ≡ 1 and OkðzÞ≡ Ωk.
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gravity theories like fðRÞ gravity, the situation can be
different [41,42].

A. Cosmological constraints on Ωm, γ, σ8
Following [38], we combined the Pantheon compilation

with the latest measurements of fσ8: 2dFGRS [24],
WiggleZ [43], 6dFGRS [44], VIPERS [45], the SDSS
Main galaxy sample [46], 2MTF [47], BOSS DR12 [48],
FastSound [49], and eBOSS DR14Q [18]. In this section,
we assume a flat Universe, therefore

hðzÞ ¼ 1

D0ðzÞ : ð20Þ

It is worth noting that these measurements, coming from
different surveys, were obtained assuming different fiducial
cosmologies. Therefore, we correct for the fiducial cos-
mology [32,50]. The growth χ2 for the nth reconstruction
hnðzÞ and parameters p ¼ ðΩm; γ; σ8Þ is thus given by

χ2n;fσ8ðpÞ ¼ δfσ8n ·C−1
fσ8

· δfσ8n; ð21Þ

where Cfσ8 is the growth covariance matrix, and the ith
component of the residual vector δfσ8n is

δfσ8nji ¼
hnðziÞDnðziÞ

ð1þ ziÞHfidðziÞdA;fidðziÞ
dfσ8nðzijp; hnÞ − fσ8ji:

ð22Þ

The total χ2 for reconstruction n and parameter p is then

χ2n;totðpÞ ¼ χ2n;fσ8ðpÞ þ χ2n;SN; ð23Þ

where dfσ8ðzijp; hnÞ is the model corresponding to the
expansion history hn and parameters p and fid stands for
the fiducial cosmology used by the survey to estimate the
data point.
The red contours in the (σ8, Ωm) plane in Fig. 4 show the

1σ and 2σ regions of the parameter space in the flat ΛCDM
case, that is, flat-ΛCDM expansion history and γ ¼ 0.55.
The blue contours show the allowed parameter space in the
model-independent case. Namely, for any point in the blue
contours, one can find at least one reconstruction hðzÞ
which, combined to the corresponding (Ωm, γ, σ8), gives a
better fit to the data than the best-fit ΛCDM. In the (σ8,Ωm)
plane, the model-independent case is fully consistent with
the ΛCDM case. Moreover, the flexibility of the model-
independent approach allows a larger area of the parameter
space to be consistent to the data. For instance, for larger
values of σ8 and lower values of Ωm, one can find
reconstructed expansion histories that give a better total
fit to the data (SNIaþ growth) with respect to the best fit
ΛCDM model. For the model-independent case, γ is fully
consistent with 0.55, as expected from GR. Moreover,

lower value of γ, combined with lower value of Ωm and
larger σ8, can also provide good fit to the data.
We then fix γ ¼ 0.55, as we did for the ΛCDM case, and

show in Fig. 4 the corresponding confidence contours in
green. This effectively allows for a non-ΛCDM back-
ground expansion, with gravity as GR. This time, since
we do not allow γ to vary, the region with low Ωm and high
σ8 is now forbidden.
Finally, following [38], we focus on combinations of

hðzÞ and Ωm that respect the positive dark energy condition

ΩdeðzÞ ¼ h2ðzÞ −Ωmð1þ zÞ3 ≥ 0 ∀ z: ð24Þ

We show this region in dark-blue (free γ) and dark-green
(fixed γ) in Fig. 4. Imposing Eq. (24) effectively forbids
large values of Ωm, and dramatically reduces the allowed
parameter space of the model-independent case. The
allowed region of the parameter space is then fully
consistent with the model-dependent case, as in [38].
This is a strong support from the data for combination
of ΛCDM and GR. Comparing our results here using most
recent supernovae (Pantheon compilation) and BAO data
(from eBOSS DR14) with what was reported in [38] we can
notice substantial improvement on the constraints on these
three key cosmological parameters. Based on our analysis
we can now put strong model-independent upper bound
limits on Ωm < 0.42 and γ < 0.58 and a lower bound limit
on σ8 > 0.70. These are in fact model independent con-
straints on these key cosmological parameters.

FIG. 4. Model independent cosmological constraints on (Ωm, γ,
σ8) from growth and expansion data. The red contours are the 1σ
and 2σ confidence levels for the ΛCDM case. The blue contours
are associated to the combination of the parameters and recon-
structions of the expansion history that yield a better χ2 with
respect to the best-fit ΛCDM model. The dark-blue region satisfy
positive dark energy density condition as expressed in Eq. (24).
The green contours show the model-independent case where we
fixed γ ¼ 0.55, i.e., impose GR. Again, the dark contours satisfy
Eq. (24).

SHAFIELOO, L’HUILLIER, and STAROBINSKY PHYS. REV. D 98, 083526 (2018)

083526-6



IV. SUMMARY AND CONCLUSIONS

We used the Pantheon supernovae compilation to recon-
struct the expansion history in a model-independent way,
using an improved version of the iterative smoothing
method [9,15–17], which we modified to take into account
the non-diagonal terms of the full covariance matrix. We
then combined the reconstructed expansion histories to
measurements of HðzÞrd and dAðzÞ=rd from BOSS DR12
and eBOSS DR14Q to model-independently measureH0rd
and test the FLRW metric. Our measurements of H0rd are
consistent with the Planck 2015 values, while the metric
test is consistent with a flat-FLRWmetric. However, for the
eBOSS DR14Q data points, while dAðzÞ=rd is consistent
with the prediction from the Planck best-fit ΛCDM
cosmology, the HðzÞrd measurements are slightly but
systematically lower. This yields some hints for a departure
from flat-FLRW (Fig. 3) and supports previous findings of
[22] and [5].
We then fit the growth data from redshift space distortion,

mainly from SDSS survey using the model-independent
reconstructions of the expansion history, and put model-
independent constraints on Ωm < 0.42, γ < 0.58 and
σ8 > 0.70. Our measurements are fully consistent with

the ΛCDM model with GR (γ ≈ 0.55), and do not reveal
any tension between the two data sets.
Future surveys, such as the Dark Energy Spectroscopic

Instrument [51,52], the Large Synoptic Telescope [53],
and WFIRST, will improve the quality and quantity of
data, enabling us to detect any possible deviation
from ΛCDM.
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