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We investigate the possibility of constraining statistical anisotropies of the primordial tensor
perturbations by using future observations of the cosmic microwave background (CMB) B-mode
polarization. By parametrizing a statistically anisotropic tensor power spectrum as PhðkÞ ¼
PhðkÞ

P
ngncos

nθk, where θk is an angle of the direction of k̂ ¼ k=k from a preferred direction, we find
that it is possible for future B-mode observations such as CMB-S4 to detect the tensor statistical anisotropy
at the level of gn ∼Oð0.1Þ.
DOI: 10.1103/PhysRevD.98.083522

I. INTRODUCTION

The detection of the B-mode polarization signal in
cosmic microwave background (CMB) is one of the most
important challenges in cosmology, because it is sensitive
to the primordial gravitational waves (PGWs) generated
during inflation. In the standard inflationary scenario, the
amplitude of the PGWs generated from vacuum fluctua-
tions during inflation is expected to depend only on the
energy density of the inflation, ρinf , and hence its detection
was considered as a direct probe for the scale of unknown
physics. The current constraint on the amplitude of the
PGWs is r≲ 0.07, where r represents the ratio of the power
spectrum of the PGWs to that of the primordial curvature
perturbations [1–3]. In the 2020s, next-generation CMB
experiments such as LiteBIRD [4] and CMB-S4 [5] are
expected to achieve higher sensitivities reaching r ≃ 10−3,
which corresponds to ρ1=4inf ≃ 6 × 1015 GeV in the conven-
tional vacuum fluctuation case. Recently, other mecha-
nisms of generating PGWs during inflation by introducing
some matter fields (e.g., gauge fields) have been proposed,
[6,7] and then this means that the vacuum PGWs are no
longer the unique target of the B-mode observation.
Interestingly, the PGWs generated in these new mecha-
nisms not only have the different relations between r and
ρinf but also observable signatures distinct from the vacuum
one, e.g., non-Gaussianity [8,9]. Among them, statistical
anisotropies of the PGWs should be useful to distinguish
the generation mechanisms and to extract richer informa-
tion on the early universe from the B-mode observation.
The statistical anisotropy has been pursued mainly in the

power spectrum of the curvature perturbation Pζ. This is

because the anisotropic inflation and solid inflation models
predict a quadrupole anisotropy in the curvature perturba-
tion, PζðkÞ ¼ PζðkÞð1þ g�cos2θkÞ [10–17]. Furthermore,
recent studies [18,19] argue that higher spin fields generate
statistical anisotropies beyond quadrupole in Pζ during
inflation. Indeed, these kinds of anisotropies imprint
interesting signatures in the CMB angular power spectrum.
While in the standard picture CMB power spectra have
only diagonal components in the angular multipole space
due to a rotational invariance, statistical anisotropies can
create specific nonzero off-diagonal correlations between
temperature and polarization in CMB data. Several works
have been discussed to test such kind of correlations due to
the statistically-anisotropic curvature perturbation [20–24].
So far, however, there is no evidence of the quadrupole
anisotropy in Pζ, and we have an upper bound jg�j ≲
10−2 [1,25].
In this paper, we study the statistical anisotropy in the

power spectrum of the PGWs. Although little attention has
been paid to the statistically-anisotropic PGWs, recent
study [26] has proposed a model where large statistical
anisotropies in Ph can be generated. In this model, U(1)
gauge field is kinematically coupled to a spectator scalar
field and gains a large background expectation value which
breaks the isotropy of the Universe, and then due to the
aniostropy of the Universe the perturbations of the specta-
tor field and the gauge field could source the anisotropic
tensor modes. Remarkably, the higher-order statistical
anisotropies beyond quadrupole in Ph can be predicted
irrespective of the model parameters. Although sta-
tistically-anisotropic curvature perturbations are also

PHYSICAL REVIEW D 98, 083522 (2018)

2470-0010=2018=98(8)=083522(7) 083522-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.083522&domain=pdf&date_stamp=2018-10-16
https://doi.org/10.1103/PhysRevD.98.083522
https://doi.org/10.1103/PhysRevD.98.083522
https://doi.org/10.1103/PhysRevD.98.083522
https://doi.org/10.1103/PhysRevD.98.083522


generated from the spectator and gauge fields in this model,
they would be suppressed in compared to those originated
from the vacuum fluctuations which are statistically iso-
topic. This fact promotes us to study the anisotropies of
PGWs since they can be better constrained or detected
from the observations of the PGWs than from those of
the curvature perturbations. A similar prediction is also
obtained when the two-form field takes over the role of the
U(1) gauge field [27]. Other than this type of model, several
works have suggested the generation of testable statistical
anisotropies in tensor modes [21,28,29]. Inspired by these
predictions, we explore a possibility to test these higher
statistical anisotropies of tensor modes through the B-mode
angular power spectrum. We model the tensor statistical
anisotropies as PhðkÞ ¼ PhðkÞ

P
n gnðk=k0Þγcosnθk and

evaluate detectabilities of the coefficients gn in future
missions. Compared with the previous study [28], we
further investigate the sensitivities of gn up to n ¼ 6.
This paper is the first paper studying the statistical
anisotropy in the power spectrum of PGWs taking the
higher-order statistical anisotropies into account.
This paper is organized as follows. In Sec. II, we describe

basic equations for our Fisher analysis. In Sec. III, we
obtain 1σ uncertainties of the anisotropic parameters, gn
and qLM. We conclude in Sec. IV.

II. BASIC EQUATIONS

A. Anisotropies

Harmonic coefficients of B-mode anisotropies induced
by the primordial tensor perturbations h�2ðkÞ can be

written in terms of the transfer function TðBÞ
l ðkÞ (see,

e.g., Ref. [22]),

aðBÞlm ¼ 4πð−iÞl
Z

d3k
ð2πÞ3

X
s¼�2

hsðkÞTðBÞ
l ðkÞ−sY�

lmðk̂Þ; ð1Þ

with sYlm being the spin-s spherical harmonics. The power
spectrum of the tensor perturbations is defined as

hhþ2ðk1Þh−2ðk2Þi ¼
1

2
ð2πÞ3Phðk1Þδð3Þðk1 − k2Þ; ð2Þ

where we have used h−2ðkÞ ¼ h�þ2ðkÞ. If the rotational
invariance is broken, the power spectrum could have the
directional dependence, which can be parametrized as [30],

PhðkÞ ¼ PhðkÞ
X
LM

QLMðkÞYLMðk̂Þ; ð3Þ

with L running over even numbers, 0; 2; 4; :…, where
PhðkÞ is the isotropic (monopole) part, and k̂ ≔ k=k.
Taking into account the directional dependence, we obtain
the correlation of the harmonic coefficients [28],

CBB
l1m1;l2m2

≔ haðBÞl1m1
aðBÞ�l2m2

i

¼ 2

π
il2−l1ð−1Þm1δevenl1þl2

X
LM

G−m1m2M;−220
l1l2L

×
Z

dkk2PhðkÞQLMðkÞTðBÞ
l1

ðkÞTðBÞ
l2

ðkÞ; ð4Þ

where δevena is 1 if a is even, and 0 otherwise, and
Gm1m2m3;s1s2s3
l1l2l3

is the spin-weighted Gaunt integral that is
written in terms of the product of Wigner’s 3j-symbols,

Gm1m2m3;s1s2s3
l1l2l3

≔
Z

dΩs1Yl1m1
ðΩÞs2Yl2m2

ðΩÞs3Yl3m3
ðΩÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

m1 m2 m3

��
l1 l2 l3

−s1 −s2 −s3

�
:

ð5Þ
In the present study, we assume that the scale dependence
of the anisotropic parameter is given as [28]

QLMðkÞ ¼ qLM

�
k
k0

�
γ

; ð6Þ

with constants qLM and γ. Finally, Eq. (4) reads

CBB
l1m1;l2m2

ðγÞ ¼ 2

π
il2−l1ð−1Þm1

×
X
LM

δevenl1þl2þLG
−m1m2M;−220
l1l2L

qLMCBB
l1l2

ðγÞ;

ð7Þ
where

CBB
l1l2

ðγÞ ≔ 2

π

Z
dkk2PhðkÞTðBÞ

l1
ðkÞTðBÞ

l2
ðkÞ

�
k
k0

�
γ

: ð8Þ

Note that for the case with qLM ¼ δL0δM0, that is, sta-
tistically-isotropic power spectrum, one can find that the
above expression is equivalent to the standard form of the
angular power spectrum.
In the theoretical models which predict the statistical

anisotropy in primordial tensor modes, the statistical
anisotropy is often parametrized in terms of the power
series of the cosine function (e.g., [1,25]), as

PhðkÞ ¼ PhðkÞ
XN

n¼even

gn

�
k
k0

�
γ

cosnθk; ð9Þ

where θk measures the angle of the direction of k̂ from a
preferred direction. Thus, it should be useful to give a
relation between the parameters gn and qLM, and according
to Eq. (A11) their relations are given by
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q0M ¼ 2
ffiffiffi
π

p �
g0 þ

g2
3
þ g4

5
þ g6

7

�
δM0; ð10Þ

q2M ¼ 4

ffiffiffi
π

5

r �
g2
3
þ 2

7
g4 þ

5

21
g6

�
δM0; ð11Þ

q4M ¼ 16
ffiffiffi
π

p �
g4
105

þ g6
77

�
δM0; ð12Þ

q6M ¼ 32

231

ffiffiffiffiffi
π

13

r
g6δM0: ð13Þ

B. Fisher information matrix

To quantify the 1σ uncertainties of the anisotropic
parameters, fqLMg or fgng, we use the Fisher information
matrix. The details of the computation of the Fisher
information matrix in our study are provided in the
Appendix. Here we consider only the B-mode in the full
expression in Eq. (A8) or Eq. (A10) with Eq. (A9), and it
reads

FBB
L ¼ fsky

4π

X
l1l2

ð2l1 þ 1Þð2l2 þ 1Þ
�
l1 l2 L

−2 2 0

�
2

×
ðCBB

l1l2
Þ2

C̃BB
l1
C̃BB
l2

; ð14Þ

where C̃BB
l is the total angular power spectrum of B-mode

polarization defined in Eq. (A7). Using Eq. (A8) or
Eq. (A10), we can estimate the uncertainties of the
measurement of the anisotropic parameters,

σ2qLM ¼ ðFLM;LMÞ−1; σ2gn ¼ ðFnnÞ−1: ð15Þ

A noise model we adopt in the present study is

N BB
l ¼ NBB

l el
2σ2b ; ð16Þ

in which we assume the detector noise NBB
l and the beam

effect σb are parametrized as [31]

NBB
l ¼

�
π

10800

wBB
−1=2

μK arcmin

�
2

μK2 str; ð17Þ

σb ¼
π

10800

θFWHM

arcmin
1ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p : ð18Þ

with θFWHM being the full width at half maximum (FWHM)
of the beam in the unit of arcmin. Although we do not take
into account neither the lensing effect from the E mode
induced by scalar perturbations nor the foreground noises
sourced by dust emission, it is possible to emulate the cases
including them by increasing the noise parameter w−1=2

BB .

III. DETECTABILITY OF STATISTICAL
ANISOTROPIES OF TENSOR PERTURBATIONS

We use cmb2nd1 to compute the transfer function of the
B mode with the cosmological parameters from the Planck
2015 results (TT;TE;EEþ lowPþ lensingþ ext in
Ref. [33]), which are tabulated in Table I. Since there is
no detection of PGWs, their amplitude is unknown. In this
paper, respecting the current constraint on the ampitude
of PGWs, r ≔ PhðkpivotÞ=PζðkpivotÞ≲ 0.07, given by the
combined analysis of Planck and BICEP2/Keck [1–3], we
study the cases with r ¼ 0.05, 0.01 and 0.001 to show
the dependence of our predictions on the amplitude.
We assume a 0.5 degree FWHM beam (designed in
LiteBIRD [4]) and the noise level with w−1=2

BB ¼ 1.0, 5.0,
63.1 μKarcmin which correspond to CMB-S4 [5],
LiteBIRD [4], and Planck [34], respectively. In addition
to them, we also compute the cosmic-variance-limited
(CVL) case with w−1=2

BB ¼ 0.
The 1σ uncertainties of the measurements of gn and qLM

with even numbers of n and L up to n, L ≤ 6 are
summarized in Tables II–VI which are computed with
fixed γ; γ ¼ 0 (Tables II–IV), γ ¼ −1, −1=2 (Table V) and
γ ¼ 1=2, 1 (Table VI). Throughout this paper, the isotropic
part of angular power spectrum is supposed to be
CBB
l ≔ CBB

ll ðγ ¼ 0Þ. Hence, the observed signal is given as

Cobs
l1m1;l2m2

ðγÞ ¼ CBB
l1
δl1l2

δm1m2
þ CBB

l1m1;l2m2
ðγÞ: ð19Þ

TABLE I. Cosmological parameters used in the present study.
The all parameters except for the tensor-to-scalar ratio are
provided by Planck 2015 results (TT;TE;EEþ lowPþ
lensingþ ext in Ref. [33]). The amplitude of curvature pertur-
bation and the tensor-to-scalar ratio are evaluated at k ¼ kpivot,
and we assume ns;0.002 ¼ ns;0.05 in the notation of Ref. [33].

Parameter Value

Amplitude of curvature
perturbation

PR0 2.384 × 10−9

Tensor-to-scalar ratio r 0.001,0.01,0.05
Pivot scale kpivot 0.002 Mpc−1

Spectral index ns 0.9667
Reduced Hubble parameter h 0.6774
Dark matter fraction h2ΩCDM 0.1188
Baryon fraction h2Ωb 0.02230
Effective number of neutrinos Neff 3.046
Photon’s temperature Tγ;0 2.7255 K
Optical depth τ 0.066
Helium abundance Yp 0.24667

1This Boltzmann code is not public yet, but we have confirmed
that the transfer functions obtained from this precisely agree with
those from CAMB (https://camb.info/). See also Ref. [32] in
which we used the same code.
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In the case with γ ¼ 0 (Tables II–IV), we fix g0 ¼ 1 or
q00 ¼ 1 and vary gn (qLM) for n ≥ 2 (L ≥ 2), whereas in
the cases with γ ≠ 0 (Tables V and VI), we vary also g0 or
q00. In the Tables, we show the results with fsky ¼ 1. One
can obtain those with fsky < 1 by multiplying the values
by 1=

ffiffiffiffiffiffiffiffi
fsky

p
.

Note that σgn with n ≤ N has a strong dependence on the
number of parameters N due to the nonvanishing off-
diagonal components of the Fisher information matrix,
whereas σqLM is independent of N since the corresponding
Fisher information matrix is diagonal. Hence, as for σgn, we
compute their uncertainties for N ¼ 2, 4, 6, respectively.
In Table III, where we assumed r ¼ 0.01, we find that,

when we take into account both g4 and g6, their uncer-
tainties are greater than the unity even in the case with
w−1=2
BB ¼ 1 μK arcmin, which leads to the difficulty of

measurement of such higher-order anisotropies. On the
other hand, when we take into account up to g4, it is implied
that the hexadecapole anisotropy with g4 ¼ Oð1Þ can be
detected by an observatory whose specification is similar to
CMB-S4.
The 1σ uncertainties mildly depend on r, particularly in

CMB-S4 and LiteBIRD, as shown in Table II with r ¼ 0.05
and Table IV with r ¼ 0.001. From Eq. (14), it is easy to

find that the 1σ uncertainty is independent to r in the
cosmic-variance limited case, whereas the uncertainty
becomes simply proportional to r if the detector noise is

TABLE II. σgn for w−1=2
BB ¼ 63.1, 5.0, 1.0 μKarcmin and the

CVL case with γ ¼ 0, fsky ¼ 1 and r ¼ 0.05.

CVL 1.0 5.0 63.1

g2 1.93 × 10−3 4.61 × 10−2 9.33 × 10−2 1.25

g2 8.23 × 10−3 2.02 × 10−1 4.18 × 10−1 7.16
g4 1.24 × 10−2 2.99 × 10−1 6.08 × 10−1 1.11 × 101

g2 2.33 × 10−2 5.02 × 10−1 9.00 × 10−1 7.36
g4 8.27 × 10−2 1.79 3.17 1.30 × 101

g6 6.46 × 10−2 1.42 2.55 5.55

q2M 4.98 × 10−3 1.02 × 10−1 1.88 × 10−1 3.73
q4M 4.28 × 10−3 1.13 × 10−1 2.47 × 10−1 4.63
q6M 5.71 × 10−3 1.21 × 10−1 2.04 × 10−1 3.79 × 10−1

TABLE III. σgn for w−1=2
BB ¼ 63.1, 5.0, 1.0 μKarcmin and the

CVL case with γ ¼ 0, fsky ¼ 1 and r ¼ 0.01.

CVL 1.0 5.0 63.1

g2 1.93 × 10−3 5.98 × 10−2 2.03 × 10−1 3.25

g2 8.23 × 10−3 2.66 × 10−1 9.25 × 10−1 1.89 × 101

g4 1.24 × 10−2 3.90 × 10−1 1.35 2.94 × 101

g2 2.33 × 10−2 6.29 × 10−1 1.47 1.92 × 101

g4 8.27 × 10−2 2.25 4.67 3.23 × 101

g6 6.46 × 10−2 1.80 3.67 1.11 × 101

q2M 4.98 × 10−3 1.26 × 10−1 4.10 × 10−1 9.52
q4M 4.28 × 10−3 1.53 × 10−1 5.59 × 10−1 1.27 × 101

q6M 5.71 × 10−3 1.50 × 10−1 2.66 × 10−1 7.55 × 10−1

TABLE IV. σgn for w−1=2
BB ¼ 63.1, 5.0, 1.0 μKarcmin and the

CVL case with γ ¼ 0, fsky ¼ 1 and r ¼ 0.001.

CVL 1.0 5.0 63.1

g2 1.93 × 10−3 1.25 × 10−1 7.37 × 10−1 2.37 × 101

g2 8.23 × 10−3 5.61 × 10−1 3.96 1.39 × 102

g4 1.24 × 10−2 8.13 × 10−1 6.08 2.15 × 102

g2 2.33 × 10−2 1.10 4.20 1.41 × 102

g4 8.27 × 10−2 3.78 8.23 2.33 × 102

g6 6.46 × 10−2 3.03 4.58 7.31 × 101

q2M 4.98 × 10−3 2.49 × 10−1 1.95 6.68 × 101

q4M 4.28 × 10−3 3.34 × 10−1 2.60 9.98 × 101

q6M 5.71 × 10−3 2.33 × 10−1 3.13 × 10−1 4.98

TABLE V. σgn for w−1=2
BB ¼ 63.1, 5.0, 1.0 μKarcmin and the

CVL case with γ ¼ −1 (top), −1=2 (bottom) and k0 ¼ kpivot and
fsky ¼ 1.

CVL 1.0 5.0 63.1

g0 5.28 × 10−2 9.67 × 10−2 1.31 × 10−1 5.93 × 10−1

g2 1.43 × 10−1 2.61 × 10−1 3.58 × 10−1 1.64

g0 7.23 × 10−2 1.56 × 10−1 2.23 × 10−1 1.04
g2 5.14 × 10−1 1.25 1.85 8.65
g4 5.76 × 10−1 1.42 2.11 9.91

g0 7.38 × 10−2 1.56 × 10−1 2.24 × 10−1 1.04
g2 6.02 × 10−1 1.29 1.88 8.69
g4 1.10 1.72 2.33 1.02 × 101

g6 6.91 × 10−1 7.08 × 10−1 7.17 × 10−1 1.88

q0M 8.08 × 10−2 1.49 × 10−1 1.88 × 10−1 8.21 × 10−1

q2M 1.51 × 10−1 2.76 × 10−1 3.79 × 10−1 1.73
q4M 1.56 × 10−1 3.84 × 10−1 5.71 × 10−1 2.68
q6M 4.70 × 10−2 4.82 × 10−2 4.89 × 10−2 1.28 × 10−1

CVL 1.0 5.0 63.1

g0 1.23 × 10−2 8.26 × 10−2 1.96 × 10−1 1.42
g2 3.36 × 10−2 2.18 × 10−1 5.26 × 10−1 3.96

g0 1.59 × 10−2 1.22 × 10−1 3.23 × 10−1 2.38
g2 1.06 × 10−1 9.23 × 10−1 2.62 1.94 × 101

g4 1.17 × 10−1 1.05 2.99 2.22 × 101

g0 2.02 × 10−2 1.27 × 10−1 3.25 × 10−1 2.38
g2 2.82 × 10−1 1.19 2.74 1.95 × 101

g4 7.93 × 10−1 2.49 3.84 2.31 × 101

g6 5.75 × 10−1 1.66 1.77 4.66

q0M 1.82 × 10−2 1.39 × 10−1 3.07 × 10−1 1.90
q2M 3.55 × 10−2 2.30 × 10−1 5.56 × 10−1 4.18
q4M 3.17 × 10−2 2.83 × 10−1 8.09 × 10−1 5.99
q6M 3.92 × 10−2 1.13 × 10−1 1.20 × 10−1 3.18 × 10−1
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dominated in the wide range of l, CBB
l ≪ N l. In fact,

CMB-S4 and LiteBIRD are capable of detecting PGWs
with r ∼ 0.001 from the B-mode signal. That is why the
uncertainties for these obsevatories behave in between the
two limits. As a result, we find that even in the case with
r ¼ 0.001 CMB-S4-like observations can marginally
detect the anisotropies up to g4.
In Tables V and VI, we estimate the uncertainties with

various γ with r ¼ 0.01. In the red-tilted cases, our results
even with γ ¼ −1 indicate the possibility to detect g2 by
LiteBIRD and CMB-S4, while it is fairly difficult to get a
signal of g4 even with CMB-S4. On the other hand, in the
blue-tilted cases, we can marginally detect g4, since much
power is induced to the angular power spectrum on large l.
Note that, in Ref. [28], the authors reported the uncertain-
ties with γ ¼ −2, σq0M ¼ 30 and σq2M ¼ 58 in our nota-
tions. In the present study, we obtained σg0 ¼ 20.6 and

σg2 ¼ 56.4 with γ ¼ −2 in the CVL case, which are well
consistent to the previous results.
Let us compare our result with theoretical predictions.

The model in Ref. [26] predicts g0 ¼ 1, g2 ¼ −1, g4 ¼ 1,
g6 ¼ −1 irrespective of the model parameters, while γ ≲
−1=2 is required to produce a detectable amplitude of the
sourced PGW (i.e., rsource ≳ 10−3). In the case of γ ¼ −1,
−1=2 (Table V), these result show that the predicted g0 and
g2 are marginally detectable, whereas it is challenging to
measure g4 and g6 even with the CMB-S4 experiment at 1σ
level. Let us also consider the discrimination between the
models. The prediction in Ref. [27] is g0 ¼ 1, g2 ¼ 1,
g4 ¼ −2, g6 ¼ 1, and the sign of g2 is flipped from that of
Ref. [26]. This difference is originated in the distinction
between the particle types which generate the PGWs
(i.e., U(1) gauge field or two-form field). Therefore, once
gnðn ≥ 2Þ is detected, we may gain an insight what type of
particle plays an important role in the primordial universe.
Note that, although we fix k0 ¼ kpivot in Tables Vand VI,

the uncertainties with different k0 can be easily obtained by
use of the scaling, σgn , σqLM ∝ kγ0, since Eq. (8) is propor-
tional to k−γ0 and σgn , σqLM is thus proportional to the inverse
of Eq. (8).

IV. CONCLUSION

We investigated the detectability of the statistical anisot-
ropies of the primordial tensor power spectrum using
the Fisher information matrix assuming the observations
by CMB-S4, LiteBIRD and Planck. We parametrize the
primordial tensor power spectrum in Eq. (3) with Eqs. (6)
and (9), and estimate the 1σ uncertainties of qLM and gn
given in Eq. (15) with the fiducial values qLM ¼ gn ¼ 0 for
L (or n) ≥ 2 in the case of γ ¼ 0, and qLM ¼ gn ¼ 0 for L
(or n) ≥ 0 in the case of γ ≠ 0.
Our results are tabulated in Tables II–VI. In Table III, we

find that a relatively large statistical anisotropy gn ∼Oð0.1Þ
would possibly be detected by CMB-S4 even with r ¼
0.001 as long as we take into account up to g4, and by
LiteBIRD up to g2, whereas unfortunately the results imply
difficulties to detect anisotropies by Planck since it is
contaminated by large noises. In addition, in order to detect
a higher multipole coefficient g6, we need further observa-
tories whose noise level is much more suppressed than
CMB-S4.
Note that, in our present study, we do not take the

contamination from the CMB-lensing, unwanted B-mode
signal converted from the E-mode through the gravitational
interaction, into account. In the actual observations, the
detectability of the anisotropies depends on how well we
can remove the contamination, namely, delensing. Roughly
speaking, this effect can be included in our result by
increasing w−1=2

BB defined in Eq. (17). If the delensing is not
perfectly performed, the detectability of the anisotropies by
CMB-S4 will be worse.

TABLE VI. σgn for w−1=2
BB ¼ 63.1, 5.0, 1.0 μKarcmin and the

CVL case with γ ¼ 1=2 (top), 1 (bottom) and k0 ¼ kpivot and
fsky ¼ 1.

CVL 1.0 5.0 63.1

g0 2.00 × 10−4 2.31 × 10−2 8.37 × 10−2 5.37
g2 5.47 × 10−4 5.94 × 10−2 2.08 × 10−1 1.48 × 101

g0 2.55 × 10−4 3.37 × 10−2 1.25 × 10−1 8.29
g2 1.67 × 10−3 2.53 × 10−1 9.56 × 10−1 6.49 × 101

g4 1.84 × 10−3 2.86 × 10−1 1.09 7.37 × 101

g0 3.29 × 10−4 4.36 × 10−2 1.61 × 10−1 8.31
g2 4.67 × 10−3 6.34 × 10−1 2.32 6.59 × 101

g4 1.32 × 10−2 1.77 6.44 8.12 × 101

g6 9.59 × 10−3 1.28 4.65 2.48 × 101

q0M 2.92 × 10−4 4.20 × 10−2 1.67 × 10−1 7.49
q2M 5.78 × 10−4 6.28 × 10−2 2.19 × 10−1 1.57 × 101

q4M 4.97 × 10−4 7.74 × 10−2 2.94 × 10−1 1.99 × 101

q6M 6.53 × 10−4 8.71 × 10−2 3.17 × 10−1 1.69

CVL 1.0 5.0 63.1

g0 2.11 × 10−5 1.10 × 10−2 4.19 × 10−2 4.01
g2 5.76 × 10−5 2.80 × 10−2 1.02 × 10−1 1.02 × 101

g0 2.72 × 10−5 1.61 × 10−2 6.18 × 10−2 5.95
g2 1.80 × 10−4 1.22 × 10−1 4.66 × 10−1 4.51 × 101

g4 1.99 × 10−4 1.38 × 10−1 5.30 × 10−1 5.12 × 101

g0 3.47 × 10−5 2.10 × 10−2 8.33 × 10−2 6.04
g2 4.88 × 10−4 3.06 × 10−1 1.26 5.02 × 101

g4 1.38 × 10−3 8.53 × 10−1 3.56 8.40 × 101

g6 9.98 × 10−4 6.17 × 10−1 2.58 4.88 × 101

q0M 3.13 × 10−5 2.05 × 10−2 8.61 × 10−2 7.59
q2M 6.08 × 10−5 2.96 × 10−2 1.08 × 10−1 1.08 × 101

q4M 5.38 × 10−5 3.73 × 10−2 1.43 × 10−1 1.38 × 101

q6M 6.80 × 10−5 4.20 × 10−2 1.76 × 10−1 3.32
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APPENDIX: FISHER INFORMATION MATRIX IN
THE ANISOTROPIC CASES

The covariance matrix taking into account the correla-
tions between different l’s is given by

Cl1m1;l2m2
¼

0
BB@

CTT
l1m1;l2m2

CTE
l1m1;l2m2

0

CTE
l1m1;l2m2

CEE
l1m1;l2m2

0

0 0 CBB
l1m1;l2m2

1
CCA:

ðA1Þ

The Fisher information matrix based on this covariance
matrix is given as [35,36]

Fij ¼
fsky
2

X
l1m1

X
l2m2

Tr

�
C−1
l1

∂Cl1m1;l2m2

∂θi C−1
l2

∂Cl2m2;l1m1

∂θj
�

ðA2Þ

¼ fsky
X
XY

X
l1m1

X
l2m2

∂CX
l1m1;l2m2

∂θi ðC−1l1l2ÞXY
∂CY

l2m2;l1m1

∂θj ;

ðA3Þ

where fsky denotes the fraction of the sky covered,
X; Y ¼ TT, TE, EE, BB and

C−1l1l2 ¼
1

2

0
BBBBB@

CEE
l1
CEE
l2
=Δl1l2 −CTE;EEl1l2

=Δl1l2 CTE
l1
CTE
l2
=Δl1l2 0

−CTE;EEl1l2
=Δl1l2 ðCTT;EEl1l2

þ 2CTE
l1
CTE
l2
Þ=Δl1l2 −CTT;TEl1l2

=Δl1l2 0

CTE
l1
CTE
l2
=Δl1l2 −CTT;TEl1l2

=Δl1l2
CTT
l1
CTT
l2
=Δl1l2 0

0 0 0 1
CBB
l1

CBB
l2

1
CCCCCA
; ðA4Þ

where

Δl1l2 ¼ ½CTT
l1
CEE
l1

− ðCTE
l1
Þ2�½CTT

l2
CEE
l2

− ðCTE
l2
Þ2�; ðA5Þ

CXYl1l2 ¼ CX
l1
CY
l2
þ CY

l1
CX
l2
; ðA6Þ

and

C̃X
l ≔ CX

l þN X
l ; ðA7Þ

withN X
l being the noises for the detection of X ¼ TT, TE,

EE, BB. The angular power spectrum CX
l with X ¼ BB is

given by Eq. (4) with l1 ¼ l2 ¼ l and γ ¼ 0, and those of
X ¼ TT, TE, EE can be also calculated by replacing the
transfer functions in Eq. (4) with the corresponding ones. If
we choose fθig ¼ fqLMg, the Fisher matrix becomes

FLM;L0M0 ¼ δLL0δMM0FL; ðA8Þ

where

FL ¼ fsky
4π

X
s1s2s3s4

ð−1Þs1þs3
X
l1l2

ð2l1 þ 1Þð2l2 þ 1Þ

×

�
l1 l2 L

−s1 s2 s1 − s2

��
l1 l2 L

−s3 s4 s3 − s4

�

×
X
XY

Cs1s2X
l1l2

ðC−1l1l2ÞXYC
s3s4Y
l2l1

; ðA9Þ

Alternatively, if we choose fθig ¼ fgng, we have

Fmn ¼
X
LM

∂qLM
∂gm

∂qLM
∂gn FXY

L : ðA10Þ

The coefficients in the right-hand side are found to be

∂qLM
∂gn ¼ δM0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p ffiffiffi
π

p Z
1

−1
μnPLðμÞdμ; ðA11Þ

where PLðμÞ is the Legendre polynomials.
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