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Low mass x-ray binaries (LMXBs), with either a neutron star (NS) or a black hole, show in their power
spectra quasiperiodic oscillations (QPOs). Those at highest frequencies show up in pairs and are named
twin peak high frequency QPOs (HF QPOs). Their central frequencies are typical of the orbital motion
timescale close to the compact object. HF QPOs are believed to carry unique information on the matter
moving in the extreme gravitational field around the compact object. In previous works we highlighted the
work done by strong tides on clumps of plasma orbiting in the accretion disk as a suitable mechanism to
produce the HF QPOs. We showed that the upper of the twin peak HF QPOs seen in NS LMXBs could
originate from the tidal circularization of the clump’s relativistic orbit, while the lower HF QPO could come
from the spiraling clump losing orbital energy. Here we focus on the tidal deformation of a magnetized
clump of plasma once tides load energy on it. The likely evolution of the shape of the clump after tidal
circularization of the orbit and its subsequent orbital evolution are investigated. In atoll NS LMXBs, a
subclass of NS LMXBs less luminous than Z NS LMXBs, the lower HF QPO displays a characteristic
behavior of its coherenceQ versus its central frequency ν.Q keeps increasing over the range of frequencies
ν ∼ 600–850 Hz and then drops abruptly at ν ∼ 900 Hz. We note, for the first time, that such behavior is
reproduced by magnetized clumps of plasma stretched by strong tides and falling onto the NS on unstable
orbits. The increasing part ofQ is drawn by the tidal stretching timescale of the clump all over the orbit. The
abrupt drop of Q is dictated by the number of turns the clump makes before reaching the innermost stable
bound orbit; afterwards the clump would fall onto the NS. We emphasize the overall behavior of the lower
HF QPO coherence as a candidate to disclose the innermost stable bound orbit predicted by the general
relativity theory in the strong field regime.
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I. INTRODUCTION

Low mass x-ray binaries (LMXBs) host a compact
object, either a neutron star (NS) or a solar-mass black
hole (BH), and an evolved star as a companion. The
extreme gravitational pull by the compact object captures
matter from the evolved star. Matter spirals around the
compact object and forms an accretion disk [1]. The inner
part of the accretion disk is expected to lie at orbital radii
close to the compact object,1 r ¼ 1–6rg [2]. The plasma in
the inner part of the accretion disk orbits in an extreme
gravitational field. Thus, LMXBs could be potential labo-
ratories for testing the predictions of general relativity (GR)
in the strong field limit, r ∼ rg [3].
In 1996 the Rossi X-ray Timing Explorer satellite (RTE)

[4] reported the first submillisecond x-ray brightness

oscillations in a NS LMXB [5]. Such oscillations were
detected in pairs and named twin peak kilohertz quasiperi-
odic oscillations (kHz QPOs). QPOs in LMXBs were long
known but at much lower frequencies [6]. They range from
milliliter to kilohertz and are characterized by their central
frequency ν, root-mean-square (rms) amplitude and coher-
ence Q (Q ¼ ν=Δν with Δν full width at half maximum of
the peak [7]). BH LMXBs show twin peak QPOs at high
frequency as well (hundreds of hertz [8,9]), named high
frequency (HF) QPOs. In the following we will refer to the
pairs observed in both systems as HF QPOs, i.e., either with
a NS or a BH, though twin peak kHz QPOs in NS LMXBs
show different rms and Q than twin peak HF QPOs seen in
BH LMXBs [7].
The central frequency ν of HF QPOs is typical of the

orbital motion timescale (milliseconds) close to the com-
pact object. It is believed that HF QPOs could carry
information on the matter orbiting in the inner part of
the accretion disk [10] and, therefore, be probes to test
features of the gravitational field around a compact object.
GR theory states that the space-time around a NS or a BH is
strongly curved and this implies (i) the existence of an
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1For a maximally spinning BH the innermost stable bound

orbit lies at r ¼ rg, for a Schwarzschild compact object at
r ¼ 6rg. rg ¼ GM=c2 is the gravitational radius. G gravitational
constant,M mass of the compact object, and c the speed of light.
For a 2 M⊙ neutron star rg ∼ 3 km.
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innermost stable bound orbit (ISBO), below which no
stable orbital motion takes place [2,11], (ii) the periastron
precession of the orbits, at a rate of the order of a few
milliseconds. This would imply modulations of the radi-
ation emitted by orbiting matter (in addition to keplerian
modulations) [12], (iii) a relativistic frame dragging by the
spinning compact object [13], known as Lense-Thirring
precession [14], (iv) moreover, being an extremely curved
space-time, strong tides by the compact object acting on the
orbiting matter might play a relevant role.
Despite the dense literature on the subject there is not yet

a general agreement on the physical mechanism producing
the HF QPOs. The efforts done to interpret their central
frequency have produced several works. We mention the
main references of each proposed model. The models are
based on orbital motion of clumps of plasma in the
accretion disk like (i) beat-frequency modulation mecha-
nisms between the clumps and the beam of radiation from
the spinning NS [15,16], (ii) relativistic orbital motion of
the clumps modulating the x-ray flux at the Keplerian νk,
the periastron precession νp, and nodal precession νnod
frequency of the orbit [12,17], (iii) modulation mechanisms
based on resonances between the relativistic frequencies of
the clump orbiting in the curved space-time [18,19]. The
models are based on disk oscillations like (iv) diskoseis-
mology [20,21] and (v) oscillating tori [22,23].
In Ref. [24] the signal emitted by a clump of matter

orbiting in the accretion disk as seen by a distant observer
was modeled in great detail. The authors ray traced in the
Kerr metric the photons emitted by an orbiting rigid hot
spot. Also, the simulations of the signal coming from an
orbiting arc shared along the orbit are shown. The simu-
lated power spectra are like those observed in LMXBs.
They are characterized by peaks at frequencies correspond-
ing to νk, νp ¼ νk − νr, νk þ νr, and their harmonics.2 The
detectability that such modulations would havewith current
and future satellites was studied in Ref. [25]. In both
Refs. [24,25] the HF QPOs are produced by relativistic
effects on the photons emitted by the host spot, such as
Doppler boosting and gravitational lensing. These relativ-
istic phenomena modulate only a fraction of the radiation
emitted by the hot spot. For a hot spot of radius R ∼ 0.5rg,
as bright as twice the background radiation from the disk,
the modulations are of the order of some percents [24].
Ray tracing in the Schwarzschild metric of the photons

emitted by a not-rigid sphere is presented in Refs. [26–28].
Such simulations reproduce the effects of tidal deformation
of the sphere on the signal collected by the distant observer.
As long as the sphere orbits it is squeezed and elongated by

tides into an arc along the orbit. The numerical code was
proposed to fit the near infrared-x-ray flares observed at the
galactic center [29]. In Ref. [27] the flares are produced by
small satellites (like asteroids or comets) captured by the
strong gravitational field of the supermassive BH at the
Galactic center. The strong tidal force by the BH disrupts
the small satellite and thus some percent of its rest-mass
energy is emitted as radiation. The numerical code was
used to calculate the power spectrum of the signal. Power
spectra reproducing those observed in LMXBs were
obtained: the power law with superimposed twin peak
HF QPOs at the frequencies νk and νk þ νr are reproduced
[30]. The power law is produced because of the abrupt
increase of the luminosity of the clump during tidal
stretching [27]. The twin peaks are produced by Doppler
boosting of light and gravitational lensing.
Reference [31] highlighted the likely root mechanism

that produces multiple peaks in the power spectrum for
matter orbiting in a curved space-time. The azimuthal phase
ϕðtÞ of a body orbiting on a slightly eccentric orbit in a
curved space-time is not a simple linear function of time
with slope νk. The phase also oscillates at the relativistic
radial frequency νr. In a flat space-time νk ¼ νr while in a
curved space-time νr < νk. This implies that in the power
spectrum of ϕðtÞ the peaks νk and νk � νr are produced.
The timing law ϕðtÞ is transformed into an observable light
curve by Doppler boosting of light. Furthermore, the fact
that the clump of matter is stretched by tides may cause
some peaks to not be seen in the power spectrum [30]. Only
one source has shown evidence for a triplet of peaks,
BH LMXB XTE J1550-564 [32]. However, the peak at
lowest frequency (corresponding to νp ¼ νk − νr in this
framework and not seen in the simulation [30]) was
marginally detected. The best case for multiple peaks
detection is the BH LMXB GRS 1915þ 105 [8,33–35].
The work done by the strong tidal force on clumps of

matter orbiting close to a compact object could be a source of
energy that might justify how the HF QPOs would originate.
The orbiting body needs to be overbright with respect to the
accretion disk in order to produce detectable modulations
[24]. Thus, the release of gravitational energy by the clump
because of tides might be a valid ingredient to interpret
where the energy carried by the HF QPOs (related to their
rms amplitude) comes from. Tidal disruption events (TDEs)
in which stars are disrupted by supermassive BHs at the
center of galaxies, releasing large amounts of energy as a
flare, have already been discovered (e.g., Refs. [36–39]). It is
worth mentioning that Ref. [40] reports a QPO detected in
the x-ray flux coming from the tidal disruption of a star. In
our Solar System we have proof that the tidal force can
extract significant amounts of energy. The intense volcanism
of Jupiter’s moon Io [41], likely the plumes from Jupiter’s
moon Europa [42] and Saturn’s moon Enceladus [43–46].
The characteristic behavior of both the rms amp-

litude and coherence Q of HF QPOs was reported in

2The relativistic radial frequency νr is the number of cycles per
second done by a test particle from the periastron of the orbit to
apoastron and back to periastron. In a curved space-time νk > νr
and this implies the periastron precession of the orbit at the
frequency νp.
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Refs. [47–49] for several NS LMXBs. In atoll
NS LMXBs [50] the amplitude of the lower HF QPO
increases and then decreases as a function of the central
frequency ν of the peak. Its coherence Q increases and
then drops abruptly. Such behavior was highlighted [48]
as a possible candidate to disclose the ISBO predicted by
GR, below which no stable orbital motion exists. The rms
of the upper HF QPO keeps decreasing as a function of
the central frequency ν of the peak. Its coherence displays
an almost flat trend of the order of Q ∼ 10 over a large
range frequencies.
If the HF QPOs originate from clumps of plasma orbiting

in the accretion disk, by attempting to model the rms andQ,
we could extract some information about the gravitational
field around the compact object. A modeling of such trends
is presented in Refs. [51,52] (hereafter GC15 and G17,
respectively). Making use of the gravitational potential in
the Schwarzschild metric we showed that the energy
extracted by tides from clumps of plasma orbiting in the
accretion disk might produce the rms amplitude of the HF
QPOs seen in NS LMXBs. In GC15 we showed that the
amplitude of the lower HF QPO seen in NS LMXBs could
come from the energy released by the spiraling clump
because of the removal of orbital energy by tides. In G17
we focused on the upper HF QPO and showed that both its
amplitude and coherence are in agreement with those
produced by tidal circularization of the clump’s relativistic
orbit. We also derived a magnetic field of the clump typical
of that in atoll NS LMXBs (B ∼ 108 − 109 G [53]) and
highlighted that the deformation of the clump by strong
tides, and consequent perturbation of B, might set the
mechanism to turn the released orbital energy into radiation
seen as HF QPOs [27]. Such a mechanism could be
synchrotron emission by the plasma electrons spiraling
around the magnetic field lines. The orbital energy
extracted by tides from the clump is loaded as internal
energy [27,54] of the clump. As long as the clump is
squeezed by tides its magnetic field increases and the
energy might go into kinetic energy of the electrons. It is
interesting to mention that in Ref. [55] it has been shown
that the hard x-ray radiation observed in two x-ray binaries,
over 10–100 ms time intervals, could originate from
cyclosynchrotron self-Compton mechanisms. Simulations
in Ref. [56] show that a star magnetic field stretched by
strong tides increases at least by a factor of 10.
In this manuscript we aim to show how a clump of

plasma, of magnetic field B, would react to tidal pressure
during tidal circularization of its relativistic orbit. We
investigate the evolution of the shape of the clump and
its subsequent phase, i.e., the clump deformed by tides into
a prolate spheroidal-like object orbiting on a circular orbit
and undergoing further tides. Our purpose is to estimate the
temporal coherence of the Keplerian modulation produced
to compare it to the twin peak HF QPOs coherence seen in
atoll NS LMXBs [48,49].

The manuscript is organized as follows. In Sec. II we
recall the main arguments and results presented in both
GC15 and G17. In Sec. III we show how a magnetized
clump of plasma would deform under tides. The initial
spherical clump orbits on a slightly eccentric orbit in the
Schwarzschild metric, later circularized by tides. We
estimate the cross-section radius and polar axis of the
clump deformed into a prolate spheroid once tidal defor-
mation stops because of internal magnetic pressure. In
Sec. IV we study the subsequent evolution phase, i.e., the
spheroid orbiting on a circular orbit and undergoing more
tides. In Sec. V we summarize the conclusions.

II. TIDAL LOAD AND ORBITAL ENERGY
OF CLUMPS OF PLASMA

It is worth mentioning that magnetohydrodynamics
simulations show an inner part of the accretion disk as
highly turbulent [57]. Furthermore, the discovery of large
structures in the accretion disk of a x-ray binary was
reported in Ref. [58]. Propagating accretion rate fluctua-
tions in the disk are modeled [59,60] to reproduce the
aperiodic variability observed in BH LMXBs. Therefore, it
is reasonable to think an accretion disk is characterized by
inhomogeneities propagating throughout it. Reference [61]
noted that magnetically confined massive clumps of plasma
might form in the inner part of the accretion disk.
In Ref. [30] the power spectrum of the signal from tidal

disruption of a clump of matter by a Schwarzschild black
hole is shown. The simulated power spectrum reproduces
the power spectra observed in LMXBs. The simulation
shows a power law with superimposed twin peak HF
QPOs. Motivated by this result, in GC15 we calculated
the energy that would be released by a clump of plasma
spiraling in the accretion disk in LMXBs, when the clump
orbital energy is removed by tides. We highlighted there
that the lower HF QPO in atoll NS LMXBs could be the
Keplerian modulation produced by orbiting matter. In G17
we instead focused on the physical mechanism that would
produce the upper HF QPO. We showed that the energy
released by the clump, during tidal circularization of its
slightly eccentric relativistic orbit, accounts for both the
amplitude and coherence of the upper HF QPO seen in atoll
NS LMXBs [48,49]. The tidal evolution of the orbits of a
low-mass satellite orbiting a Schwarzschild BH have been
studied in detail in Ref. [62], showing that inner orbits
circularize and shrink. Below we briefly recall the main
arguments and results presented in both GC15 and G17.
A spherical clump of radius R undergoes a tidal force

(see also GC15)

FT ¼ μ0c2
��

dVeff

dr

�
ðr−RÞ

−
�
dVeff

dr

�
ðrþRÞ

�

≈ μ0c22R
�
d2Veff

dr2

�
r
; ð1Þ
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where μ0 ¼ ρV 0 is the mass of the spherical cap of the
clump, of height, say, one-tenth of the radius R of the
clump, h ¼ R=10 (as in GC15 and G17), ρ is the density of
the material. The cap has a volume V 0 ¼ πh2ðR − h=3Þ. In
Eq. (1) Veff is the effective gravitational potential in the
Schwarzschild metric

Veff ¼ 1 −
2m
r

−
2mL̃2

r3
þ L̃2

r2
; ð2Þ

with m the mass of the compact object in geometric units
and L̃ the angular momentum per unit mass of a test
particle, orbiting on an orbit of semi-latus rectum p and
eccentricity e,

L̃ðm;p; eÞ ¼
�

p2m2

p − 3 − e2

�
1=2

; ð3Þ

p is linked to the periastron of the orbit through rp ¼
pm=ð1þ eÞ [63].
For a solid-state clump of matter, electrochemical

bounds keep the clump together. This internal force is
characterized by the ultimate tensile strength σ of the
material, i.e., the internal force per unit area. The clump of
matter, in order not to be broken into smaller pieces by
tides, should have internal forces larger than the tidal force,
2πRhσ ≥ FT . We can get some order of magnitude on the
maximum radius Rmax of the clump set by tides

Rmax ¼
�
10

�
1 −

1

30

�
−1 c2s

c2
σ

Y

×

�
−
2m
r3

þ 3L̃2

r4
−
12mL̃2

r5

�
−1
�

1=2

; ð4Þ

where we wrote the density ρ ¼ c2s=Y; Y is Young’s
modulus of the material, cs the speed of sound in it. In
Sec. IV of GC15 we treated a clump of plasma in the
accretion disk around LMXBs as characterized by some
internal force per unit area σ (e.g., electrochemical bounds
and/or a magnetic force). The speed of sound in Eq. (4) for
the plasma case comes from the standard accretion disk
model [1]

cs ¼
�
γZkTðrÞ

mi

�
1=2

ð5Þ

with TðrÞ the temperature profile from the equations of the
standard disk [1], γ ∼ 5=3 the adiabatic index, Z the charge
state (Z ¼ 1 for a hot plasma), mi the ion hydrogen mass,
and k Boltzmann’s constant [1].
Using the energy observed in HF QPOs (∼1036 erg=s),

in GC15 we derived the ratio σ=Y in Eq. (4), σ=Y ∼ 300 and
∼70 for atoll and Z NS LMXBs, respectively. In G17 we
argued that the pressure σ keeping the clump together is

consistent with the magnetic pressure because of the NS
magnetic field, which might permeate the clump in the
disk. We obtained a magnetic field permeating the clump
consistent with that estimated in NS LMXBs (B ∼ 108 −
109 G [53]). Note that in Ref. [61] it is emphasized that
magnetically confined massive clumps of plasma can form
in the inner part of the accretion disk. Therefore, following
these results, in this manuscript we aim to study the
deformation of the magnetized clump of plasma when
tides load energy against the internal magnetic pressure of
the clump. To take into account that the magnetic field
permeating the plasma in the accretion disk might decrease
with distance from the NS, here we set a magnetic
momentum of the NS as μ ¼ 5 × 1027 G=cm3. Thus, for
a dipolar magnetic field, the magnetic field decreases as
B ¼ μ=r3 ∼ 8 × 108 − 2 × 108 G over the range of radii
r ∼ 6–10rg, such that we are consistent with the B
estimated in G17 from the equation for σ=Y and using
the energy observed in HF QPOs. The internal magnetic
pressure (in Pascal) of the clump of plasma is pm ¼
B2=2μ0 ¼ σ, with μ0 ¼ 4π × 10−7 H=m vacuum magnetic
permeability.
In CG15 and G17 we mentioned that clumps with R ¼

Rmax from Eq. (4) do not probably form at all because of the
strong tidal force. The tidal load on the clump [the tidal
force (1) per unit area] has to be n times smaller than σ, i.e.,
FT=2πRh ¼ σT ¼ σ=n, where

σT ¼ μ0c2

2πRh

��
dVeff

dr

�
ðr−RÞ

−
�
dVeff

dr

�
ðrþRÞ

�

≈
10μ0c2

πR

�
d2Veff

dr2

�
r
: ð6Þ

In GC15 and G17 we derived n ¼ 5 as the upper limit,
which gives R ∼ 3000 m over a range of orbital radii
r∼6–10rg (see Fig. 1 in G17). In G17 (Fig. 3) we estimated
the energy emitted by the clump of plasma in order to
circularize its slightly eccentric orbits, of initial eccentri-
city3 e ¼ 0.1. This energy is given by

ϵ ¼ μc2ðẼðp; eÞ − Ẽðp; 0ÞÞ; ð7Þ

where μ is the total mass of the clump and Ẽðp; eÞ is the
orbital energy (in geometric units) per unit mass in the
Schwarzschild metric [63]

Ẽðp; eÞ ¼
�ðp − 2 − 2eÞðp − 2þ 2eÞ

pðp − 3 − e2Þ
�

1=2
: ð8Þ

3We already mentioned in G17 that because of the turbulent
environment in an accretion disk [57] it may be reasonable
thinking that clumps may orbit on not perfect circular orbits.
Power spectra much like those observed in LMXBs are obtained
for orbits with low eccentricity e ¼ 0.1 [24,25,30,31].
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III. TIDAL DEFORMATION OF MAGNETIZED
CLUMPS OF PLASMA

In G17 we have seen that the work done by tides on
clumps orbiting at different orbital radii, removing the
orbital energy at each periastron passage, gives timescales
of tidal circularization of the orbits in agreement with the
coherence factor Q of the upper HF QPO seen in atoll NS
LMXBs [48]. Moreover, the energy released by the clump
over such timescale, and modulated by Doppler boosting
[24], agrees with the upper HF QPO amplitude from
observations [48]. Therefore, we concluded that the upper
HF QPO might unveil the tidal circularization of relativistic
orbits occurring around a NS.
Like in G17 the tidal load (6) is integrated over one

periastron passage to get the load per periastron passage.
We estimate the timescale the tidal wave propagates all over
the clump of radius R ∼ 3000 m as t ¼ 2R=cs ∼ 0.01 s,
where cs ∼ 5 × 105 m=s is the speed of sound in the plasma
from Eq. (5). Because the timescale of tidal circularization
from G17 is of the same order (∼0.01 s), over the range
of orbital radii r ∼ 6–10rg, in first approximation we can
treat the clump as having a spherical shape during all
the periastron passages needed to circularize the orbit
(N ∼ 2–5). Therefore, the total tidal pressure pT deposited
on the clump is the tidal pressure per periastron passage
(i.e., σT integrated over one periastron passage) times the
number of periastron passages. Figure 1 shows the differ-
ence Δp between the total tidal pressure pT deposited on
the clump during tidal circularization and the internal
magnetic pressure pm of the clump. The difference drops
close to ISBO (rp ∼ 5.6rg for e ¼ 0.1) because the energy
released to circularize the orbit decreases approaching
ISBO (G17). Therefore, the tidal energy loaded on the
clump during circularization is lower. This is a consequence
of the flattening of the gravitational potential minimum
close to ISBO, because of the term ∝ 1=r3 in Eq. (2) [2].

Numerical simulations show that tidal deformation
squeezes and elongates the clump into a polelike object
along the orbit [28]. The clump is squeezed in the directions
perpendicular to the orbital motion and elongated along the
orbital motion. Since the tidal tensor is traceless it implies
volume conservation.
The electric conductivity is extremely high in plasmas

and we could say, in first approximation, that the magnetic
field B of the clump is frozen. Following Alveén’s theorem
this leads to magnetic flux conservation. Therefore, the
magnetic field probably keeps increasing as long as the
clump is squeezed by tides [27]. Recent numerical simu-
lations of a star magnetic field squeezed by tides indeed
demonstrated that the magnetic field increases at least by a
factor of ∼10 [56]. Squeezing of the clump of plasma
by tides goes on probably until the internal magnetic
pressure of the increasing magnetic field equals the total
tidal pressure deposited on the clump. Eventually, the initial
spherical clump is deformed by tides into a prolate
spheroidal-like object of cross-section radius R0 and semi-
major axis a. The shape of an object deformed by tides,
orbiting a Schwarzschild BH, was studied by means of
numerical simulations in Refs. [27,28], however, without
taking into account the internal pressure of the clump. Here
we consider both internal magnetic pressure pm and
external tidal pressure pT . Because of the complexity of
the problem, we attempt to give a general picture on how
the clump would deform under tides.
The increase ΔB of the magnetic field because of tidal

compression is equal to

ΔB ¼ ð2μ0ΔpÞ1=2; ð9Þ

where Δp is shown in Fig. 1. We find that ΔB ∼ 5 × 109 G
and obviously reflects the behavior of Fig. 1, dropping to
ΔB ∼ 107 close to ISBO. Thus, we might say that during
tidal circularization of the orbit the magnetic field of the
clump has increased by a factor of 10, i.e., Bþ ΔB ¼
B0 ∼ 5 × 109 G over the range r ¼ 6.5–10rg. At ISBO
B0 ∼ 109 since less energy was loaded on the clump to
circularize the orbit. The clump is less squeezed. It is worth
remarking that this calculation agrees to the magnetic field
of the clump derived in G17, however calculated in a
different way, using the energy observed in HF QPOs and
Eq. (11) there.
To estimate the dimensions of the clump, turned by tides

into a prolate spheroidlike object, in first approximation we
consider the increase of the frozen magnetic field as [28]

B0 ¼ BSin
S0

; ð10Þ

with B0 ¼ Bþ ΔB, Sin is the initial cross section of the
spherical clump, S0 is the cross section of the prolate
spheroid, when tidal pressure equals internal magnetic

6 7 8 9 10

5 1015

1 1016

5 1016

1 1017

5 1017

rp rg

p
Pa

FIG. 1. The difference between tidal pressure pT loaded on a
clump of plasma during tidal circularization of its orbit and
internal magnetic pressure of the clump pm, as a function of the
periastron of the orbit around a 2 M⊙ Schwarzschild compact
object.
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pressure. From Eq. (10) and the volume conservation
condition we can derive the cross-section radius R0 of
the prolate spheroid and its semimajor axis a

R0 ¼
�
BR2

B0

�
1=2

; ð11Þ

a ¼ 3V
4πR02 ; ð12Þ

where V is the volume of the initial sphere equal to that of
the spheroid V ¼ 4=3πaR02. Figure 2 shows the dimen-
sions of the initial spherical clump and those of the tidally
deformed prolate spheroid, after tidal circularization of the
orbit. We see that close to the innermost stable orbit, now
circular at r ¼ 6rg and known as the innermost stable
circular orbit (ISCO), the clump is little deformed, because
less energy is loaded on it (G17). The black line in the
figure indicates the circumference of the orbit. The green
line is the initial diameter d ¼ 2R of the spherical clump set
by tides as derived in G17. The blue line is the diameter
cross section of the deformed spheroid d0 ¼ 2R0, the orange
line its length l ¼ 2a. We see that the clump is squeezed by
tides from ∼6 to ∼1–2 km and its length along the orbit, as
numerical simulations show [28], goes up to ∼10–200 km.
We note that for orbital radii r ≥ 10rg the spheroid is
elongated by tides all over the circumference of the orbit.
The results in both Figs. 1, 2 are for a clump of plasma

orbiting around a 2 M⊙ neutron star, with orbits of initial
eccentricity e ¼ 0.1, later circularized by tides (G17). The
luminosity of the accretion disk is typical for an atoll NS
LMXB (L ∼ 0.1LEdd, LEdd ∼ 2.5 × 1038 erg=s Eddigton

luminosity), giving a density ρ ∼ 1.5 g=cm3 of the plasma,
from the equations of the standard accretion disk [1].

IV. EVOLUTION AFTER TIDAL
CIRCULARIZATION OF THE ORBIT

The squeezed clump of plasma finds itself on a circular
orbit. In first approximation, we recalculate the tidal load
(6) with R0 ¼ d0=2 as in Fig. 2 and consider that the clump
now has a prolate spheroidal shape along the orbit [28], no
longer a spherical one. While in the spherical case we
approximated the tidal force as the difference of the
gravitational force on two radially opposite spherical caps,
in the spheroidal case it is the difference on two opposite
radial slices of the spheroid: the one at r − R0 and that at
rþ R0, of approximated area and volume A ∼ d0l,
V 0 ∼ d0lh, respectively, with h ¼ R0=10 the thickness of
the radial slice. The tidal load (6) now reads

σ0T ¼ μ0c2

d0l

��
dVeff

dr

�
ðr−RÞ

−
�
dVeff

dr

�
ðrþRÞ

�

≈
μ0c2

l

�
d2Veff

dr2

�
r
; ð13Þ

with μ0 ∼ ρV 0 the mass of the radial slice. The total tidal
load after N Keplerian turns on a circular orbit would be
N2πσ0T . At each Keplerian turn tides squeeze and elongate
further the spheroid along the orbit, as shown by numerical
simulations [27,28,30]. During squeezing radiation could
be emitted through synchrotron mechanisms because
tidal energy is probably transferred to the electrons in
the plasma that spiral around the magnetic field lines [27].
Reference [55] shows that the hard x-ray radiation observed
in two x-ray binaries, over 10–100 ms time intervals, could
come from cyclosynchrotron self-Compton emission.
The Keplerian modulation produced by the orbiting

spheroid would last until, at least, the spheroid is elongated
all over the orbit. Afterwards, the azimuthal asymmetry
required to produce a Keplerian modulation no more exists.
Equating the length l0 of the deformed spheroid after N
Keplerian turns to the circumference of the orbit c ¼ 2πr,
we can estimate the number of Keplerian turns N needed in
order to elongate the spheroid all over the orbit. It reads

N ¼ 1

pT

�
pm þ 240pm

l2

�
πr −

l
2

�
2
�
−
pm

pT
; ð14Þ

with pm ¼ B02=2μ0 the internal magnetic pressure of the
spheroid after tidal circularization of the orbit, with pT ¼
2πσ0T the tidal pressure loaded on it over the first Keplerian
turn on the circular orbit. The term pm=pT in Eq. (14) takes
into account that the internal magnetic pressure of the
spheroid, because of squeezing during tidal circularization,
has increased and now, for several initial Keplerian turns
(∼5–50 over the range r ¼ 6–10rg), is higher than the
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FIG. 2. Dimensions of the initial spherical and, later deformed
by tides, spheroidal clump as a function of the radius r of the
circular orbit. At r ∼ 6rg the orange and blue lines are super-
imposed to the green one. Blue line: cross-section diameter d0 of
the prolate spheroid deformed by tides once tidal deformation
stops because of internal magnetic pressure. Green line: diameter
d set by tides of the spherical clump before tidal deformation
(G17). Orange line: length of the prolate spheroid once tidal
deformation stops. Black line: circumference of the orbit.
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external tidal pressure pT . The tidal force in the case of the
spheroid applies on a larger area than the sphere case, thus
the tidal pressure weakens. The spheroid on the circular
orbit will start to be squeezed by tides after N0 ¼ pm=pT ∼
5–50 Keplerian turns. Since within this context radiation is
probably emitted by the clump only when it is deformed by
tides, the temporal coherence of the signal emitted is
characterized only by the number of Keplerian turns
during tidal squeezing. Therefore, we take the residuals
N, subtracting to the total number of turns Ntot the turns
before squeezing N0 ¼ pm=pT , when tidal energy is
loaded and the clump is not deformed since the internal
magnetic pressure is higher. An issue that should be
considered is the not instantaneously reaction of the clump
to external tidal deformation. Most probably the tidal
squeezing wave propagates through the clump in a finite
time τ ¼ 2R00=cs (cs speed of sound), thus delaying by τ the
deformation induced by tides at each Keplerian turn.
Therefore, in first approximation, we might say that the
effective number of Keplerian cycles for the clump to get
elongated all over the orbit is Ncycle ∼ Nðτ=tkÞ, with tk the
Keplerian period on the circular orbit.
Figure 3 shows the number of Keplerian cycles to get the

spheroid elongated all over the orbit. As we expect, it is
zero for r ≥ 10rg, since at this radii, as seen in Fig. 2, the
spheroid is elongated all over the orbit already during
tidal circularization of the orbit. Therefore, for r ≥ 10rg
Keplerian modulations are produced just during tidal
circularization of the orbit, with a low coherence Q ∼ 5
(G17). Instead, we see that for smaller radii the number of
turns increases, with the highest value at ISCO. The
increase of the number of Keplerian cycles towards
ISCO is a direct consequence of the weakened tidal force
towards ISCO. In Fig. 2 of G17 we have already pointed
out this feature of a curved space-time and in G15 we have
seen that it is caused by the flattening of the gravitational
potential minimum, because of the term ∝ 1=r3 in
Eq. (2) [2].

There is one more issue that should be taken into account
in order to make reliable the results in Fig. 3. It is known
that at each Keplerian turn tides remove orbital energy from
an orbiting body, depositing it on the body as internal
energy [54,62]. Therefore, a clump orbiting at ISCO, for
example, cannot make many Keplerian turns because it will
soon enter into an inner unstable orbit and fall onto the
compact object. Perhaps, because of the definition of ISCO,
we could expect that a body orbiting at ISCO would
produce a signal with a number of cycles equal to 0, since it
soon falls onto the compact object. To consider this issue
we calculate the interval of radii Δr over which the
spheroid spirals because of the removal of orbital energy
by tides, at each Keplerian turn. It comes from Eq. (8),

Δr
rg

¼
�
dẼ
dp

�−1 ET

μc2

�
τ

tk

�
−1
; ð15Þ

where dẼ=dp is the first derivative of the orbital energy (8)
with respect to the semilatus rectum p of the orbit (since in
this case e ¼ 0, p ¼ r=rg, and r is radius of the circular
orbit), ET=μc2 is the tidal energy

4 ET ¼ 2πσ0TV loaded on
the spheroid over one Keplerian turn, in units of its rest-
mass energy. The factor ðτ=tkÞ−1 takes into account that the
tidal wave propagates through the spheroid over a finite
time τ > tk, thus delaying the removal of orbital energy at
each Keplerian turn. Figure 4 shows Δr (in units of
rg ∼ 3 km) for three representative turns as a function of
the orbital radius r. The blue line is for Keplerian turn 1, the
orange for turn 50, and the green line for turn 100. Since in
the simulation we took into account that at each turn tides
further squeeze the spheroid, for subsequent turns the tidal
energy is lower than previous turns. Thus, Δr is smaller.
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FIG. 3. Effective number of Keplerian turns to get the spheroid
stretched by tides all over the orbit, as a function of the orbital
radius.
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FIG. 4. Radial drift Δr (in units of rg ∼ 3 km) because of the
removal of orbital energy by tides within one Keplerian turn as a
function of the orbital radius r. Blue line: Δr after turn 1. Orange
line: Δr over turn 50. Green line: Δr over turn 100.

4Note that the order of magnitude obtained ET ∼ 0.01% −
0.1% μc2 (the spheroidal-spherical clump; see also G17) agrees
with the tidal energy calculated with different formalisms [64].
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This is seen in the figure because most of the radial drift is
just within turn 1. Turns 50 and 100 show a much lower
radial drift. The total radial drift Δrtot for a given number of
turns, e.g., Ncycle ¼ 100, is shown in Fig. 5 (top) and it is
the sum of the single radial drifts Δri shown in Fig. 4. We
see that it increases towards ISCO, reaching ∼1rg. The
meaning of the figure is that close to or at ISCO (r ¼ 6rg)
an orbiting body will spiral on an inner unstable orbit,
soon falling onto the compact object. Thus, the signal
emitted has a low temporal coherence, probably equal to 0.
Figure 5 (bottom) shows that even a number of cycles
Ncycle ¼ 5 gives a Δrtot ≠ 0 for a body orbiting at ISCO,
implying the body soon falling onto the compact object. We
can say that, within this framework, a body emitting
radiation and orbiting close to or at ISCO will produce a
Keplerian modulation of temporal coherence essentially
equal to 0.
To take into account the result in Fig. 5, and link it to that

shown in Fig. 3, we construct a table of values ðνk; NcycleÞ,
i.e., Keplerian frequency νk versus number of cycles Ncycle.
Looking at Figs. 3,5 we see that for orbital radii r < 7rg the
spiraling spheroid reaches ISCO and, therefore, falls onto
the compact object before being stretched by tides all over
the orbit. Therefore, the feature dictating the temporal
coherence of the Keplerian modulation is the number of

Keplerian turns to reach ISCO. Instead, for r ≥ 7rg the
spheroid is stretched by tides all over the orbit before
reaching ISCO. Thus, the temporal coherence of the
Keplerian modulation produced is dictated by the tidal
stretching timescale of the spheroid, giving Ncycle as in
Fig. 3. We then make an interpolation through the points of
the table ðνk; NcycleÞ.
Figure 6 shows the quality factor Q of the Keplerian

modulation produced by this physical mechanism.5 The
quality factor Q of twin peak HF QPOs is defined as Q ¼
ν=Δν with ν central frequency of the peak in the power
spectrum and Δν its width at half maximum (e.g.,
Ref. [48]). For amplitude modulation, in Fourier temporal
analysis Δν is the inverse of the timescale the oscillation
lasts, i.e., the coherence timescale, Δν ∼ t0−1. Since
t0 ¼ tkNcycle, with tk Keplerian period, Q ¼ νk=Δν ¼
Ncycle we have derived here. From Fig. 6 we see that the
coherence of the Keplerian modulation νk is characterized
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FIG. 6. Coherence Q of both the Keplerian νk and νk þ νr
modulations produced by tidal disruption of magnetized clumps
of plasma. Blue line: coherence of the Keplerian modulation νk.
The increasing Q is produced by the tidal stretching timescale of
the spheroid deformed by tides. The drop of Q is dictated by the
fall of the deformed clump of plasma onto the compact object.
Such behavior is typical of the coherence of the lower HF QPO
observed in several atoll NS LMXBs (Fig. 2 in Ref. [48]). Orange
line: coherence Q of the beat νk þ νr produced by tidal
circularization of relativistic orbits (see G17). Such behavior is
typical of the coherence of the upper HF QPO observed in several
atoll NS LMXBs (Fig. 2 in Ref. [48]).
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FIG. 5. Total radial drift Δrtot as a function of the orbital radius
(units rg ∼ 3 km). Top: Δrtot for Ncycle ¼ 100. Bottom: Δrtot for
Ncycle ¼ 5.

5We report also theQ of the beat νk þ νr obtained in G17 from
tidal circularization of the orbit. Here we corrected the trend for
the finite propagation timescale of the tidal wave through the
clump, in the phase of tidal circularization of the orbit. It gives a
slight increase up to Q ∼ 20 at high frequencies. Note that, as
seen in Fig. 2, for r ≥ 10rg (νk þ νr ≤ 700 Hz in Fig. 6) the
clump is stretched by tides all over the orbit before complete tidal
circularization of the orbit. Therefore, the actual trend of Q for
ν ≤ 700 Hz should be lower than the orange line in Fig. 6, as seen
in the data, where the Q of the upper HF QPO steadily increases
from Q ∼ 5 to Q ∼ 20 over the range of frequency 600–1200 Hz.
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by an increase up to νk ∼ 950 Hz (6 ∼6.5rg) followed by an
abrupt drop towards ISCO7 (νk ∼ 1100 Hz, r ¼ 6rg). The
increasing Q is a consequence of the weakening of tides
closer to ISCO. Also, it is because the clump was less
deformed during tidal circularization of the orbit, so it
needs to make more turns to be stretched all over the orbit.
Thus, the tidal stretching timescale increases, giving a
higher Ncycle. Weakening of tides towards ISCO (see also
Fig. 2 in G17) is an effect of the flattening of the
gravitational potential minimum, a feature of a curved
space-time and caused by the term ∝ 1=r3 in Eq. (2) [2].
The drop of Q is produced by the fact that the spheroid
reaches ISCO before being stretched by tides all over the
orbit and then falls onto the compact object on unstable
orbits.
A feature that might affect the drop in Fig. 6 is the

contribution by the drifting frequency Δνdrift during spi-
raling. An attempt to estimate it is presented in Ref. [48],
where Δνdrift would sum quadratically to Δν due to the
oscillation finite lifetime we have estimated here, i.e., the
tidal stretching timescale of the clump all over the orbit. In
Ref. [48] the contribution of Δνdrift is relevant close to
ISCO, likely giving a sharper drop of Q than that seen
in Fig. 6.
The strength of the initial magnetic field B permeating

the clump might affect the slope of the increasing Q. As
pointed out in Sec. II, we set B ¼ μ=r3 to take into account
that plasma orbiting closer to the NS might be permeated
by a stronger B. On the other hand, as said in Sec. III, once
tidal circularization of the orbit takes place, the tidal energy
deposited on the clump increases its B, getting equal over
the range r ∼ 6–10rg. A different initial B affects only the
amount of tidal stretching of the clumps during circulari-
zation of the orbit. That is, clumps orbiting farther away are
more deformed than if we set a constant initial B as a
function of r. Therefore, clumps orbiting at r ≥ 10rg would
not find themselves stretched all over the orbit as in Fig. 2 if
the initial B is constant with r. We, however, can conclude
that the increasing Q seen in Fig. 6 is due also to the
weakening of tides approaching ISCO, as well as to the less
energy deposited on the clump during circularization of the
orbits closer to ISBO, deforming the clump to a lesser

extent. This last feature is also a consequence of the
flattening of the gravitational potential minimum.
The overall behavior in Fig. 6 is typical of the lower HF

QPO coherence observed in several atoll NS LMXBs
(Fig. 2 in Ref. [48] and Fig. 1 in Ref. [49]). The authors
in Ref. [48] have already proposed that the drop of Q seen
in the data might be caused by ISCO. Here and in G17 we
have performed a consistent modeling that, although an
approximated one because of the complexity of the
problem, is able to reproduce for the first time the Q of
both the twin peak HF QPOs. We have proposed and
highlighted a physical mechanism, i.e., the removal of the
clump orbital energy by strong tides, circularizing the
clump’s orbit and stretching it over the orbit. Following
these results (Fig. 6), we emphasize the proposal that the
drop of Q of the lower HF QPO seen in atoll NS LMXBs
could be a candidate to disclose the ISCO predicted by GR
in the strong field regime (r ∼ rg). We add that the increase
of Q could be as well a candidate for a signature of ISCO.
We also highlight that Fig. 6 strongly suggests a lower HF
QPO seen in NS LMXBs corresponding to νk, while the
upper HF QPO corresponds to νk þ νr, in agreement with
numerical simulations [30,31] and previous conclusions
(GC15, G17).

V. CONCLUSIONS

The accretion disk in LMXBs might be characterized by
clumps of plasma propagating throughout it. It is worth
mentioning that the authors in Ref. [58] have discovered
large structures in the accretion disk of a LMXB. Accretion
rate fluctuations that propagate in the disk are modeled to
interpret the temporal variability seen in BH LMXBs [60].
The possibility to have a magnetically confined massive
clump of plasma in the inner part of the accretion disk was
pointed out in Ref. [61]. In this manuscript we have
pursued the works presented in GC15 and G17, where
we explored the idea of treating a clump of plasma,
disrupted by strong tides, as characterized by an internal
pressure σ. In G17 we highlighted that such pressure could
be a magnetic one and derived a magnetic field typical of
that in atoll and Z NS LMXBs (∼108 − 109 [53]). These
works were motivated because of the results shown by
numerical simulations on tidal disruption of clumps of
matter around a compact object [27], producing power
spectra much like those observed [30], with the character-
istic twin peak HF QPOs [7].
Having in mind the complexity of the problem, here

we have attempted to study how a magnetized clump of
plasma would react to tidal deformation. We performed a
consistent modeling with the results from G17, where we
showed that the upper HF QPO could originate from tidal
circularization of the clump’s relativistic orbit. Here we
took into account internal magnetic pressure of the clump
and investigated the subsequent evolution phase, when the

6Note that we have calculated the mean Keplerian frequency
within the radial drift interval Δrtot over which the clump spirals.
Moreover, a boundary layer close to or at the NS surface may
affect the Keplerian frequency of the orbiting matter in the inner
part of the accretion disk, such that the real orbital motion is not
purely Keplerian. Also, we used the Schwarzschild metric to be
consistent with the results from tidal circularization (G17 and
Fig. 2 here), where we needed parametrizations of Ẽ and L̃ in the
case of orbits with eccentricity e ≠ 0 [63]. Thus, the orbital
frequencies in Fig. 6 are an approximation.

7At ISCO Q is not zero because we have added to the blue line
the coherence of νk produced in the phase of tidal circularization
of the orbit (Q ∼ 15, see G17).
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clump is deformed by tides into a spheroidlike object and
orbits on a circular orbit, undergoing more tides.
The results presented here (Fig. 6) suggest that the

strong tidal force by a compact object could play a relevant
role in the physical mechanism producing the twin peak HF
QPOs seen in NS LMXBs. TDEs are known around
supermassive BHs, where stars are disrupted by tides
and emit energy as flares [36–39]. The coherence Q in
Fig. 6 of the Keplerian modulation νk is typical of the
lower HF QPO coherence seen in the data [48,49].
Although in an approximated way, this modeling is able
to reproduce, for the first time, the twin peak HF QPO
coherences seen in atoll NS LMXBs. The increasing Q of
νk in Fig. 6 is drawn by the tidal stretching timescale
of the clump of plasma all over the orbit. Afterwards, the
clump would no longer produce Keplerian modulations.
The drop of Q is drawn by the number of turns a clump
makes before reaching ISCO. Subsequently, the clump
enters unstable orbits and falls onto the compact object.
Both the increase and decrease of Q are caused by the

ISCO predicted by GR. In the increasing part, clumps
orbiting at inner radii undergo weakened tides because of
the gravitational potential minimum flattening, a feature
of GR caused by the term ∝ 1=r3 in Eq. (2) [2]. Thus, the
tidal stretching timescale increases towards the inner
orbital radii and so the number of turns in which the
clump can produce Keplerian modulations. The increasing
B towards the NS might affect the slope of Q. In the
decreasing part of Q, the number of turns before falling
beyond ISCO decreases for clumps orbiting closer
to ISCO.
We conclude that the Q of the lower HF QPO seen in

atoll NS LMXBs [48,49] might be a potential candidate to
disclose magnetized clumps of plasma both strongly
stretched by tides and falling onto a NS.
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[52] C. Germanà, Phys. Rev. D 96, 103015 (2017).
[53] D. Psaltis and F. K. Lamb, Astronomical and Astrophysical

Transactions 18, 447 (1999).
[54] W. H. Press and S. A. Teukolsky, Astrophys. J. 213, 183

(1977).
[55] C. J. Skipper, I. M. McHardy, and T. J. Maccarone, Mon.

Not. R. Astron. Soc. 434, 574 (2013).
[56] C. Bonnerot, D. J. Price, G. Lodato, and E. M. Rossi,

Mon. Not. R. Astron. Soc. 469, 4879 (2017).
[57] J. F. Hawley and J. H. Krolik, Astrophys. J. 548, 348 (2001).
[58] J. M. Corral-Santana, J. Casares, T. Muñoz-Darias, P.

Rodríguez-Gil, T. Shahbaz, M. A. P. Torres, C. Zurita,
and A. A. Tyndall, Science 339, 1048 (2013).

[59] A. Ingram and M. van der Klis, Mon. Not. R. Astron. Soc.
434, 1476 (2013).

[60] A. R. Ingram, Astron. Nachr. 337, 385 (2016).
[61] S. Horn and W. Kundt, Astrophys. Space Sci. 158, 205

(1989).
[62] A. Čadež, M. Calvani, and U. Kostić, Astron. Astrophys.

487, 527 (2008).
[63] C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50,

3816 (1994).
[64] A. Gomboc and A. Čadež, Astrophys. J. 625, 278

(2005).

LOWER-TWIN-PEAK QUASIPERIODIC OSCILLATION … PHYS. REV. D 98, 083025 (2018)

083025-11

https://doi.org/10.1086/343791
https://doi.org/10.1051/0004-6361:20010480
https://doi.org/10.1051/0004-6361:20010480
https://doi.org/10.1086/321720
https://doi.org/10.1093/mnras/stt285
https://doi.org/10.1093/mnras/stt285
https://doi.org/10.1088/0004-637X/783/1/23
https://doi.org/10.1038/nature15708
https://doi.org/10.1016/j.jheap.2015.04.006
https://doi.org/10.1093/mnras/stx489
https://doi.org/10.1126/science.1223940
https://doi.org/10.1126/science.1223940
https://doi.org/10.1126/science.203.4383.892
https://doi.org/10.1126/science.203.4383.892
https://doi.org/10.1038/s41550-018-0450-z
https://doi.org/10.1016/j.icarus.2007.11.010
https://doi.org/10.1126/science.1250551
https://doi.org/10.1126/science.1121254
https://doi.org/10.1126/science.1121254
https://doi.org/10.1016/j.icarus.2014.03.006
https://doi.org/10.1016/j.icarus.2014.03.006
https://doi.org/10.1086/323486
https://doi.org/10.1086/323486
https://doi.org/10.1111/j.1365-2966.2006.10571.x
https://doi.org/10.1111/j.1365-2966.2006.10571.x
https://doi.org/10.1111/j.1365-2966.2006.10830.x
https://doi.org/10.1103/PhysRevD.91.083013
https://doi.org/10.1103/PhysRevD.91.083013
https://doi.org/10.1103/PhysRevD.96.103015
https://doi.org/10.1080/10556799908203001
https://doi.org/10.1080/10556799908203001
https://doi.org/10.1086/155143
https://doi.org/10.1086/155143
https://doi.org/10.1093/mnras/stt1044
https://doi.org/10.1093/mnras/stt1044
https://doi.org/10.1093/mnras/stx1210
https://doi.org/10.1086/318678
https://doi.org/10.1126/science.1228222
https://doi.org/10.1093/mnras/stt1107
https://doi.org/10.1093/mnras/stt1107
https://doi.org/10.1002/asna.201612318
https://doi.org/10.1007/BF00639725
https://doi.org/10.1007/BF00639725
https://doi.org/10.1051/0004-6361:200809483
https://doi.org/10.1051/0004-6361:200809483
https://doi.org/10.1103/PhysRevD.50.3816
https://doi.org/10.1103/PhysRevD.50.3816
https://doi.org/10.1086/429263
https://doi.org/10.1086/429263

