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We continue our investigation of the 4D effective field theory for closed string axions in type II
compactifications with D-branes. The inclusion of Stückelberg couplings for the axions requires the
presence of chiral fermions at D-brane intersections, whose interactions at strong non-Abelian gauge
coupling induce mass terms for the axions and scalar chiral condensate excitations, dubbed infladrons. The
setup allows for a realization of naturallike inflation with a closed string axion as inflaton and a flattened
scalar potential due to the backreaction of the more massive infladrons. We further point out that this large
field inflationary model is not compromised by axionic wormhole corrections.
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I. INTRODUCTION

Axions or axionlike particles arise abundantly [1–3]
when ten-dimensional superstring theories are compacti-
fied to a four-dimensional spacetime. These axions corre-
spond to the Kaluza-Klein (KK) zero mode scalars of
higher-dimensional p-form gauge potentials CðpÞ under the
KK reduction. As such, they inherit their shift symmetries
from the higher dimensional gauge invariance under (large)
gauge transformations for CðpÞ. By introducing a basis of
p-cycle γi, each stringy axion can be associated to a cycle
according to

ci ¼ 1

2π

Z
γi

CðpÞ i ∈ f1;…; bpg; ð1Þ

with the Betti number bp giving the dimensionality of the
homology group HpðM;RÞ. As their perturbative inter-
actions are fully constrained by their continuous shift
symmetry, axions provide for Lagrangians suitable to
accommodate beyond the standard model physics, both
in particle physics [4–6] as well as in cosmology [7,8]. For
example, the shift symmetry is invoked in inflationary
models to prevent a violation of the slow-roll conditions by
uncontrollable perturbative corrections. But not all correc-
tions to the axion scalar potential are fully under control, as
the global shift symmetry is expected to be broken by
quantum gravity effects [9]. Moreover, higher-dimensional

Chern-Simons couplings for the gauge potentials CðpÞ in
string theory induce extra four-dimensional interactions
which either break or gauge the global shift symmetry of
their respective axion. It is therefore of utmost importance
to fully understand the four-dimensional physics of
stringy axions and investigate whether these models are
further constrained by considerations coming from quan-
tum gravity.
In recent years, a lot of attention has been devoted to the

breaking of the global axion shift symmetry to a discrete
one following the coupling to a four form [10]. These
axion-4-form couplings (which have been applied to
inflation in [11]) appear naturally for closed string axions
in type II string theory compactifications with internal
Ramond-Ramond fluxes and Neveu-Schwarz fluxes
[12,13], and represent a realization of the axion mono-
dromy scenarios proposed in [14,15]. In case this four form
represents the topological density of a non-Abelian gauge
theory with field strength G, the breaking of the shift
symmetry is rather seen as the consequence of nonpertur-
bative axion couplings to gauge instantons,

Sanom ¼
Z

1

8π2
X
i

niciTrðG ∧ GÞ: ð2Þ

In type II superstring theory, such anomalous couplings
arise by including in the compactification spacetime filling
Dðpþ 3Þ-branes wrapping p-cycles γi along the internal
directions, with ni ∈ Z representing the topological wrap-
ping numbers. String theory also allows for a different
class of nonperturbative effects breaking the axion shift
symmetry, namely a single Euclidean Dðp − 1Þ-brane
wrapping the three-cycle γi yielding a nonperturbative
correction to the superpotential,
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Wnp ¼ Ae−SEþici ; SE ¼ VolðγiÞ: ð3Þ

The coupling to Eðp − 1Þ-brane instantons breaks the
continuous shift symmetry to a discrete one, ci→ciþ2π,
determining the topology of the closed string axion moduli
space. There also exist Eðp − 1Þ-brane instantons wrapping
various cycle γi simultaneously, to which the linear axionic
combination pici couples.
Alternatively, the axion shift symmetry can be gauged by

virtue of a Stückelberg coupling to a Uð1Þ symmetry,
which occurs when a Dðpþ 3Þ-brane wraps the Poincaré
dual (6 − p)-cycle to the cycle γi (combined with a flux-
threaded 2 cycle in case p ¼ 4). In this case, the axion acts
as the longitudinal mode of the massive gauge boson living
on the D-brane world volume. These Stückelberg charges
are tied to the Green-Schwarz mechanism for D-branes
which ensure anomaly cancelation in case of an anomalous
Uð1Þ symmetry [16]. Clearly, type II compactifications
with multiple D-branes yield a rich four-dimensional
effective field theory (EFT) for closed string axions, which
already comes to light for a setup consisting of two closed
string axions ci both carrying a Stückelberg charge ki ≠ 0
under the same Uð1Þ gauge group with gauge boson A
supported by a Dðpþ 3Þ-brane and both coupling anoma-
lously to a non-Abelian gauge group UðNÞ with field
strength G living on a stack of N coincident Dðpþ 3Þ-
branes,

Seff ¼
Z �

−
1

2

X2
i¼1

Gijðdci − kiAÞ ∧ ⋆4ðdcj − kjAÞ

−
1

g2Uð1Þ
jFj2 − 1

g22
TrjGj2 þ 1

8π2

�X2
i¼1

nici
�
TrðG ∧GÞ

þ i
XNf

i¼1

ψ̄ i
L
=Dψ i

L þ i
XNf

i¼1

ψ̄ i
R
=Dψ i

R

�
; ð4Þ

where the shorter notation jCj2 ¼ C ∧ ⋆4C is used for the
p-form kinetic terms (p ≤ 4) and F denotes the field
strength of the Uð1Þ gauge boson. Canceling the mixed
Uð1Þ − UðNÞ2 gauge anomaly by virtue of the Green-
Schwarz mechanism requires the presence of fermions
ðψ i

L;ψ
i
RÞ chirally charged under the Uð1Þ group and

transforming in a complex representation of SUðNÞ (fun-
damental or antifundamental in practice), with the coupling
to gravity and the gauge theories encoded in the Lorentz-
and gauge-covariant derivative =D. The matrix Gij represents
the metric on the axion moduli space, whose entries depend
on the closed string metric moduli (the saxionic partners
belonging to the same N ¼ 1 4D supermultiplet as the
closed string axions) and are assumed to be stabilized. In
this model, a linear axionic combination is eaten away by
the Uð1Þ gauge boson, while the orthogonal direction ξ is
subjected to a potential resulting from the anomalous

coupling to the non-Abelian gauge group. By properly
identifying the eigenbases of the axionic mixing effects
in kinetic and potential terms, one deduces [17,18]
the effective decay constant fξ for axion ξ describing
the coupling strength to TrðG ∧ GÞ, which depends on the
integer numbers ðni; kiÞ and the continuous geometric
moduli. The intricate expression for fξ allows for regions
in the moduli space where the decay constant is enhanced
or suppressed, suggesting a much broader window [17,19]
than traditionally assumed in the literature,

1013 GeV≲ fξ ≲ 1019 GeV; ð5Þ

for entries
ffiffiffiffiffiffi
Gij

p
of the order Oð1016Þ GeV. Figure 1 offers

a schematic view of the axion moduli space, including all
possible mixing effects and couplings for the closed string
axions in the presence of D-branes.

II. STRONG DYNAMICS AND INFLADRONS

Naively, the θ-vacuum structure of the non-Abelian
gauge theory in the strongly coupled regime is expected
to induce a periodic scalar potential [20] for the inflaton
candidate ξ. But the presence of chiral fermions requires
more precision to deduce the intricacies of the full vacuum,
due to the global remnant of the chiral Uð1Þ symmetry
below the Stückelberg scale Mst ¼ gUð1ÞMstring,

ψ i → eiqþαeiq−αγ
5

ψ i;

ψ̄ i → ψ̄ ie−iqþαeiq−αγ
5

; ð6Þ

for generation-independent charges q� ¼ qR�qL
2

[21]. The
axial-vector part of the associated current is not conserved
at one loop due to the chiral anomaly [22], and this
noninvariance translates into effective interactions between
chiral fermions in the instanton background [23,24],

FIG. 1. Closed axion moduli space with the Uð1Þ orbit under
Stückelberg gauging (dashed orange line) and its orthogonal
direction (blue line), the anomalous coupling to the non-Abelian
gauge group (green) and the coupling to D-brane instantons
(purple).
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LIC ¼ e
−8π2

g2
2

g4N2
½CNf

eiθ det ðψ̄ ið1þ γ5Þψ jÞ þ H:c:�; ð7Þ

which break the global Uð1Þ symmetry to a discrete Zjq−jNf

symmetry. In this expression, the determinant is evaluated
over the number of generations Nf, g2 corresponds to the
renormalized gauge coupling of the non-Abelian gauge
group, and CNf

is a dimensionful parameter whose mass
dimension depends on the number Nf of chiral fermions.
The ’t Hooft interactions (7) play a non-negligible role near

the strong coupling scale Λs ¼ Mstringe
− 8π2

β0g
2
2
ðMstringÞ, provided

that the one-loop beta-function coefficient β0 ¼ 11
3
N − 2

3
Nf

is positive [25]. In case this condition is satisfied without a
Banks-Zaks fixed point [26,27], the non-Abelian gauge
theory finds itself in the confining phase near energy scales
of the order OðΛsÞ, and the free vacuum of massless
fermions is no longer the true ground state of the theory
[28]. Instead, the fermionic contribution to the vacuum is
more appropriately described in terms of a fermionic
condensate consisting of neutral fermion-antifermion
bound states with a nonvanishing vacuum expectation
value hψ̄ iψ ji ∼ Λ3

s , which breaks the remnant Zjq−jNf

discrete symmetry of the global Uð1Þ further down to a
Z2 symmetry.
The ’t Hooft operator (7) is not the only effective

interaction among the chiral fermions at strong coupling.
Integrating out the massive gauge boson also leads to
effective four-fermion interactions [18],

L4ψ ¼ 1

2M2
st
jJ ψ j2; ð8Þ

where the one-form current Jψ corresponds to the exchange
term initially coupling to the Uð1Þ gauge potential. In local
(flat) coordinates, the one-form current reads

Jμψ ¼
XNf

i¼1

ðqLψ̄ i
Lγ

μψ i
L þ qRψ̄ i

Rγ
μψ i

RÞ: ð9Þ

The four-fermion interactions can be further simplified
through Fierz-identities [19],

L4ψ ¼ qLqR
2M2

st

XNf

i;j¼1

½ðψ̄ iψ jÞðψ̄ jψ iÞ − ðψ̄ iγ5ψ jÞðψ̄ jγ5ψ iÞ�

þ 1

2M2
st

XNf

i;j¼1

½q2Lðψ̄ i
Lγ

μψ j
LÞðψ̄ j

Lγμψ
i
LÞ

þ q2Rðψ̄ i
Rγ

μψ j
RÞðψ̄ j

Rγμψ
i
RÞ�; ð10Þ

and it is easy to verify that these generalized Nambu-
Jona-Lasinio (N-JL) four-fermion couplings [29] remain

invariant under the Uð1Þ transformation in Eq. (6) [30] and
an accidental global SUðNfÞL × SUðNfÞR symmetry.
Below the strong coupling scale Λs, the description of

Eqs. (4), (7), and (10) in terms of interacting fermions and
gauge bosons has to be replaced with an EFT in terms of
interacting bound states of fermions and gauge bosons,
which we will dub infladrons. Choosing a nonlinear
σ-model description with Nf ¼ 1 for simplicity, we para-

metrize the spin-zero bound state Φ ¼ ðf þ σðxÞÞeiηðxÞf with
σ and η describing the excitations over the vacuum
hΦi ¼ f ∼ Λs. The effective Lagrangian for the field Φ
then reads

LNL
EFT¼−

1

2
∂μξ∂μξ−

1

2
ð∂μΦÞ†∂μΦþμ2Φ†Φ−

λ

2
ðΦ†ΦÞ2

−Λccþ½Λ2
sκeiθ detðΦÞei

ξ
fξ þΛ2

sMΦþH:c:�; ð11Þ

where the parameters μ and λ are such that they trigger
spontaneous U(1) symmetry breaking and Λcc is the four-
dimensional cosmological constant of the Minkowski/de
Sitter spacetime arising from moduli stabilization and other
vacuum energy contributions. Uð1Þ symmetry breaking
due to the gauge instanton background is encoded by the

parameter κeiθ ∼ Λse
− 8π2

g2
2
ðΛsÞeiθ, resulting from the dominant

contributions in the instanton zero mode measure at the
strong coupling scale Λs. In the θ vacuum, the fermionic
zero modes in the gauge instanton background contribute to
the nonvanishing bilinear hψ̄ψi for Nf ¼ 1 [19,24], such
that the N-JL interactions induce an effective mass M,

M ¼ −
qLqR
M2

st
hψ̄LψRi; ð12Þ

whose explicit Uð1Þ breaking is captured by the second
linear term in Φ. The anomalous coupling of the axion ξ to
the non-Abelian topological density results in a dynamical
θ-term coupling to the ’t Hooft determinant. Hence, the
presence of the gauge instanton and scalar condensate
backgrounds is sufficient for Nf ¼ 1 to generate mass
terms for all scalar excitations and lift the mass degeneracy
between the CP-odd scalars. In the limit where f ≪ fξ, the
diagonalized axion mass matrix offers the following mass
spectrum [19]:

m2
− ¼ 2

fMκ

f2ξðM þ κÞΛ
2
s þO

�
f2

f2ξ

�
;

m2þ ¼ 2
M þ κ

f
Λs þO

�
f2

f2ξ

�
;

m2
σ ¼ 4f2λþm2þ; ð13Þ

in terms of the corresponding axion eigenbasis,

STRONG DYNAMICS AND NATURAL INFLATION PHYS. REV. D 98, 083504 (2018)

083504-3



aþ ¼ ηþO
�
f
fξ

�
ξ; a− ¼ −O

�
f
fξ

�
ηþ ξ: ð14Þ

For a non-Abelian factor N ≥ 3, and a non-Abelian
gauge coupling g22 ≳ 0.62 at a string scale Mstring ∼
Oð1017–1018 GeVÞ, one easily obtains a strong coupling
scale Λs ∼Oð1015–1016 GeVÞ so that the mass spectrum
exhibits a mass splitting with the following pattern:

m− ∼Oð1013 GeVÞ ≪ mþ < mσ ∼OðΛsÞ; ð15Þ

which is the desired mass scale for the inflaton mass m−.

III. INFLATION AND INFLADRON
CORRECTIONS

To extract a slow-roll single field inflationary model out
of the three-field model in Eq. (11), one requires a firm
handle on the quantum corrections to the scalar potential.
Allowing for nonrenormalizable corrections to Eq. (11)
leads to a set of higher order derivative and interactions
terms that are compatible with the symmetries of the model,
causality and locality, as prescribed by Weinberg’s theorem
[31]. These terms are generically suppressed by powers of
the UV-cutoff scale Λs or MSt, and many receive an
additional suppression of the order Oðf2=f2ξÞ, such that
it is allowed to work strictly with the renormalizable terms
in Eq. (11). Also the n-loop perturbative corrections to the
scalar potential due to quartic self-couplings of the infla-
drons are fully under control, upon solving the Callan-
Symanzik equation for the effective action [32]. The
composite nature of the infladrons combined with loop
corrections can yield [33] a nonminimal coupling of the
infladrons to gravity of the form ϖ

2
Φ†ΦR; yet renormal-

ization group evolution drives ϖ to the fixed point ϖ ¼ 0
in the IR, such that nonminimal coupling can be
neglected [19].
A more worrisome effect is the backreaction of the

stabilized infladrons on the inflationary trajectory for the
axion ξ, due to their displacement from their vacuum
configuration during inflation. These displacements δσ and
δη can be calculated as a function of the inflaton ξ from the
vacuum constraint equations,

δσðξÞ¼ 2MΛs

m2
σ

�
cos

ξ

fξ
−1

�
; δηðξÞ¼−

δσðξÞ
fξ

ξ; ð16Þ

and remain sufficiently small in case the Hubble scale Hinf

during inflation is much smaller than mσ , e.g., mσ ∼
1016 GeV for a scaleHinf ∼ 1014 GeV. Taking into account
the backreaction of the stabilized infladrons leads to a
backreacted scalar potential for ξ, which is flattened at the
maxima for a sufficiently large mass parameter M < κ.
The flattening in the scalar potential can have visible
repercussions for the cosmological observables, as shown

explicitly in the ðns; rÞ plot of Fig. 2: the predicted results
(orange strip) for the backreacted potential in the (Planck-
data inspired) window 3.7MPl ≲ fξ ≲ 350MPl [34] move
towards the 95% confidence region of the observational
data for increasing M.

IV. WORMHOLES AND WEAK GRAVITY

Apart from field theory corrections, one equally has to
worry about gravitational corrections and quantum gravity
constraints invalidating the inflationary setup. The Uð1Þ
symmetry constrains the form of perturbative graviton
loop-corrections, eliminating any perturbative danger to
compromise the model. The greatest threat comes from
axionic wormholes, which are supported by axion charges
wξ associated to ξ and/or by axion charges wη associated to
the infladron η. Given that the EFT in Eq. (11) is valid
below the UV-cutoff scale Mst, only axionic wormholes
with radius að0Þ bounded from below by M−1

st are to be
considered. The Giddings-Strominger wormholes [35]
associated to ξ with radius aGSð0Þ ¼ 0.14w1=2

ξ f−1=2ξ M−1=2
Pl

are thus supported by charges wξ>48fξMPlM−2
st ∼Oð106Þ,

such that the scalar potential only acquires extremely
suppressed corrections from these gravitational instantons
with action SGS ∼ wξMPl=fξ and the inflationary model is
not compromised by the considerations in [36]. Also,
the Abbott-Wise wormholes [9] with radius aAWð0Þ ¼
0.077w2=3

η λ1=6M−1
Pl can only be supported by large wη

charge [wη > 47M3=2
Pl M

−3=2
st λ−1=4 ∼Oð105Þ] and a sub-

Planckian decay constant f, such that their contribution
to the energy momentum will dominate over the Giddings-
Strominger contribution. Integrating out the Abbott-Wise
wormholes then induces Uð1Þ violating corrections,

LWH ¼
X
n

αnM4−n
st

�
Mst

MPl

�
4

Φne−SAW þ H:c:; ð17Þ

FIG. 2. ðns; rÞ plane for various inflationary models (taken
from [34]) with the predictions for the backreacted natural
inflation model represented by the orange strip, for parameter
choice Λs¼μ¼10λ¼κ¼2M¼1016GeV and log10ðfξ=MPlÞ
within the prior [0.57, 2.55].
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which equally receive a huge suppression due to the large
instanton action SAW ≈ w4=3

η λ1=3 ≫ 1 and Mst ≪ MPl.
The weak gravity conjecture (WGC) [37] offers another

well-argued criterion to test UV compatibility with quan-
tum gravity for a field theory. The massless axions in action
(4) provide the required states to satisfy theWGC in the UV
for the Uð1Þ symmetry. Below Mst, the infrared theory
retains the global Uð1Þ remnant, which is broken explicitly
by nonperturbative effects such as instantons and Euclidean
wormholes. Applying the zero-form formulation of the
WGC for the axionic inflaton ξ requires us to identify
instantons to which the axion ξ couples with decay constant
f2 and with an action Sinst constrained by Sinstf2 ≤ MPl.
Euclidean D-brane instantons [38] form the natural can-
didates, provided that their intersections with the D-branes
supporting the gauge groups in (4) give rise to a super-
potential of the form (3), with the amplitude A now a
function of the chiral fermions. In practice, the axionic
direction ðp1; p2Þ coupling to this E-brane instanton will
not align with the direction coupling to the non-Abelian
gauge group, as in Fig. 1, such that the resulting effective
decay constant f2 will be sub-Planckian and the WGC is
satisfied by such an E-brane instanton. Moreover, if the
cycle volume of the E-brane is larger than the cycle volume
of the non-Abelian gauge group, the ’t Hooft operator (7)
will be the dominant nonperturbative effect [19] and the
WGC-loophole for axions can be realized [39].

V. CONCLUSIONS

In this paper, we consider the most generic EFT for closed
string axions arising from type II compactifications with
D-branes and work out how strong non-Abelian dynamics

generate masses for the scalar excitations (infladrons and
axions). Our setup allows the realization of “naturallike
inflation” with a firm control on quantum corrections to the
scalar potential. The infladron backreaction leads to a flat-
tening of the axion scalar potential, which can alleviate the
tension with the observational CMB data. Moreover, gravi-
tational corrections such as axionic wormholes are argued to
be suppressed in this scenario. The proper functioning of this
scenario relies on the identification of a nonsupersymmetric
de Sitter vacuum through moduli stabilization [19], in which
the UðNÞ D-brane stack is wrapped around a small internal
cycle [3,40]. The promising aspects of our model invite
further investigation into quantum gravity constraints for
strongly coupled chiral gauge theories coupled to axions and
potential constraints upon confrontation with more refined
formulations of the WGC [37,39,41,42], to map out the
contours of the swampland [43].
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