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We consider a scenario in which the inflaton ϕ is a pseudoscalar field nonminimally coupled to
gravity through a term of the form XRϕ2. The pseudoscalar is also coupled to a Uð1Þ gauge field (or an
ensemble of N gauge fields) through an axial coupling of the form ϕFF̃. After [M. M. Anber and
L. Sorbo, Phys. Rev. D 81, 043534 (2010)], it is well known that this axial coupling leads to a
production of gauge particles which acts as a friction term in the dynamics of the inflaton, producing
a slow-roll regime even in presence of a steep potential. A remarkable result in this scenario is that
the spectrum of the chiral gravitational waves sourced by the scalar-gauge field interplay can be
enhanced due to the nonminimal coupling with gravity, leading to measurable signatures, while
maintaining agreement with current observational constraints on ns and r. The inclusion of nonminimal
coupling could be helpful to alleviate tensions with non-Gaussianity bounds in models including axial
couplings.
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I. INTRODUCTION

In this work we revisit the scenario in which a pseudo-
scalar field is responsible for driving inflation. We consider
a pseudoscalar inflaton coupled to a set of N Uð1Þ gauge
fields through an axial coupling term of the form
ðα=fÞϕFF̃, where F̃ is the dual of the field strength F
of the gauge field Aμ. This scenario was studied in
Refs. [1,2] with a steep natural cosine potential and then
in Refs. [3–5] for arbitrary potentials supporting slow-roll
evolution. This model presents very appealing possibilities
such as the sourcing of chiral gravitational waves due to the
axial coupling [2–6], the raising of signatures of parity-
violating and anisotropic correlations [7,8], possible con-
nections with magnetogenesis [9,10], generation of the
baryon asymmetry of the Universe [6], and production of
primordial black holes [11] among others. Despite several
of its appealing features, this mechanism is severely con-
strained given that the generation of any measurable
signature is unavoidably accompanied with the production
of a large amount of non-Gaussianities in the correlations
[3,5,12]. It was also pointed out that the model might
suffer from severe perturbativity constraints [13], but
recent analyses [14] claim that in the perturbative regime

the model still allows for observable signals at cosmic
microwave background (CMB) scales.1

A number of studies have focused on different versions
of models including axial couplings and have addressed
several theoretical and phenomenological aspects of them.
An incomplete list of references includes [10–29]. Very
recently, a closely related approach, studying the produc-
tion of fermions through a derivative coupling with a
pseudoscalar inflaton, was addressed [30].
Moreover, nonminimal couplings to gravity in the

context of inflation have a long history. The main interest
in some early references on the subject [31–37] was to
avoid (or rephrase) fine-tuning problems in chaotic infla-
tionary models. Later, the interest was boosted by the study
of Higgs inflation [38], Higgs-dilaton models [39] and α
attractors [40–44]. The case of multifield inflationary
models with nonminimal couplings to gravity [45–47]
was also considered, and more recently there have been
several works on nonminimally coupled inflaton in non-
metric formulations of gravity [48–50].

*juanpbeltran@uan.edu.co
†nicolas.bernal@uan.edu.co

1However, in the case considered here, the backreaction
due to the gauge field production is responsible for the slow-
roll evolution; the backreaction constraints are therefore
broken by construction. We assume perturbativity of the scalar
and tensor perturbations but we consider that the classical
background is driven by the nonperturbative gauge field pro-
duction process.
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The aim of this work is to understand how the intro-
duction of a nonminimal coupling to gravity affects the
dynamics and the inflationary predictions, in models where
an axion plays the role of the inflaton. To this end, we focus
specifically in the axion inflation model with a naturally
steep potential model presented in Refs. [1,2] in the
presence of nonminimal coupling with gravity. In this
context, the possibility of generating dark matter from
primordial black holes was recently discussed [51] in the
case of the so-called T models [40–43] which lead to the
class of α attractors. Complementary to that discussion,
here we consider the perturbations in a steep cosinelike
potential. We perform a detailed calculation of the spectrum
of scalar and tensor perturbations, and we extract the
spectral index of the scalar perturbations ns, together with
the tensor-to-scalar ratio r in order to contrast them with
current observational bounds. An interesting result in this
case is that, instead of a global suppression effect, for
certain regions of the parameter space the nonminimal
coupling term suppresses vacuum gravitational waves due
to the scalar-gravity interaction, but at the same time, it acts
as an enhancer for the sourced gravitational waves due to
the axial coupling. The interest in this combined effect is
twofold: On the one hand, the soured gravitational waves
are chiral because of the preferred helicity in this model, a
fact that can be seen as a signature of parity violation in the
CMB correlations. Additionally, the predicted tensor-to-
scalar ratio could be within the reach of current or planned
future experiments such as BICEP3 [52], LiteBIRD
[27,53], and the Simons Observatory [54]. On the other
hand, we want to explore the constraints coming from
interactions between the inflaton, massless gauge fields,
and gravity, leading to particular signatures and predictions.
The paper is organized as follows: In Sec. II we briefly

revisit the axion dynamics in the minimally coupled
inflationary setup. In Sec. II A we discuss scalar and
tensor perturbations and we review the calculation of the
corresponding correlators. We calculate ns and r, and we
also comment on the constraints coming from non-
Gaussianities. In Sec. III we introduce nonminimal cou-
pling with gravity for the pseudoscalar field and study its
implications in the correlation functions and other observ-
ables. Then, Sec. IV presents our main results, where we
scan the parameter space and compare it with Planck
measurements of ns and r. Finally, in Sec. V we end up
with our conclusions.

II. MINIMALLY COUPLED PSEUDOSCALAR
AND GAUGE FIELD DYNAMICS

Here, we briefly summarize the particle production
mechanism due to the pseudoscalar-vector coupling.
We revisit some details of the amplification of the gauge
fields depending on the helicity of the vector mode
[1–5,9,12,14–17,20,22,25].

Starting from the Lagrangian for N Uð1Þ vector fields
coupled to the axion field ϕ2

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R −

1

2
ð∂ϕÞ2 − VðϕÞ

−
N
4
FμνFμν −

N α

4f
ϕFμνF̃μν

�
; ð1Þ

we derive the system of equations of motion for the
pseudoscalar and the vector fields

□ϕ − Vϕ −
N α

4f
FμνF̃μν ¼ 0; ð2Þ

∇μ

�
Fμν þ α

f
ϕF̃μν

�
¼ 0; ð3Þ

where Vϕ ≡ ∂V=∂ϕ. For the vector field we also add the
Bianchi identity ∇μF̃μν ¼ 0. We work with the vector
potential Aμ corresponding to the field strength Fμν≡
∇μAν −∇νAμ, in the Coulomb gauge A0 ¼ ∂iAi ¼ 0. We
consider the de Sitter (or quasi–de Sitter) background
metric

ds2 ¼ −dt2 þ a2ðtÞd⃗x2 ¼ a2ðτÞ½−dτ2 þ d⃗x2�; ð4Þ

where a ≈ −1=ðHτÞ and τ is the conformal time. The

gradient of the pseudoscalar field ∇⃗ϕ ¼ 0 is neglected,
since homogeneous background solutions are considered.
All in all, Eqs. (2) and (3) are reduced to

ϕ00 þ 2aHϕ0 þ a2Vϕ ¼ a2
N α

f
E⃗ · B⃗; ð5Þ

A00
i −∇2Ai −

α

f
ϕ0ϵijk∇jAk ¼ 0; ð6Þ

where primes denote derivatives with respect to conformal
time and the electric and magnetic components are
defined as

Ei ¼ −
1

aðτÞ2 F0i ¼ −
1

aðτÞ2
∂Ai

∂τ
and Bi ¼

1

aðτÞ2 F̃0i ¼
1

aðτÞ2 ϵijk∇jAk: ð7Þ

With these definitions it is possible to check that

FF̃ ¼ −4E⃗ · B⃗ and F2 ¼ 2ðB⃗2 − E⃗2Þ: ð8Þ

The dynamics of the system is completed with Einstein’s
equations:

2Throughout this paper the signature ð−;þ;þ;þÞ is used.
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Rμν −
1

2
gμνR ¼ 1

M2
P
Tμν; ð9Þ

where the energy-momentum tensor is

Tμν ¼
−2ffiffiffiffiffiffi−gp δL

δgμν

¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþ V

�

þNFμαFν
α − gμν

N
4
F2: ð10Þ

The Friedmann equations obtained from the Einstein
equations (9) are

H2 ¼ 1

3M2
P

�
1

2
_ϕ2 þ VðϕÞ þN

2
ðE⃗2 þ B⃗2Þ

�
; ð11Þ

_H ¼ −
1

2M2
P

_ϕ2 −
N
3M2

P
ðE⃗2 þ B⃗2Þ: ð12Þ

To quantize the system, we write the vector potential as an
operator and decompose it in terms of creation and
annihilation operators as

Âiðτ; ⃗xÞ ¼
X
λ¼�

Z
d3k

ð2πÞ3=2 ½ϵ
i
λð⃗kÞAλðτ; ⃗kÞâλð⃗kÞei⃗k·⃗x þ c:c:�;

ð13Þ

where the (transverse) polarization vectors are defined as
such:

⃗ϵλð⃗kÞ · ⃗k ¼ 0; ⃗k × ⃗ϵλ ¼ −iλj⃗kj⃗ϵλ;
⃗ϵλ · ⃗ϵλ0 ¼ δλ;−λ0 ; ⃗ϵ�λðk̂Þ ¼ ⃗ϵ−λðk̂Þ ¼ ⃗ϵλð−k̂Þ: ð14Þ

Then, the vector equation in momentum space is written as

A00
� þ

�
k2 ∓ αk

f
ϕ0
�
A� ¼ 0: ð15Þ

During the inflationary regime, the classical background
solution of the pseudoscalar field is such that dϕ

dt ¼ _ϕ0 ≈
constant. Then

ϕ0 ¼ dϕ
dt

dt
dτ

¼ −
1

Hτ

dϕ
dt

≈ −
1

Hτ
_ϕ0 ð16Þ

and Eq. (15) becomes

A00
� þ

�
k2 � 2kξ

τ

�
A� ¼ 0 with ξ≡ α _ϕ0

2fH
: ð17Þ

Equation (17) is the starting point for the study of the
amplification of the gauge fields. Notice that this equation
shows manifestly the parity-violating nature of the system,
since one of the modes (Aþ) is amplified,3 while the other
(A−) is exponentially suppressed (since τ < 0). The sol-
ution consistent with the Bunch-Davies vacuum initial
conditions for the regime jkτj ≪ 2ξ is [1]

Aþ ≈
1ffiffiffiffiffi
2k

p
�

k
2ξaH

�
1=4

eπξ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξk=ðaHÞ

p
: ð18Þ

Here we notice that the Aþ mode is exponentially amplified
by the factor eπξ. Hence, the size of the backreaction effects
due to the presence of the vector field coupling [1] are

hE⃗ · B⃗i ≈ −I
H4

ξ4
e2πξ;

1

2
hE⃗2 þ B⃗2i ≈ 4I

7

H4

ξ3
e2πξ; with I ≈ 2.4 × 10−4: ð19Þ

A. Perturbations

Now we can write the equations for the perturbations of
the system including gravity, the inflaton, and the gauge
fields. They can be obtained varying Eq. (5) and taking the
decomposition for the inflaton as a background value plus a
perturbation of the field ϕðτ; xÞ ¼ ϕ0ðτÞ þ δϕðτ; xÞ:

ϕ00
0 þ 2aHϕ0

0 þ a2Vϕ ¼ a2
Nα

f
hE⃗ · B⃗i; ð20Þ

δϕ00 þ2aHδϕ0−∇2δϕþa2Vϕϕδϕ¼ a2
N α

f
δ½E⃗ · B⃗�: ð21Þ

The original calculation was performed in Ref. [1]; for
completeness we revisit all the relevant details in
Appendix A. For small inhomogeneities the ∇2 term can
be neglected. We consider also that V ≈ 3M2

PH
2 and

Vϕ ≈ V=f. Assuming α ≫ 1 and f ≲MP, which means
that the dominant contribution comes from the backreaction
term δ½E⃗ · B⃗�, Eq. (21) becomes

δϕ00 þ 1

τ

απVϕðϕ0Þ
fH2

δϕ0 þ 1

τ2
Vϕϕðϕ0Þ

H2
δϕ ≈ a2

N α

f
δE⃗·B⃗;

ð22Þ

which, in Fourier space, can be formally solved as

δϕðτ;k⃗Þ¼N α

f

Z
τ

−∞
dτ1a2ðτ1ÞGðτ;τ1Þ

Z
d3xe−ik⃗·x⃗δE⃗·B⃗ðτ1;x⃗Þ:

ð23Þ

3Taking α > 0 and ξ > 0.
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Gðτ; τ1Þ is the solution of the Green’s function associated
with Eq. (22), which is

∂2Gðτ; τ0Þ
∂τ2 þ 1

τ

απVϕðϕ0Þ
fH2

∂Gðτ; τ0Þ
∂τ þ 1

τ2
Vϕϕðϕ0Þ

H2
Gðτ; τ0Þ

¼ δðτ − τ0Þ; ð24Þ

with the boundary conditionsGðτ0;τ0Þ¼0, ∂Gðτ0;τ0Þ=∂τ¼1.
The solution of Eq. (24) is

Gðτ; τ0Þ ¼ τ0

Δ

��
τ

τ0

�
νþ

−
�
τ

τ0

�
ν−
�
Θðτ − τ0Þ; ð25Þ

where

ν� ≡ 1

2

�
1 −

παVϕðϕ0Þ
fH2

�
� 1

2
Δ;

and Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

παVϕðϕ0Þ
fH2

�
2

−
4Vϕϕðϕ0Þ

H2

s
: ð26Þ

Notice that, even if the homogeneous solution is suppressed
by a 1=Δ factor, the nonhomogeneous solution sourced by
Eq. (23) is enhanced by the term α

f δE⃗·B⃗, allowing perturba-
tions to grow large.Using Eq. (25) one can obtain then-point
correlator as

hδϕðp⃗1Þ � � � δϕðp⃗nÞi ¼ δðp⃗1 þ � � � þ p⃗nÞ
�
N α

f

�
n
Z

dτ1 � � �dτna21 � � �a2nGðτ; τ1Þ � � �Gðτ; τnÞ

×
Z

d3x1 � � �d3xne−iðp⃗1 ·⃗x1þ���þp⃗n ·⃗xnÞhδE⃗·B⃗ðτ1; ⃗x1Þ � � � δE⃗·B⃗ðτn; ⃗xÞi; ð27Þ

where ai ≡ aðτiÞ.

B. Power spectrum

From Eq. (27) the spectrum of the perturbations is

hδϕðp⃗Þδϕðp⃗0Þi ¼ δðp⃗þ p⃗0Þ
�
N α

f

�
2
Z

dτ1dτ2a21a
2
2Gðτ; τ1ÞGðτ; τ2Þ

Z
d3xeip⃗·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi

≈ F ðνþÞ
δðp⃗þ p⃗0Þ

p3

N 2α2H4

Δ2f2ξ8
e4πξð−25ξpτÞ2νþ : ð28Þ

As discussed in Appendix A, the dependence of F on νþ is
very small.We can thus safely takeF ≡F ð0Þ≈2.13×10−6.
With the previous results we can calculate the power
spectrum of the primordial curvature perturbation ζ ¼
−Hδϕ= _ϕ0

δðp⃗þ p⃗0ÞPζðpÞ ¼
p3

2π2
H2

_ϕ2
0

hδϕðp⃗Þδϕðp⃗0Þi

≈ δðp⃗þ p⃗0Þ F
2π2

H2

_ϕ2
0

N 2α2H4

Δ2f2ξ8

× e4πξð−25ξpτÞ2νþ : ð29Þ

Now, considering that Vϕ ≈ Nα
f hE⃗ · B⃗i and using Eq. (19)

one has

V2
ϕðϕ0Þ
I2

≈
N 2α2

f2
H8

ξ8
e4πξ: ð30Þ

Expressing _ϕ0 in terms of ξ, and using Eq. (A14) for Δ
results in

PζðpÞ ≈
F ðνþÞ

8π4I2N ξ2
ð−25ξpτÞ2νþ ≈

5 × 10−2

N ξ2
ð−25ξpτÞ2νþ ;

ð31Þ

where we used the fact that the contribution of theN gauge
fields adds incoherently to the spectrum, which results in a
suppression by a 1=N factor. Herewe notice that, as pointed
out in Ref. [1] for the minimally coupled case, in order to
reproduce the observed amplitude of the scalar spectrum it is
necessary to have a large number of gauge fields N ∼ 105,
for ξ ∼ 10. This is an unnatural feature of the model that
persists in the presence of nonminimal coupling, as we will
see in Sec. III C. Possible ways out of this problem are string
theory inspired models containing a large number N of
branes, each onewith an associatedUð1Þ gauge field, or large
symmetry groups like SUð

ffiffiffiffiffi
N

p
Þ. Another possibility is to

assume a slow-roll potential instead of the cosinelike, or
to use auxiliary scalar fields instead of the inflaton coupled to
the Uð1Þ gauge field, non-Abelian symmetry groups, or
massive vector fields [1]. Such scenarios are, however, not
considered here.
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From the previous expression we extract the spectral
index [1]4

ns − 1 ≈ 2νþ ¼ −
2fVϕϕðϕ0Þ
παVϕðϕ0Þ

: ð32Þ

C. Tensor perturbations

The calculation of the spectrum of the tensor perturba-
tions in this model was originally done in Refs. [2,4,20];
here we briefly revisit the main details. The tensor
perturbations with polarization λ are obtained by solving
the equation

h00λ −
2

τ
h0λ þ k2hλ ¼

2

M2
P
Πlm

λ TEM
lm ;

with hijð⃗kÞ ¼
ffiffiffi
2

p X
λ¼�

ϵiλð⃗kÞϵjλð⃗kÞhλðτ; ⃗kÞ; ð33Þ

where the energy-momentum tensor (TEM) and the pro-
jector (Πλ) for the polarization plane are defined as

TEM
ij ¼−a2ðEiEjþBiBjÞþCδij ¼−a−2A0

iA
0
jþCδij

and Πlm
λ ¼ 1ffiffiffi

2
p ϵl−λðk⃗Þϵm−λðk⃗Þ:

The C-term does not contribute to the tensor perturbation
because it is diagonal. Equation (33) can be rewritten as

hλð⃗kÞ ¼ −
2H2

M2
P

Z
dτ0Ghðτ; τ0Þð−τ0Þ2

×
Z

d3q

ð2πÞ3=2Π
ij
λ A

0
ið⃗q; τ0ÞA0

jð⃗k − ⃗q; τ0Þ;

where Ghðτ; τ0Þ corresponds to the Green’s function for the
equation of the tensor perturbations (33) and is

Ghðτ; τ0Þ ¼
1

k3τ02
½ð1þ k2ττ0Þ sin ½kðτ − τ0Þ�

þ kðτ − τ0Þ cos ½kðτ − τ0Þ��Θðτ; τ0Þ; ð34Þ

with Θ being the Heaviside’s function. Using Eq. (18) we
get the tensor perturbation spectrum [4]

Pt� ¼ H2

π2M2
P

�
1þA�NH2

M2
P

e4πξ

ξ6

�
; ð35Þ

whereAþ ≈ 8.6 × 10−7 andA− ≈ 1.8 × 10−9 are constants
for each mode polarization. They are different as a
consequence of the parity-violating nature of this model.
With them, we obtain the tensor-to-scalar ratio

r ¼ Ptþ þ Pt−

Pζ
¼ H2

π2M2
P

2þ ðAþ þA−ÞNH2

M2
P

e4πξ

ξ6

Pζ

≈
H2

π2M2
P

2þAþ NH2

M2
P

e4πξ

ξ6

Pζ
: ð36Þ

Using the approximate Friedmann equation H2 ≈
V=ð3M2

PÞ together with Eqs. (30) and (31) we obtain [2]

r ≈
2V

3π2M4
PPζ

þ 72π2Aþ

F
ξ4

α2

�
fVϕ

V

�
2

≈
2V

3π2M4
PPζ

þ 2.9 × 102
ξ4

α2

�
fVϕ

V

�
2

; ð37Þ

where Pζ ≃ 0.05
N ξ2

≃ 2.5 × 10−9 is the amplitude of the power

spectrum with the so-called COBE normalization. This
comes from Eq. (31), neglecting the scale dependent part.
In Eq. (37) we can notice the separation of the vacuum
gravitational waves spectrum and the gravitational waves
sourced by the coupling with the gauge fields. The sourced
part is amplified for large values of ξ and have a definite
polarization: they are chiral. Let us emphasize that ξ does
not affect the spectrum of the vacuum gravitational waves,
but only the sourced component.

D. Numerics of the minimally coupled case

In this section we inspect the parameter space of this
model. We use the spectral index ns in Eq. (32) and the
tensor-to-scalar ratio r in Eq. (37) to compare with current
Planck bounds [55]. To this end, we approximate the value
of ξ by solving the equation of motion of the inflaton (5)
neglecting time derivatives

ξ ≃
1

2π
log

�
1.3 × 104

N α
ξ4

M2
P

H2

fjVϕj
V

�
; ð38Þ

and use it to compute the slow-roll parameters

ϵ≡ −
_H
H2

¼ 2ξ2f2

α2M2
P
þ 8

7

ξ

α

fVϕ

V
; ð39Þ

η≡ −
ϕ̈
_ϕH

¼ ϵ −
1

2Hϵ

dϵ
dt

¼ −
1

H

�
_H
H

þ
_ξ

ξ

�

≃ −
1

H

�
fξffiffiffi
3

p
αMP

Vϕffiffiffiffi
V

p þ −2 _H
H Vϕ þ _ϕðVϕϕ −

V2
ϕ

V Þ
2πM3

P − 4
ξVϕ

�
: ð40Þ

The field excursion can be related with the number Ne of
e-folds that lasts inflation

4Notice that there is a difference of a global sign with respect to
the result in Ref. [1].
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Ne ≃
Z

ϕf

ϕi

H
_ϕ
dϕ ¼ α

2f

Z
ϕf

ϕi

1

ξ
dϕ ≃

α

2ξ

ϕf − ϕi

f
; ð41Þ

given that the rate H= _ϕ is approximately constant.
Hereafter we consider the natural inflation potential

[56,57]

VðϕÞ ¼ Λ4

�
1þ cos

�
ϕ

f

��
; ð42Þ

since, with this choice, it is possible to generate slow roll
due to the friction caused by the axial coupling term. This
implies that, differently from the case of the original natural
inflation, one can have a steep potential, which means that
f can acquire sub-Planckian values.
For the sake of completeness, it is instructive to do a

more precise statement about the regime in which the
backreaction term dominates the slow-roll evolution. To
this end, we compare the derivative of the potential term
against the backreaction term in the rhs of Eq. (5). Using
the cosine potential and the estimate for the backreaction
term in Eq. (19) we find that the friction term dominates
when

e2πξ

ξ4
>

9M4
P

N IαΛ4
: ð43Þ

As an example, even if we take a single gauge fieldN ¼ 1,
α ¼ 200, and Λ ¼ 4.5 × 10−3MP (which correspond to
typical values, see, e.g., Figs. 2 and 3), we get that the
friction term dominates when ξ≳ 5.4.
Figure 1 shows the 68% (light blue) and 95% (dark blue)

C.L. regions for the tensor-to-scalar ratio r versus the
scalar spectral index ns from Planck [55]. The predictions
in the case of natural inflation with the inflaton coupled
with N gauge fields are also shown, for 50 (red band) and

60 e-folds (black band). These regions were constructed by
varying the parameters in the ranges: ξ ¼ ½2.5; 10� and
α ¼ ½80; 400�. For a given number of e-folds, the number
N of gauge fields is fixed by the COBE normalization, the
scale Λ of the potential by the equation of motion of the
inflaton. Let us also note that in the minimally coupled
case, both r and ns are independent on the coupling f of the
potential, in the regime where ξ is almost constant. It is
clear from the figure that there are regions compatible with
the 95% C.L. Planck limits, for the cases with both 50 and
60 e-folds.5

Moreover, Fig. 2 depicts the values of ξ, α, N , and Λ
compatibles with Planck limits at 68% C.L. Note that while
N is independent from the number of e-folds, Λ is almost
insensitive to that parameter. The region ξ < 2.5 is beyond
the validity of the current approximations and hence not
considered. Let us point out that the number of Uð1Þ gauge
fields required to reproduce the amplitude of the scalar
spectrum has to be aboutN ∼ 106. The inflationary scale Λ
is always sub-Planckian, going down to Oð10−7ÞMP for
ξ ≃ 10. Additionally, the coupling constant α is of the order
102; this is, however, not a problem per se for perturba-
tivity, because it always appears suppressed by f, which is
at the Planck scale.

E. Comments on non-Gaussianities

For the sake of completeness, we present the non-
Gaussianities produced by this model [2,3,5]. Using
Eq. (27) we calculate the three-point function of the scalar
perturbations. In the equilateral limit

hδϕðp⃗1Þδϕðp⃗2Þδϕðp⃗3ÞiðequilÞ

∝ F 3

δðp⃗1 þ p⃗2 þ p⃗3Þ
p6

α3H6e6πξ

f3ξ9
; ð44Þ

where F 3 ≈ 5 × 10−11 [3,5]. The bispectrum of the pri-
mordial curvature perturbation is then

hζðp⃗1Þζðp⃗2Þζðp⃗3ÞiðequilÞ

∝ −F 3

H3

_ϕ0
3

δðp⃗1 þ p⃗2 þ p⃗3Þ
p6

α3H6e6πξ

f3ξ9
: ð45Þ

For an arbitrary potential able to support slow roll the
fNL parameter in the equilateral configuration is given
by [3,5]

fequilNL ≈ 4.4 × 1010P3
e6πξ

ξ9
; ð46Þ

FIG. 1. Tensor-to-scalar ratio r versus the scalar spectral index
ns for 50 and 60 e-folds, in the case of natural inflation with the
inflaton coupled to N Uð1Þ gauge fields. The blue bands
correspond to the 68% (light) and 95% (dark) C.L. regions from
Planck.

5For this to be possible, the minus sign in the expression for
the spectral index in Eq. (32) is necessary, otherwise, there
is no region in the parameter space compatible with Planck’s
constraints.
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where P1=2 ¼ H2=ð2π _ϕ0Þ. The current bound on equi-
lateral non-Gaussianity is fequilNL ¼ −4� 43 [58]. This is a
stringent constraint for this kind of model since it
requires ξ≲ 2.5. For such small values of the parameter
ξ, the signatures from the chiral tensor perturbations
sourced by the coupling with the axial term ϕF̃F are
suppressed and indistinguishable from the vacuum
perturbations.
However, for models strongly coupled to gauge fields

where the slow roll is achieved due to the friction term, the
equilateral non-Gaussianity is given by [2]

fequilNL ≈ −1.3ξ; ð47Þ

which allows us to consider values above ξ ≈ 2.5, where ξ
reaches a plateau and can be fairly enough approximated by
a constant. This is the case considered here. In the next
section, the situation in the nonminimal coupling case is
discussed.

III. INCLUDING NONMINIMAL COUPLING
WITH GRAVITY

We consider the inclusion of a nonminimal coupling
between the pseudoscalar field and gravity. The Lagrangian
for the gravity-scalar system is

L ¼ ffiffiffiffiffiffi
−g

p �
M2

P

2

�
1þ 2hðϕÞ

M2
P

�
R −

1

2
ð∂ϕÞ2 − VðϕÞ

−
N
4
FμνFμν −

N α

4f
ϕFμνF̃μν

�
; ð48Þ

where hðϕÞ introduces a particular form of nonminimal
coupling with gravity. In the following we restrict to an
hðϕÞ of the form

hðϕÞ ¼ 1

2
Xϕ2; ð49Þ

where X is a dimensionless constant, the nonminimal
coupling parameter between gravity and the pseudoscalar

FIG. 2. Values of ξ, α, N , and Λ compatible with Planck limits at 68% C.L. Note that while N is independent from the number of
e-folds, Λ is almost insensitive to that parameter. The region ξ < 2.5 is beyond the validity of the current approximations and hence
disregarded. Large ξ are considered since the slow-roll evolution is driven by the gauge field production, obtained precisely for large ξ
values.
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field. This leads to the equation of motion for the
pseudoscalar field

□ϕ − Vϕ þ XRϕ −
N α

4f
FμνF̃μν ¼ 0: ð50Þ

Let us note that for a free field (i.e., Vϕ ¼ 0 and α ¼ 0), this
equation is invariant under conformal transformations
when X ¼ −1=6. Moreover, the form of the gauge field
equation remains unaltered by the nonminimal coupling to
gravity

d2Ai

dτ2
−∇2Ai −

α

f
dϕ
dτ

ð∇ × AÞi ¼ 0: ð51Þ

However, the effect of the nonminimal coupling is intro-
duced only through the dynamics of the pseudoscalar field,
i.e., through the coupling parameter ξ which depends both
on the time and on the nonminimal coupling parameter.

A. Jordan and Einstein frames

The action (48) describes the system in the so-called
Jordan frame in which the nonminimal coupling between
the pseudoscalar field and gravity appears explicitly. We
can do a conformal scaling of the metric in the following
form:

ḡμν ¼ ΩðϕÞgμν; where ΩðϕÞ≡ 1þ 2hðϕÞ
M2

P
: ð52Þ

For nonminimal couplings of the form (49), the conformal
factor is

ΩðϕÞ ¼ 1þ X
�

ϕ

MP

�
2

: ð53Þ

Under this transformation the action (48) becomes

L ¼ ffiffiffiffiffiffi
−ḡ

p �
M2

P

2
R̄ −

1

2
KðϕÞḡμν∇̄μϕ∇̄νϕ − V̄ðϕÞ

−
N
4
F̄μνF̄μν −

N α

4f
ϕF̄μν ˜̄Fμν

�
; ð54Þ

where V̄ðϕÞ≡ VðϕÞ
Ω2 , F̄μνF̄μν ≡ ḡμαḡνβFαβFμν, and F̄μν ˜̄Fμν ≡

ḡμαḡνβFαβF̃μν. The details of the derivation of Eq. (54) are
discussed in Appendix C. For a single pseudoscalar we can
write the Lagrangian as a canonical pseudoscalar field
coupled minimally to gravity and to the vector field through
the axial term

L ¼ ffiffiffiffiffiffi
−ḡ

p �
M2

P

2
R̄ −

1

2
ḡμν∇̄μϕ̄∇̄νϕ̄ − V̄ðϕ̄Þ

−
N
4
F̄μνF̄μν −

N α

4f
ϕðϕ̄ÞF̄μν ˜̄Fμν

�
; ð55Þ

where the canonical pseudoscalar field ϕ̄ is defined through
the transformation dϕ̄=dϕ ¼ K1=2. The action (55) is now
in the Einstein frame [59]: it is written using only fields
with canonical kinetic terms and a metric that allows the
action to acquire the traditional form of the Einstein-Hilbert
gravity. Using the particular form of the nonminimal
coupling function (49), we get the transformation function

KðϕÞ ¼ 1

Ω
þ 6

M2
PΩ2

ðXϕÞ2 ¼
1þ 6ðX þ 1

6
ÞXð ϕ

MP
Þ2

½1þ Xð ϕ
MP

Þ2�2 : ð56Þ

B. Equations of motion in the Einstein frame

We can now derive the equations of motion for the
canonical fields in the Einstein frame from the action (55).
It is important to derive the equation of motion for the
canonical field ϕ̄ since, for this field, the construction of the
perturbation correlations are obtained following the usual
canonical quantization procedure [33]. Since the action is
written in terms of the coordinates x̄ and the metric ḡμν, all
the derivatives are compatible with this metric. The result
for the pseudoscalar field is

□̄ ϕ̄−V̄ϕ̄ −
N α

4fK1=2 F̄
μν ˜̄Fμν ¼ 0; ð57Þ

where □̄ ϕ̄ ≡∇̄μ∇̄μϕ̄ ¼ 1ffiffiffiffi
−ḡ

p ∂̄μð
ffiffiffiffiffiffi
−ḡ

p
ḡμν∂̄νϕ̄Þ. Now, we

consider the isotropic solution

ds̄2 ¼ −dt̄2 þ ā2δijdx̄idx̄j

¼ ā2ðτ̄Þ½−dτ̄2 þ δijdx̄idx̄j�: ð58Þ

To go from the Jordan to the Einstein frame variables for
the isotropic solution (58) we take into account that
ds̄2 ¼ Ωds2, which implies

dt̄ ¼ Ω1=2dt; āðt̄Þ ¼ Ω1=2aðtÞ;

dτ̄ ¼ dτ and H̄ ¼ 1

ā
dā
dt̄

¼ 1

Ω3=2

�
HΩþ 1

2
_Ω
�
: ð59Þ

In conformal coordinates, the equation for the canonical
pseudoscalar field becomes

∂2ϕ̄

∂ τ̄2 þ 2ā H̄
∂ϕ̄
∂ τ̄ − ∇̄2ϕ̄þ ā2V̄ϕ̄ ¼ ā2

Ω2K1=2

N α

f
E⃗ · B⃗; ð60Þ

where we use the definition for the electric and magnetic
field components as in Eqs. (7) and (8) in the Jordan frame.
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For gravity, we derive the Einstein equations varying with
respect to ḡμν:

R̄μν −
1

2
ḡμνR̄ ¼ 1

M2
P
T̄μν; ð61Þ

with the energy-momentum tensor

T̄μν ≡ −2ffiffiffiffiffiffi
−ḡ

p δL
δḡμν

¼ ∂̄μϕ̄∂̄νϕ̄ − ḡμν

�
1

2
ḡαβ∂̄αϕ̄∂̄βϕ̄þ V̄

�

þ ḡαβFμαFνβ − ḡμν
1

4
F̄2; ð62Þ

which leads to the Friedmann equations for the metric ḡμν

H̄2 ¼ 1

3M2
P

�
1

2

�∂ϕ̄
∂ t̄
�

2

þ V̄ þ 1

2Ω2
hE⃗2 þ B⃗2i

�
; ð63Þ

dH̄
dt̄

¼ −
1

2M2
P

�∂ϕ̄
∂ t̄
�

2

−
1

3M2
PΩ2

hE⃗2 þ B⃗2i: ð64Þ

Finally, for the equation of motion for the gauge fields it is
important to notice that the derivatives with respect to the
conformal time and with respect to spacial coordinates in
both frames are the same, then the equation obtained is the
same Eq. (51). If one goes to Fourier space and projects into
the transverse polarizations, one gets the same Eq. (17)
obtained in the minimally coupled case

A00
� þ

�
k2 � 2kξ

τ

�
A� ¼ 0; with ξ≡ α _ϕ0

2fH
: ð65Þ

Notice that in this equation appears the velocity of the
pseudoscalar field _ϕ0 and not the velocity of the canonical
field. Both quantities can be related through the expression

ξ ¼ α _ϕ0

2fH
≈

α

2f
1

H̄K1=2

dϕ̄0

dt̄
≡ 1

K1=2 ξ̄: ð66Þ

C. Perturbations

Starting from Eq. (60), we write the equations for the
background canonical field and its perturbation ϕ̄ðx̄; τ̄Þ ¼
ϕ̄0ðτ̄Þ þ δϕ̄ðx̄; τ̄Þ

ϕ̄00
0 þ 2ā H̄ ϕ̄0

0 þ ā2V̄ϕ̄ ¼ ā2

Ω2K1=2

N α

f
hE⃗ · B⃗i: ð67Þ

δϕ̄00 þ 2ā H̄ δϕ̄0 þ ā2V̄ϕ̄ ϕ̄δϕ̄

¼ ā2N α

f

�
δ

�
1

Ω2K1=2

�
hE⃗ · B⃗i þ 1

Ω2K1=2 δ½E⃗ · B⃗�
�
; ð68Þ

where the primes here represent derivatives with respect to
the conformal time in the Einstein frame τ̄. We neglected
the gradient term since we assume that the perturbations are
homogeneous. As we did for the minimally coupled case,
we calculate the dependence of the term E⃗ · B⃗ with the
velocity of the canonical field

δ½E⃗ · B⃗� ≈ δE⃗·B⃗ þ ∂hE⃗ · B⃗i
∂ð∂ϕ̄=∂ t̄Þ

∂δϕ̄
∂ t̄ : ð69Þ

The second term can be approximated as

∂hE⃗ · B⃗i
∂ð∂ϕ̄=∂ t̄Þ

∂δϕ̄
∂ t̄ ≈

∂hE⃗ · B⃗i
∂ξ

∂ξ
∂ð∂ϕ̄=∂ t̄Þ

δϕ̄0

ā

≈ 2πhE⃗ · B⃗i ∂ξ
∂ð∂ϕ̄=∂ t̄Þ

δϕ̄0

ā

≈
α

f
πhE⃗ · B⃗i
K1=2

δϕ̄0

H̄ ā
; ð70Þ

where we have used Eq. (66) in the last step. We can relate
the potential with the value of the term hE⃗ · B⃗i through the
equation for the background field ϕ̄0. Neglecting time
derivatives in Eq. (67) and using the approximation
V̄ϕ̄ ≈ Nα

Ω2K1=2f
hE⃗ · B⃗i, the perturbation of the source term

becomes

δ½E⃗ · B⃗� ≈ δE⃗·B⃗ þ π
Ω2

N
V̄ϕ̄

δϕ̄0

H̄ ā
: ð71Þ

With these results, the equation for the perturbations can be
rewritten as

δϕ̄00 þ2ā H̄

�
1−

παV̄ϕ̄

2K1=2fH̄2

�
δϕ̄0

þ ā2
�
V̄ϕ̄ ϕ̄þ

d lnðΩ2K1=2Þ
dϕ̄

V̄ϕ̄

�
δϕ̄¼ ā2N α

Ω2K1=2f
δE⃗·B⃗; ð72Þ

where it is understood that all the terms depending on the
canonical pseudoscalar field are evaluated at ϕ̄0. The
formal solution to this equation is

δϕ̄ðτ̄;k⃗Þ¼N α

f

Z
τ̄

−∞
dτ̄1

ā2ðτ̄1ÞḠðτ̄; τ̄1Þ
Ω2K1=2

Z
d3xe−ik⃗·x⃗δE⃗·B⃗ðτ̄1;x⃗Þ;

ð73Þ

where the Green function is obtained from

�
d2

dτ̄2
−
2

τ̄

�
1 −

παV̄ϕ̄

2K1=2fH̄2

�
d
dτ̄

þ V̄ϕ̄ ϕ̄

H̄2τ̄2

�
1þ d lnðΩ2K1=2Þ

dϕ̄

V̄ϕ̄

V̄ϕ̄ ϕ̄

��
Ḡðτ̄; τ̄0Þ ¼ δðτ̄ − τ̄0Þ:

ð74Þ
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The solution to this expression with the boundary conditions Ḡðτ̄0; τ̄0Þ ¼ 0, Ḡ0ðτ̄0; τ̄0Þ ¼ 1 is

Ḡðτ̄; τ̄0Þ ¼ τ̄0

Δ̄

��
τ̄

τ̄0

�
ν̄þ

−
�
τ̄

τ̄0

�
ν̄−
�
Θðτ̄ − τ̄0Þ; with ð75Þ

ν� ≡ 1

2

�
1 −

παV̄ϕ̄ðϕ̄0Þ
K1=2fH̄2

�
� 1

2
Δ̄ ≈ −

1

2

�
παV̄ϕ̄ðϕ̄0Þ
K1=2fH̄2

�
� 1

2
Δ̄; ð76Þ

Δ̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

παV̄ϕ̄ðϕ̄0Þ
K1=2fH̄2

�2

−
4

H̄2

�
V̄ϕ̄ ϕ̄ðϕ̄0Þ þ

d lnðΩ2K1=2Þ
dϕ̄

V̄ϕ̄ðϕ̄0Þ
�s

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
παV̄ϕ̄ðϕ̄0Þ
K1=2fH̄2

�2

−
4

H̄2

�
V̄ϕ̄ ϕ̄ðϕ̄0Þ þ

d lnðΩ2K1=2Þ
dϕ̄

V̄ϕ̄ðϕ̄0Þ
�s
; ð77Þ

where we used the approximation
παV̄ϕ̄

2K1=2fH̄2 ≫ 1. The late
time evolution of the Green’s function is dominated by
the νþ term, so we can approximate the Green’s function
with

Ḡðτ̄; τ̄0Þ ≈ τ̄0

Δ̄

�
τ̄

τ̄0

�
ν̄þ

for τ̄ > τ̄0: ð78Þ

Following the same steps of the minimally coupled case,
we calculate the spectrum of the scalar perturbations

hδϕ̄ðp⃗Þδϕ̄ðp⃗0Þi ≈ F ðν̄þÞ
δðp⃗þ p⃗0Þ

p3

N 2α2H̄4

KΔ̄2f2ξ8

× e4πξð−25ξpτ̄Þ2ν̄þ : ð79Þ

At this point one can calculate the spectrum of the

primordial curvature perturbation ζ̄ ¼ −H̄δϕ̄= _̄ϕ0. How-
ever, it has been shown that it is unaltered by a conformal
transformation [33], meaning that this variable and its
correlators are the same in Einstein and Jordan frames6:

P̄ζðpÞ ≈
F
2π2

H̄2

_̄ϕ
2
0

N 2α2H̄4

KΔ̄2f2ξ8
e4πξð−25ξpτ̄Þ2ν̄þ ; ð80Þ

which using Eqs. (19), (77), and V̄ϕ̄ ≈ N α
Ω2K1=2f

hE⃗ · B⃗i gives

P̄ζðpÞ ≈
F ðν̄þÞ

8π4I2N ξ2
ð−25ξpτÞ2ν̄þ

≈
5 × 10−2

N ξ2
ð−25ξpτÞ2ν̄þ : ð81Þ

The spectral index can then be extracted:

n̄s − 1≈ 2ν̄þ

¼ −K1=2
2fV̄ϕ̄ ϕ̄ðϕ̄0Þ
παV̄ϕ̄ðϕ̄0Þ

�
1þ d lnðΩ2K1=2Þ

dϕ̄

V̄ϕ̄ðϕ̄0Þ
V̄ϕ̄ ϕ̄ðϕ̄0Þ

�
:

ð82Þ

We can see from the previous results that the amplitude of
the scalar perturbation is kept unaltered:

P̄ζ ≈ Pζ; ð83Þ

but the spectral index is modified by a K1=2 factor. It is
important to notice that, even though the expression for the
spectrum is equal both for minimal and for nonminimal
couplings, the dynamics of the parameter ξ is different in
the two cases. Figure 3 reflects that difference with
an example of the evolution of ξ with X ¼ 0 (solid blue
line) and X ¼ 10 (dotted red line). These solutions are
obtained by solving Eq. (50), with H obtained from the
Friedman equation (63) and using approximations (18) and
(19). We also choose Λ ¼ 4.5 × 10−3MP, α ¼ 400,
N ¼ 105, and f ¼ 0.1MP. As it can be seen, even for a
large value of the nonminimal coupling such as X ¼ 10,
the difference is not very significant, in the ballpark of a
few percent. Note that throughout the paper we used the
assumption of a constant ξ. Figure 3 shows that this
assumption for late times is justified; nevertheless, a more
precise statement of this assumption can be made if we
consider the ratio _ξ=ðHξÞ. This analysis is shown in the
Appendix B.

D. Tensor perturbations

In this section we discuss how nonminimal couplings
can modify the production of sourced gravitational waves.
Knowing that the tensor perturbation variable hλ is not

6See, e.g., Ref. [60] for a discussion of quantum equivalence
between the Jordan frame and Einstein frame.
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altered by conformal transformations, we can do the
calculation for the metric

ds̄2 ¼ −ā2ðτ̄Þ½−dτ̄2 þ ðδij þ h̄ijÞdx̄idx̄j�: ð84Þ

As in the minimally coupled case, the spectrum is obtained
by solving Eq. (33) with the metric (84) and with the
energy-momentum tensor for the sourced part as in
Eq. (62):

T̄EM
ij ¼ −ā2ðEiEj þ BiBjÞ þ Cδij

¼ −
1

ā2
A0
iA

0
j þ Cδij: ð85Þ

The result is the same aa the one obtained in the minimally
coupled case but, in the conformal coordinates (τ̄, x̄i), it is

P̄t� ¼ H̄2

π2M2
P

�
1þA�N H̄2

M2
P

e4πξ

ξ6

�
; ð86Þ

then, the total tensor spectrum reads

P̄t ≈
2H̄2

π2M2
P

�
1þ ðAþ þA−Þ

2

N H̄2

M2
P

e4πξ

ξ6

�
; ð87Þ

and the tensor-to-scalar ratio

r̄ ¼ P̄tþ þ P̄t−

P̄ζ
¼ 2H̄2

π2M2
P

1þ ðAþþA−Þ
2

N H̄2

M2
P

e4πξ

ξ6

P̄ζ

≈
2H̄2

π2M2
P

1þ Aþ
2

N H̄2

M2
P

e4πξ

ξ6

P̄ζ
: ð88Þ

We can express the previous results in terms of the
potential by using the approximate Friedmann equation

H̄2 ≈ V̄=ð3M2
PÞ, the scalar spectrum P̄ζ ≈ Pζ of Eq. (81),

and the derivative of the potential

V̄ϕ̄ ≈
N α

fΩ2K1=2 hE⃗ · B⃗i ≈ −
N αI

fΩ2K1=2

H4

ξ4
e2πξ: ð89Þ

With them, we can write

r̄ ≈
2V̄

3π2M4
PPζ

þ 72π2AþK
F

ξ4

α2

�
fV̄ϕ̄

V̄

�2

≈
2V

3π2M4
PΩ2Pζ

þ 2.9 × 102K
ξ4

α2

�
fV̄ϕ̄

V̄

�2

: ð90Þ

It is worth emphasizing that the first term of the last
equation, the one corresponding to the vacuum fluctua-
tions, is suppressed by the factor Ω2 in the denominator.
The second term, the one responsible for the “sourced”
tensor perturbations, is modified by the factor K. This
factor changes significantly for small field values depend-
ing on the value of the nonminimal coupling parameter X.
This difference in the behavior between the vacuum
and sourced terms offers a possibility to generate observ-
able chiral sourced gravitational waves which would
acquire an enhancement due to the nonminimal coupling.
We can look for a region in the parameters space in
which the current observational constrains over ns and r
are respected. We explore this possibility in the next
section.

IV. NUMERICAL ANALYSIS OF THE
NONMINIMAL COUPLED CASE

A. Natural inflation

Before going to the full system with the axial coupling, it
is interesting to consider a single pseudoscalar field driving
inflation. We do not introduce any other auxiliary field as a
source of the primordial curvature perturbation or any
spectator field. The most widely studied example of small
field inflation with a pseudo-Nambu-Goldstone scalar, able
to produce an inflationary expansion is natural inflation
[56,57], characterized by a potential given in Eq. (42).
We also introduce a coupling with gravity of the form
hðϕÞR ¼ 1

2
Xϕ2R.7

FIG. 3. An example of the evolution of the parameter ξ for
minimal coupling (solid blue) and nonminimal coupling with
X ¼ 10 (dashed red). We use the values Λ ¼ 4.5 × 10−3MP,
α ¼ 400, N ¼ 105, f ¼ 0.1MP. The time is measured in units
of MP=Λ2.

7This coupling is still consistent with parity breaking, but
breaks the shift symmetry. A related approach that preserves the
tree-level shift symmetry is discussed in Refs. [61,62]. Instead of
introducing the nonminimal coupling in the form of a function
hðϕÞR, they use a nonminimal derivative coupling of the type
KðϕÞ∂ϕ∂ϕ, keeping the scale of the coupling constant f far
below the Planck scale and achieving in that way an UV protected
completion of the theory. Other possibilities also include cou-
pling to Gauss-Bonnet and Chern-Simons terms.
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We are interested in the observables ns and r related with the spectrum of the scalar and the tensor perturbations,
respectively. To this end, we need to evaluate the slow-roll parameters for this potential:

ϵ̄V ≡M2
P

2K

�
V̄ϕ

V̄

�
2

¼
½4fXϕþ ðXϕ2 þM2

PÞ tan ϕ
2f�2

2f2½M2
P þ Xϕ2ð6X þ 1Þ� ; ð91Þ

η̄V ≡M2
P

KV̄

�
V̄ϕϕ −

K0

2K
V̄ϕ

�

¼ 1

2MPfðM2
P þ Xϕ2ð6X þ 1ÞÞ2

�
2fXϕðXϕ2 þM2

PÞð7M2
P þ 6M2

PX þ 7Xϕ2ð6X þ 1ÞÞ tan ϕ

2f

− 8f2XðM4
P − Xϕ2ð3M2

P þ 4Xϕ2ð6X þ 1ÞÞÞ þ ðXϕ2 þM2
PÞ2ðM2

P þ Xϕ2ð6X þ 1ÞÞsec2 ϕ

2f

− 2ðXϕ2 þM2
PÞ2ðM2

P þ Xϕ2ð6X þ 1ÞÞ
�
: ð92Þ

We use the fact that the slow-roll parameters associated
with the potential ϵV and ηV are approximately equal to the
Hubble parameter slow-roll ϵH ≈ ϵV and ηH ≈ ηV − ϵV .
Moreover, we rely here on the fact that the primordial
curvature perturbation observables are invariant under a
conformal transformation [33] and that the slow-roll
variables in the canonical variables of the Einstein frame
are invariant as well [63]: ϵV ¼ ϵ̄V and ηV ≈ η̄V .
We express our results in terms of the number of e-folds

of the inflationary expansion:

Ne ¼ −
1

M2
P

Z
ϕf

ϕi

K
V̄
V̄ϕ

dϕ; ð93Þ

and we let the field roll from the moment at which the
perturbations cross the horizon at k ¼ aH, until the
moment in which the slow-roll conditions are broken:
ϵ̄VðϕÞ > 1 or η̄VðϕÞ > 1. The spectral index of the scalar

perturbations ns and the tensor-to-scalar ratio r are obtained
from the slow-roll parameters as

n̄s ¼ ns ¼ 1 − 6ϵ̄V þ 2η̄V and r̄ ¼ r ¼ 16ϵ̄V: ð94Þ

Figure 4 shows the 68% (light blue) and 95% (dark blue)
C.L. regions for the tensor-to-scalar ratio r versus the scalar
spectral index ns from Planck. The predictions in the case
of natural inflation with nonminimal coupling are also
shown, for different values of X . The back thin and thick
lines correspond to 50 and 60 e-folds, respectively.8 We use
small values for X since in this small field case, the
dynamics is sensible to small values of the nonminimal
coupling. On the one hand, we see that positive values of X

FIG. 4. Tensor-to-scalar ratio r versus the scalar spectral index ns, in the case of natural inflation with nonminimal coupling X . Black
thin and thick lines correspond to 50 and 60 e-folds, respectively. The blue bands correspond to the 68% (light) and 95% (dark) C.L.
regions from Planck.

8An analysis of natural inflation with nonminimal coupling
was done before in Ref. [64]. Even if we agree with their
analytical results, we diverge on the numerics.
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tend to suppress the amplitude of tensor perturbations and
render the scalar perturbations closer to the scale invari-
ance. On the other hand, negative values of X tend to
enhance the production of tensor mode perturbations and
diverge from scale invariance. The case of negative X is
disfavored by current Planck constraints.
Figure 5 depicts the values of f and ξ compatible with

Planck limits at 68% (black dots) and 95% C.L. (blue dots),
for positive X . The left (right) panel shows the case of 50
(60) e-folds. The hashed regions correspond to the param-
eter space whereNe and ns tend to be negative at small field
values, respectively, and are therefore disregarded. We note
that in order to agree with Planck measurements, the best fit
favors small but finite nonminimal couplings of the order
Oð10−3Þ to Oð10−2Þ, and f at the Planck scale.

B. Naturally steep potential with nonminimal
coupling to gravity

In this case where we have simultaneously a nonminimal
coupling to gravity and interactions with gauge fields, the
slow-roll parameter ϵ can be approximated as

ϵ̄ ¼ −
_̄H
H̄2

≈
3ΩK _ϕ2

2V
þ hE⃗2 þ B⃗2i

V
: ð95Þ

Taking into account that

H̄2 ¼ H2

Ω
þ

_ΩH
Ω2

þ 1

4

_Ω2

Ω3
≈
H2

Ω
; ð96Þ

where we neglected the _Ω terms since they are proportional
to _ϕ, we get

ϵ̄ ¼ 3Ω
K
2

4ξ2f2H2

α2V
þ hE⃗2 þ B⃗2i

V

¼ 2Kξ2f2

α2M2
P

þ 8

7

ξ

α

fK1=2V̄ϕ̄

V̄
; ð97Þ

where we have used Eq. (18). We also consider the slow-
roll parameter η̄

FIG. 5. The blue and black points correspond to the parameter space compatible with the Planck observation at 95% and 68% C.L.,
respectively. The left (right) panel shows the case of 50 (60) e-folds.

FIG. 6. Tensor-to-scalar ratio r versus the scalar spectral index ns for 60 e-folds, in the case where the inflaton is coupled with N
gauge fields and nonminimally coupled to gravity.
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η̄ ¼ ϵ̄ −
1

2ϵ̄

dϵ̄
dN̄

¼ ϵ̄ −
1

2H̄ ϵ̄

dϵ̄
dt̄

¼ −
d2ϕ̄
dt̄2

dϕ̄
dt̄ H̄

: ð98Þ

Figure 6 is the equivalent of Fig. 1 but now with the
inclusion of nonminimal couplings. It again shows the 68%
(light blue) and 95% (dark blue) C.L. regions for the tensor-
to-scalar ratio r versus the scalar spectral index ns from
Planck. The predictions in the case of natural inflation with
the inflaton nonminimally coupled to gravity and also
coupled with N gauge fields are also shown, for f ¼
0.25MP (left panel) and f ¼ 0.5MP (right panel), and
X ¼ 1 (green), 0.5 (red), and 0 (black). These regions were
constructed by fixing Ne ¼ 60 but varying the parameters
in the ranges: ξ ¼ ½2.5; 10� and α ¼ ½80; 400�. The number
N of gauge fields is fixed by the COBE normalization, the
scale Λ of the potential by the equation of motion of the
inflaton. In the case where X ¼ 0 (i.e., inflaton minimally
coupled to gravity), the results are independent from f, and
coincide with the ones of Fig. 1. Higher values forX tend to
increase r, even above the preferred region by Planck. That
is particularly true for large values of f. The values for ξ, α,
N , and Λ compatible with Planck limits are not presented
here because they are basically the same as in the minimal
case, i.e., Fig. 2.

V. CONCLUSIONS AND FINAL REMARKS

We studied a scenario in which a pseudoscalar field ϕ is
coupled with an ensemble of gauge fields through the axial
term ϕF̃F in the presence of a nonminimal coupling to
gravity. Because of the axial coupling, there is a significant
production of chiral gravitational waves which would leave
a characteristic signature in the CMB. However, there are
strong constraints over this mechanism coming mainly
from non-Gaussianity and perturbativity [12–14].9 In this
paper, we added a nonminimal coupling between the
pseudoscalar inflaton and gravity, and studied the spectrum
of the scalar and tensor perturbations. We tracked the
effects of this nonminimal coupling on the spectral index of
scalar perturbations ns and on the tensor-to-scalar ratio r, in
order to find regions of the parameter space compatible
with current observational bounds. The main results of this
study are Eqs. (81), (82), (90) and the scan of parameters
represented in Fig. 6. We found that, as a result of the gauge
fields and gravity interactions with the pseudoscalar infla-
ton for a steep cosine potential, ns and r are typically mildly
modified. However, there are also regions of the parameters
space that present a suppression of the vacuum gravitational
waves that are accompanied by an enhancement of the
gravity waves produced by the axial coupling interaction.
This enhancement of the sourced gravitational waves

happens because the dynamics of the gauge fields is
affected by the nonminimal coupling through the function
K in Eq. (56) and the parameter ξ in Eq. (17). The K
function allows for significant modifications in the sourced
gravitational wave term, while ξ is almost unaltered.
An interesting possibility offered by the interaction with

gauge fields and a nonminimal coupling is that the
amplification of gravitational waves could alleviate some
tension with non-Gaussianity bounds. In fact, it was
pointed out that non-Gaussianity strongly constrains axi-
onic models with slow-roll potential [12], requiring
ξ≲ 2.5. For such small values, the gravitational waves
generated by the axial coupling are comparable to the
vacuum ones, and hence practically unobservable.
However the situation here is different because the non-
minimal coupling modifies the evolution of the parameter ξ
and the slow-roll parameter ϵ̄ for the canonical variables.
We will follow the steps of the reasoning of Ref. [12] to
track the modifications due to the nonminimal coupling. In
the same way that the scalar spectrum is unaltered in the
Einstein frame, the bispectrum and hence the non-
Gaussianity parameter f̄NL do not change either, so

f̄equilNL ≈ fequilNL ≈ 4.4 × 1010P̄ζ
3
e6πξ

ξ9
: ð99Þ

With this, we get the bound

P̄ζ
2
e4πξ

ξ6
<

�
fobsNL

4.4 × 1010

�
2=3

: ð100Þ

Inserting this expression in Eq. (88) we obtain

r̄≈
AþH̄4

π2M4
P

e4πξ

ξ6

P̄ζ
< 35

H̄4

M4
P

e4πξ

ξ6
< 1.7×10−2ðfobsNLÞ2=3ϵ̄2: ð101Þ

In the last expression, ϵ̄ is the slow-roll parameter for the
canonical field ϕ̄. It can be seen that this parameter is
related with the ϵ parameter for the noncanonical field ϕ
through

ϵ ¼
_ϕ2

2H2
≈

1

K

ðdϕ̄dt̄Þ
2

2H̄2
¼ 1

K
ϵ̄; ð102Þ

where we used Eq. (59). With that, we rewrite the bound as

r̄ < 1.7 × 10−2ðfobsNLÞ2=3K2ϵ2: ð103Þ

Here we notice that the slow-roll parameter ϵ for the
noncanonical field is not modified significantly due to the
nonminimal coupling function. However, the function K
can act as an amplification factor for certain values of the
nonminimal coupling parameter X. This mechanism offers
then a possibility to leave some measurable signatures of
sourced gravitational waves.

9Nevertheless, as we mentioned in the Introduction, here the
perturbativity of the background evolution is broken by con-
struction. The scalar and tensor perturbations remain perturbative.
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APPENDIX A: DETAILS OF THE CALCULATION
OF THE PERTURBATIONS SPECTRUM

1. The Green function

Here we revisit the details of the approximate solution
for the scalar perturbations. The rhs of Eq. (21) can be
decomposed in two parts, one due to the intrinsic inho-
mogeneities in E⃗ · B⃗ even with ϕ ¼ 0, and a second
component due to the dependence on _ϕ:

δ½E⃗ · B⃗� ≈ ½E⃗ · B⃗ − hE⃗ · B⃗i�δϕ¼0 þ
∂hE⃗ · B⃗i

∂ _ϕ δ _ϕ

≡ δE⃗·B⃗ þ ∂hE⃗ · B⃗i
∂ _ϕ δ _ϕ: ðA1Þ

Using the definition of ξ and the approximations in
Eq. (19), the _ϕ dependent term can be written as

∂hE⃗ · B⃗i
∂ _ϕ δ _ϕ ≈

∂hE⃗ · B⃗i
∂ξ

∂ξ
∂ _ϕ δ _ϕ ≈

∂hE⃗ · B⃗i
∂ξ

α

2fH
δ _ϕ

≈ 2πhE⃗ · B⃗i α

2faH
δϕ0; ðA2Þ

where we have used dt ¼ adτ in the last part. Dots and
primes correspond to t and τ derivatives, respectively. If we
use the homogeneous equation (20), and assuming that the
dynamics is governed by the source term, we can neglect
the time derivatives of the pseudoscalar field and hence

Vϕ ≈
N α

f
hE⃗ · B⃗i: ðA3Þ

Putting everything together, we write the perturbations
equation as

δϕ00 þ 2aHδϕ0 þ ½−∇2 þ a2Vϕϕðϕ0Þ�δϕ

≈ a2
N α

f

�
δE⃗·B⃗ þ πVϕðϕ0Þ

N aH
δϕ0
�
; ðA4Þ

δϕ00 þ 2aH
�
1 −

απVϕðϕ0Þ
2fH2

�
δϕ0 þ ½−∇2 þ a2Vϕϕðϕ0Þ�δϕ

≈ a2
N α

f
δE⃗·B⃗: ðA5Þ

Using a ≈ −1=ðHτÞ during inflation (de Sitter metric),
we get

δϕ00 −
2

τ

�
1 −

απVϕðϕ0Þ
2fH2

�
δϕ0 þ

�
−∇2 þ 1

τ2
Vϕϕðϕ0Þ

H2

�
δϕ

≈ a2
N α

f
δE⃗·B⃗: ðA6Þ

Assuming that the inhomogeneities are small, and consid-
ering also that Vϕ ≈ V=f and V ≈ 3M2

PH
2 and assuming

α ≫ 1 and f ≲MP, the factor accompanying δϕ0 can be
approximated as

−
2

τ

�
1 −

απVϕðϕ0Þ
2fH2

�
≈þ 1

τ

απVϕðϕ0Þ
fH2

: ðA7Þ

The last approximation is valid in this case where the
backreaction term, the one coming from the variation
δ½E⃗ · B⃗� in the rhs of Eq. (A4) is the dominant. In
Eq. (A6), the gradient can also be neglected. In fact, the
bulk of the analysis relies on the solution for the vector
potential Aμ, Eq. (18), which is valid in the regime
jkτj ≪ 2ξ, with ξ > 1. Considering the third term in
Eq. (A6), one can compare the relevance of the gradient
term with the friction term. It can be approximated by

k2 þ 1

τ2
V 00

H2
≈ k2 þ 1

τ2
V

f2H2
≈ k2 þ 3M2

P

τ2f2
: ðA8Þ

We can therefore neglect the gradient term whenever
jkτj≲MP=f. Taking into account that jkτj ≪ 2ξ, we
deduce that this condition is always satisfied as long as
f ≲MP=ξ: sub-Planckian values for the coupling f, mak-
ing the potential steep, are required in this mechanism and
ensure that the electromagnetic friction term dominates
over the gradient of the scalar potential.
Therefore, Eq. (A6) becomes

δϕ00þ1

τ

απVϕðϕ0Þ
fH2

δϕ0þ 1

τ2
Vϕϕðϕ0Þ

H2
δϕ≈a2

N α

f
δE⃗·B⃗: ðA9Þ
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We can solve the Green’s function for this equation:

∂2Gðτ; τ0Þ
∂τ2 þ 1

τ

απVϕðϕ0Þ
fH2

∂Gðτ; τ0Þ
∂τ þ 1

τ2
Vϕϕðϕ0Þ

H2
Gðτ; τ0Þ

¼ δðτ − τ0Þ ðA10Þ

with the boundary conditionsGðτ0;τ0Þ¼0, ∂Gðτ0;τ0Þ=∂τ¼1,
obtaining

Gðτ; τ0Þ ¼ τ0

Δ

��
τ

τ0

�
νþ

−
�
τ

τ0

�
ν−
�
Θðτ − τ0Þ; ðA11Þ

where

ν� ≡ 1

2

�
1 −

παVϕðϕ0Þ
fH2

�
� 1

2
Δ;

and Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

παVϕðϕ0Þ
fH2

�
2

−
4Vϕϕðϕ0Þ

H2

s
: ðA12Þ

As said before, παVϕðϕ0Þ
fH2 ≫ 1; then we can approximate the

previous expressions as

Δ≈
παVϕðϕ0Þ

fH2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4f2H2Vϕϕðϕ0Þ
π2α2Vϕðϕ0Þ2

s
;

ν�≈−
1

2

παVϕðϕ0Þ
fH2

 
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4f2H2Vϕϕðϕ0Þ
π2α2Vϕðϕ0Þ2

s !
: ðA13Þ

Taking into account that ½f=ðαMPÞ�2 ≪ 1, previous equa-
tions can be rewritten as

Δ ≈
παVϕðϕ0Þ

fH2
; νþ ≈ −

fVϕϕðϕ0Þ
παVϕðϕ0Þ

≪ 1;

ν− ≈ −
παVϕðϕ0Þ

fH2
≈ −Δ ≫ 1: ðA14Þ

At late times or for scales at which jkτj ≪ 1, the Green’s
function becomes

Gðτ; τ0Þ ≈ τ0

Δ

�
τ

τ0

�
νþ
; τ > τ0: ðA15Þ

2. Power spectrum

We need to calculate the spectrum of the scalar
perturbations:

hδϕðp⃗Þδϕðp⃗0Þi

¼ δðp⃗þ p⃗0Þ
�
N α

f

�
2
Z

dτ1dτ2a21a
2
2Gðτ; τ1ÞGðτ; τ2Þ

×
Z

d3xeip⃗·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi: ðA16Þ

Using Eq. (A15) we can approximate the previous expres-
sion to

hδϕðp⃗Þδϕðp⃗0Þi ≈ δðp⃗þ p⃗0ÞN
2α2τ2νþ

H4Δ2f2

Z
dτ1dτ2

ðτ1τ2Þ1þνþ

×
Z

d3xei⃗k·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi:

ðA17Þ

The factor τ2νþ carries the scale dependence in the power
spectrum. Following Refs. [1,2] we evaluate the spacial
integral using the approximation (18), and neglecting the
A− polarization one finds

Z
d3xei⃗k·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi

¼ e4πξ

4a41a
4
2

Z
d3k
ð2πÞ3 jϵþð−⃗kÞ · ϵþðp⃗þ ⃗kÞj2

× ½j⃗kjj⃗kþ p⃗j þ j⃗kj3=2 j⃗kþ p⃗j1=2�e−4
ffiffiffiffiffiffiffiffiffiffi
2ξ=ãH

p
ð
ffiffiffiffi
j⃗kj

p
þ
ffiffiffiffiffiffiffiffiffi
j⃗kþp⃗j

p
Þ

ðA18Þ

where 2=
ffiffiffĩ
a

p ≡ 1=
ffiffiffiffiffi
a1

p þ 1=
ffiffiffiffiffi
a2

p
. We can choose the vector

p⃗ to be along the ẑ axis, then p⃗ ¼ pẑ, and we change
variables to ⃗q≡ ⃗k=p. With this, the integral is expressed as

Z
d3xei⃗k·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi

¼ e4πξp5

4a41a
4
2

Z
d3q
ð2πÞ3 jϵþð−⃗qÞ · ϵþðẑþ ⃗qÞj2

× qjẑþ ⃗qj
�
1þ q1=2

jẑþ ⃗qj1=2
�
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
25ξp=ãH

p
ð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ:

ðA19Þ

The time dependence of the exponential factor is
separated as

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
25ξp=ãH

p
ð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ

¼ e−
1
2
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
−25ξpτ1

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffi
−25ξpτ2

p
Þð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ ðA20Þ

which, introducing the change of variables x1;2 ¼
ð−25ξpτ1;2Þ1=4 becomes
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e−
1
2
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
−25ξpτ1

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffi
−25ξpτ2

p
Þð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ

¼ e−
1
2
ðx2

1
þx2

2
Þð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ; ðA21Þ

and the integral (A19) is expressed as

Z
d3xei⃗k·⃗xhδE⃗·B⃗ðτ1; 0ÞδE⃗·B⃗ðτ2; ⃗xÞi

¼ e4πξp5H8x161 x162
ð25ξpÞ825π3 Mðx1; x2Þ; ðA22Þ

where

Mðx1; x2Þ≡
Z

d3qJ ð⃗qÞe−1
2
ðx2

1
þx2

2
Þð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ

≡
Z

d3qjϵþð−⃗qÞ · ϵþðẑþ ⃗qÞj2qjẑ

þ ⃗qj
�
1þ q1=2

jẑþ ⃗qj1=2
�
e−

1
2
ðx2

1
þx2

2
Þð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þ:

ðA23Þ

Inserting this into Eq. (A17) and doing the time variables
change, we get

hδϕðp⃗Þδϕðp⃗0Þi ¼ δðp⃗þ p⃗0Þ N 2α2H4

p3Δ2f2ξ8
e4πξ

215
ð−25ξpτÞ2νþ

×
Z

dx1dx2ðx1x2Þ15−4νþ
16Mðx1; x2Þ

230π3
:

ðA24Þ

The time integrals in the variables xi can be performed as
integrals of the form xβe−αx

2

Z
dx1dx2ðx1x2Þ15−4νþ

16Mðx1; x2Þ
230π3

¼
Z

d3qJ ð⃗qÞ 16

230π3

Z
dx1dx2ðx1x2Þ15−4νþ

× e−
1
2
ð
ffiffiffiffi
j⃗qj

p
þ
ffiffiffiffiffiffiffiffi
j⃗qþẑj

p
Þðx2

1
þx2

2
Þ

¼ Γ½8 − 2νþ�2
212þ4νþπ3

Z
d3q

J ð⃗qÞ
ð ffiffiffiffiffiffij⃗qjp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij⃗qþ ẑjp Þ16−4νþ : ðA25Þ

Using

jϵþð−q⃗Þ ·ϵþðẑþ q⃗Þj2¼ 1

4

�
qþ cosθ− jq⃗þ ẑj

jq⃗þ ẑj
�

2

; ðA26Þ

where θ is the angle between ẑ and ⃗q, the momentum
integral becomes

Z
d3q

J ð⃗qÞ
ð ffiffiffiffiffiffij⃗qjp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij⃗qþ ẑjp Þ16−4νþ

¼
Z

d3q
ðqþ cos θ − j⃗qþ ẑjÞ2q

4j⃗qþ ẑjð ffiffiffiffiffiffij⃗qjp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij⃗qþ ẑjp Þ16−4νþ

×

�
1þ q1=2

jẑþ ⃗qj1=2
�
: ðA27Þ

Then the momentum integral can be evaluated numerically.
Neglecting νþ ≪ 1 we obtain

Z
d3q

J ð⃗qÞ
ð ffiffiffiffiffiffij⃗qjp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij⃗qþ ẑjp Þ16−4νþ ≈ 3.49 × 10−4; ðA28Þ

and the time integral is evaluated as

T ðνþ ¼ 0Þ ¼
Z

dx1dx2ðx1x2Þ15−4νþ
16Mðx1; x2Þ

230π3

≈ 3.49 × 10−4
Γ½8�2
212π3

≈ 7 × 10−2: ðA29Þ

Notice that, if we use νþ ≈ −0.0175 to be in agreement
with Planck results for the spectral index, the result is
modified in a small amount

T ðνþ ≈ −0.0175Þ ¼
Z

dx1dx2ðx1x2Þ15−4νþ
16Mðx1; x2Þ

230π3

≈ 8.2 × 10−2: ðA30Þ

Using our previous results, the two point correlator of the
perturbations is

hδϕðp⃗Þδϕðp⃗0Þi≈T ðνþÞ
215

δðp⃗þ p⃗0Þ
p3

N 2α2H4

Δ2f2ξ8
e4πξð−25ξpτÞ2νþ

≈F ðνþÞ
δðp⃗þ p⃗0Þ

p3

N 2α2H4

Δ2f2ξ8

×e4πξð−25ξpτÞ2νþ ; ðA31Þ

with F ðνþ ¼ 0Þ ≈ 2.13 × 10−6. With the previous results
we can calculate the power spectrum of the primordial
curvature perturbation ζ ¼ −Hδϕ= _ϕ0

δðp⃗þ p⃗0ÞPζðpÞ ¼
p3

2π2
H2

_ϕ2
0

hδϕðp⃗Þδϕðp⃗0Þi

≈ δðp⃗þ p⃗0Þ F
2π2

H2

_ϕ2
0

N 2α2H4

Δ2f2ξ8

× e4πξð−25ξpτÞ2νþ : ðA32Þ

Using Eqs. (17), (19), (20), and (A14), the spectrum can be
rewritten as
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PζðpÞ ≈
F ðνþÞ
8π4I2ξ2

ð−25ξpτÞ2νþ

≈
4.7 × 10−2

N ξ2
ð−25ξpτÞ2νþ ; ðA33Þ

where the factor N comes from the fact that the gauge
fields add incoherently in the spectrum. From this expres-
sion we extract the spectral index

ns − 1 ≈ 2νþ ¼ −
2fVϕϕðϕ0Þ
παVϕðϕ0Þ

: ðA34Þ

APPENDIX B: CONSTANT ξ REGIME

In this section we justify the assumption of constant ξ
used throughout the paper. Figure 7 shows the evolution of
_ξ and the ratio _ξ=ðHξÞ, for the same benchmark point used
in Fig. 3 (Λ ¼ 4.5 × 10−3MP, α ¼ 400, N ¼ 105,
f ¼ 0.1MP) and taking X ¼ 0 (blue) and X ¼ 10 (red).
Both quantities are small, which shows that the assumption
of constant ξ is well justified for the scales and the regime
considered in the calculation of the perturbations.
Additionally, the right panel shows that the ratio _ξ=ðHξÞ

tends to stabilize around 2.5 × 10−3 for the time of the
horizon exit. As the dependence of the solution for the
vector field in Eq. (18) is roughly exponential (Aþ ∼ eπξ), a
variation of ξ of order 2.5 × 10−3 has an impact below the
percent level in the vector field.

APPENDIX C: JORDAN AND EINSTEIN FRAMES

Here we briefly discuss the transformation from Jordan
to Einstein frames used in Sec. III A applied to a single
pseudoscalar field nonminimally coupled with gravity.
Further details of the relation between Jordan and
Einstein frames can be found, for instance, in Ref. [59].
We start with the action for the system in Eq. (48). By doing

the conformal transformation ḡμν ¼ ΩðϕÞgμν, the action
(48) is transformed into

L ¼ ffiffiffiffiffiffi
−ḡ

p �
M2

P

2

�
R̄þ 3□Ω

Ω2
−

3

2Ω2
ḡμν∇̄μΩ∇̄νΩ

�

−
1

2Ω
ð∇̄ϕÞ2 − V̄ðϕÞ

−
N
4Ω2

�
FμνFμν þ

α

f
ϕFμνF̃μν

��
; ðC1Þ

where V̄ðϕÞ≡ VðϕÞ
Ω2 and we have used the fact that the

spacetime coordinates are not affected by the conformal
transformation: ∂μ ¼ ∂̄μ. Moreover, as the derivatives act on
pseudoscalar fields, we can write ∇̄μΩ¼ ∂̄μΩ¼∇μΩ¼∂μΩ,
where the covariant derivative ∇̄μ is compatible with the
metric ḡμν. The vector part is not altered since the field
strengthFμν is not affected by the conformal transformation.
Now, recalling that □Ω ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νΩÞ and thatffiffiffiffiffiffi
−ḡ

p ¼ Ω2 ffiffiffiffiffiffi−gp
, we realize that

ffiffiffiffiffiffi
−ḡ

p M2
P

2

3□Ω
Ω2

ðC2Þ

is a boundary term. Additionally, the derivatives of the
function Ω read

ḡμν∇̄μΩ∇̄νΩ ¼
�∂Ω
∂ϕ
�

2

ḡμν∇̄μϕ∇̄νϕ; ðC3Þ

and then, the kinetic term can be rewritten as

3M2
P

4Ω2
ð∇̄ΩÞ2 þ 1

2Ω
ð∇̄ϕÞ2 ¼ 1

2
KðϕÞḡμν∇̄μϕ∇̄νϕ ðC4Þ

where

FIG. 7. In this figure we see the evolution of the following quantities: _ξ at the left panel and _ξ=ðHξÞ at the right panel. The values used
for those numerical evaluations are the same employed in Fig. 3. This is Λ ¼ 4.5 × 10−3MP, α ¼ 400, N ¼ 105, f ¼ 0.1MP, and for
minimal coupling (blue) and nonminimal coupling with X ¼ 10 (red). The time is measured in units of MP=Λ2.

JUAN P. BELTRÁN ALMEIDA and NICOLÁS BERNAL PHYS. REV. D 98, 083519 (2018)

083519-18



KðϕÞ ¼ 1

Ω
þ 3M2

P

2Ω2

�∂Ω
∂ϕ
�

2

: ðC5Þ

So, the Lagrangian (C1) in the Einstein frame reduces to

L ¼ ffiffiffiffiffiffi
−ḡ

p �
M2

P

2
R̄ −

1

2
KðϕÞḡμν∇̄μϕ∇̄νϕ − V̄ðϕÞ

−
N
4
F̄μνF̄μν −

N α

4f
ϕF̄μν ˜̄Fμν

�
: ðC6Þ

In the case of a single field, we can always define a canonical
field ϕ̄ through the transformation dϕ̄=dϕ ¼ K1=2. The
action for the system becomes

L ¼ ffiffiffiffiffiffi
−ḡ

p �
M2

P

2
R̄ −

1

2
ḡμν∇̄μϕ̄∇̄νϕ̄ − V̄ðϕ̄Þ

−
N
4
F̄μνF̄μν −

N α

4f
ϕðϕ̄ÞF̄μν ˜̄Fμν

�
; ðC7Þ

which is the action for a canonical pseudoscalar field
minimally coupled with gravity.
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