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In this work, we present an analysis of the phantom zone in a causal viscous cosmology from a
thermodynamic point of view. In this description, we consider a chemical potential and the approach of
irreversible processes. We assume a flat universe filled with a single dissipative fluid described by a
barotropic equation of state, p ¼ ωρ. This model allows us to construct a negative chemical potential for
the phantom regime and have positive definite temperature and entropy.
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I. INTRODUCTION

The phantom scenario is currently a fact that can be
supported by various astronomical observations for distinct
models [1–4] (see also the Refs. [5,6], where it was shown
that a phantom behavior for the dark energy can be
sustained by data); however, although at the cosmological
level we can think of it as an expanding fluid with
parameter state ω < −1, it should be mentioned that its
intrinsic nature is not well understood yet. One question
that remains to be answered about this unusual component
of the Universe pertains to its behavior at the thermody-
namic level, among others. In this sense, it is possible to
find several works where this topic is addressed, but it turns
out that only under certain conditions can the phantom
regime be allowed at the thermodynamic level; see,
for instance, Refs. [7–11] on this topic. In addition, it
should be clarified that the subject has always been
approached from the perspective of standard cosmology
and reversible processes.
From this point of view, it is concluded that the phantom

regime fulfills the condition of positive entropy provided that
a negative chemical potential is conveniently introduced;

however, there are cases in which the concept of temperature
must be reinterpreted since it can be negative [10] and this is
due to the fact that the phantom is described by a scalar field
with negative kinetic term, but for this approach it is well
known that some pathologies and instabilities are present
[12]. Usually, phantom thermodynamics leads to negative
entropy but positive temperature or to negative temperature
and positive entropy.
It is important to point out that at cosmological level the

magnitude and sign of the chemical potential has a relevant
role on the nature of the dark energy parameter state. Under
the description of standard thermodynamics, by consider-
ing an adequate entropy condition S ≥ 0, it was found that a
negative chemical potential allows a phantom behavior
(ω < −1), on the other hand, a positive chemical potential
restricts the parameter state to take values greater than −1
[11]. In the context of nuclear physics was found that a
transition from a positive chemical potential in the hadronic
phase to negative quark-gluon phase, represents a physi-
cally viable mechanism to describe properly the quark
deconfinement [13].
From a more general perspective, in Ref. [14], it is shown

that in the phantom regime the quantum effects have a very
important role. At the thermodynamic level, the inclusion
of these effects leads to a good definition for entropy (but
divergent in the singularity like other invariants), but also
these effects are able to prevent this final singularity from
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taking place, so that this phantom phase of the Universe
seems to be only transient; however, for positive entropy,
there is a negative temperature. Despite the results obtained,
this phase of the Universe must be considered carefully and
studied in more detail.
In Ref. [15], it can be found that by employing a varying

equation of state parameter, i.e., ω ¼ ωðaÞ, the chemical
potential can be arbitrary; however, the temperature can be
negative or positive depending on whether the cosmic fluid
behaves as a phantom or quintessence. Once again, the
phantom regime faces a negative temperature, which
physical meaning is still an open subject (see Ref. [16]).
Nonetheless, according to this result there must be a
smooth pass from T > 0 to T < 0, which means that at
some given time the zero temperature must be reached.
According to the third law of thermodynamics the value
T ¼ 0 is impossible to achieve by any physical process,
including objects like black holes [17].
Therefore, in order to have a better understanding of the

phantom regime, a search for new perspectives beyond
standard cosmology has now begun. One proposal that has
been widely employed is based on the introduction of bulk
viscosity as a mechanism to reduce the kinetic pressure of
the cosmological fluid, i.e., along the cosmic evolution
dissipative effects are present. Some results show that this
kind of viscous matter can drive the accelerated cosmic
expansion [18]. By considering the Supernovae Ia data in
the framework of a causal description for dissipative
effects, some recent results revealed that bulk viscosity
has a relevant role in the cosmic evolution [19,20]. An
interesting proposal can be found in Ref. [21], where
the cosmic expansion is driven by a scalar field described in
the context of dissipative cosmology. This model has the
peculiarity of presenting a phantom scenario with no big rip
singularity. In Ref. [22] it was found that within the causal
thermodynamic framework, this viscous matter can also
mimic the cosmic expansion driven by ordinary or quintes-
sence matter; however, at the thermodynamic level, it
was found that only the decelerated expansion is consistent
with the conditions that must be satisfied by the entropy
(dS=dt > 0 and d2S=dt2< 0). Alternatively, in Ref. [23], it
was shown that a viscous cosmology can lead to a phantom
behavior considering a modification to the standard expres-
sion of the bulk viscosity. A phantom evolution was also
studied in Refs. [24,26] within the viscous cosmological
scenarios.
Finally, in Ref. [27], it was shown that under the causal

formalism for bulk viscosity the crossing to the phantom
zone is allowed when dissipative effects are considered in a
cosmological fluidwith conserved particle number andwhen
the thermodynamics of irreversible processes is adopted. At
the thermodynamic level, the model verified naturally the
requirements for the entropy. In a complementary way, in
Ref. [28] it was studied the phantom regime obtained in a
nonlinear extension of the model given in [27]. In the

thermodynamics description of this model it was found that
under certain conditions the model is in disagreement with
the second law of thermodynamics and additionally the
conditions for the entropy are not always fulfilled. This is a
clear indication that a large effortmust bemaintained in order
to have an improved understanding of the thermodynamic
properties of the phantom regime.
This paper is organized as follows: in Sec. II, we present

some generalities of the phantom solution obtained for
some viscous cosmologies. We focus on the causal thermo-
dynamic formalism and we define some important quan-
tities written in terms of this phantom solution. In Sec. III,
we introduce the irreversible thermodynamics description
and we show that under this approach it is possible to obtain
a negative chemical potential. In Sec. IV, we discuss the
positivity of the temperature and the entropy once the
phantom solution is taken into account. Finally, in Sec. V,
we write the conclusions for our work. 8πG ¼ c ¼ 1 units
are considered throughout this work.

II. VISCOUS PHANTOM SOLUTION
FROM ISRAEL-STEWART THEORY

In this section, we will provide a general description of
the phantom solution found in Ref. [24] within the context
of viscous cosmologies, which can be written as

HðtÞ ¼ Aðts − tÞ−1; ð1Þ

where ts is a finite time in the future at which the big rip will
occur and Amust be a positive constant in order to describe
an expanding universe. This solution was found in the
Eckart theory and in the full Israel-Stewart model, which is
a more adequate approach since the causality is preserved.
For this type of solution, the cosmic fluid cannot behave as
stiff matter or quintessence type, however, a phantom
behavior is allowed. The solution given in (1) will represent
a physically reasonable big rip solution always that the
dark component of the universe be phantom energy.
Additionally, this solution is a more general case than
the solution found in Ref. [29] by Barrow for dissipative
universes; i.e., it presents a big rip singularity.
By considering an isotropic and homogeneous universe,

the field equations in a flat FLRW spacetime for a
dissipative fluid are given as follows

3H2 ¼ ρ; ð2Þ

_H þH2 ¼ −
1

6
ðρþ 3peffÞ; ð3Þ

where the dot represents a cosmic time derivative,H ≔ _a=a
is the Hubble parameter (a the scale factor), and peff ≔
pþ Π is the effective pressure, with Π the bulk viscous
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pressure.1 As pointed out in Ref. [25], due to the sym-
metries of the FLRW spacetime, only scalar dissipation is
possible (absence of energy flux due to heat flow), there-
fore the dissipation coming from bulk viscosity makes
possible the conversion of kinetic energy of the particles
into heat, which implies a reduction in the effective
pressure of the cosmic fluid. This effect is fully charac-
terized by the quantity Π.
We will assume a barotropic equation of state for the

pressure and density of the fluid, i.e., p ¼ ωρ, where the
parameter state is restricted to the interval 0 ≤ ω < 1. It is
important to point out that the bulk viscous pressure has
direct incidence on the ω-parameter, since bulk viscosity is
capable to modify the background dynamics [26]

ωeff ¼
pþ Π

ρ
: ð4Þ

By using Eqs. (2) and (3), we can obtain the continuity
equation:

_ρþ 3Hðρþ peffÞ ¼ _ρþ 3H½ð1þ ωÞρþ Π� ¼ 0: ð5Þ

From this last expression and the cosmic time derivative of
Eq. (2), we can obtain an explicit form for the bulk viscous
pressure after a straightforward calculation, yielding

Π ¼ −½2 _H þ 3ð1þ ωÞH2�: ð6Þ

In order to have a consistent physical description for the
dissipative effects in the expanding fluid, we must consider
the full Israel-Stewart transport equation for Π [30]

τ _Πþ Π ¼ −3ξH −
1

2
τΠ

�
3H þ _τ

τ
−
_ξ

ξ
−

_T
T

�
; ð7Þ

being τ the relaxation time, ξðρÞ is the bulk viscosity and T
is the barotropic temperature of the fluid. In the limit τ → 0,
the noncausal Eckart theory is recovered.
If we consider, as a starting point, Eq. (7) and assume the

standard definition for the bulk viscosity coefficient,
ξ ¼ ξ0ρ

s, being ξ0 and s positive constants together with
T ¼ T0ρ

ω=ð1þωÞ, which is obtained by means of the
integrability Gibbs condition, where T0 is an integration
constant and additionally, τ ¼ ξ0ρ

s−1=½ϵð1 − ω2Þ� where
0 < ϵ ≤ 1 for causality conditions and also using the
Eqs. (2), (5), and (6), one gets a second-order differential
equation for the Hubble parameter. It is important to point
out that the definition given before for the relaxation time,

τ, is a more consistent expression since is derived from the
speed of bulk perturbations (see Ref. [25]), therefore the
differential equation obtained forH with this definition of τ
differs from the one obtained in Refs. [24,30,31].
In Ref. [27] it was found that under the election s ¼ 1=2,

the phantom solution (1) when inserted in the second-order
differential equation for the Hubble parameter results in an
algebraic equation for A where A ¼ Aðω; ξ0Þ. For this
special value of s the model does not admit a de Sitter
solution. The positive solution obtained for A made
possible the crossing of the phantom divide through the
effective parameter ωeff, i.e., the crossing to the phantom
zone is due to the contribution of the dissipative effects in
the fluid. Also, in Ref. [28] with the same consideration
s ¼ 1=2, the crossing of the phantom divide was obtained
for the effective parameter ωeff using the solution (1), but in
a nonlinear extension of the Israel-Stewart theory. In both
references, the thermodynamic consistency of the phantom
solution through the first and second derivative of the
entropy is studied. For the nonlinear case results that this
consistency can be guaranteed only in a small region of the
space of parameters (ω; ξ0).
After performing a direct integration of the solution (1),

we can obtain

aðtÞ ¼ aðt0Þ
�
ts − t
ts − t0

�
−A
; ð8Þ

and also we can have an expression for the time at which
the big rip will occur in terms of the solution A,
ts ¼ t0 þ A=Hðt0Þ. For practical purposes the constant t0
will represent some initial time. For the case when t ¼ ts,
the scale factor diverges. Using expression (1) in Eq. (6),
one gets

ΠðtÞ ¼ −½2Aþ 3ð1þ ωÞA2�ðts − tÞ−2; ð9Þ

which exhibits a divergent behavior as t → ts; therefore, the
effective pressure diverges.Bymeans ofEq. (2),we canwrite
the density of the dissipative fluid as ρðtÞ ¼ 3A2ðts − tÞ−2,
which also is divergent when t ¼ ts, according to these
characteristics the solution (1) represents a Type I singularity,
i.e., a big rip [32].

A. Little rip cosmology

As pointed out in Ref. [14] it is possible that phantom
regime is only a transient stage of the Universe and there
may be various mechanisms that could prevent a future
singularity. There exists an interesting scenario where the
scale factor and the energy density do not diverge at a finite
future time; however, such a model can drive to structure
disintegration, which is the little rip cosmology [33]. This
scheme could be a viable alternative to the ΛCDM model.
In Ref. [34] it was found that the inclusion of viscous
effects in a standard fluid in the following form

1The phantom solution written in Eq. (1) is obtained for the set
of equations given in (2) and (3), when the bulk viscous pressure
evolution is described by the full transport equation of the Israel-
Stewart model expressed in Eq. (7).
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peff ¼ pþ Π ¼ p − 3ξH; ð10Þ

can lead to a little rip evolution. The previous expression
for the bulk viscous pressure can be obtained from Eq. (7)
when τ → 0. In general grounds, an exploration of this
scenario could be relevant if it allows us to establish
bounded quantities at the thermodynamic level.

B. Cosmological perturbations

Different dark energy models having a phantom behavior
can show a distinct future evolution, i.e., big rip singularity,
little rip cosmology, pseudorip universe, among other final
states. Each of these final states are characterized by the
critical behavior of a specific cosmological quantity at the
moment of the singularity (scale factor, energy density of
the fluid, derivatives of the scale factor, etc.). However, in
the literature, several dark energy models can be found that
mimic the ΛCDM model; i.e., the parameter state of the
models is close to the value −1 but below this. In Ref. [35]
can be found that for several dark energy models with a
future singularity, the growth of the density and matter
perturbations is similar as the one obtained for the ΛCDM
model, but with the difference that an instant before the
singularity such perturbations become large and this occurs
before possible disintegration of bound structures. The final
state of the Universe results to be chaotic. The complete set
of equations for cosmological perturbations for these dark
energy models is given by

δ0DE þ 3ð1 − ωDEÞaHδDE − ð1þ ωDEÞδm
þ ð1þ ωDEÞ

�
kþ 9a2H2

1 − c2a
k

�
VDE ¼ 0; ð11Þ

V 0
DE − 2aHVDE −

k
1þ ωDE

δDE ¼ 0; ð12Þ

δ00m þ a0

a
δ0m −

1

2
ðρmδm þ ð1þ 3ωDEÞρDEδDEÞ ¼ 0; ð13Þ

where the prime denotes a derivative with respect to a
conformal time, δDE ¼ δρDE=ρDE, VDE is the velocity
perturbation of dark energy, c2a is the adiabatic speed of
sound and δm are the matter perturbations. By k the
wavenumber of the corresponding mode is denoted. See
also the Ref. [36], where the future evolution of dark energy
density-matter perturbations were described. The perturba-
tions for this model are also solved by the previous system
of equations. In this work it results that in a scalar field
model there exists a slow evolution fromΛCDM to a big rip
final state or in other words, the growth of the perturbations
becomes relevant only at the singularity. In Ref. [31] it can
be found that the Israel-Stewart model is stable under linear
perturbations and besides in Ref. [22] it was shown also
in the framework of causal Israel-Stewart model that a

solution-type as the one given in (1) presents stability along
the cosmic evolution.

III. IRREVERSIBLE THERMODYNAMICS

Perfect fluids in equilibrium do not generate entropy, and
dissipation processes are not included in their description,
but as far as we know real fluids behave irreversibly,
therefore we must consider a relativistic theory of dis-
sipative fluids. For a homogeneous and isotropic universe,
the evolution equation for the entropy will be given by [25]

nT
dS
dt

¼ −3HΠ; ð14Þ

where n is the number density of particles. As can be seen,
for an expanding universe, the entropy production will be
positive if Π < 0. The inclusion of dissipative processes
leads to a nonconservation of the particle number, then

_n
n
þ 3H ¼

_N
N
; ð15Þ

where the quantity _N=N ≔ ν is the production rate of
particles and N ≔ nV, being V the volume containing the
N particles. For instance, if we consider a constant
production rate, ν, one gets

NðtÞ ¼ Nðt0Þeνðt−t0Þ; ð16Þ

then, inserting this result in Eq. (15) we obtain

nðtÞ ¼ nðt0Þ
�
aðt0Þ
aðtÞ

�
3

eνðt−t0Þ: ð17Þ

On the other hand, if we consider Eqs. (1) and (16) in
expression (15), we obtain

nðtÞ ¼ nðt0Þ
�
ts − t
ts − t0

�
3A
eνðt−t0Þ; ð18Þ

implying that the number density of particles tends to zero
as t → ts. This result is consistent since, as the Universe
approaches the singularity, the number of particles reaches
a fixed value given by NðtsÞ ¼ Nðt0Þeνðts−t0Þ, but the
volume increases indefinitely. It is worthy to mention that
this behavior is independent of the production or decay rate
of particles. If we consider Eqs. (9) and (18), we can
construct the quotient nðtÞ=jΠðtÞj ∝ ðts − tÞ3Aþ2, also we
can compute the quotient nðtÞ=ρðtÞ, which has the same
behavior as the previous quotient as a function of time. In
Fig. 1, we can observe the behavior of both quotients. The
value of A corresponds to the solution found in [27] with
ω ¼ 0.0001, for the plot we considered ν ¼ −1=2, t0 ¼ 0,
ts ¼ 1 and nðt0Þ ¼ 1. From these quotients, we can infer
that the dissipative effects annihilate the particles of the
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phantom fluid but at the same time act like an energy
density catalyst. The quotient ρðtÞ=jΠðtÞj ¼ constant.
According to the second law of thermodynamics, we can

write the following expression [37]

TdS ¼ dðρVÞ þ pdV − μdN; ð19Þ

where ρV is the internal energy and μ is the chemical
potential, we will also consider V as the Hubble volume
given as VðaÞ ¼ Vða0Þða=a0Þ3 in this form dV=V ¼
3ða=a0Þ−1dða=a0Þ ¼ 3Hdt, which can be written as
_V=V ¼ 3H. If we take the cosmic time derivative of
Eq. (19) and deal with a barotropic equation of state for
the density and pressure of the fluid, we obtain

_ρþ ρð1þ ωÞ
_V
V
¼ 1

V

�
μ _N þ T

dS
dt

�
: ð20Þ

Using the relation _V=V ¼ 3H and Eqs. (5) and (14) in the
preceding expression, one gets

μn
_N
N

¼ μnν ¼ −3HΠ
�
1 −

1

N

�
; ð21Þ

where we usedN ¼ nV and the definition of the production
rate of particles, therefore

μ ¼ −
3H
nν

�
N − 1

N

�
Π: ð22Þ

As can be seen in the previous equation, unlike what it is
considered in the reference [11], where the negative
chemical potential must be introduced by hand, we can
see that the framework of irreversible thermodynamics
allows us to have a negative chemical potential. Finally, if
we insert the phantom solution (1) together with Eqs. (9)
and (18) in the expression for the chemical potential given
in (22), results

μðtÞ ¼ 3A2

nðt0Þν
ðts − t0Þ3A
eνðt−t0Þ

�
N − 1

N

�

× ½2þ 3ð1þ ωÞA�ðts − tÞ−3ð1þAÞ: ð23Þ

If we consider a negative production rate of particles,
ν < 0, the chemical potential (23) will be negative.
According to the value taken by the parameter ν, we will
have production or annihilation of particles, then, this is an
agreement with the thermodynamics point of view, the
chemical potential acts like a generalized force for matter
flow between two interacting systems [37]. The particle
production (or decay) process in the Universe has been
widely studied and it has to be approached from a quantum
perspective [38]. Besides, in Ref. [39] it was pointed out
that nonconservation of the particle production number in
cosmology can be due to the presence of viscosity in the
vacuum. Also, in Ref. [40] it was shown that a effective
viscous pressure approach is compatible with the kinetic
theory of a Maxwell-Boltzmann gas with nonconserved
particle number. For the limit case, t → ts, the chemical
potential given in Eq. (23) exhibits a divergent behavior.

IV. TEMPERATURE AND ENTROPY

In order to determine the effect of the chemical potential
on the thermodynamics of the model, we must consider
the Euler relation, which can be obtained from the
expression (19)

TS ¼ ð1þ ωÞρV − μN; ð24Þ

and we have considered a barotropic equation of state.
Under the description of the standard thermodynamics for a
homogeneous fluid, the temperature is always positive
definite, therefore TS > 0 implying that S > 0 [11].
Note that the aforementioned condition for TS could not
be guaranteed in the phantom regime (ω < −1). See for
instance, if ω < −1, we have

TS ¼ −ðj1þ ωjρV þ μNÞ < 0; ð25Þ

then T < 0 and S > 0 or vice versa; however, either of the
two cases involves problems at the thermodynamic level.
Based on the results of irreversible thermodynamics for a
dissipative fluid, we have the following equation for the
temperature evolution [25]

_T
T
¼ ω_ρþ 3HΠ

ð1þ ωÞρ
�
1þ 3HΠ

nT

�
; ð26Þ

which can be rewritten as follows

0.05 0.10 0.15 0.20 0.25 0.30 0.35
t

0.005

0.010

0.015

quotients

FIG. 1. The solid line represents the quotient nðtÞ=jΠðtÞj and
the dashed line nðtÞ=ρðtÞ.
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dT
dt

¼ 3H

�
ωþ ð1 − ωÞ

ð1þ ωÞ
�
ð1þ ωÞ þ 2 _H

3H2

��

×

�
9H3

n

�
ð1þ ωÞ þ 2 _H

3H2

�
− T

�
; ð27Þ

where we have used the Eqs. (2), (5) and (6). If we consider
the phantom solution (1) in the above equation, we have

dT ¼ C1

�
C2

ðts − tÞ−3
nðtÞ − T

�
dt

ðts − tÞ ;

¼ C1

�
T −

C2ðts − tÞ−3ðAþ1Þ

nðt0Þðts − t0Þ−3A
e−νðt−t0Þ

�
d lnðts − tÞ:

ð28Þ

In the last expression we have considered the expression
(18) for nðtÞ and for simplicity in the notation we have
defined the following two positive constants

C1 ¼ 3A

�
ωþ ð1 − ωÞ

ð1þ ωÞ
�
ð1þ ωÞ þ 2

3A

��
;

C2 ¼ 9A3

�
ð1þ ωÞ þ 2

3A

�
:

After a straightforward calculation, the expression (28) can
be simplified to the form

dT
d lnðts − tÞ ¼ C1T −C1C3ðts − tÞ−3ðAþ1Þeνðts−tÞ; ð29Þ

where C3 is a positive constant given as follows

C3 ¼
C2e−νðts−t0Þ

nðt0Þðts − t0Þ−3A
:

Finally, by considering the change of variable x ≔ ts − t,
the equation for the temperature evolution (29) can be
expressed as the following differential equation

dT
dx

−
C1

x
T þ C1C3x−3ðAþ1Þ−1eνx ¼ 0; ð30Þ

which has analytical solution given as

TðtÞ ¼ Cðts − tÞC1 þ C1C3ðν½−ðts − tÞ�ÞC1þ3ðAþ1Þðts − tÞ−3ðAþ1ÞΓð−½C1 þ 3ðAþ 1Þ�;−νðts − tÞÞ; ð31Þ

where C is an integration constant and Γða; xÞ is the incomplete gamma function. If we consider Tðt ¼ t0Þ, the quotient
TðtÞ=Tðt0Þ takes the form

TðtÞ
Tðt0Þ

¼
Cð1 − t

ts
ÞC1 þ C1C3ðν½−ð1 − t

ts
Þ�ÞC1þ3ðAþ1Þð1 − t

ts
Þ−3ðAþ1ÞΓð−½C1 þ 3ðAþ 1Þ�;−νtsð1 − t

ts
ÞÞ

Cð1 − t0
ts
ÞC1 þ C1C3ðν½−ð1 − t0

ts
Þ�ÞC1þ3ðAþ1Þð1 − t0

ts
Þ−3ðAþ1ÞΓð−½C1 þ 3ðAþ 1Þ�;−νtsð1 − t0

ts
ÞÞ ; ð32Þ

where we can identify an explicit form for Tðt0Þ.

In Fig. 2, we can observe the behavior of the quotient
given in (32) as a function of time. For this plot we have
considered the positive solution for A obtained in Ref. [27]
with ϵ ¼ 1 and ω ¼ 0.0001, for other values of ϵ we obtain
a similar behavior as the one shown in Fig. 2. The
parameter ϵ is restricted to the interval (0, 1] for causality
reasons. For simplicity we also consider t0 ¼ 0 and
ν ¼ −1=2. For initial number density of particles we
considered, nðt0Þ ¼ 1. On the other hand, as t=ts → 1
the value of the temperature diverges, but keeps positive

along the evolution. As can be observed in the plot, as
the value of the parameter ξ0 increases, the growth of the
temperature is slower. The values considered for the
constant ξ0 were chosen in the interval for which A > 0
since we are interested in the description of an expanding
universe [27]. A similar behavior as shown in Fig. 2 is
obtained for other small values of the parameter ω.
In Fig. 3, we depict the growth of the temperature by

considering the corresponding values of the solution A
found in the nonlinear extension of the Israel-Stewart

0.00 0.02 0.04 0.06 0.08
t
ts

1

2

3

4

T (t )
T (t0)

FIG. 2. Behavior of the temperature as a function of time. The
solid line was obtained with ξ0 ¼ 2 and the dashed line
with ξ0 ¼ 3.
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model [28]. As in the previous case we have ω ¼ 0.0001,
t0 ¼ 0, ν ¼ −1=2 and for the initial number density of
particles we considered, nðt0Þ ¼ 1. It is important to point
out that in this case the growth of the temperature is slower
than in the Israel-Stewart model and contrary to the Israel-
Stewart framework, as the value of the parameter ξ0
increases, the growth of the temperature is faster.
The phantom behavior for the Israel-Stewart model and

also in a nonlinear extension of this is guaranteed always
that the positivity of the parameter ξ0 is fulfilled, but, in
Ref. [41] it can be found that the consideration of negative
values for ξ0 can lead to a parameter state below −1 and
positive temperature. However, the viscosity contributes
with attractive gravity; i.e., the cosmic expansion is not
allowed in this description and the model presents other
fundamental problems at the thermodynamics level.
It is worthy to mention that the positivity of the temper-

ature depends on the value taken by the integration
constant, C, if we evaluate the expression (32) at t=ts≪1
and consider that the value of the quotient must be positive,
we obtain the following condition for C

C > −ð−1ÞC1þ3ðAþ1ÞC1C3ν
C1þ3ðAþ1ÞΓð−½C1 þ 3ðAþ 1Þ�Þ;

ð33Þ

where ΓðaÞ is simply the gamma function. As can be seen
from the above equation, the integration constant C is
dependent of the production rate of particles, ν (which is
considered as constant), and of the parameters ðω; ξ0Þ. For
a negative production rate of particles the condition given
in (33) for C can be simplified to

C > −C1C3ν
C1þ3ðAþ1ÞΓð−½C1 þ 3ðAþ 1Þ�Þ: ð34Þ

Besides, the resulting value for C1 þ 3ðAþ 1Þ must not be
an integer number in order to avoid the poles of the gamma

function. Finally, in Figs. 2 and 3, we can observe that
½Tðt=ts ≪ 1Þ=Tðt0Þ� ≠ 0 for all the considered cases, note
that in this limit the solution (1) is given by a constant value
Hðt=ts ≪ 1Þ → A=ts, i.e., for a de Sitter type evolution the
temperature takes a fixed value.
To end this section, using all the previous results, the

entropy resulting from Eq. (14) is positive definite

dS
dt

¼ 3H
T

jΠj
n

∝
1

T
ðts − tÞ−3ð1þAÞ; ð35Þ

on the other hand, by taking the time derivative of the
previous expression one gets

d2S
dt2

∝ −
�
3ð1þ AÞ 1

T
ðts − tÞ−1 þ 1

T2

dT
dt

�
ðts − tÞ−3ð1þAÞ;

ð36Þ

therefore the consistency thermodynamics conditions for
the entropy: dS=dt > 0 and d2S=dt2 < 0 are satisfied for
this model in the phantom regime.

V. FINAL REMARKS

The present work was devoted to study the definiteness of
the phantom regime with a solution given in the following
form for the Hubble parameter, HðtÞ ¼ Aðts − tÞ−1, from a
thermodynamics point of view in an isotropic and homo-
geneous cosmology and when dissipative effects are taken
into account. This was done by considering a causal
description for the dissipative effects given by the full
Israel-Stewart transport equation, a nonzero chemical poten-
tial, μ, the thermodynamics of irreversible processes and
nonconserved particle number in the cosmological fluid. We
have found that with these considerations we can construct a
chemical potential that results to be negative. It is important
to point out the if we consider annihilation of particles
(ν < 0) in the fluid once the phantom solution is inserted in
the expression for the chemical potential, this will be always
negative and can be interpreted as a generalized force for
matter flow, since the production or decay rate of particles
is equivalent to a bulk viscous pressure in the cosmological
fluid.
By considering the evolution equation for the temper-

ature of a dissipative fluid, we can see that the resulting
temperature is positive throughout the cosmic evolution,
with an initial value different from zero. This initial value
can be modulated by the integration constant C and we
could establish a minimum value for this constant in order
to maintain a positive temperature. This is in agreement
with the standard thermodynamics of an homogeneous
fluid. It is worthy to mention that since we are considering
very small values for the ω parameter, it means that the
matter present in the cosmic fluid is dark matter type with
dissipative effects. As is well known, the so-called WIMPs
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FIG. 3. Behavior of the temperature as a function of time in the
nonlinear extension of the Israel-Stewart model. The solid line
was obtained with ξ0 ¼ 0.18 and the dashed line with ξ0 ¼ 0.7.
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are candidates for dark matter and their detection until
now remains as a challenge. A proposal for the possible
detection of these particles is given by the construction of
detectors that operate at very low temperatures (below 1 K);
however, there has been no success in this area, and it is
expected that the sensitivity of these detectors could be
improved in future experiments [42]. Note that dissipative
effects, if they exist, could contribute significantly to the
detection of these particles through their temperature.
Finally, using the result obtained for the temperature

and the evolution equation for the entropy, we can see that
S > 0 for an expanding universe. Therefore, the positivity
for both quantities, entropy and temperature, can be guar-
anteed at the same time. Hence, this is the first time that we
have a resolution for the negative entropy or negative
temperature problem in the accelerating phantom universe.

In summary, the inclusion of dissipative effects described
by the thermodynamics of irreversible processes in a
cosmological fluid, allows us to have access to the phantom
zone without entering into contradictions with the defini-
tion of temperature and entropy given by standard
thermodynamics.
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