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We obtain the first cosmological constraints on interactions between dark matter and protons within the
formalism of nonrelativistic effective field theory developed for direct detection. For each interaction
operator in the effective theory, parametrized by different powers of the relative velocity of the incoming
particles, we use the Planck 2015 cosmic microwave background (CMB) temperature, polarization, and
lensing anisotropy to set upper limits on the scattering cross section for all dark matter masses above
15 keV. We find that for interactions associated with a stronger dependence on velocity dark matter and
baryons stay thermally coupled for longer, but the interaction strengths are suppressed at the low
temperatures relevant for Planck observations and are thus less constrained. At the same time, cross
sections with stronger velocity dependencies are more constrained in the limit of small dark matter mass. In
all cases, the effect of dark matter-proton scattering is most prominent on small scales in the CMB power
spectra and in the matter power spectrum, and we thus expect substantial improvement over the current
limits with data from ground-based CMB experiments and galaxy surveys.
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I. INTRODUCTION

There are various astrophysical, cosmological, and
collider-based probes engaged in an effort to detect
interactions between dark matter (DM) and Standard
Model particles. The most sensitive low-energy constraints
on DM interactions typically come from direct searches
for rare collisions between DM particles from the local
Galactic halo and atomic nuclei in low-background under-
ground detectors [1,2]. Nuclear-recoil measurements from
these experiments exclude large portions of the relevant
parameter space, especially for DM particle masses above
a few GeV [3]. Data from a new generation of direct-
detection experiments are forthcoming from a number of
projects worldwide and are expected to deliver another
order of magnitude in sensitivity beyond the current
detection limits [3].
However, information about DM gained from direct-

detection measurements is subject to several caveats.
First, the conversion of the observed nuclear-recoil rate into
a limit on the DM-baryon interaction cross section relies on
detailed knowledge of DM astrophysical parameters, such as
the local energy density and velocity distribution. N-body
simulations show departures from the usual assumptions of a
Maxwell-Boltzmann phase space distribution on small scales

[4,5], but the only way to directly measure these parameters
would be through direct-detection experiments. Second,
nuclear recoil–based measurements are not sensitive to
DM masses below a few GeV; sub-GeV DM would need
to travel at speeds larger than the escape velocity of the
Galactic halo in order to produce a detectable nuclear recoil
[3]. While electronic recoil measurements can probe the
parameter space of sub-GeV DM [6,7], new technologies are
necessary to address scattering with nucleons in this mass
regime [8]. Finally, there is a “ceiling” on the cross sections
that underground experiments are able to probe, due to their
extensive shielding: DM particles that interact too strongly
would lose momentum before reaching the detector [9–11].
Alternative probes of low-energy DM physics can offer

complementary information and may sidestep some of the
aforementioned caveats of direct detection. For example,
direct-detection surface runs [12], molecular spectroscopy
[13], and balloon-borne experiments [14] have a higher a
ceiling and place bounds on large interactions between DM
particles and baryons. There are also constraints that arise
from the Galactic structure [15], observations of galaxy
clusters [16,17], cosmic rays [18,19], and other astrophysi-
cal observations [20–23]. Additionally, a recent prolifer-
ation of precision cosmological measurements provides a
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testing ground for the very same interaction physics, but
in the early Universe. Previous studies used the cosmic
microwave background (CMB) spectral distortion limit
from COBE FIRAS to constrain the DM-baryon scattering
for DM masses less than 100 keV [24]. References [25–28]
used CMB temperature anisotropy measurements to con-
straint DM-proton interactions; Ref. [27] considered the
limit in which DM is much heavier than the proton, and our
previous work [28] covered masses between a keV and a
TeV, but only for velocity-independent contact interactions.
In this study, we expand on previous work to search for

cosmological evidence of any nonrelativistic DM-proton
effective interaction (including velocity-dependent inter-
actions) for particle masses above 15 keV.1 For this
purpose, we use the latest temperature, polarization, and
lensing anisotropy measurements from the Planck 2015
data release [30,31]. We adopt the effective theory formal-
ism, originally developed for DM direct detection, which
renders our results directly comparable to those from
laboratory experiments and provides a framework to
systematically investigate all possible low-energy DM
interactions with protons. We include DM scattering with
helium nuclei, accounting for the nuclear responses trig-
gered by different interaction operators. We find no
evidence for either velocity-independent or velocity-
dependent DM scattering and thus present state-of-the-
art cosmological constraints on DM-proton interactions;
the key results are summarized in Fig. 3.
In Sec. II, we review the nonrelativistic effective theory

of DM interactions with baryons. In Sec. III, we embed this
formalism into the Boltzmann equations that describe the
evolution of cosmological perturbations, allowing for
the presence of DM-proton scattering in the early
Universe. In Sec. IV, we describe the data and present
our results. In Sec. V, we discuss our results and future
avenues of investigation.

II. DARK MATTER EFFECTIVE FIELD THEORY

The effective field theory (EFT) for DM interactions with
nucleons enables a systematic description of processes
relevant for probes of low-energy DM physics [32–34].
In Sec. II A, we summarize the general EFT approach
following Refs. [33,34] and express the scattering ampli-
tude for each interaction operator in a form that is useful in
a cosmological setting. In Sec. II B, we derive the asso-
ciated momentum-transfer cross sections, relevant for
investigating the effect of DM scattering on cosmological
observables.

A. Formalism

We begin by considering the nonrelativistic elastic
scattering between a DM particle and a nucleon. The
complete set of Hermitian observables that describes the
scattering process is as follows [33]: iq⃗=mN is the momen-
tum transfer per nucleon mass; v⃗⊥ ≡ v⃗þ q⃗=ð2μχNÞ is the
relative velocity in a direction perpendicular to the momen-
tum exchange (and μχN is the reduced mass of the

DM-nucleon system); and S⃗χ and S⃗N are the DM spin
and the nucleon spin, respectively. The momentum transfer
incorporates the angular information of the scattering
process via jq⃗j2 ¼ 2μ2χNv

2ð1 − cos θÞ, where v≡ jv⃗j and
θ is the scattering angle in the center-of-mass frame. The
maximum possible momentum transfer is jq⃗jmax ¼ 2μχNv.
Working to second order in momenta and velocities,
various combinations of these four quantities give rise to
the following 14 operators,2 derived in Ref. [34]:

O1¼1χ1N O9¼ S⃗χ ·

�
S⃗N×

iq⃗
mN

�

O3¼ S⃗N ·

�
iq⃗
mN

× v⃗⊥
�

O10¼ S⃗N ·
iq⃗
mN

O4¼ S⃗χ · S⃗N O11¼ S⃗χ ·
iq⃗
mN

O5¼ S⃗χ ·

�
iq⃗
mN

× v⃗⊥
�

O12¼ S⃗χ ·ðS⃗N× v⃗⊥Þ

O6¼−
�
S⃗χ ·

iq⃗
mN

��
S⃗N ·

iq⃗
mN

�
O13¼ðS⃗χ · v⃗⊥Þ

�
S⃗N ·

iq⃗
mN

�

O7¼ S⃗N · v⃗⊥ O14¼
�
S⃗χ ·

iq⃗
mN

�
ðS⃗N · v⃗⊥Þ

O8¼ S⃗χ · v⃗⊥ O15¼
�
S⃗χ ·

iq⃗
mN

��
ðS⃗N× v⃗⊥Þ · iq⃗

mN

�
:

ð1Þ

Since DMmay interact with both protons and neutrons, it is
convenient to work in an isospin basis, in which the
interaction Hamiltonian has the form

H ¼
X1
τ¼0

X15
i¼1

cτiOitτ; ð2Þ

where i labels the interaction and τ labels the isospin. The
isospin operators are t0 ≡ 1 and t1 ≡ τ3, and the isospin
coupling coefficients are c0i and c1i . The coupling

coefficients to protons cðpÞi ¼ ðc0i þ c1i Þ=2 and neutrons

1Warm DM limits exclude masses below a few keV [29], and
power spectra computations become progressively more difficult
to perform at high accuracy for scattering with stronger velocity
dependencies and for DM with lower masses. For these reasons,
we focus on masses greater than 15 keV.

2Following Ref. [34], we fix cτ2 ¼ 0 in order to omit
O2 ¼ jv⃗⊥j2, as it does not arise at leading order from the
nonrelativistic reduction of a relativistic operator; conversely,
we keep O15, which is third order in momenta and velocities,
because it can arise at leading order.
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cðnÞi ¼ ðc0i − c1i Þ=2 set the strength of the DM interactions
with the corresponding nucleon. For a given relativistic
theory, reducing the DM-nucleon interaction into its non-
relativistic counterpart generically yields a linear combi-
nation of operators. For example, O1 through O11 are
associated with interactions that occur through the
exchange of a heavy spin-0 or spin-1 mediator in a
relativistic theory, and the coupling coefficients as written
may depend on factors of jq⃗j2. In this study, we avoid
choosing specific underlying theories to maintain general-
ity and thus work directly with the operators in Eq. (1),
treating the coupling coefficients as constants. As detailed
in Sec. II B, by considering individual operators, we can
study the cosmological effects of DM-nucleon interactions
in a systematic manner and place conservative upper limits
on each individual coupling coefficient (neglecting oper-
ator interference, which we discuss at the end of this
section). We previously constrained interactions viaO1 and
O4 (referred to as the standard “spin-independent” and
“spin-dependent” interactions), corresponding to the sim-
plest case of n ¼ 0 [28]. We expand upon that work by
investigating the remaining 12 operators. Constraining full
relativistic theories is left for future work.
Thus far, we have focused on DM scattering with

individual nucleons. For the purposes of computing signals
in direct-detection experiments, these nucleons are
embedded in atomic nuclei, and the full response of the
nucleus must be treated appropriately. In a cosmological
setting, we are interested in hydrogen and helium nuclei,
which dominate the energy density of baryons in the
Universe. Scattering with helium was either neglected or
treated too simplistically in previous literature [25–27];
here, we incorporate scattering with helium, accounting for
the velocity dependence that arises from its composite
nature. We use the label B ∈ fp;Heg to denote the
baryonic species—either the proton or the helium nucleus.
The Hermitian observable S⃗N becomes S⃗B, and v⃗⊥ becomes
v⃗⊥B (which depends on the reduced mass of the DM-B
system, μχB).
In Refs. [33,34], DM interactions with composite nuclei

are approximated as the sum of interactions with the
individual nucleons. Additionally, the nuclear wave func-
tions are taken to have the standard shell-model form, and
the underlying single-particle basis is the harmonic oscil-
lator with a parametric size,

aB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41.467=ð45A−1=3 − 25A−2=3Þ

q
fm; ð3Þ

where A > 1 is the atomic number. The proton is pointlike,
and thus ap ¼ 0. The effect of compositeness when
scattering with a nonpointlike nucleus is encoded in the
nuclear response function Wττ0

B;kðyÞ, where y≡ ðjq⃗jaB=2Þ2.
The index k labels the type of response (not to be confused
with the wave number defined in Sec. III A), as in the

standard treatment of semileptonic weak interactions
[35,36]. There is also a DM response function
Rττ0
k ðv⃗⊥2

B ; jq⃗j2=m2
NÞ, which incorporates the coupling coef-

ficients of the various operators. The resulting spin-
averaged amplitude squared for the scattering between
DM and the baryon B is [34]

hjMj2iB ¼ 1

m4
v

4π

2SB þ 1

X
τ;τ0

X
k

�jq⃗j2
m2

N

�
ξk

× Rττ0
k

�
v⃗⊥2
B ;

jq⃗j2
m2

N

�
Wττ0

B;kðyÞ; ð4Þ

where ξk ¼ 0 for k ∈ fM;Σ00;Σ0g and ξk ¼ 1 for
k ∈ fΦ00;Φ00M; Φ̃0;Δ;ΔΣ0g. We have inserted the mass
of the weak scale mv ≡ ð ffiffiffi

2
p

GFÞ−1=2 ≈ 246 GeV to render
the coupling coefficients dimensionless.3 We refer the
reader to Ref. [34] for the full expression for Rττ0

k and to
Refs. [33,37] for the form of Wττ0

B;k for various elements.
In the context of cosmology, we need only consider

scattering on protons (with response types M, Σ00, and Σ0)
and helium nuclei (with response type M). It will also be
useful to isolate the velocity and angular dependencies
in Eq. (4). For this purpose, we first define the dimension-
less quantity x≡ jq⃗j2=jq⃗j2max and make the following
substitutions:

jq⃗j2
m2

N
¼ xv2

�
2μχB
mN

�
2

; jv⃗⊥B j2 ¼ v2ð1 − xÞ;

y ¼ xv2ðμχBaBÞ2: ð5Þ

Next, we express the DM response function as a product of
a numerical coefficient Rk;ij, the coupling coefficients of
Oi and Oj, and powers of jv⃗j⊥2

B and ðjq⃗j=mNÞ2, such that

Rττ0
k ¼

X
i;j

cτi c
τ0
j Rk;ijðjv⃗j⊥2

B Þαij
�jq⃗j2
m2

N

�
βij

¼
X
i;j

cτi c
τ0
j Rk;ij

�
2μχB
mN

�
2βij

v2ðαijþβijÞð1−xÞαijxβij : ð6Þ

The values of αij, βij, and Rk;ij are listed in Table II.4 We
factorize the nuclear response function in a similar manner
to obtain

3This mass scale is an arbitrary normalization, and it does not
impact the numerical value for the constraints on the cross
sections reported in Sec. IV.

4For the most generic form of Rττ0
k , the powers of jv⃗j⊥2

B and
ðjq⃗j=mNÞ2 are determined not only by the operators but also by
the response type k involved; thus, they should be written as αk;ij
and βk;ij. As evident in Table II, however, the values of αij and βij
are the same for fixed i and j across all k (with nonzero Rk;ij)
under consideration. Hence, we may drop the k index for the
subset of response types that are relevant for cosmology.
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Wττ0
B;k ¼

2SB þ 1

4π
Wττ0

B;ke
−2y ¼ 2SB þ 1

4π
Wττ0

B;ke
−2xv2ðμχBaBÞ2 ;

ð7Þ

where the values of the numerical factorsWττ0
B;k are listed in

Table I. This expression is valid for hydrogen and helium,5

noting that the velocity dependence in the exponential is
removed for hydrogen when setting ap ¼ 0. We may now
recast Eq. (4) as

hjMj2iB ¼ 1

m4
v

X
i;j

X
τ;τ0

X
k

cτi c
τ0
j Rk;ijWττ0

B;k

�
2μχB
mN

�
2βij

× v2ðαijþβijÞð1 − xÞαijxβije−2xv2ðμχBaBÞ2 : ð8Þ

It is possible to have nonzero terms for which i ≠ j,
indicating interference between operators; specifically, as
seen in Table II, there is interference between O4 and O6

and between O12 and O15. However, when handling a
single operator at a time, the interference between operators
plays no role. There is constructive interference between
O4 and O6; hence, we expect the upper limits on the
coupling coefficients in Sec. IV to be conservative: if
another operator contributes to a signal, then the upper limit
can, in principle, be made stronger. For O12 and O15, there
is destructive interference, and we do not expect to obtain
the most conservative upper limits on the coupling coef-
ficients for the individual analyses of these two operators.

B. Cross sections

The differential cross section, written as a function of x,
for DM scattering with a baryon B is

dσB
dx

¼ μ2χB
π

hjMj2iB: ð9Þ

In Sec. IV, we express our cosmological constraints in
terms of the total cross section σBðvÞ for scattering with
protons, found by integrating Eq. (9) over x,

σBðvÞ ¼
Z

1

0

dσB
dx

dx

¼
X
i;j

σ̃ðijÞB v2ðαijþβijÞ

× 1F1ð1þ βij; 2þ αij þ βij;−2μ2χBa2Bv2Þ; ð10Þ

where

σ̃ðijÞB ≡ μ2χB
πm4

v

�
2μχB
mN

�
2βijX

ττ0

X
k

cτi c
τ0
j Rk;ijWττ0

B;k ð11Þ

and 1F1 is the confluent hypergeometric function of the
first kind. However, as mentioned in Sec. III, the key
quantity that affects cosmological observables is the
momentum-transfer cross section σMT;BðvÞ, which weights

TABLE I. Terms in the nuclear response functions for each
baryonic species B. The column SB labels the spin of B, k labels
the response type, τ and τ0 label the isospins, and Wττ0

B;k is the
numerical coefficient obtained from Ref. [37] with an additional
factor of 4π=ð2SB þ 1Þ.
Element SB k τ τ0 Wττ0

B;k

Proton 1=2 M 0 0 1=4
M 0 1 1=4
M 1 0 1=4
M 1 1 1=4
Σ00 0 0 1=4
Σ00 0 1 1=4
Σ00 1 0 1=4
Σ00 1 1 1=4
Σ0 0 0 1=2
Σ0 0 1 1=2
Σ0 1 0 1=2
Σ0 1 1 1=2

Helium 0 M 0 0 4

TABLE II. Terms in the DM response functions. The column k
labels the response type, i and j label the operators associated
with the coupling coefficients, αij labels powers of jv⃗j⊥2

T , βij
labels powers of jq⃗j2=m2

N , and Rττ0
k;ij is the numerical coefficient

obtained from Ref. [34].

k i j αij βij Rττ0
k;ij

M 1 1 0 0 1
M 5 5 1 1 SχðSχ þ 1Þ=3
M 8 8 1 0 SχðSχ þ 1Þ=3
M 11 11 0 1 SχðSχ þ 1Þ=3
Σ00 10 10 0 1 1=4
Σ00 4 4 0 0 SχðSχ þ 1Þ=12
Σ00 4 6 0 1 SχðSχ þ 1Þ=12
Σ00 6 4 0 1 SχðSχ þ 1Þ=12
Σ00 6 6 0 2 SχðSχ þ 1Þ=12
Σ00 12 12 1 0 SχðSχ þ 1Þ=12
Σ00 13 13 1 1 SχðSχ þ 1Þ=12
Σ0 3 3 1 1 1=8
Σ0 7 7 1 0 1=8
Σ0 4 4 0 0 SχðSχ þ 1Þ=12
Σ0 9 9 0 1 SχðSχ þ 1Þ=12
Σ0 12 12 1 0 SχðSχ þ 1Þ=24
Σ0 15 15 1 2 SχðSχ þ 1Þ=24
Σ0 12 15 1 1 −SχðSχ þ 1Þ=24
Σ0 15 12 1 1 −SχðSχ þ 1Þ=24
Σ0 14 14 1 1 SχðSχ þ 1Þ=24

5For arbitrary nuclei, the expression for the nuclear response
function is a polynomial in y multiplied by e−2y. However, the
nuclear response is constant for the proton, and the polynomial in
y is simply a constant for helium.
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the differential cross section by a factor of ð1 − cos θÞ ¼ 2x
to preferentially pick out scattering processes with large
momentum transfer:

σMT;BðvÞ ¼ 2

Z
1

0

x
dσB
dx

dx

¼
X
i;j

σ̃ðijÞB v2ðαijþβijÞ 2ð1þ βijÞ
2þ αij þ βij

× 1F1ð2þ βij; 3þ αij þ βij;−2μ2χBa2Bv2Þ:
ð12Þ

The velocity dependence of σBðvÞ and σMT;BðvÞ may arise
either from the structure of the interaction itself [i.e., from
the DM response function, captured in the power-law index
2ðαij þ βijÞ] or from the composite nature of the nucleus
(i.e., from the nuclear response function, captured in the

1F1 function). The latter is nontrivial only for helium in this
study, while for hydrogen, it evaluates to 1, leaving the
cross section and momentum-transfer cross section with a
simple power-law velocity dependence.
It is important to note the various velocity dependencies

for discerning observational signatures of different inter-
actions; as described in Sec. III A, the velocity dependence
influences the time evolution of the momentum transfer
between DM and baryon fluids as well as the time of their
thermal decoupling. The rate of momentum transfer in turn
controls the relative size of the effect of scattering on
different density modes in the early Universe, producing
different signatures in the CMB and the matter power
spectrum. We discuss the effect of scattering on cosmo-
logical observables in detail in Sec. III B.
In this study, we focus on DM interactions with protons

and neglect interactions with neutrons embedded in helium
nuclei; we can thus replace all coupling coefficients labeled
with isospin by the coupling coefficients with protons,
which we simply denote as ci, dropping the superscript
“(p)” henceforth. Since we also focus on a single operator
at a time, Eqs. (10)–(12) simplify to

σðiÞB ðvÞ¼ σ̃ðiÞB vn1F1ð1þβ;2þαþβ;−2μ2χBa2Bv2Þ

σðiÞMT;BðvÞ¼ σ̃ðiÞB vn
2ð1þβÞ
2þαþβ1F1ð2þβ;3þαþβ;−2μ2χBa2Bv2Þ

σ̃ðiÞB ¼μ2χBc
2
i

πm4
v

�
2μχB
mN

�
2βX

ττ0

X
k

Rk;ijWττ0
B;k; ð13Þ

where we eliminated the indices on α and β, with the
understanding that they correspond to αii and βii, respec-
tively. Additionally, we define the quantity n≡ 2ðαþ βÞ to
emphasize that the cross section has a single power-law
index of the relative velocity for a given operator. As shown
in Table II, the operators cover n ∈ f0; 2; 4; 6g. However,
the entire phenomenology of these different interactions

does not reduce to the choice of n; namely, we find in
Sec. IV that different operators with the same n but a
different set of ðα; βÞ yield different mass dependencies for
the cosmological constraints on the coupling coefficients.

III. COSMOLOGICAL SETTING

In this section, we embed the EFT formalism into a
cosmological setting. We start in Sec. III A by reviewing
the modified system of Boltzmann equations that describe
the evolution of cosmological perturbations in the presence
of DM-proton interactions. We make the necessary mod-
ifications to all relevant background quantities, such as the
DM temperature and the heat and momentum transfer rates
between the DM and baryon fluids. In Sec. III B, using our
implementation of these equations in the code CLASS [38],
we illustrate the effect of interactions on cosmological
observables.

A. Boltzmann equations

We work in Fourier space to express the evolution of the
DM and baryon density fluctuations, δχ and δb, and their
velocity divergences, θχ and θb, respectively, as

_δχ ¼−θχ−
_h
2

_θχ ¼−
_a
a
θχþc2χk2δχþRχðθb−θχÞ

_δb¼−θb−
_h
2

_θb¼−
_a
a
θbþc2bk

2δbþRγðθγ−θbÞþ
ρχ
ρb

Rχðθχ−θbÞ ð14Þ

in the synchronous gauge, where k is the wave number of a
given Fourier mode (not to be confused with the index
denoting DM response function types of Sec. II), a is the
scale factor, h is the trace of the scalar metric perturbation
[39], cb and cχ are the speeds of sound in the two fluids
[39], and ρb and ρχ are their respective energy densities.
The overdot represents a derivative with respect to con-
formal time, and the subscript γ pertains to photons. The
rate coefficients Rγ and Rχ arise from scattering processes
that change particle momenta, resulting in a drag force that
affects the evolution of θb and θχ . The standard term Rγ is
associated with Compton scattering [39]; the term Rχ arises
from DM-baryon scattering [25,26].
In a single collision, the momentum of the DM particle

changes by [27]

jΔp⃗χ j ¼
mχmB

mχ þmB
jv⃗χ − v⃗Bj

�
n̂ −

v⃗χ − v⃗B
jv⃗χ − v⃗Bj

�
; ð15Þ

where mB is the mass of baryon B, n̂ is the direction of the
scattered DM particle in the center-of-mass frame, v⃗χ is the
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DM velocity, and v⃗B is the velocity of baryon B. The
relative velocity is v⃗ ¼ v⃗χ − v⃗B. In line with Sec. II,
quantities labeled with “B” indicate a particular baryonic
species, and those labeled with “b” refer to the baryon fluid
as a whole. We assume phase space distribution functions
of the form

fχðv⃗χÞ ¼
nχ

ð2πÞ3=2v̄3=2χ

exp ½−ðv⃗χ − V⃗χÞ2=ð2v̄2χÞ� ð16Þ

fBðv⃗BÞ ¼
nB

ð2πÞ3=2v̄3=2B

exp ½−ðv⃗B − V⃗bÞ2=ð2v̄2BÞ�; ð17Þ

where V⃗χ and V⃗b are the peculiar velocities of the DM and
baryon fluids and v̄2χ ¼ Tχ=mχ and v̄2B ¼ Tb=mB are the
DM and baryon velocity dispersions, respectively. The
resulting drag force per unit mass, or drag acceleration, on
the DM fluid is given by

dV⃗χ

dt
¼ −

1

mχ

X
B

Z
d3vχd3vBfχðv⃗χÞfBðv⃗BÞ

Z
dσ
dΩ

jv⃗χ − v⃗BjjΔp⃗χ j

¼ −
X
B

ρB
mχ þmB

1

ð2πÞ3=2
1

ðv̄2B þ v̄2χÞ3=2
Z

d3vv⃗½σðiÞMT;BðvÞv� exp
�
−
½v⃗ − ðV⃗χ − V⃗bÞ�2

2ðv̄2B þ v̄2χÞ
�
: ð18Þ

In the limit where the DM-baryon relative bulk velocity is
small compared to thermal velocity,6 the final expression
for the rate coefficient at a given redshift is

Rχ ¼aρb
X
B

YB

mχþmB
σ̃ðiÞB

2ð1þβÞ
2þαþβ

N n

�
Tb

mB
þ Tχ

mχ

�
1=2þαþβ

×

�
1þð2μχBaBÞ2

�
Tb

mB
þ Tχ

mχ

��
−ð2þβÞ

; ð19Þ

where YB is the mass fraction of the baryon B; N n ≡
2ð5þnÞ=2Γð3þ n=2Þ=ð3 ffiffiffi

π
p Þ is a numerical factor; and Tb

and Tχ are the baryon and DM temperatures, respectively.

Finally, since we are interested in sub-GeV DM, we
cannot neglect terms with Tχ in the above equations, as
was the approach in Ref. [27]. We thus track the coupled
evolution of the DM and baryon temperatures, given by

_Tχ ¼ −2
_a
a
Tχ þ 2R0

χðTb − TχÞ

_Tb ¼ −2
_a
a
Tb þ

2μb
mχ

ρχ
ρb

R0
χðTχ − TbÞ þ

2μb
me

RγðTγ − TbÞ;

ð20Þ

where me is the electron mass; μb ≈mHðnH þ 4nHeÞ=
ðnH þ nHe þ neÞ is the mean molecular weight of the
baryons; nH and nHe are the number densities of protons
and helium nuclei, respectively; and the heat-exchange rate
coefficient R0

χ is given by Eq. (19), but with an additional
factor of mχ=ðmχ þmBÞ multiplying each summand.

FIG. 1. [Left] Redshift evolution of the coefficient Rχ , defined in Eq. (19), which quantifies the rate of momentum exchange between
the DM and baryon fluids. It is normalized to the Hubble expansion rate. [Right] Redshift evolution of the DM temperature Tχ . The
CMB temperature (thin gray line) is also plotted for reference. [Both] These background quantities are shown for a subset of DM-proton
interactions with various relative velocity scalings of the cross section (indicated in the legend). We fix the DM spin to Sχ ¼ 1=2 and the
DM particle mass tomχ ¼ 1 GeV and set the coupling coefficients to their respective 2σ upper limits reported in Table III, keeping other
cosmological parameters at their best-fit Planck 2015 values.

6The condition ðV⃗χ − V⃗bÞ2 ≪ ðv̄2χ þ v̄2BÞ is satisfied for inter-
actions that couple DM to protons at early times only; in all the
cases we consider, DM-proton decoupling occurs at z > 104, as
shown in Fig. 1.

KIMBERLY K. BODDY and VERA GLUSCEVIC PHYS. REV. D 98, 083510 (2018)

083510-6



B. Effect of scattering on cosmological observables

We have modified the linear Boltzmann solver CLASS to
implement the Boltzmann equations given in Sec. III A,
incorporating the effect of DM-proton scattering on the
evolution of cosmological perturbations, for all operators in
Eq. (1). Figure 1 shows the relevant background quantities,
Tχ and Rχ , as functions of redshift for a subset of operators
that correspond to interactions for which the cross sections
scale with different powers of velocity (labeled as vn in the
legends of the figure). To illustrate the evolution of these
quantities, we fix Sχ ¼ 1=2 and mχ ¼ 1 GeV, set the
coupling coefficients to their respective 2σ upper limits
reported in Table III, and keep other cosmological param-
eters at their best-fit Planck 2015 values [40]. A stronger
velocity dependence (larger n) leads to more momentum
transfer at early times and to a later thermal decoupling time
of the DM and baryon fluids. This difference in the
evolution of Rχ determines the relative size of the effect
of DM-baryon scattering on different density perturbation
modes, traceable through cosmological observables such as
the CMB power spectra Cl and the three-dimensional
matter power spectrum PðkÞ.
In Fig. 2, we illustrate the effect of scattering on these

observables for O1 (with n ¼ 0) and O8 (with n ¼ 2) by
comparing to the standard “CDM” case with no DM-proton
interactions. For DM-proton scattering, we fix Sχ ¼ 1=2
and set the coupling coefficients to their 2σ upper limits
reported in Table III, keeping all other cosmological
parameters at their best-fit Planck 2015 values, as in Fig. 1.
For the left panel of Fig. 2, we set mχ ¼ 1 GeV. To get a

sense for the range of l multipoles in which the scattering
signal is most prominent, we show the percent difference
between the CDM case and the cases with DM-proton

scattering. As was previously noted in Refs. [25,26], on large
angular scales in the CMB, the coupling of DM to baryons
presents similarly to baryon loading: the tight coupling with
DM particles at early times effectively increases the total
mass of the baryons, enhancing power at low multipoles
(cf. negative percent differences). On small scales, the drag
force between baryons and DM dissipates the momentum of
the baryon-photon fluid, damping baryon acoustic oscilla-
tions and suppressing power more for modes that enter the
cosmological horizon earlier (roughly corresponding to
larger multipoles). Furthermore, acoustic peaks shift to
smaller angular scales as a result of the decrease in the
speed of sound in primordial plasma. Since the EE polari-
zation spectra display sharper oscillatory features in
multipole space compared to TT, the shift produces
higher-amplitude oscillations seen in this difference plot.
In the right panel of Fig. 2, we show the matter power

spectrum today, comparing the CDM case to the cases with
DM-proton scattering for mχ ¼ 1 MeV and mχ ¼ 1 GeV.
When DM couples to protons, PðkÞ exhibits oscillatory
suppressions at large k due to DM tightly following the
behavior of the baryon-photon fluid and undergoing “dark
oscillations” at early times, when the corresponding modes
enter the horizon. For heavier DM particles, the oscillations
are shifted toward larger k, indicating earlier thermal
decoupling from baryons; at a fixed DM energy density,
increasing the DM mass results in a lower particle number
density and thus a reduced interaction rate to maintain
thermal equilibrium.
With the ability to compute the power spectra for a given

cosmology, we proceed to search for signals consistent
with DM-baryon interactions within the data from the
Planck satellite.

TABLE III. Upper limits on the scattering cross section σðiÞp (13) [evaluated at v ¼ ð220 km=sÞ=c] in units of cm2 at the 68% (95%)
confidence level, as inferred from Planck 2015 data. The DM spin is fixed to Sχ ¼ 1=2. The first column indicates which operator is
under study and lists its power-law dependence on the perpendicular component of velocity (α) and the momentum transfer (β) as well as
the power of relative velocity for the corresponding cross section, n ¼ 2ðαþ βÞ.

DM mass

Operator [n (αþ β)] 15 keV 1 MeV 1 GeV 1 TeV

O1 [0 (0þ 0)] 2.9e-27 (8.8e-27) 9.1e-27 (2.6e-26) 4.9e-26 (1.5e-25) 4.7e-24 (1.4e-23)
O3 [4 (1þ 1)] 2.3e-33 (5.7e-33) 1.4e-29 (3.8e-29) 6.5e-24 (1.9e-23) 9.6e-21 (3.4e-20)
O4 [0 (0þ 0)] 3.7e-27 (1.2e-26) 1.1e-26 (3.3e-26) 9.3e-26 (2.9e-25) 5.6e-23 (1.7e-22)
O5 [4 (1þ 1)] 1.9e-33 (4.6e-33) 1.1e-29 (3.0e-29) 4.0e-24 (1.2e-23) 8.6e-22 (2.7e-21)
O6 [4 (0þ 2)] 1.5e-33 (3.8e-33) 9.6e-30 (2.4e-29) 4.5e-24 (1.3e-23) 6.4e-21 (2.1e-20)
O7 [2 (1þ 0)] 1.0e-29 (2.8e-29) 1.1e-27 (3.0e-27) 1.3e-24 (4.4e-24) 1.1e-21 (4.0e-21)
O8 [2 (1þ 0)] 8.3e-30 (2.2e-29) 9.0e-28 (2.3e-27) 9.3e-25 (2.9e-24) 3.4e-22 (1.2e-21)
O9 [2 (0þ 1)] 5.1e-30 (1.3e-29) 5.5e-28 (1.5e-27) 6.8e-25 (2.3e-24) 6.0e-22 (2.1e-21)
O10 [2 (0þ 1)] 4.7e-30 (1.3e-29) 6.0e-28 (1.6e-27) 7.8e-25 (2.4e-24) 6.1e-22 (2.2e-21)
O11 [2 (0þ 1)] 4.1e-30 (1.1e-29) 4.4e-28 (1.2e-27) 3.4e-25 (1.1e-24) 1.5e-23 (4.9e-23)
O12 [2 (1þ 0)] 9.4e-30 (2.7e-29) 1.1e-27 (3.1e-27) 1.4e-24 (4.6e-24) 1.2e-21 (4.0e-21)
O13 [4 (1þ 1)] 2.2e-33 (6.2e-33) 1.4e-29 (3.7e-29) 6.3e-24 (1.9e-23) 9.3e-21 (3.2e-20)
O14 [4 (1þ 1)] 2.3e-33 (6.0e-33) 1.4e-29 (3.6e-29) 6.8e-24 (2.0e-23) 1.0e-20 (3.4e-20)
O15 [6 (1þ 2)] � � � � � � 2.5e-23 (7.9e-23) 6.8e-20 (2.3e-19)
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IV. NUMERICAL RESULTS

We perform a joint likelihood analysis of Planck 2015
temperature, polarization, and lensing anisotropy measure-
ments, using the Planck Likelihood Code version 2.0
(CLIK/PLIK) [30,31] to search for evidence of DM-proton
scattering in the early Universe. For high multipoles,
we use the nuisance-marginalized joint TT, TE, EE like-
lihood (CLIK/PLIK_LITE), with l=30–2508 for TT and
l=30–1996 for TE and EE. Using CLIK/PLIK_LITE
over the full likelihood requires substantially fewer

computational resources, and we find no significant effect
on the derived values of cosmological parameters and
constraints.7 The lensing likelihood we use contains
SMICA map–based lensing reconstruction for multipoles
in the range l ¼ 40–400.

FIG. 2. [Left] Percent difference between the CMB temperature (solid) and EE polarization (dashed) power spectra, computed for the
standard CDM scenario with no DM interactions and for the scenario with DM-proton coupling, for DM mass mχ ¼ 1 GeV. Power
spectra are shown for scattering throughO1 (top set of red lines) andO8 (bottom set of blue lines), as examples of velocity-independent
and velocity-dependent scattering, respectively. The dotted black lines roughly represent the Planck 2σ error bars, binned in multipoles
with Δl ¼ 50. Positive differences indicate a suppression of power (with respect to CDM), while negative differences indicate an
enhancement of power. [Right] Matter power spectra for the scenario of no DM scattering (black) compared to the scenarios in which
there is scattering through O1 (red) and O8 (blue), for two different DM particle masses: 1 GeV (dashed) and 1 MeV (solid). [Both] For
the cases with interactions, we fix the DM spin to Sχ ¼ 1=2 and set the coupling coefficients to their respective 2σ upper limits reported
in Table III, keeping other cosmological parameters at their best-fit Planck 2015 values.

FIG. 3. The inferred upper limits on the DM-proton coupling coefficients and the corresponding cross sections [evaluated at
v ¼ ð220 km=sÞ=c] for fO1;O5;O8;O15g, chosen to represent all classes of relative velocity scalings of the cross section (indicated in
the legend). We also show limits for spin-dependent scattering through O4 to compare to spin-independent scattering through O1.
Regions above the curves are excluded with the Planck 2015 temperature, polarization, and lensing measurements at 95% confidence.

7Planck high-multipole polarization could have systematic
issues [30,31] that may affect cosmological parameter estimation;
however, excluding l ≥ 30 polarization would degrade our
reported constraints on DM interactions by less than 8%.
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To sample the cosmological parameter space, we
employ MONTEPYTHON [41] with the PYMULTINEST

[42] implementation of the nested sampling algorithm
[43–45]. We have verified that our pipeline recovers the
published ΛCDM parameter values and constraints [40] to
within 0.14σ, in the limit of vanishing DM coupling
coefficients. Since the convergence criteria for nested
likelihood sampling are not clearly defined (in contrast

to the case of MCMC methods), we check for
convergence in our samples by varying the number of
live points passed to PYMULTINEST and ensuring that the
inferred constraints do not change by more than an order
of percent in numerical value between different sampling
runs. We assume that baryons, photons, and DM are
tightly coupled and in thermal equilibrium at the start of
the integration of the Boltzmann equations; this condition

FIG. 4. The inferred posterior probability distribution for the ΛCDM parameters and the DM-proton coupling coefficient cp ¼ c1 for
velocity-independent scattering through O1, with DM mass mχ ¼ 1 GeV and spin Sχ ¼ 1=2. The posterior is shown at the 68% and
95% confidence levels, obtained from a joint analysis of Planck 2015 temperature, polarization, and lensing power spectra.
Marginalized posteriors are shown in the top panels of each column.
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is satisfied for all interactions at their 1σ and 2σ exclusion
limits in Table III. Additionally, we consider only a flat
geometry.
We perform a likelihood analysis for each individual

interaction operator, repeating the fitting procedure for the
following fixed values of DMmass:mχ ∈ f15 keV; 1 MeV;
1 GeV; 1 TeVg. Thus, in addition to the six standard
ΛCDM parameters (baryon density Ωbh2, DM density
Ωχh2, Hubble parameter h, reionization optical depth τ,
amplitude of the scalar perturbations As, and scalar spectral
index ns), each sampling run also includes the coupling

coefficient ci for Oi as a free fitting parameter; we assume
wide flat priors for all parameters. We obtain the 68% and
95% confidence-level exclusion limits for the coupling
coefficients ci from their posterior probability distributions,
and we convert these limits to ones for the corresponding
interaction cross section using Eq. (13).
We find no evidence of DM-proton scattering for

mχ > 15 keV.We thus report a complete set of cosmological
upper limits on the coupling coefficients and cross sections
associated with the 14 different operators in Eq. (1). Our
inferred upper limits on the cross sections for proton

FIG. 5. The same as Fig. 4, except for O8.
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scattering, σðiÞp , with spin-1=2 DM are listed in Table III.8

These cross sections are evaluated at v ¼ ð220 km=sÞ=c, the
relativevelocity relevant for direct detection. In theAppendix,
Tables IVand V list the upper limits in terms of the quantities

σ̃ðiÞp and c2i , respectively, to allow for a more straightforward
comparison to other works. Note that, since O1 is velocity

independent, σ̃ð1Þp ¼ σð1Þp , consistent with the notation in
our previous study [28]. The limits for DM spins other than
1=2 are easily obtained by rescaling the cross section by
SχðSχ þ 1Þ=ð3=4Þ (in accordance with Table II)
for any operator except O1, O3, O7, and O10, which are
independent of DM spin.
We choose the subset of operators fO1;O5;O8;O15g

to represent the various types of velocity-dependent

FIG. 6. The same as Fig. 4, except for O5.

8The lowest-mass data points for O15 are missing. As we
alluded to in a previous footnote, our code is not sufficiently
optimized to produce accurate power spectra for the extremely
strong velocity dependence of n ¼ 6 at low DMmass. We leave a
detailed treatment of this regime for future work.
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interactions with n ∈ f0; 2; 4; 6g, and we choose O4 as a
representative of spin-dependent interactions. For these
operators, we sample the likelihood on a finer grid of
logarithmically spaced masses: mχ ¼ f15 keV; 32 keV;
1 MeV; 32 MeV; 1 GeV; 32 GeV; 1 TeVg. We show the
resulting 95% confidence-level exclusion curves in Fig. 3.
Finally, in Figs. 4–7, we show the posterior probability
distributions of ΛCDM parameters and coupling coeffi-
cients for O1, O8, O5, and O15, respectively, for fixed
mχ ¼ 1 GeV and Sχ ¼ 1=2.

V. DISCUSSION AND CONCLUSIONS

We analyzed Planck 2015 TT,EE, TE, and lensing power
spectra in search for evidenceofDM-proton interactions in the
early Universe. Our results are consistent with absence of
interactions through operators dependent or independent of
spin and velocity, and we thus report the first cosmological
upper limits on the full nonrelativistic effective field theory of
DM-proton scattering for masses above 15 keV. The main
result is summarized in Fig. 3. In this section, we discuss in
moredetail our results and their implications for futurestudies.

FIG. 7. The same as Fig. 4, except for O15.
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We first note that comparing the cross section constraints
forO1 andO4 (shown in the right panel of Fig. 3) illustrates
the impact of including scatteringwith helium in our analyses.
These two operators represent the standard spin-independent
and spin-dependent scatteringwith no dependence on relative
velocity, and the main difference in their upper limits comes
from the fact thatDMcannot interact throughO4with helium,
which has zero nuclear spin, while O1 interacts with both
helium and hydrogen. The coefficientRχ , defined in Eq. (19),
quantifies the rate ofmomentum transfer betweenDMand all
baryonic species that participate in a given interaction. If there
is only scattering with protons (as is the case for O4), the
maximum of Rχ occurs for DM masses near a GeV, above
whichRχ rapidly decreases (asymptoting to∼1=mχ behavior
at mχ ≫ 1 GeV), resulting in a loss of constraining power.
Including scattering on helium (for O1) shifts its maximum
above aGeV (since helium is roughly four times asmassive as
the proton), thereby substantially improving the constraint at
high mass. As previously reported in Ref. [28], although
helium contributes only about a quarter of the total baryonic
mass, the modest shift of the maximum in Rχ amounts to an
improvement of about a factor of 6 near 1 TeVin sensitivity of
CMB probes to spin-independent scattering, while it has no
impact on constraints for spin-dependent scattering.
We now examine the constraints on the coupling coef-

ficients in the left panel of Fig. 3 for operators of which the
cross sections have different scalings of relative velocity.
There is a hierarchy of constraints; interactions with the
stronger velocity dependencies are more suppressed in the
regime of very low velocities (of interest to cosmological
studies), soCMBobservableshave less constrainingpoweron
the coupling coefficients of such interactions. It is also evident
that CMB observations are most sensitive to DM masses
around a GeV, when considering interactions with protons.
Roughly speaking, the sensitivity drops at higher masses
because theamountofmomentumtransferred in the scattering
process saturates (μχB approaches the mass of the proton) but
the drag force per unit mass drops as 1=mχ ; the sensitivity
drops at lowermasses, because themomentum transfer scales
asmχ in that regime (μχB approachesmχ). Understanding the
detailed mass dependence in either panel of Fig. 3 for a given
operator is nontrivial and does not immediately follow from
the analytic expressions of Secs. III A and II. One reason is
that theCMBobservables are controlledby twoquantities: the
coefficients for the rate of momentum transfer Rχ and of heat
transfer R0

χ. The former appears in Eq. (14) and controls the
impact DM interactions have on density and velocity fluctua-
tions at a given redshift; the latter appears in Eq. (20) and
controls the time of thermal decoupling between the DM and
baryon fluids. Their scaling with mχ is different, and the
resulting mass dependence observed in Fig. 3 follows from a
combination of the two.
When comparing the left and right panels of Fig. 3 or

examining the entries of Table III, it is important to keep in

mind that we treat the coupling coefficients as the primary
parameter to constrain from the data, for a fixed DM mass.
On the other hand, the scattering cross section is a derived
quantity, obtained by the relation in Eq. (13); it scales
quadratically with the coupling coefficient, but its depend-
ence on mχ is determined by the operator at hand. We
emphasize that the low-mass limiting behavior of the
exclusion curve for the cross section is not solely deter-
mined by n ¼ 2ðαþ βÞ, the power of the cross section
scaling with relative velocity. From Eq. (13), we see that
velocity dependence in the cross section arises from the
perpendicular component of the relative velocity (associ-
ated with the power α) and the momentum transfer
(associated with the power β) that appear in the DM
response function; however, the momentum transfer is a
function of μχB, which introduces a mass scaling for the
cross section that involves β but not α. This dependence on
β explains the different low-mass behaviors of the exclu-
sion curves associated with the coupling coefficients of
different operators, shown in the left panel of Fig. 3.
In the high-mass limit of mχ ≫ 1 GeV, the situation is

greatly simplified. The coefficient for the rate of heat
transfer R0

χ approaches that for the rate of momentum
transfer Rχ, and the thermal term Tχ=mχ for DM in Eq. (19)
is negligible, regardless of the operator. Thus, cosmological

observables are controlled solely by σðiÞB =mχ. Moreover,

σðiÞB in Eq. (13) scales as c2i and has no mχ dependence.
All exclusion curves in Fig. 3 exhibit the behavior

σðiÞB ∼ c2i ∼mχ . This relation allows extrapolation of our
results in Table III to arbitrarily high masses; the upper limit
on the DM-proton cross section for mχ > TeV is obtained
by scaling the upper limit at 1 TeV by mχ=TeV.
Let us now take a look at the possible degeneracies

between the DM scattering signal and other cosmological
parameters. The addition of high-l polarization and lensing
improves our reported constraint by about 30%; thus, most
of Planck’s constraining power comes from the temperature
anisotropy at the smallest angular scales measured with a
high signal-to-noise ratio (at which the Planck error bars are
their smallest in the left panel of Fig. 2). In this regime,
where TT measurements at l ∼ 1200 dominate the con-
straint, the effect of DM-proton scattering is not strongly
degenerate with any of the standard cosmological parame-
ters. There is, however, a mild degeneracy with the scalar
spectral index ns, as seen in Fig. 4 for O1. The origin of this
degeneracy can be understood from the left panel of Fig. 2:
increasing the strength of the DM-proton coupling progres-
sively suppresses power on smaller scales, and a larger value
of ns is needed to restore Cl to within the measurement
error, giving rise to the mild positive correlation between c1
and ns. Analogous plots of the posterior probabilities for
the cases of velocity-dependent scattering are shown in
Figs. 5–7 forO8,O5, andO15, respectively. The degeneracy
with ns reverses sign when the leading effect of scattering on
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relevant angular scales (l ∼ 1200) gives rise to an enhance-
ment of power rather than a suppression (such as the case for
scattering through O8, e.g., shown in Fig. 2).
Finally, we briefly discuss future prospects for cosmo-

logical probes of DM interactions. Given that the effect
of DM-baryon interactions is stronger on smaller angular
scales, high-resolution ground-based CMB observations
from existing experiments (such as the Atacama
Cosmology Telescope [46] and the South Pole Telescope
[47]) and from future experiments (such as the Simons
Observatory [48] and CMB-Stage 4 [49]) could improve
upon our limits, particularly in the regime of sub-GeV DM.
As shown in the right panel of Fig. 2, DM scattering is also
imprinted on PðkÞ and is progressively more prominent
at larger values of k. At the level of current constraints,
DM scattering becomes inefficient at redshifts z < 104 due
to Hubble expansion, so its effect on PðKÞ is similar to a
k-dependent change in the initial conditions, for all
effective operators considered in this work. We thus expect
that galaxy-survey and large-scale structure (LSS) mea-
surements from BOSS [50], DES [51], LSST [52], DESI
[53], etc., can help improve constraints on DM interactions;
see, e.g., results from the Lyman-α data analysis in
Ref. [27]. Moreover, there is evidence that including the
Lyman-α forest power spectrum leads to smaller values of
the scalar spectral index (when also allowing the spectral
index to run) [54], indicating that Lyman-α data may aid in
constraining DM interactions on multiple fronts. However,
unlike the case of CMB, LSS analyses require modeling
of complicated baryonic effects as well as treatments of
nonlinearities and other systematic effects that arise on
small scales; a calculation of the nonlinear effects depends
on the cosmological context and has not yet been fully

addressed within a cosmology with DM-baryon scattering,
in which PðkÞ exhibits oscillatory features shown in Fig. 2.
For these reasons, the CMB is currently the most robust
cosmological probe of DM-baryon interactions; we have
thus only focused on CMB measurements and leave the
extension to LSS analyses for future work.
In summary, this study paves a path for comprehensive

and model-independent cosmological studies of low-
energy DM physics. Cosmological probes are particularly
attuned to testing for the presence of sub-GeV dark matter,
the interactions of which may not be detectable in standard
laboratory searches for weakly interacting massive particles
but may leave an imprint in the early Universe. Many
forthcoming observations of the CMB and large-scale
structure promise to further deepen the coverage of the
relevant parameter space for DM candidates.
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APPENDIX: SUPPLEMENTAL NUMERICAL
RESULTS

In this Appendix, we present the 68% and 95% con-
fidence-level upper limits on two quantities related to the

TABLE IV. Upper limits on the scattering cross section σ̃ðiÞp (13) in units of cm2 at the 68% (95%) confidence level, as inferred fromPlanck
2015 data. TheDMspin is fixed toSχ ¼ 1=2. The first column indicates which operator is under study and lists its power-law dependence on
the perpendicular component of velocity (α) and the momentum transfer (β), as well as the power of relative velocity for the corresponding
cross section,n ¼ 2ðαþ βÞ. To compare topreviousCMB limits on theDM-proton interactions [25–27], the upper limits on the coefficient of
the momentum-transfer cross section can be obtained by multiplying the limits reported here by 2ð1þ βÞ=ð2þ αþ βÞ.

DM mass

Operator [n (αþ β)] 15 keV 1 MeV 1 GeV 1 TeV

O1 [0 (0þ 0)] 2.9e-27 (8.8e-27) 9.1e-27 (2.6e-26) 4.9e-26 (1.5e-25) 4.7e-24 (1.4e-23)
O3 [4 (1þ 1)] 7.8e-21 (2.0e-20) 4.7e-17 (1.3e-16) 2.2e-11 (6.6e-11) 3.3e-08 (1.2e-07)
O4 [0 (0þ 0)] 3.7e-27 (1.2e-26) 1.1e-26 (3.3e-26) 9.3e-26 (2.9e-25) 5.6e-23 (1.7e-22)
O5 [4 (1þ 1)] 6.4e-21 (1.6e-20) 3.9e-17 (1.0e-16) 1.4e-11 (4.1e-11) 3.0e-09 (9.3e-09)
O6 [4 (0þ 2)] 5.2e-21 (1.3e-20) 3.3e-17 (8.4e-17) 1.5e-11 (4.6e-11) 2.2e-08 (7.3e-08)
O7 [2 (1þ 0)] 1.9e-23 (5.1e-23) 2.0e-21 (5.6e-21) 2.5e-18 (8.3e-18) 2.1e-15 (7.5e-15)
O8 [2 (1þ 0)] 1.5e-23 (4.2e-23) 1.7e-21 (4.3e-21) 1.7e-18 (5.3e-18) 6.4e-16 (2.2e-15)
O9 [2 (0þ 1)] 9.4e-24 (2.5e-23) 1.0e-21 (2.8e-21) 1.3e-18 (4.3e-18) 1.1e-15 (3.9e-15)
O10 [2 (0þ 1)] 8.8e-24 (2.5e-23) 1.1e-21 (2.9e-21) 1.4e-18 (4.4e-18) 1.1e-15 (4.1e-15)
O11 [2 (0þ 1)] 7.5e-24 (2.0e-23) 8.1e-22 (2.3e-21) 6.3e-19 (2.0e-18) 2.8e-17 (9.1e-17)
O12 [2 (1þ 0)] 1.7e-23 (5.0e-23) 2.1e-21 (5.7e-21) 2.6e-18 (8.5e-18) 2.1e-15 (7.5e-15)
O13 [4 (1þ 1)] 7.7e-21 (2.1e-20) 4.8e-17 (1.3e-16) 2.2e-11 (6.6e-11) 3.2e-08 (1.1e-07)
O14 [4 (1þ 1)] 7.8e-21 (2.1e-20) 4.9e-17 (1.3e-16) 2.3e-11 (6.8e-11) 3.5e-08 (1.2e-07)
O15 [6 (1þ 2)] � � � � � � 1.6e-04 (5.0e-04) 4.4e-01 (1.5eþ 00)
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scattering cross section σðiÞp of Table III, for a more
straightforward comparison with other literature. Table IV

lists the upper limits on σ̃ðiÞp , corresponding to quantity σ0 in

Ref. [27], for example. Table V lists the upper limits on c2i ,
which corresponds to the limits in Fig. 6 of Ref. [56], for
example.
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