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We explore cosmological constraints on the sum of the three active neutrino massesMν in the context of
dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z
by wðzÞ ¼ w0 þ waz=ð1þ zÞ, and satisfying wðzÞ ≥ −1 for all z. We make use of cosmic microwave
background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae Ia
luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models,
the bounds onMν do not degradewith respect to those obtained in the ΛCDM case; in fact, the bounds are
slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that,
for fixed choices of w0, wa such that wðzÞ ≥ −1 (but not w ¼ −1 for all z), the upper limit onMν is tighter
than the ΛCDM limit because of the well-known degeneracy between w andMν. The Bayesian analysis we
have carried out then integrates over the possible values of w0-wa such that wðzÞ ≥ −1, all of which
correspond to tighter limits on Mν than the ΛCDM limit. We find a 95% credible interval (C.I.) upper
bound of Mν < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of Mν < 0.16 eV,
obtained within the ΛCDM model, and Mν < 0.41 eV, obtained in a DDE model with arbitrary EoS
(which allows values of w < −1). Contrary to the results derived for DDE models with arbitrary EoS, we
find that a dark energy component with wðzÞ ≥ −1 is unable to alleviate the tension between high-redshift
observables and direct measurements of the Hubble constant H0. Finally, in light of the results of this
analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass
ordering by laboratory searches.
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I. INTRODUCTION

The nature of the dark energy (DE) driving the accel-
erated expansion of the Universe remains one of the
greatest open problems in cosmology [1–19]. The most
economical DE candidate is a cosmological constant (CC)
related to vacuum energy density. The equation of state
(EoS) of such a component is wDE ¼ PDE=ρDE ¼ −1,
where PDE and ρDE are the pressure and energy density
of the DE, respectively. The CC model is, however, at odds
with theoretical expectations of the magnitude of the CC,
an issue dubbed the cosmological constant problem
[20–23]. An alternative solution to this issue posits the
existence of a dynamical dark energy (DDE) component

[24–26], which implies a redshift-dependent equation of
state wðzÞ.
The value w ¼ −1 plays an important role from the

theoretical point of view, as it demarcates two very different
physical regimes [27–37]. The energy density of a com-
ponent with w < −1 increases with time as the Universe
expands. More importantly, such a component would
violate the dominant energy condition, which imposes
the inequality jPj ≤ ρ [38].1 A component with EoS
w < −1 is usually referred to as “phantom energy”. It
has been shown that a universe dominated by a phantom
DE component would end in a big rip: the dissociation of
any bound system due to the DE energy density becoming
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1We note that this issue can be avoided in models in which the
effective dark energy component appears to violate the dominant
energy condition while the full theory does not (e.g., [37]).
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infinite in a finite amount of time [39].2 Examples of
nonphantom dark energy models include many quintes-
sence models [55–58] and Cardassian cosmology [59–61].
Recent works have studied and forecasted cosmological

constraints on the sum of the three active neutrino masses,
Mν ¼

P
imi (where mi are the masses of the individual

mass eigenstates), within the context of the standard
cosmological model, the ΛCDM model, which fixes
w ¼ −1 [4,5,62–96]. The exact figures vary slightly
depending on the data sets used, but combinations of some
of the most recent and reliable data sets are converging
toward a robust 95% credible interval (C.I.) upper bound of
Mν ≲ 0.15 eV within the ΛCDM model.
It is the goal of this paper to reconsider these bounds if

one retreats from the restricted value of w ¼ −1 assumed
by ΛCDM. In our work we consider dynamical dark energy
with monotonic redshift dependence wðzÞ given by the
standard Chevallier-Polarski-Linder (CPL) parametrization
in Eq. (1) [97,98]. We use a combination of some of the
most recent and robust data sets, which include cosmic
microwave background (CMB) measurements from the
Planck satellite, baryon acoustic oscillation (BAO) mea-
surements from the SDSS and 6dFGS surveys, and super-
novae Type-Ia (SNeIa) luminosity distance measurements
from the JLA catalogue.
One might worry that the neutrino mass bounds could

weaken dramatically if the parameter space is enlarged to
allow for values of the equation of state other than w ¼ −1.
Indeed, recent work showed that the cosmological bounds
onMν are weaker when one enlarges the parameter space to
other values of wðzÞ including phantom values w < −1. In
fact, there exists a well-known degeneracy between the DE
EoS w and the sum of the three active neutrino masses Mν

[66,99–114]. However, the main result of our paper is that
the cosmological bounds on neutrino masses, in fact,
become more restrictive for the case of a DE component
with wðzÞ ≥ −1 than for the standard ΛCDM case of
w ¼ −1. A comprehensive explanation for this effect will
be provided.
From neutrino oscillation data, we know that at least two

out of the three neutrino mass eigenstates mi should be
massive, as two different mass splittings between the three
active neutrinos are measured. We also know that the
smallest mass splitting governs solar neutrino transitions
and that it is positive. However, current data are not able to
determine the sign of the largest mass splitting, which
governs atmospheric neutrino transitions. Therefore, we are
left with two possibilities: either the largest mass splitting is
positive [normal ordering (NO)] or it is negative [inverted
ordering (IO)]. Neutrino oscillation data are currently

unable to distinguish between the two possible scenarios.
Nevertheless, they impose a lower limit to Mν of
Mν;min ≃ 0.1 eV within IO and Mν;min ≃ 0.06 eV within
NO [74,76,115–122].
If one performs a Bayesian analysis, then we find

that our bounds imply a mild preference for NO due to
parameter space volume effects. Indeed, the available mass
range is larger for NO because it goes all the way down to
Mν ≃ 0.06 eV rather than only down to Mν ≃ 0.1 eV for
IO. We quantify this preference in terms of probability odds
that we compute following Refs. [66,123]. If future
laboratory experiments determine the mass ordering to
be inverted, and if we exclude nonstandard physics in either
the neutrino or the gravitational sector, one could conclude
that the current accelerated expansion of the Universe is
likely driven by a component with wðzÞ < −1 within DDE
models.
The paper is structured as follows: in Sec. II, we

introduce the parametrization adopted for the DDE com-
ponent, and the conditions imposed on the parameters of
the DDEmodel to satisfy wðzÞ ≥ −1; in Sec. III, we present
the statistical approach and the data set employed in this
analysis. We discuss the results of this analysis in Sec. IV
and we finally conclude in Sec. V. For the busy reader
who wants to skip to the main results, a summary of the
bounds obtained is available in Table I, and useful visual
representations of the same results are also provided in
Figs. 1 and 4.

II. DYNAMICAL DARK ENERGY
PARAMETRIZATIONS

The simplest parametrization of a DDE component is the
CPL parametrization [97,98]. In CPL models, the EoS w is
parametrized as a function of redshift z as

wDDEðzÞ ¼ w0 þ wa
z

1þ z
; ð1Þ

where w0 ¼ wDDEðz ¼ 0Þ denotes the DE EoS at the
present time. This equation corresponds to the first two
terms in a Taylor expansion of the EoS in powers of the
scale factor a ¼ 1=ð1þ zÞ, around the present time. The
truncated expansion of Eq. (1) is appropriate if the DE EoS
is sufficiently smooth and does not oscillate in cosmic
time.3

It follows from Eq. (1) that the nonphantom (NP)
[wðzÞ ≥ −1] condition can be satisfied by imposing the
following hard priors:

2A notable exception is found in the case when wðzÞ → −1
asymptotically in the future (that is, where the future geometry is
asymptotically de Sitter) [40]. This occurs, for instance, in bimetric
gravity [41–44] as well as in other modified gravity theories (see,
e.g., [45–49]) or more complex dark energy scenarios [50–54].

3For models where the DE EoS oscillates, different parametri-
zations are required, such as those proposed in Refs. [124–126] or
used in recent observational studies [127–129]. It is beyond the
scope of this work to extend our considerations on the neutrino
mass bounds to these types of DE models.
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w0 ≥ −1; w0 þ wa ≥ −1ðNPÞ: ð2Þ

The first prior imposes the nonphantom condition at present
time (z ¼ 0). The second prior imposes the same condition
in the far past, since limz→∞wDDEðzÞ ¼ w0 þ wa. The EoS
in Eq. (1) is monotonic. Therefore, it is sufficient to impose
the NP condition both at the present time and in the far past
for the NP condition to hold throughout the Universe
expansion history.
The energy density of a dark energy component corre-

sponding to Eq. (1) takes the form

ΩDEðzÞ¼ΩDE;0ð1þ zÞ3ð1þw0þwaÞ exp
�
−3wa

z
1þ z

�
; ð3Þ

where ΩDE;0 is the current dark energy density. The DE
component dominates over the other components for
0 < z≲ zmDE, with zmDE ≈ 0.3 the redshift of matter-dark
energy equality. In this range of redshifts, the energy
density of a nonphantom dynamical dark energy model
with wðzÞ ≥ −1 is always greater than that of a corre-
sponding CC model with the same ΩDE;0.
A wide class of smooth nonphantom dynamical dark

energy models can be probed if we make use of the EoS
given by Eq. (1) and we impose the priors in Eq. (2). We
shall refer to this class of models with the acronym NPDDE
(nonphantom dynamical dark energy). Let us emphasize
that the priors in Eq. (2) are crucial in the derivation of the
results we obtain. These priors ensure the stability of the
dark energy component and differ from priors considered in
previous analyses in the literature [130–138].

III. DATA SETS AND ANALYSIS METHODOLOGY

We compute constraints on the sum of the three active
neutrino masses Mν with a combination of the most recent
cosmological data sets. We consider measurements of the
CMB temperature anisotropies (TT) from the Planck 2015
data release [139]. We impose a Gaussian prior on the
optical depth to reionization of τ ¼ 0.055� 0.009 as a
proxy for measurements of CMB polarization at large
scales from the upcoming Planck 2018 release. This prior
choice is motivated by the 2016 Planck reanalyses of low-
resolution maps in polarization from the Planck High
Frequency Instrument [140]. In addition to CMB measure-
ments, we consider BAO measurements from the following
catalogues: the SDSS-III BOSS DR11 CMASS and LOWZ
galaxy samples [141], the DR7Main Galaxy Sample (MGS)
[142], and the 6dFGS survey [143]. We also include SNeIa
luminosity distancemeasurements from theSDSS-II/SNLS3
Joint Light-Curve Analysis (JLA) catalogue [144–146]. We
refer to the combination of the CMB TT, τ prior, BAO, and
SNeIa data sets as “base.”
We also consider the inclusion of CMB polarization and

temperature-polarization spectra (TE, EE) at small scales
(l > 30) from the Planck 2015 data release [139] to the

baseline data set. We refer to the combination of the CMB
TT, TE, EE, τ prior, BAO, and SNeIa data sets as “pol.”
The cosmological model is described by the usual six

parameters of the ΛCDM model: the baryon and cold dark
matter physical energy densities Ωbh2 and Ωch2, the
angular scale of the acoustic horizon at decoupling Θs,
the optical depth to reionization τ, as well as the amplitude
and tilt of the primordial power spectrum As and ns. To this
set of parameters, we add the DE EoS parametersw0 andwa,
and the sumof the three active neutrinomassesMν.Wemake
use of the publicly available Markov chain Monte Carlo
(MCMC) packageCOSMOMC [147] to efficiently sample the
parameter space.
The treatment of Mν deserves a further comment. First,

we assume three massive degenerate neutrinos, i.e., three
massive eigenstates with equal mass Mν=3. This assump-
tion is a valid approximation of the true neutrino mass
spectrum, given the current sensitivity of cosmological data
[73,107,148].
Next, we impose a top-hat prior of Mν ≥ 0 eV. For the

purposes of obtaining bounds on neutrino mass from
cosmology, we ignore the lower limit Mν;min ≃ 0.06 eV
set by neutrino oscillation experiments.4 We believe this
choice is appropriate for the purpose of this work, because
it ensures a bound on Mν relying exclusively on cosmo-
logical data. For recent works discussing different choices
of prior on Mν, see, for instance, Refs. [150–157].
Moreover, it is fair to say that the only truly a priori

information aboutMν is its positivity, i.e.,Mν ≥ 0 eV. The
fact that Mν ≥ 0.06 eV coming from oscillation experi-
ments is not a priori but, in fact, a posteriori of the
oscillation experiments. While the fact that Mν ≥ 0.06 eV
can be incorporated as a prior, it is perhaps formally more
correct to include it as an external oscillations likelihood.5

When viewed from this perspective, it is absolutely clear
how our choice of adopting the priorMν ≥ 0 eV is actually
independent of the choice of relying exclusively on

4We note that the prior Mν ≥ 0 eV is in principle improper
since it is unconstrained for Mν → ∞ (see [149] for details about
proper priors in the astronomy literature). In practice, we adopt a
cutoff at Mν;max ¼ 3 eV, which makes our prior proper for all
intents and purposes. This choice ensures that a large region of
the parameter space is sampled, including regions where we
already expect the posterior probability to be vanishing from
previous experiments (i.e., the region Mν ≫ 1 eV). These
unlikely regions of the parameter space are, in fact, quickly
discarded by the MCMC sampling algorithm, and only the region
of highest posterior probability density is effectively sampled. For
the purposes of our analysis, this is equivalent to taking the limit
Mν;max → ∞, making our proper prior de facto a proxy for the
improper prior we describe above. Our result is unaffected by any
other choice of a sufficiently high value of Mν;max, as long as the
posterior probability density for Mν > Mν;max is known to be
vanishingly small (from previous experiments, analytical con-
siderations, or any other argument).

5We thank the referee for bringing this argument to our
attention in a very clear way.
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cosmological data, but rather reflects the only genuine
a priori information really present in the problem. The
choice of relying exclusively on cosmological data is
instead reflected in our choice of not including the
oscillations likelihood. Nonetheless, in Appendix A, we
briefly discuss the impact including oscillation data. We
find that including the oscillations likelihood (in the
approximate, but still appropriate to zeroth order, form
we choose) has no impact on the conclusions of our work.
We further note that for all intents and purposes, as far as
upper limits on Mν (which are the subject of this work) are
concerned, the oscillations likelihood can be to zeroth
approximation included as a sharp cutoff atMν ¼ 0.06 eV,
because the uncertainty to which Mν;min ≃ 0.06 eV is
subject is extremely tiny (but an uncertainty is nonetheless
present, whereas the physical lower bound Mν ≥ 0 eV is
instead subject to no uncertainty).
In any case, we believe that the approach adopted in this

work also allows for a consistency check of the underlying
cosmological model. Suppose that we assume a certain
cosmological model, and then obtain a cosmological bound
on Mν which lies significantly below ∼0.06 eV. Such a
cosmological bound would indicate that either the cosmo-
logical model in question is in tension with results from
oscillation experiments or that nonstandard neutrino physics
is required. For example, models with nonstandard neutrino
interactions leading to a vanishing neutrino energy density
today have been proposed [158]. In these cases, the cutoff of
theMν prior atMν ¼ 0 eV can be viewed as a phenomeno-
logical proxy of the effect of a lower energy density of
neutrinos with respect to the limits imposed by neutrino
oscillation measurements. Note that we are implicitly
excluding the possibility that such a finding could be a
signal for unaccounted systematics in the data set employed.
Finally, we combine results from cosmology and neu-

trino oscillation experiments to quantify the preference for
one of the two neutrino mass orderings. In this part of the
work, we do impose lower bounds on neutrino mass from
oscillation experiments, although we previously did not use
them in obtaining bounds on neutrino masses. We follow
the Bayesian approach illustrated in [66,123]. We denote
by πðIÞ, πðNÞ the prior probabilities for the normal and
inverted ordering, respectively. Then, we compute pO
(where O ¼ N, I), the posterior probabilities for each of
the two orderings, as follows:

pO ¼ πðOÞR∞
0 dm0LðDjm0;OÞ

πðNÞR∞
0 dm0LðDjm0;NÞþπðIÞR∞

0 dm0LðDjm0; IÞ
:

ð4Þ

In Eq. (4), m0 is the mass of the lightest neutrino eigenstate
and LðDjm0; OÞ is the likelihood of cosmological data D.
The above Eq. (4) implicitly assumes a cutoff m0;max → ∞
in the prior probability for m0. Moreover, m0;max should
take the same value for both orderings and be large enough

so as not to cut the prior in a region where the posterior
would otherwise be significantly different from zero (so
that it is effectively the data through the likelihood, rather
than the prior itself, which cuts the region of high m0; see
footnote 4 for a previous related discussion when consid-
ering the formally improper prior onMν). In this way, both
the numerator and the denominator should formally contain
a 1=m0;max normalization factor, which then cancels
out when taking the ratio appearing in Eq. (4). We take
LðDjm0; OÞ from the analysis of cosmological data illus-
trated in this work. We use the values of πðIÞ, πðNÞ from
the global Bayesian analysis of neutrino oscillation mea-
surements [117]. For further details about how to compute
LðDjm0; OÞ and get to Eq. (4), we refer the reader to the
thorough discussions in [66,123]. We convey the results in
terms of probability odds of normal versus inverted order-
ing (pNO∶pIO).
We follow the approach of [66,123] as it is a quick, yet

reliable, way to quantify the preference for the normal
ordering in different cosmological scenarios. The method
used in this work should be kept in mind when one
compares the results quoted here with results from other
works. Indeed, we remind the reader that alternative
approaches can be adopted to quantify the statistical
preference for the neutrino mass ordering [74,150,159].
For the sake of comparison, in Appendix B we report an
alternative estimate of the sensitivity to the mass ordering
based on the Akaike information criterion (AIC). The
specific outcomes of each analysis should be interpreted
only in light of the method adopted.

IV. RESULTS

In this section, we present the bounds on the sum of the
three active neutrinomasses; we provide a thorough physical
explanation of the results; we discuss the Bayesian statistical
approach we have used, as well as the dependence of our
results on this approach; andwe conclude by commenting on
the implications of our results for the determination of the
neutrino mass ordering.

A. Bounds on neutrino masses

Table I shows theboundson the sumof theneutrinomasses
Mν for three cases: (a) a dark energy component satisfying the
dominant energy condition, with EoSwðzÞ ≥ −1 throughout
the expansion history of the Universe [nonphantom dynami-
cal dark energy (NPDDE)]; (b) the standard cosmological
model (ΛCDM) with cold dark matter and a cosmological
constant wherewðzÞ ¼ −1 is fixed; (c) a generic DDEmodel
with EoS given by the CPL parametrization, Eq. (1), with w0

and wa free to vary even within the phantom region where
wðzÞ < −1. We refer to this last model as w0waCDM.
Constraints on Mν are presented for the two different
combinations of cosmological data sets, base and pol,
described at the beginning of Sec. III.
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For theΛCDMmodel, we find 95% C.I. upper bounds of
Mν < 0.16 eV for the base data set and Mν < 0.13 eV for
the pol data set. When we instead assume the more generic
w0waCDM model that also allows for wðzÞ < −1, the
95% C.I. upper bound on Mν is significantly relaxed to
Mν < 0.41 eV for the base data set and Mν < 0.37 eV for
the pol data set. These broader bounds are expected, given
the well known degeneracy between Mν and an arbitrary
DDE component.
We now consider aNPDDEmodel and imposewðzÞ ≥ −1

throughout the expansion history. In this case, we find
the stringent 95% C.I. upper bounds of Mν < 0.13 eV for
the base data set and Mν < 0.11 eV for the pol data set.

Therefore, we find that the constraints on the sum of the
neutrino masses in dynamical dark energy models with
wðzÞ ≥ −1 are slightly tighter than those obtained in
ΛCDM, despite the enlarged parameter space (two extra
parameters) in NPDDE models. We note that the upper
bounds foundwithin theNPDDEmodel are alsovery close to
the minimal mass allowed in the inverted ordering sce-
nario, Mν;min ≃ 0.1 eV.
Figure 1 depicts the one-dimensional posterior probabil-

ities of Mν for the w0waCDM generic DDE case (in blue
lines), the ΛCDM case (in black lines), and the NPDDE
model withwðzÞ ≥ −1 (in red lines). Results for the two data
set combinations employed in this work are shown: solid
lines for base, dashed lines for pol. For each data set
combination, the significant shift of the upper bounds on
Mν to smaller values is visually clear as one moves from the
blue to the red curves. The vertical black dot-dashed line
corresponds to theminimalmass ofMν;min ≈ 0.1 eV allowed
by neutrino oscillation data within the inverted ordering.

B. Physical explanation of results

We have observed that the bounds onMν in the NPDDE
model are not weaker—and actually slightly tighter—than
those in ΛCDM. Here we provide the physical explanation
for these results. The reader can refer to Refs. [101–107] for
comprehensive reviews of the effects of massive neutrinos
in cosmology.6

TABLE I. The 95% C.I. upper bounds on the sum of the neutrino massesMν. Columns correspond to the different
cosmological models assumed in this work: (a) a dark energy component satisfying the dominant energy condition,
with EoS parametrized through Eq. (1) and satisfying wðzÞ ≥ −1 throughout the expansion history of the Universe
(NPDDE); (b) the standard cosmological model (ΛCDM) with cold dark matter and a cosmological constant where
wðzÞ ¼ −1 is fixed; (c) a generic DDE model with EoS given by the CPL parametrization, Eq. (1), with w0 and wa
free to vary even within the phantom region where wðzÞ < −1 (w0waCDM). Rows report the constraints on Mν for
two different combinations of cosmological data sets, base and pol. These two combinations include CMB, BAO,
and SNeIa data, and they only differ in the use of CMB polarization data at small scales, as described in the text at
the beginning of Sec. III.

wðzÞ ≥ −1ðNPDDEÞ wðzÞ ¼ −1ðΛCDMÞ w0waCDM

Data set: base Mν < 0.13 eV Mν < 0.16 eV Mν < 0.41 eV
Data set: pol Mν < 0.11 eV Mν < 0.13 eV Mν < 0.37 eV

FIG. 1. One-dimensional posterior probabilities of the sum of
the three active neutrino masses Mν (in eV) for three cases: the
w0waCDM generic DDE case which allows for values of w both
smaller than or larger than −1 (in blue lines), the ΛCDM case (in
black lines), and the NPDDE model with wðzÞ ≥ −1 (in red
lines). Results have been obtained using a Bayesian analysis that
marginalizes over all applicable w0, wa values, and are shown for
the two data set combinations employed in this work as described
at the beginning of Sec. III: solid lines for base (using CMB,
BAO, and SN data), dashed lines for pol (also including CMB
polarization at small scales). The vertical black dot-dashed line
corresponds to the minimal mass of Mν;min ≈ 0.1 eV allowed by
neutrino oscillation data within the inverted ordering.

6Modifying the assumed expansionary history of the Universe
will generically lead to different conclusions concerningMν. The
reason is that the effect ofMν on cosmological data is degenerate
with other parameters governing the expansionary history, such
as the DE EoS w: in other words, the effect on cosmological
observables of a change in Mν (for instance, the resulting change
in the distance to last scattering, further discussed later in this
section) can be compensated by adjusting these other parameters.
Therefore, an expansionary history which is different from
ΛCDM leads to bounds on Mν which are different from those
obtained assuming ΛCDM. Obviously, the same is true if the
expansionary history is restricted to a class of models of which
ΛCDM represents a particular case: in our case, ΛCDM repre-
sents the particular case of the NPDDE class of models, when
w0 ¼ −1 and wa ¼ 0.
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The CMB temperature data accurately constrain the
position and amplitude of the first acoustic peak in the
CMB power spectrum. These constraints entail a very
precise determination of the angular size of the sound
horizon at decoupling Θs and of the redshift of matter-
radiation equality zeq. Therefore, any change in the DE
sector should be compensated by shifts in the other
cosmological parameters such that Θs and zeq remain
approximately fixed.
The angular size of the first peak Θs is defined as the

ratio between the sound horizon at decoupling rs and the
angular diameter distance to last scattering DA. The sound
horizon at decoupling rs is essentially fixed by pre-
recombination physics. It is thus unaffected by changes
in the dark energy sector, which are only relevant at late
times. The angular diameter distance to last scatteringDA is
instead sensitive to the late-time evolution of the Universe.
Therefore, DA is affected by the physics of dark energy.
In order to keep Θs unchanged in the NPDDE frame-

work, it is necessary that DA remains fixed as well. Up to
proportionality factors, DA is given by

DAðzLSÞ ∝
1

H0

Z
zLS

0

dz
EðzÞ ; ð5Þ

where zLS denotes the redshift of last scattering. The
function EðzÞ denotes the Hubble parameter at redshift z
normalized by its value today. In the NPDDE model it is
given by

EðzÞ¼HðzÞ
H0

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩcþΩbÞð1þ zÞ3þΩDEðzÞþΩνðzÞ

q
: ð6Þ

In the above equation, Ωc and Ωb are the current cold dark
matter and baryon energy densities, respectively, ΩDEðzÞ is
the dark energy density given by Eq. (3), and ΩνðzÞ is the
neutrino energy density. At late times, after neutrinos
become nonrelativistic, Ωνh2 ≈Mνð1þ zÞ3=93.14 eV,
where h ¼ H0=ð100 km s−1 Mpc−1Þ. In writing Eq. (6),
we are neglecting the contribution of the photon energy
density Ωγ, which is negligible at the redshifts under
consideration.
It is easy to show that the normalized expansion rate

EðzÞ at late times is higher in a NPDDE universe than in a
ΛCDM one for fixed values of Ωc, Ωb, Mν, and ΩDE;0, as
we shall comment more on below and in Fig. 3. The
integral in Eq. (5) at fixed Mν is therefore smaller in the
NPDDE case than in the ΛCDM one. In order to keep DA
fixed, one is left with the option of decreasing both H0 and
Mν. This option is preferred over the choice where one
parameter is decreased by a greater amount while the other
parameter is kept fixed, since in the latter case the more
sizable decrease of the first parameter can lead to undesired

changes in other regions of the CMB spectra, despite Θs
being kept fixed. One could argue that the same effect can
be obtained by decreasing Ωc and/or Ωb. However, this
choice would alter the redshift of matter-radiation equality,
which is accurately constrained by the amplitude of the first
acoustic peak in the CMB power spectrum. Therefore, it is
not the preferred choice. This physical explanation for the
shifts in the bounds of Mν is fully supported by the results
of our Monte Carlo analyses. In particular, we have verified
that the posterior of Θs is nearly unchanged when moving
from the ΛCDM scenario to the NPDDE model.
From the explanation above it follows that in NPDDE

models we expect a lower Hubble constant H0 and/or a
lower sum of the neutrino masses Mν compared to the
ΛCDM case. The shifts inH0 andMν are necessary to keep
Θs fixed. Therefore, the very strong anticorrelation (degen-
eracy) between Mν and H0 present in ΛCDM is weakened
in NPDDE models. Note also that in NPDDE models we
expect a lower value of σ8, thus reducing the tension
between primary CMB and cluster counts/weak lensing
measurements (see, e.g., [160–174] for some works exam-
ining this tension and possible solutions).
In Fig. 2 we show the two-dimensional joint H0-Mν

posterior for the base data set. The blue contours are
obtained in the ΛCDM model, the red contours in the
NPDDEmodel where wðzÞ ≥ −1, and the grey contours for
the more generic w0waCDM model where also wðzÞ < −1
is allowed. The horizontal dashed line corresponds to
Mν;min ≃ 0.1 eV, the minimal value allowed by neutrino
oscillation data in the inverted ordering scenario. The
difference between the blue contours (ΛCDM) and the
red contours (NPDDE model) is compatible with the shifts
in H0 andMν required to keep Θs fixed. The green band in
Fig. 2 corresponds to the 68% C.I. forH0 inferred by direct
measurements from the Hubble Space Telescope [175,176].
From Fig. 2, it is clear that the tension between direct
measurements and cosmological estimates of H0 is not
resolved, and actually worsened, within a NPDDE model.
The tension can be partially alleviated by a generic dark
energy component (the w0waCDM model) able to access
the region wðzÞ < −1 (grey contours) [177–206].7 We have
checked that similar considerations apply to the corre-
sponding contour plot obtained with the pol data set.
From Fig. 2 we also see that the anticorrelation (degen-

eracy) betweenMν andH0 is weakened when moving from
ΛCDM (blue contours) to NPDDE models (red contours).

7A notable exception to this statement is, however, provided by
running vacuum models (RVM), motivated by quantum field
theoretical considerations [207]. Studies have shown that RVMs,
which appear to be statistically preferred over ΛCDM, can
address the H0 tension, but do so invoking a nonphantom dark
energy component (with the value w ¼ −1 being preferred; see,
e.g., [173,174,208–215] for some recent works). Notice that
RVMs point toward values of H0 which are closer to the CMB
inferred value.
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The magnitude of the degeneracy is reflected by the tilt of
the main axes of the ellipsoidal Mν-H0 contours. The
contour in the ΛCDM case is visibly more inclined than the
NPDDE one. The weakening of theMν-H0 degeneracy can
be rigorously quantified by computing the correlation
coefficient between the two parameters. The correlation
coefficient between two parameters i and j, Rij, is defined
as Rij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, where C is the covariance matrix of

the cosmological parameters (in our case i ¼ Mν and
j ¼ H0), estimated from our MCMC runs. For the base
[pol] data set, we find a correlation coefficient of −0.43
[−0.50] in the ΛCDM case, which is lowered to −0.14

[−0.16] in the NPDDE case. Therefore, the correlation
between the two parameters is strongly reduced in moving
from ΛCDM to NPDDE models.
We shall now demonstrate that the late-time expansion

rate EðzÞ is higher in a Universe with wðzÞ ≥ −1 compared
to ΛCDM. We shall also identify the redshift range
in which this effect is most prominent. We define the
following quantity:

EðzÞ≡
�
EðzÞjΛCDM
EðzÞjNPDDE

�
2
����
Ωm;ΩDE;0

− 1; ð7Þ

where jΛCDM and jNPDDE indicate that EðzÞ is evaluated in a
ΛCDM universe or in a universe with wðzÞ ≥ −1, respec-
tively. The notation jΩm;ΩDE;0

denotes thatΩm¼ΩcþΩbþΩν

and ΩDE;0 are kept fixed when moving from ΛCDM to
NPDDE. EðzÞ ¼ 0 therefore corresponds to the ΛCDM
case. A negative EðzÞ instead indicates that the expansion
rate normalized by H0 is higher in the NPDDE model
compared to ΛCDM. Note that EðzÞ is closely related to
other diagnostics used in the literature to probe the DE
evolution, such as the Om diagnostic [216]. In Fig. 3, EðzÞ
is plotted for three choices of w0, wa. All of the choices
satisfy the stability priors imposed by Eq. (2) and ensure
that wðzÞ ≥ −1.

FIG. 2. Two-dimensional probability contours in the H0-Mν

plane. The blue contours are obtained for the ΛCDM model, the
red contours are for a dynamical dark energy model with EoS
parametrized by Eq. (1) and satisfying wðzÞ ≥ −1 (NPDDE), and
the grey contours are for a generic dark energy model with EoS
parametrized by Eq. (1). The green band indicates the 68% C.I.
for H0 from direct measurements of the Hubble Space Telescope
[175,176]. The horizontal dashed line corresponds to
Mν;min ≃ 0.1 eV, the minimal value for the sum of the neutrino
masses allowed in the inverted ordering scenario by neutrino
oscillation data. When moving from the ΛCDM contours (blue)
to models with wðzÞ ≥ −1 (red), the shifts of H0 and Mν to
smaller values are evident. These shifts are necessary to keep the
angular scale of the sound horizon at recombination Θs fixed; see
discussion in the main text. It is also clear that the Mν-H0

degeneracy is weakened when moving from ΛCDM to models
with wðzÞ ≥ −1 (NPDDE). For further information, see the
discussion in the main text concerning the Mν-H0 correlation
coefficient, which is reduced from −0.43 (ΛCDM) to −0.14
(NPDDE). The tension between direct measurements of H0 and
cosmological estimates is not resolved by a dark energy compo-
nent with wðzÞ ≥ −1. The tension is partially alleviated by a
generic dark energy component which can access the wðzÞ < −1
region (grey contours). The contour regions are obtained for the
base data set combination of CMB, BAO, and SNeIa data, with
no CMB small scale polarization data. Similar considerations
apply to the contours derived from the combination which also
includes small scale CMB polarization data.

FIG. 3. EðzÞ, defined in Eq. (7), quantifies the difference in the
normalized expansion rate HðzÞ=H0 between a dynamical dark
energy model with equation of state wðzÞ ≥ −1 (NPDDE) and a
ΛCDM model. The quantity EðzÞ is plotted for sample cosmol-
ogies with w0 ¼ −0.95; wa ¼ −0.05 (blue curve), w0 ¼ −0.9;
wa ¼ −0.1 (green curve),w0 ¼ −0.8; wa ¼ −0.2 (red curve), and
w0 ¼ −1; wa ¼ 0 [black curve, ΛCDM, where EðzÞ ¼ 0]. We
have fixed Ωm;0 ¼ 0.3 and ΩDE;0 ¼ 0.7. The negative EðzÞ
indicates that the normalized expansion rate is higher in the
NPDDE model compared to ΛCDM. The four vertical dashed
lines indicate the redshift of the four BAO measurements
we consider in this work: 6dFGS (cyan line), SDSS MGS
(orange line), BOSS DR11 LOWZ (purple line), and BOSS
DR11 CMASS (green line). The grey shaded band refers to the
redshift coverage of the JLA Supernovae Ia sample. Thus the
measurements considered in this work probe the redshift range in
which the dip in EðzÞ is most prominent.
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Figure 3 clearly shows that EðzÞ is negative at low
redshifts, as expected from the above discussion. EðzÞ also
shows a minimum for z ≈ 0.5 for values of w0 and wa that
are allowed by cosmological data. The four vertical dashed
lines indicate the redshift of the four BAO measurements
we consider in this work. The grey shaded band refers to
the redshift coverage of the JLA supernovae Type-Ia
sample we consider in this analysis. Thus, we see that
the measurements adopted in this work cover the redshift
range where the difference between EðzÞ and EðzÞ ¼ 0 is
largest. Therefore, the redshift range of current BAO and
SNeIa measurements is ideal to probe the dynamics of
nonphantom [wðzÞ ≥ −1] dark energy.

C. Comment on the Bayesian statistical
approach adopted

Here we comment on the a priori counterintuitive fact
that the bounds onMν in the NPDDEmodel are tighter than
those in ΛCDM, despite the fact that ΛCDM represents
the limiting case of NPDDE when w0 ¼ −1 and wa ¼ 0.
Indeed, these tighter bounds are a result of our use of a
Bayesian statistical approach [217,218].
To explain our results, we begin by fixing the parameters

w0 and wa to specific values not corresponding to ΛCDM
(i.e., w0 ≠ −1 and wa ≠ 0), yet still satisfying wðzÞ ≥ −1.
Following the explanation of the previous section, we
expect that the bounds on Mν must become ever tighter
as the dark energy model gets farther away from ΛCDM.
We will study specific cases below and find that these
expectations are met. Therefore, a Bayesian analysis
marginalizing over the range of w0, wa values satisfying
wðzÞ ≥ −1 is expected to obtain a bound on Mν which is
slightly tighter than theΛCDM one, as shown by the results
in Sec. IVA.
Specifically we considered four test cases: (a) w0 ¼

−0.95, wa ¼ 0, (b) w0 ¼ −0.95, wa ¼ 0.05, (c) w0 ¼ −0.9,
wa ¼ 0, and (d) w0 ¼ −0.85, wa ¼ 0, and found 95% C.I.
upper bounds of (a) Mν < 0.13 eV, (b) Mν < 0.12 eV,
(c) Mν < 0.11 eV, and (d) Mν < 0.08 eV. Indeed, the
bounds on neutrino mass are tighter than in the case of
standard ΛCDM.
The posterior distributions of Mν are shown in Fig. 4, in

dashed light blue, dashed purple, dashed yellow, and
dashed red lines for cases (a)–(d), respectively. The
ΛCDM bound is instead represented by the solid black
line. It is visually clear that the bounds for these cases are
all tighter than the ΛCDM one. For pedagogical purposes
we have also considered two cases where w0 ≠ −1 and
wa ≠ 0 are instead fixed to values such that wðzÞ ≥ −1 is
not satisfied: (e) w0 ¼ −1.05, wa ¼ 0, and (f) w0 ¼ −1.05,
wa ¼ 0.05. The corresponding posterior distributions
are shown in dashed dark blue and dashed green lines
in Fig. 4 and correspond to 95% C.I. upper bounds of
(e) Mν < 0.19 eV and (f) Mν < 0.18 eV. As per our
expectations, the bounds for cases (e) and (f) are looser

than the ΛCDM one. To further back up this argument, we
show a triangular plot in Mν-w0-wa space in Fig. 5, where
we compare constraints obtained assuming the w0waCDM
model (blue contours) and the NPDDE model (red con-
tours). From there it is clear that restricting the allowed
region to the NPDDE parameter space inevitably selects the
region of parameter space with very low Mν, due to the
direction of the mutual Mν-w0-wa degeneracies.
In the Bayesian statistical approach adopted to obtain

the results in Sec. IVA, w0 and wa are not fixed, but rather
varied. Subsequently, the uncertainty in w0 and wa is
integrated out by the process of marginalization, leading
to the marginalized posterior on Mν. Heuristically, this
procedure can be viewed as a weighted average over the
range of prior possibilities of w0 andwa, with weights given
by the value of the prior in that particular point of parameter
space. For each of these prior possibilities of w0 and wa, we
have already seen that the corresponding bound on Mν is
tighter than the ΛCDM bound; see examples (a)–(d) above
as well as the green-shaded region in Fig. 4. Therefore, the
weighted average of such bounds is expected to not be

FIG. 4. One-dimensional posterior probabilities of the sum of
the three active neutrino masses Mν (in eV) for a selection
of cosmological models with w0 and wa fixed, described in
Sec. IV C. Models (a)–(d) have w0 and wa fixed to values
satisfying the condition wðzÞ ≥ −1, and are represented by the
dashed light blue, dashed purple, dashed yellow, and dashed red
curves, respectively. Models (e) and (f) have w0 and wa fixed to
values not satisfying the condition wðzÞ≥−1, and are represented
by the dashed dark blue and dashed green curves, respectively.
The ΛCDM result corresponds to the solid black line. The region
where wðzÞ ≥ −1 is satisfied is shaded in green and labeled
“Non-phantom”; conversely, the region where wðzÞ ≥ −1 is not
satisfied is shaded in pink and labeled “Phantom.” It is clear that
the bounds onMν for models where w0 and wa are fixed to values
satisfying wðzÞ ≥ −1 are always tighter than the ΛCDM bound.
Therefore, a Bayesian analysis marginalizing over the range of
w0, wa values satisfying wðzÞ ≥ −1 is expected to obtain a bound
onMν which is slightly tighter than the ΛCDM one, as shown by
the results in Sec. IVA.
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weaker than the ΛCDM constraint, as confirmed by our
results in Sec. IVA. This explains the a priori counterin-
tuitive fact that the upper limits on Mν for the NPDDE
model are slightly tighter than the ΛCDM limit despite the
enlarged parameter space.

D. Implications for the determination
of the neutrino mass ordering

Finally, we comment on the implications that the results of
this work could have for the determination of the neutrino
mass ordering. By integrating the posterior distributions of
Mν for both the base and pol data sets (solid red and dashed
red lines in Fig. 1, respectively) it is straightforward to show
that a significant fraction (≳90%) of the Mν posterior
probability lies in the range Mν < 0.1 eV. This region is
precluded to the inverted mass ordering by neutrino oscil-
lation data.
Should noncosmological probes such as long-baseline

neutrino oscillation experiments (e.g., T2K [219], NOvA
[220], or DUNE [221]) establish that the neutrino mass
ordering is inverted, the viability of dark energy models with
wðzÞ ≥ −1 could be jeopardized. This conclusion holds if we
exclude exotic physics at play in the cosmological neutrino
sector and/or in the gravitational sector. Examples of such
exotic models are those with nonstandard neutrino

interactions predicting a vanishing neutrino energy density
today [158] or mass-varying neutrinos [222–225], and
models of modified gravity where the bounds on Mν could
be significantly different from those in ΛCDM [226–234].
Therefore, we have brought to light a subtle and perhaps

unexpected connection between two at first glance
seemingly disconnected fields: neutrino oscillation experi-
ments and the nature of dark energy. In the near future,
results from the former might be able to shed important
light on the latter. It is also worth noticing that our findings
could also be very interesting in light of the recently
revived Swampland conjectures [235–237] (see also, e.g.,
[238–250]), which suggest that it is not possible to
construct metastable de Sitter vacua in a controlled way
within string theory. As a corollary, if string theory is the
correct high-energy description, the current period of
accelerated expansion should be sourced by a quintessence
field, e.g., through slowly rolling moduli fields which
naturally arise in string compactification scenarios. If future
long baseline experiments should find the neutrino mass
ordering to be inverted, this scenario would naturally be put
under pressure, with extremely interesting implications
concerning viable high-energy theories.
Finally,we quantify the preference for the normal ordering

within NPDDE models in terms of probability odds
(pNO∶pIO). We adopt the methodology outlined in
Sec. III. For the NPDDE model, where wðzÞ ≥ −1, we find
that the normal ordering is mildly preferred with posterior
odds∼2∶1 for the base data set and∼3∶1 for the pol data set.
We compare these figures to those obtained in the

generic w0waCDM model. In this case, we find no
preference for any of the two orderings for both the base
and pol data sets (posterior odds of ∼1∶1). When assuming
the standard ΛCDM cosmological scenario, we find a mild
preference for normal ordering of ∼2∶1 for both the base
and pol data set combinations.
Finally, in Appendix B, we provide an alternative

approach to quantify the preference for the normal ordering.
This alternative approach is based on the AIC estimator for
the relative quality of statistical models. The findings are
qualitatively in agreement with those reported in this section.

V. SUMMARY AND DISCUSSION

A DDE component driving cosmic acceleration provides
an alternative to the cosmological constant. In this work,
we have explored cosmological constraints on the sum
of the three active neutrino masses Mν within DDE
models. We parametrize the dark energy EoS as a function
of redshift z through the usual CPL parametrization
wðzÞ ¼ w0 þ waz=ð1þ zÞ. Furthermore, we impose the
requirement that the EoS satisfies wðzÞ ≥ −1 throughout
the expansion history. We refer to this class of models as
NPDDE. We employ a combination of CMB, BAO, and
SNeIa measurements. We denote by base the data set
combination not including CMB polarization data at small

FIG. 5. The 68% C.I. (dark blue/red) and 95% C.I. (light blue/
red) joint posterior distributions in the Mν-w0-wa plane, along
with their marginalized posterior distributions from the base data
set, for the w0waCDM (blue contours) and NPDDE models (red
contours). The marginalized posterior distributions appearing
along the diagonal are normalizable probability distributions and
hence in arbitrary units. The sharp cuts in the red posteriors are
due to the hard NPDDE priors [see Eq. (2)].
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scales, and by pol the data set combination that includes
these CMB polarization data.
The conclusions we reach are threefold:
(i) We find that the constraints on Mν assuming a

NPDDE model are slightly tighter than those ob-
tained within the standard ΛCDM scenario. This is
the opposite of what is found when a generic DDE
model with EoS is allowed to enter the region where
wðzÞ < −1 (w0waCDM model) is assumed. More in
detail, we find 95% C.I. upper bounds of Mν <
0.13 eV for the base data set and Mν < 0.11 eV for
the pol data set in a NPDDE model. These figures
can be compared to the 95% C.I. upper bounds of
Mν < 0.16 eV for the base data set and Mν <
0.13 eV for the pol data set in a ΛCDM model.
For the w0waCDM model, we find instead the
95% C.I. upper bounds of Mν < 0.41 eV for the
base data set and Mν < 0.37 eV for the pol data set.
We provide a thorough data-supported physical and
statistical explanation of these results. The explan-
ation is based on the effects of massive neutrinos and
dark energy on the background cosmological evo-
lution, as well as on the Bayesian statistical method
adopted.

(ii) A DDE component with wðzÞ ≥ −1 does not alle-
viate the tension between cosmological and direct
measurements of H0, contrary to what is found in
dark energy models with arbitrary wðzÞ. We find that
NPDDEmodels prefer lower values ofH0 than those
inferred by direct measurements. We also show that
the well known degeneracy between H0 and Mν is
reduced within NPDDE models. We provide a
thorough explanation of this finding.

(iii) We combine the results of the cosmological analysis
with neutrino oscillation data, and quantify the
statistical preference for one of the two neutrino
mass orderings over the other. The constraints onMν

in NPDDEmodels correspond to probability odds of
∼2∶1 in favor of normal ordering with respect to
inverted ordering for the base data set combination
and ∼3∶1 for the pol data set. These odds show a
mild preference for normal ordering. If laboratory
experiments determine that the neutrino mass
ordering is inverted, and if the current cosmic
acceleration is caused by a dynamical dark energy
component, this component would likely be phan-
tom [wðzÞ < −1], or at least have to cross the
phantom divide at some point during the expansion
history. The conclusion holds as long as we exclude
nonstandard scenarios either in the neutrino sector or
in the gravity sector. Therefore, this result brings to
light a perhaps unexpected connection between two
at first glance seemingly disconnected fields: neu-
trino oscillation experiments and the nature of dark
energy. In the near future, results from the former
might be able to shed important light on the latter.

ACKNOWLEDGMENTS

The authors thank Per Andersen, Thejs Brinckmann,
Eleonora Di Valentino, Enrique Fernández Martínez,
Edvard Mörtsell, Eiichiro Komatsu, Massimiliano
Lattanzi, Eric Linder, Matteo Martinelli, Savvas
Nesseris, Lorenzo Sebastiani, Zachary Slepian,
Alessandra Silvestri, Michael Turner, and Sergio Zerbini
for enlightening discussions. This work is based on
observations obtained with Planck (www.esa.int/Planck),
an ESA science mission with instruments and contributions
directly funded by ESA Member States, NASA, and
Canada. We acknowledge use of the Planck Legacy
Archive. We also acknowledge the use of computing
facilities at NERSC. K. F. acknowledges support from
DOE Grant No. DE-SC0007859 at the University of
Michigan as well as support from the Leinweber Center
for Theoretical Physics. K. F., M. G., and S. V. acknowl-
edge support by the Vetenskapsrå det (Swedish Research
Council) through Contract No. 638-2013-8993 and the
Oskar Klein Centre for Cosmoparticle Physics. S. D. and
A. G. acknowledge support by the Vetenskapsrå det, the
Swedish Space Board, and the K & AWallenberg founda-
tion. O. M. is supported by PROMETEO II/2014/050, by
the Spanish Grant No. FPA2014–57816-P of the MINECO,
by the MINECO Grant No. SEV-2014-0398, and by the
European Union’s Horizon 2020 research and innovation
programme under the Marie Skł odowska-Curie Grant
Agreements No. 690575 and No. 674896. O. M. thanks
the Fermilab Theoretical Physics Department for its
hospitality.

Note added.—After our paper appeared on the arXiv, the
work [251] appeared which considers also neutrino mass
bounds within quintessence models. Their work differs
from ours in the parametrizations adopted for w(z).
Moreover, after our paper appeared on the arXiv, two
further works [90,91] confirmed our result that the bounds
on Mν in nonphantom dynamical dark energy models are
tighter than those obtained in ΛCDM. All codes, chains,
and scripts used to produce the results and plots of this
work will be made publicly available at github.com/
sunnyvagnozzi/NPDDE after acceptance of the paper in
a journal.

APPENDIX A: INCLUDING THE NEUTRINO
OSCILLATIONS LIKELIHOOD

Throughout this work, we have imposed a top-hat prior
on Mν of Mν ≥ 0 eV. That is, we allowed values of Mν

below the minimum value set by oscillation experiments of
0.06 eV. The rationale behind this choice, as we outlined in
Sec. III, was threefold:

(i) To obtain a bound relying exclusively on cosmo-
logical data.
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(ii) To remain open to the possibility of models with
nonstandard neutrino interactions leading to a neu-
trino energy density which is either vanishing or
lower than the expectation in ΛCDM (e.g., [158]): at
the level of cosmological data these effects can be
phenomenologically captured by considering values
of Mν below the lower bound set by oscillation
experiments.

(iii) To provide an (in)consistency test for DE models
where the upper bound on Mν ends up lying signifi-
cantly below the lower bound set by oscillation
experiments. While this possibility has not been
realized in our work due to insufficient sensitivity,
it might be realized in the near future thanks to
dramatic improvements in the sensitivity of future
CMB, large-scale structure, and supernovae distance
measurements data sets.

Moreover, as also explained in Sec. III, the positivity ofMν
is the only genuine a priori information present in the
problem, whereas the information thatMν ≥ 0.06 eV is not
truly a priori, but rather a posteriori of oscillation experi-
ments. Therefore, the formally correct way of incorporating
such information is, in fact, by including the neutrino
oscillations likelihood. In addition, as discussed in Sec. III,
as far as upper limits on Mν (which are the subject of this
work) are concerned, the oscillations likelihood can be to
zeroth approximation included as a sharp cutoff at
Mν ¼ 0.06 eV, because the uncertainty to which Mν;min ≃
0.06 eV is subject is extremely tiny (but an uncertainty is
nonetheless present, whereas the physical lower bound
Mν ≥ 0 eV is instead subject to no uncertainty). Let us first
discuss this simplified case where the oscillations like-
lihood is simply included as a sharp cutoff in the Mν prior,
before discussing a more physical, but still simple, way of
including the oscillations likelihood.
One might at this point wonder whether our results are

dependent on the choice of prior: Mν ≥ 0 eV versus
Mν ≥ 0.06 eV. In fact, the specific bounds on Mν within
a given model (in this case, w0waCDM, ΛCDM, and
NPDDE) are certainly affected by the choice of prior.
Nonetheless, it is easy to show that if the prior on Mν is
chosen to be flat even when the lower bound from
oscillation experiments is enforced, then as a consequence
of Bayes’ theorem the key result of our paper remains
unchanged. That is, the constraints on Mν in NPDDE
models remain tighter than those obtained in ΛCDM, even
when the lower limit of Mν ≥ 0.06 eV is enforced.
Let us denote by x our data and by θ the set of

cosmological parameters excluding Mν. Let us further
denote by LðxjMν; θÞ our likelihood, and by πðMνÞ and
πðθÞ the prior distributions onMν and θ, respectively. Note
that we are implicitly assuming that the prior onMν can be
factorized from the prior on the other cosmological
parameters, an assumption that is realized. From Bayes’
theorem we know that the posterior distribution of Mν

given the data, pðMνjxÞ, is given by the following:

pðMνjxÞ ∝
Z

dθLðxjMν; θÞπðMνÞπðθÞ: ðA1Þ

Assuming we keep a flat prior on Mν, the only effect of
imposing the lower limit from oscillation experiments is to
cut πðMνÞ at 0.06 eV instead of 0 eV. From Eq. (A1), we
see that the result of this operation would be to shift the
posterior of Mν to higher values: this will affect all
quantities computed from the distribution, such as the
mean and the 95% C.I. upper bound, both of which would
increase, hence leading to broader constraints.
However, in our work we are not interested in the bounds

on Mν per se. The purpose of our work is to examine how
the upper limits on Mν change when moving from ΛCDM
to NPDDE. In Fig. 1, we showed how the posterior of Mν

obtained assuming the NPDDE model is shifted to lower
values compared to the one obtained assuming the ΛCDM
model. From Eq. (A1), it is easy to see how this fact
continues to be true even when the lower limit of 0.06 eV
set by oscillation experiments is imposed. Therefore, we
expect as a consequence of Bayes’ theorem that the upper
limits on Mν in NPDDE models will still be tighter than
those obtained in ΛCDM regardless of whether a prior of
Mν ≥ 0 eV or Mν ≥ 0.06 eV is chosen.
To confirm the above statement explicitly, we recompute

the posteriors and upper limits on Mν obtained in Sec. IV,
this time imposing the lower limit set by oscillation
experiments. We recomputed the bounds only for the
ΛCDM and NPDDE models (leaving aside w0waCDM,
since it is not important for our conclusions), and only for
the base data set (since the pol data set leads to identical
conclusions). For the ΛCDM case, we find that the 95%
C.I. upper bound of 0.16 eV degrades to 0.19 eV when
imposing Mν ≥ 0.06 eV. Similarly, when considering the
NPDDEmodel, the limit degrades from 0.13 eV to 0.17 eV.
However, we see that in both cases the upper limit obtained
assuming NPDDE is tighter than that obtained assuming
ΛCDM, confirming the conclusion we reached previously
on the basis of Bayes’ theorem.
Recall also that we computed the posterior odds for

normal ordering versus inverted ordering using the meth-
odology of [123] outlined in Sec. III. Wewish to clarify that
the posterior odds computed in this way are not affected by
the choice of prior onMν. The reason is that, in Eq. (4), the
likelihood of the cosmological data LðDjm0; OÞ has been
rewritten in terms of the mass of the lightest neutrino mass
eigenstate m0 rather than the total neutrino mass Mν. The
relation between Mν involves the squared mass splittings
measured by oscillation experiments. Therefore, the meth-
odology adopted factors in, by construction, the informa-
tion concerning the lower limits on Mν set for the normal
and inverted orderings. As a result, this methodology
automatically ignores the region of the Mν posterior which
lies below 0.06 eV. In fact, it is easy to show that in the low-
mass region of Mν parameter space favored by data,
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Mν ≲ 0.15 eV, the posterior odds for normal versus
inverted ordering calculated using Eq. (4) are well approxi-
mated by the following [66]:

pN

pO
≈
R∞
0.06 eV dMνpðMνjxÞR∞
0.10 eV dMνpðMνjxÞ

; ðA2Þ

where pðMνjxÞ is the posterior ofMν. The form of Eq. (A2)
shows how the information on the lower limits of Mν for
both the normal and the inverted ordering enters by
construction in the methodology adopted.
So far, we considered the extremely simplified casewhere

the information from oscillation experiments is included as a
sharp cutoff in the Mν prior. In fact, the minimum value
allowed by oscillation experiments does not come without
uncertainty. Using the best-fit values and 1σ intervals from
[122] for the two mass-squared splittings assuming the
normal ordering, we find Mν;min ≈ 0.0589� 0.0005 eV.
Therefore, we can to first approximation treat the oscillations
likelihood as being a constant down to 0.0589 eV, and as a
truncated Gaussian centered at 0.0589 eV and with width
0.0005 eV below. If we simply included the oscillations
likelihood as a sharp cutoff, the result on the Mν posterior
would be a sharp drop at 0.06 eV, which is in a sense
“unphysical” because this cutoff is actually induced by the
value of Mν;min inferred from oscillation experiments with
some uncertainty, and not by a physical lower bound
that comes without uncertainty (such as Mν ≥ 0 eV).
Nonetheless, since Mν;min is known to better than ≈0.8%
precision, it is perfectly reasonable to expect that the impact
on the upper limits on Mν of using our smeared Gaussian
approximation versus a sharp cutoff is going to be negligible
at best (which we later confirm).
In Fig. 6, we show the posteriors we obtained for the

ΛCDM (blue curves) and NPDDE (red curves) models, for
both the case where the oscillations likelihood is not
included (dashed curve) and the case where it is included
(solid curve). We immediately notice two things. The first
is that, as expected, the posterior drops very sharply below
0.0589 eV, signaling that the sharp cutoff approximation to
the oscillations likelihood is, in fact, a reasonable approxi-
mation, given the extremely tiny uncertainty on Mν;min. In
fact, we find that we recover the upper limits we computed
previously from the sharp cutoff approximation (0.17 eV
for the NPDDE model and 0.19 eV for the ΛCDM model).
The second observation is that, independently of whether
the oscillations likelihood is included, the NPDDE pos-
terior is always shifted to lower values of Mν compared to
the ΛCDM one, showing that the main conclusions of our
paper are stable against the inclusion of the oscillations
likelihood.
To conclude, we summarize the findings of this Appendix.

The key conclusion of our work, namely the fact that the
upper limits onMν are tighter in NPDDE models compared
to ΛCDM, persists even when the oscillations likelihood is

included. Approximating the oscillations likelihood as a
sharp cutoff in Mν (which we have argued is a reasonable
zeroth approximation given the very tiny uncertainty on
Mν;min), we have shown how this result follows simply from
Bayes’ theorem. Using a more realistic approximation to the
oscillations likelihood (treated as a truncated Gaussian), we
show the impact of including this likelihood on the Mν

posterior in Fig. 6. Since the methodology adopted to
compute the posterior odds of normal versus inverted order-
ing (see Sec. III and [123]) by construction takes into account
the lower limits onMν coming from oscillation experiments
for both normal and inverted ordering, the results obtained in
Sec. IVD are unaffected by whether the lower limit of
Mν ≥ 0.06 eV is enforced. Therefore, in NPDDE models
(and using the base data set), the preference for normal versus
inverted ordering is ∼2∶1.

APPENDIX B: ESTIMATING THE PREFERENCE
FOR THE NORMAL ORDERING THROUGH
THE AKAIKE INFORMATION CRITERION

We complete the analysis of this work by quantifying
the preference for one neutrino mass ordering over the
other using an alternative statistical method based on the

FIG. 6. One-dimensional posterior probabilities of the sum of
the three active neutrino masses Mν (in eV) for two models:
the ΛCDM case (in blue curves), and the NPDDE model with
wðzÞ ≥ −1 (in red curves), considering both the case when the
oscillations likelihood is not included (dashed curves) and
the case where it is included (solid curves). We approximate
the oscillations likelihood as being a constant for Mν ≥
0.0589 eV and a truncated Gaussian with width 0.0005 eV for
Mν < 0.0589 eV. The vertical black dot-dashed line corresponds
to the minimal mass of Mν;min ≈ 0.1 eV allowed by neutrino
oscillation data within the inverted ordering. We visually see that
the dashed/solid red curves are always shifted to lower values of
Mν compared to the respective dashed/solid blue curves. There-
fore, the upper limits on Mν are always tighter in the NPDDE
model compared to the ΛCDM one, independently of whether the
oscillations likelihood is included.
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AIC [252]. The AIC is a statistical indicator that estimates
the relative statistical quality of different models. We use
the AIC to estimate the preference for the NO against the
IO. For a model with k parameters and log-likelihood
lnðLÞ ¼ −χ2=2, the AIC is given by

AIC ¼ 2kþminðχ2Þ; ðB1Þ

where minðχ2Þ denotes the minimum value of the χ2 for the
model. The difference between the AICs of two models,
ΔAIC, estimates the relative quality of one model against
the other. In particular, the model with the lowest AIC is to
be considered statistically preferred.
As in Sec. IV, we combine results from cosmology and

neutrino oscillation experiments to quantify the preference
for the normal ordering. We obtain the posterior probability
distribution of Mν from the cosmological analysis and
interpret this posterior as a likelihood for the cosmological
data set (as done in [66,123]). From oscillation measure-
ments, we take the one-dimensional χ2 projections for the
solar and atmospheric mass splittings computed separately

for NO and IO, as provided by NuFIT 3.0 (2016) [120].
We then compute the global minðχ2Þ for both NO and IO
in light of the combination of cosmological and oscillation
data.
The number of parameters k is the same in the two

scenarios; therefore, ΔAIC ¼ Δminðχ2Þ. For NPDDE
models, we find ΔAIC ¼ AICIO − AICNO ¼ 3.4 for the
base data set and ΔAIC ¼ 3.7 for the pol data set. These
values show a mild preference for the NO model, using the
scale provided by [253]. In ΛCDM, we find ΔAIC ¼ 2.7
for the base data set andΔAIC ¼ 3.1 for the pol data set. In
this case, the preference for NO is even milder. Finally,
in generic DDE models with arbitrary EoS, we find
ΔAIC ¼ 1.9 for the base data set and ΔAIC ¼ 2.0 for
the pol data set. We interpret these values as a minimal
preference for NO. The results obtained using the AIC
method are qualitatively in agreement with those obtained
performing a Bayesian model comparison and reported in
Sec. IV. Both indicate that current cosmological data, when
interpreted in light of a NPDDE model, show a mild
preference for the NO.
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