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Scalar-tensor gravity, with the screening mechanisms to avoid the severe constraints of the fifth force in
the Solar System, can be described with a unified theoretical framework, the so-called screened modified
gravity (SMG). Within this framework, in this paper we calculate the waveforms of gravitational-waves
(GWs) emitted by inspiral compact binaries, which include four polarization modes, the plus /4, cross A,
breathing 4, and longitudinal /; modes. The scalar polarizations /; and &, are both caused by the scalar
field of SMG, and satisty a simple linear relation. With the stationary phase approximations, we obtain their
Fourier transforms, and derive the correction terms in the amplitude, phase, and polarizations of GWs,
relative to the corresponding results in general relativity. The corresponding parametrized post-Einsteinian
parameters in the general SMG are also identified. Imposing the noise level of the ground-based Einstein
Telescope, we find that GW detections from inspiral compact binaries composed of a neutron star and a
black hole can place stringent constraints on the sensitivities of neutron stars, and the bound is applicable to
any SMG theory. Finally, we apply these results to some specific theories of SMG, including chameleon,

symmetron, dilaton and f(R).
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I. INTRODUCTION

Einstein has laid the foundation of general relativity
(GR) [1] and gravitational waves (GWs) [2] more than one
hundred years ago. In recent years, the LIGO and Virgo
collaborations have detected several GWs from binary
systems, and realized our century-long dreams of detecting
GWs directly [3-8]. This inaugurates the new era of
gravitational astronomy. Since GR was proposed, it has
been tested in various circumstances [9,10]. However, most
of these tests focused mainly on the weak field regimes.
The coalescence of a compact binary system can produce
strong gravitational fields. Therefore, the GW observations
allow us to test GR in the highly dynamical and strong field
regime for the first time [11].

It is well known that there exist two independent GW
polarizations A, and h, in GR [12,13]. However, in a
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metric theory of gravity, considering the symmetric proper-
ties of the Riemann tensor and the Bianchi identity, there
can be at most six different polarizations [9]. Eardley and
collaborators developed the E(2) classification scheme of
GW polarizations to classify metric theories of gravity,
but their discussions are limited to null GWs [14,15].
This scheme is based on the transformation properties of
the polarizations under the little group E(2) of the Lorentz
group. Afterwards, the E(2) classification scheme is
extended to include nearly all null waves in [9]. A GW
detector measures a linear combination of the GW polar-
izations, which is called the response function [12].

With GW detections, we can test GR in two different
approaches, one is theory-independent and the other is
theory-dependent. In the theory-independent approach,
the deviations from GR are characterized by several param-
eters. Theory-independent tests can constrain many different
theories at the same time. The parametrized post-Einsteinian
(ppE) framework is a theory-independent approach. The
standard ppE framework was proposed by Yunes and
Pretorius [16], and they only considered the two tensor

© 2018 American Physical Society
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polarizations, &, and £, emitted by a compact binary on a
quasicircular orbit. The Fourier transform of the response
function in metric theories of gravity is parametrized by four
ppE parameters in the standard ppE framework. Recently,
the standard ppE framework has been extended to include all
the six polarizations and there are more parameters in this
extended ppE framework [17]. In contrast to the theory-
independent approach, the theory-dependent approach con-
strain a specific theory by comparing GW waveforms of this
theory with GW signals. Although this approach can only
test one particular theory at a time, it can directly constrain
the fundamental physics in this theory.

In this paper, we construct the GW response function in
the screened modified gravity (SMG) for theory-dependent
tests of GR. We only consider compact binaries on
quasicircular orbits, as the radiation reaction can circularize
the orbit to a great accuracy [18]. SMG is a scalar-tensor
theory with screening mechanisms and is a simple exten-
sion of GR. In SMG there are a conformal coupling
function A(¢) and a scalar potential V(¢). The scalar
potential can act as dark energy to accelerate the expansion
of the Universe. The behavior of the scalar field is
controlled by an effective potential, which is defined
through V(¢) and A(¢) and depends on the environmental
density. The fluctuation about the minimum of the effective
potential acquires an environmental dependent mass mg,
which is an increasing function of the local matter density.
Then, the scalar field can be screened in high density
regions due to the short range of the fifth force [19].

As natural extensions of GR, scalar-tensor theories have
been studied for decades [20-34]. The leading order GW
waveforms produced by binary systems in Brans-Dicke
theory have been calculated in [35]. These calculations
were extended to higher post-Newtonian (PN) orders in
[36-38]. In these works, the authors ignored the breathing
polarization /;, produced by the scalar field. The breathing
polarization 4, in Brans-Dicke theory was obtained in
[17,39,40]. However, all these works focused on the scalar-
tensor theory with massless scalar field. The GW energy
flux in the massive Brans-Dicke theory was worked out in
[41], but the screening mechanism was not adopted. In
[42], taking into account the screening mechanism in SMG,
we obtained the GW energy flux emitted by the compact
binary system, as well as the solutions of the tensor and
scalar fields which are expressed in terms of the mass
quadrupole moment and the scalar multipole moments,
respectively.

In this paper, based on the results of [42], we work out in
details the GW waveforms produced by an inspiral compact
binary system on a quasicircular orbit in SMG. We find that
there are four polarizations in SMG, i.e., the plus polari-
zation h_, the cross polarization h,, the breathing polari-
zation h;, and the longitudinal polarization /; . In addition,
there is a simple linear relation between h;, and hj
stemming from the scalar field equation, and only three

dynamical degrees of freedom (d.o.f.) exist in SMG. The
relation between h;, and h; is consistent with the previous
result [24]. In the original E(2) classification, the authors
pointed out that for a given theory, if the d.o.f. of the
gravitational field is less than the number of polarizations,
these polarizations are linearly dependent in a manner
dictated by the detailed structure of the theory [15]. The
relation between h;, and h; is a good example of this
statement. Using the stationary phase approximation, we
derive the Fourier transforms of the GW waveforms.
Comparing with the predictions in GR, we identify the
four ppE parameters of SMG. Then, we forecast the
constraints that the Einstein Telescope may impose on
SMG. Applying these constraints to some specific SMG
models, including chameleon model [43,44], symmetron
model [45], and dilaton model [46], we obtain constraints
on the model parameters.

It is well known that f(R) gravity can be rewritten as a
scalar-tensor theory [47-50]. Therefore, our results of SMG
can be applied to f(R) gravity, too. In doing so, we obtain
the GW waveforms produced by an inspiral compact binary
system in the general f(R) gravity with screened mecha-
nisms, and derive the ppE parameters of f(R) theory.'
Then, we constrain three specific f(R) models, including
the Starobinsky model [52], Hu-Sawicki model [53], and
Tsujikawa model [54].

The rest of the paper is organized as follows: In Sec. II,
we briefly review SMG. In Sec. III, we investigate the
orbital motion of the compact binary system and the orbital
decay driven by the gravitational radiation. In Sec. IV, we
calculate the GW waveforms and their Fourier transforms
in SMG. In Sec. V, we calculate the ppE parameters in
SMG and constrain three specific SMG models. In Sec. VI,
we apply the results of SMG to f(R) gravity, while in
Sec. VII, we summarize our main results and present some
concluding remarks.

For the metric, Riemann and Ricci tensors, we follow the
conventions of Misner, Thorne, and Wheeler [13]. We set
the units so that ¢ = A = 1, and therefore the reduced

Planck mass is Mp, = +/1/87G, where G is the Newtonian
gravitational constant.

II. SCREENED MODIFIED GRAVITY

SMG is the scalar-tensor theory with screening mech-
anisms. The action of a general scalar-tensor theory in the
Einstein frame takes the form

5= [ @y 1 R 50,000 - V(@)
—"_ Sm [A2(¢>g}ll/’ \P’n]’ (1)

'Note that, the number of d.o.f. of GW in general f(R) theory
is also derived in [51].
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where g,, is the metric in the Einstein frame, g its
determinant, R the Ricci scalar derived from > ¢ the
scalar field, V(¢) the potential, and A(¢) the conformal
coupling function. ¥,, denotes collectively the mater fields.
Because of the conformal coupling function A(¢), there is a
direct interaction between the scalar field and the matter
fields. Therefore, the scalar field will generate a fifth force
that will be felt by the matter fields. Since there is no
evidence of the fifth force in the Solar System [10], we need
a mechanism to screen it in the high density environments.
The scalar-tensor theory with a screening mechanism is
called screened modified gravity. The screening mecha-
nism will be explained in the following section.

For a compact object, its internal gravitational energy
contributes to its total mass. In the scalar-tensor theory, the
effective gravitational constant depends on the local value
of the scalar field. Thus, the scalar field can affect the
internal structure of a compact object and its total mass.
Eardley suggested that the constant inertial mass m of the
compact object should be replaced by a function of the
scalar field ¢, i.e., m(¢) [22]. Then the matter action in
Eq. (1) becomes

2
S / my()ds,. 2)

Variations of the action S, respectively, with respect to g,,
and ¢ yield the field equations

G,, = 82G(T,, + Th,), (3)
and
V9 = (V) =) @)
where

uhuY,

1 2
™= 52 M@)o X))

is the energy-momentum tensor of point particles with 1,
the four-velocity of the particle a, and T = ¢**T,, is the
trace of T,,. The energy-momentum tensor of the scalar
field is

1
TZ)IJ = 8ﬂ¢al/¢ - Eg;u/[aa¢aa¢ + 2V(¢)} (6)

It can be shown that the behavior of the scalar field is
controlled by the effective potential

Veff(¢) = V(¢> -T. (7)

For a negligibly self-gravitating object, the effective poten-
tial can be rewritten as [23]

Veir(¢) = V() + pA(d), (8)

where p is the conserved energy density in the Einstein
frame [29].

ITII. GRAVITATIONAL RADIATION IN SMG

It is well known that there is no mass dipole radiation in
GR as aresult of the law of conservation of momentum, and
quadrupole radiation is the leading order contribution to
the gravitational radiation [12,13]. However, in the scalar-
tensor theory, the scalar dipole moment does not vanish in
the center-of-inertial-mass frame, and the compact binary
system generally exhibits a time-dependent scalar dipole
moment [22]. Therefore, the scalar dipole radiation exists
in the scalar-tensor theory. In this section, we review some
results from [42] about the motion and gravitational
radiation of a compact binary system. The details can be
found in [42].

In the wave zone (faraway from the binary system), the
metric tensor and the scalar field can be expanded around
the Minkowski background 7,, and the scalar background
¢y, respectively,

G = NMw + hﬂl/’ ¢ = ¢O + . (9)
The bare potential V(¢) and the coupling function A(¢)
can be expanded around ¢, as follows,

V(d) =Vo+ Vig + Vap? + V3¢ + O(¢*),
A(p) = Ay + A1 + Ayp* + A30° + O(g*). (10)

Then, the effective mass of the scalar field is

2 d2 Veff

mS -
d¢2 ®o

=2(Vy + ppAs). (11)

Thus, the effective mass of the scalar field m, depends on
the background matter density p,. In the high density
environment, the mass m, becomes large and the range of
the fifth force is too short to be detectable by the Solar
System experiments. In the low density cosmological
background, the magnitude of the scalar mass can be of
the Hubble scale to drive the acceleration of the universe
[46]. As a result, the scalar field is screened in high
density environments (e.g., the Solar System), while in
the low density environments (e.g., the cosmological
scales), it plays a crucial role. This is the so-called
screening mechanism.

In the weak-field limit, linearizing the field equations (3)
and (4) yields [42]
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Oh,, = —162Gt,,, (12)
and
(0 -m?)p = —162GS, (13)

where }_zﬂ,, = hy, — %nﬂuhg is the trace reversed metric
perturbation, 7,, is the total energy-momentum tensor
and S is the source term of the scalar field. The expressions
of 7,, and S are given by Eqgs. (16) and (19) in [42]. The
inertial mass of the compact object m,(¢) can also be
expanded around the scalar background ¢,

e [l o <¢0> * O(aﬁoﬂ (14

where m, = m,(¢,) and

ma($) =

_ 9(Inm,)

= 0(ng) |, (13)

is the sensitivity, which characterizes how the gravitational
binding energy of a compact object responds to its motion
relative to the additional fields. In SMG, the object’s
sensitivity is proportional to its screened parameter €, [42],

®o
2Mp

S, = €, (16)
Considering the object (labeled as a) with uniform density,

the screened parameter (i.e., the scalar charge) has been
calculated previously, which is given by [42]

€ = ¢O - ¢a
¢ MPch)a ’

(17)

where ®, = Gm, /R, is the surface gravitational potential
of the ath object, and ¢,, is the position of the minimum of
the effective potential Vg inside this object and is generally
inversely correlated to the matter density p [23]. Since the
background matter density is always much less than that of
the compact object, we have ¢y > ¢,.

In a inspiral compact binary system, we treat the compact
objects as point particles and denote their masses as m; and
m, and their positions as r; and r,. In the center-of-
inertial-mass frame, this two-body system can be reduced
to a one-body system, i.e., a point particle with reduced
mass u = mym,/(m; + m,) orbits around the total mass
m = my + m,. The equation of motion is [42]

d’r mr
— == —g T (18)
dt r
where r=r; —r, is the relative coordinate, and the
effective Newtonian constant G is given by [42]

g—G<1+%€1€2>. (19)

During the gravitational radiation of the compact inspiral
system, the orbital eccentricity decreases very quickly, and
the orbital eccentricity is expected to be essentially zero
before the binary enters the frequency bandwidth of
ground-based GW detectors [18]. For this reason, in this
paper we consider only the quasicircular orbit (that is,
circular apart from an adiabatic inspiral), and then the
Kepler’s third law is satisfied,

where @ is the orbital frequency.

The gravitational radiation carries away the orbital
energy of the binary system, which induces the increasing
of the orbital frequency with time. Using the results of [42],
the time derivate of the orbital frequency to leading order is
given by,

w(t) = 956(GM Yo l—l—i(Gma))"i (21)

192

where ¢; =€, —¢, is the difference in the screened
parameter between the two objects. The first term in the
square bracket is the contribution of the mass quadrupole
radiation and the second term represents the scalar dipole
radiation. When e, = 0, this result reduces to that of GR.

IV. GRAVITATIONAL-WAVE
WAVEFORMS IN SMG

In this section, for the general SMG, we construct the
time-domain GW waveforms, as well as their Fourier
transforms using the stationary phase method.

A. Time-domain waveforms

In [42], using the method of Green’s function, the
linearized field equations (12) and (13) have been solved
in the wave zone. The metric perturbation is expressed in
terms of the mass multipole moments and the scalar field is
expressed in terms of the scalar multipole moments. Since
we are calculating the lowest order waveform, analogous to
GR, we need the metric perturbation only to quadrupole
order. Similarly, for the scalar field, we need the scalar
monopole, dipole and quadrupole moments. The solutions
of the tensor and scalar fields are given by [42]

- 2G 9*
W= aﬁzma iy, (22)

and
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G

2
® } : 1 I AL
Q= —MPIB‘/(; dZJ] (Z) 7 ﬁNLalM s (23)

where D is the coordinate distance from the compact binary
to the observer, J; (z) is the Bessel function of the first kind
and the capital letter L is a multi-index and represents [
indices i,i, - - - i;. The quantity N; is given by

N = NNy, N, (24)

where N is the component of the direction unit vector N of
D. The scalar multipole moments /\/lZL are given by2

Mb = M™(1.D. )

= Yo markla= D) = i marh(e= D). 25)

with 7L (t) = il ()72 (1) - ri(r) and u= /1 + (%)%
The calculations of the GW waveforms are based primarily
on Egs. (22) and (23) which were obtained from the
previous work [42].

Expressing the tensor A in terms of the relative
displacement and velocity of the two compact objects of
the binary system, we have

-.. 4G o o
pii =K [vlvf - g—gnr’rf} . (26)
D r D

For the scalar field ¢, retaining only terms to the order of
GMpmv? /D in the monopole and quadrupole parts and to
the order GMpymwv/D in the dipole term, we have

GMp
t,D)=—
o(t.0) =77 [Za:

GM o0
=— DPI/ dzJ, (z){e"”rl)(e,m] +e,m,)
0

Ji(z )[M0+NM +-N;N M”]

. 1 .
+ﬂ€d |:N'V([—D) ——ZN'V(I—DM):|

+F{—QL(N r)+ M(N'V)ZLD

where I' = (e;m, + e;my)/m, x(t) =r((1) —1p(f) is the
relative coordinate and v(¢) = v (¢) — v,(¢) is the relative

2Actually, the definition of M,L (Eq. (61) in [42]) includes
contributions of the kinetic energy of the compact objects and
gravitational binding energy between them. But these corrections
will not affect the GW waveforms to the required order in this
paper, so we ignore these corrections.

velocity of the two objects. Note that the terms proportional
to e, represent the scalar dipole contributions and the terms
proportional to I' represent the scalar quadrupole contri-
butions. Therefore, ¢; and I" are the indicators of the scalar
dipole and quadrupole moments, respectively. The monop-
ole contribution takes the Yukawa form e /D and is
constant in time. Since we focus on the wavelike behavior
of the scalar field in this article, the monopole contribution
will be discarded in the following discussions.

Comparing Eq. (27) with the scalar wave in the massless
Brans-Dicke theory (Egs. (5.2a) and (5.2b) in [40]), we find
that when the compact binary system is in circular orbit,
there are only three terms in the expression of the scalar
wave in the massless Brans-Dicke theory. That is to say, the
mass of the scalar field can double the number of terms in
the scalar wave. For the later convenience we express the
scalar field as follows

yi1(t—D,N) /°° 1
t,D)=———= dzJ —
»(t.D) D +d 1(2) 5
u u
where

(1= D, N)——GMPl{eduN v+r[—gf—m(N r)2

suvp| )

=D

o (t = Du,N) = GMpieu(N - v),_p,.

ws(t— Du,N) = GMPIF[ gﬂ (N-1)? 4+ pu(N- v)z} :
t—Du

(29)

Note that we have used the relatlon JeedzJ (z) = 1.

Under the influence of GWs,’ assuming that the distance
between the test particles is less than the wavelength of
the GWs and the test particles move slowly, we find that
the separation of the test particles & obeys the geo-
desic deviation equation d*&'/dr* = =Ry, [12], where
Rmoj' are the electric components of the Riemann tensor.
Correspondingly, the GW field h;; is defined by
0%h;; /0% = =2Rg; [11].

In a metric theory of gravity, there exist at most six
polarization modes. When a GW travels in the N=z2
direction, these polarizations can be expressed as

*In this paper, we consider the effects of GWs in the Jordan
frame. The overhead bar denotes the quantity in the Jordan frame
except the trace reversed metric perturbation.
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hy +hy hy h,
hlj(t) - hx hb - h+ hy . (30)
h, h, hy
Note that the GW field h;; differs from the metric perturba-
tion h;; in general, although these two quantities can be
derived from each other [17]. Considering the displacement
induced by the six polarizations on a sphere of test particles
(see Fig. 1 in [15] or Fig. 10.1 in [9]), h., A, and h,, are
purely transverse, h;, is purely longitudinal, and h, and h,
are mixed [15]. The response function /() of a GW detector
is a certain linear combination of the GW polarizations,

h(t) = S Faha(1), (31)
A

where A = +, X, b, L, x, y, and F4 is the detector antenna
pattern function, which depends on the geometry and orienta-
tion of the detector. Note that the results in this paper can be
applied to any antenna pattern function. In the next section we
consider Einstein Telescope (ET), a third-generation GW
detector, as an example. The detector antenna pattern func-
tions of ET are given in Egs. (C6)—(C13) in [39].

We turn now to the polarizations of GWs in SMG. Since
the geodesic deviation equation only applies to the Jordan
frame, we consider the Jordan frame metric

_ 1, 02
Roij = — 5 A}

24 24,1 [ 1
— L RIT 4 (5, — N,N;) =L —N-N<—1—/ dzJ — -
2 OatZ{ ij +( ) l J) A() @ vy AO D 0 < 1<Z) I/l2

) 2A
G = A%(9) g = A} (’7;41/ +hir+ A_OI(M"”) (32)

From the Jordan frame metric g,,, we can derive the Jordan

frame Riemann tensor Ry, ; straightforwardly,

- 1 2A 2A

Roigj = =545 |:_—l(p,ij + (hiTjT + —1(.051']') } . (33)
Ap Ap 00

2
In order to obtain the GW polarizations from the Riemann
tensor, we need to replace the spatial derivatives of the
scalar field with the time derivative. Using the relations

t—D,N 1 1
0.0, (Wl( )> — BNl.Njagl,,l T O(ﬁ)’ (34)

D
wo(t—P,N) 1 dP\2 1
8,(9}< Du2 :DuleNj d_D 8?1,”2"‘0 ﬁ )

(35)

r—P,N 1 dP\2 1
ai5'<W3(Du3 )) D NiN; <d_D> oy +O<ﬁ>’
(36)

with P = Du and dP/dD = 1/u, we have

1) (%+%> } (37)

The factor A% in Eq. (32) should be absorbed by a coordinate rescaling x* = Agx*. In the x’# coordinates, the Jordan frame

Riemann tensor is

= 1 82 T 2A| 2A1 1 © 1 Yo V/£3
Réioj:_iaﬂz {hij +(5l~j—NiNj)A—0(p—NiNjA—OBA dZJl(Z) ;_1 ¥+$
10 7
= =557 {65 = i), + Nijhy + [T, (38)

We observe that the massive scalar field induces two polarizations, 4, and &;. Due to the existence of the longitudinal
polarization h; , ¥, component of the Weyl tensor is nonzero and SMG is of class I/ in the E(2) classification [9,14,15]. In
SMG, there are three dynamical d.o.f. (i.e., two tensor degrees and one scalar degree), but four GW polarization modes.
This is an excellent illustration of a discrepancy between the number of polarizations in the E(2) classification and the
number of dynamical d.o.f.

From the Riemann tensor (38), we can identify the waveforms of the four polarizations of GWs in SMG. The breathing
polarization is”*

2A; GMp,
D
2A; GMp,
Ay D

hy(t) = {ueqvsin 0 cos(®) + TG3M3w?/3sin?6 cos (20)},

% 1 1
/ dzJ,(2) {2 peqv sin 0 cos(®) + — TG MY w?3sin?0 cos(2¢>)} , (39)
0 u u t—Du

*The breathing polarization is also called conformal polarization [55].
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and the longitudinal polarization is

hy (1) = Ao D

The waveforms of the tensor polarizations are

2A GM o0 1 1 1
i / dzJ(z) <; - 1) {;yedv sin @ cos(®) + ;F92/3M2/3a)2/3sin20 cos(2®) . (40)
0

t—Du

1
h+(t) = —<1 +§€1€2

1
hy (1) = —(1 €16
2
where @(1) = [ w(
angular momentum along the line of sight, M .(=u
N.v= vsin @ cos @, N.-r= rsin@sin ®, and v = wr.

)%4(GMC)5/30)2/3 1 + cos?0
c
D

)%4(GMC)5/30)2/3

0s(2®)],—p, (41)

cos Osin(2®)|,_p, (42)

")dt' is the orbital phase of the binary system, € is the inclination angle of the binary orbital
3/5m?/3) is the chirp mass. Note that we have used the relations

We perform the integrals containing the Bessel function in /4, and /;, in the limit D — oo. The detailed steps are discussed
in Appendix A. After performing these integrals, we derive the waveform of the breathing polarization,

hy, = hpy + hyo, (43)
2A GM D
hy (1) = P e ,(Gmw)sv (@) sin O cos <L + (D) , (44)
Ay D @® —m? =D
2A, GM 2
hiy (1) = ==L 2P G2 M3 0?30, (2w)?sin?6 cos ( ‘ + 2@) , (45)
Ay D 4 — m? -Du
and the waveform of the longitudinal polarization,
hy = hpy + hpa, (46)
m2 ZAI GMP] 1 sz
hp(f) = ——S =21 § Ocos [ ——e + @ , 47
(1) = =2 2 e G, ) sin s (222 —+ ) » 47)
2A,GM :D
hio(t) = m; L LTI PGR B M w3, (2)sin6 cos <L + 2¢>> : (48)
4% Ay D 4w® — m? 1-Du

where u, =nw/\/n*w*—m?|,_p and v (w)=+/1-m?/w?
is the speed of the scalar wave with frequency w, which is
smaller than the speed of light.’

We find that, to the required order, both the breathing
polarization A, and the longitudinal polarization /; have two
frequency modes. In addition, the amplitude of /; decreases

>To avoid the severe constraints from the vacuum gravi-
Cerenkov radiation by matter such as cosmic rays [56], one
normally requires m?/w* < 1.

[

with time, while other polarizations all chirp (that is, both of
their amplitudes and frequencies increase with time). Since
hy; and hj; are proportional to €4, they stem from the scalar
dipole radiation as mentioned above. Similarly, since /4, and
h;, are proportional to I', they stem from the scalar quadru-
pole radiation. In particular, we find the simple linear
relationships between h;, and &, , given by,

m? m?
hpy =—hp, hpy = 4—a;2hb2~ (49)
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These relations are the direct consequence of the linearized
field equation (13), which can be understood as follows:
Considering a wave packet ¢(t, D, N) centered at a frequency
wgw, from Eq. (13) we find

m2
o = (1- 15 )ato. (50)
WOGw

where we have used the relations 0;p = N;0p¢p and
O?p = —wkyw. Applying Eq. (50) to the electric compo-
nents of the Riemann tensor (33), we have

- 1 2A m?
Roij = —=A2|—=INN; (1 -2
0i0;/ 5 o[ Ao i ]< wéw)(ﬂ,oo
24,
AT+ == 06, . 51
" < 0 Ag v l'l),oo} G
Consequently,
2A 224 2
hy =", b=l =TS p, (52)

wgw Ao Dew

This linear relation has also been obtained in the case of plane
waves in [24]. If wgy is in the bandwidth of the ground-based
detectors, wgw =~ 100 Hz, and the reduced Compton wave-
length of the scalar field is roughly of the cosmological scales,
m;! ~ 1 Mpc, then m? /@y =~ 10732, Therefore, it is very
hard to detect the longitudinal polarization /; .

Having obtained the amplitude ratio between the two
scalar polarizations, we now turn to discuss the amplitude
ratio between the scalar polarizations and the tensor
polarizations. It follows immediately from Egs. (41),
(44), and (45) that the amplitude ratios of 4, to i, and
hy, to h, are

|hp1 JAIMp % €d sin @
h |~ Ay v 1+cos?’
‘2
|hb2|zAlMPIXFX s 92 ‘ (53)
|h| Ay 1 + cos@

When the GW emitted by the compact binary enters the
bandwidth of the ground-based detector, the relative
velocity of the compact binary v is of order 0.1. As a
result, the relative intensity of 4, and Ay, is controlled by
€, and I'. For the binary neutron star (BNS) system or
binary white dwarf (BWD) system, if we assume that the
screened parameters of NSs or WDs are the same, then
€4 ~ 0 and h;, is dominant over /4, that is, the quadrupole
contribution is dominant over the dipole contribution in
this situation. For the binary black hole (BBH) systems,
since the sensitivity of BH is zero (see Appendix B)
and e¢; =1 =0, there is no scalar radiation. Mean-
while, the tensor polarizations also reduce to those of
GR. Sotiriou and Faraoni [25] have proved that isolated

BHs in scalar-tensor gravity are not different from those
given in GR. Our results suggest that, up to the quadrupole
order, the inspiral BBH systems in scalar-tensor gravity are
also the same as those in GR. On the other hand, for the NS-
BH binaries, since egy = 0, €¢; and I are in the same order
of the magnitude, we find that |A;,| is several times larger
than |hy,|. Similar results also apply to the WD-BH and
NS-WD systems.

B. Waveforms in the stationary phase approximation

In GW data analysis, one often works with the Fourier
transforms of the GW waveforms. During the inspiral, the
change in orbital frequency over a single period is
negligible, and we can apply the stationary phase approxi-
mation (SPA) to compute the Fourier transform. Now we
take the plus polarization &, as an example to illustrate
SPA. The Fourier transform of 4, (7) is

I:l+(f) _/h+(l‘//A0)ei2”f’/dﬂ—Ao/h+(t>ei2ﬂonzdt’
(54)

where A comes from the coordinate rescaling. Substitution
of Eq. (41) into the above equation yields

4(GM,.)%3

- 1
hy(f) = —Ag(1 + 5 e16,)F x D

2
2
« H%?%eizmw/w(t>2/3[ei(—2‘1>(f)+2”fA0’)

+ ei(2<1>(t)+2ﬂonf)] dt. (55)

The second term in the square bracket does not have a
stationary point, i.e., a value of ¢ satisfying d(2®(z)+
2xfApt)/dt = 0. Thus, the second term is always oscillat-
ing fast and its integration can be neglected.

The stationary phase point of the first term 7z, is
determined by

D20 4 2mfAgt) s =0, o(t) =afA.  (56)

dt
Expanding the exponential around 7, to second order,

—2®(t) + 2z fApt
= 20(t,) + 2xfApt, —a(t)(t =t ) +---,  (57)

we obtain /., (f) analytically
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- 1 $4(GM )3 1 + cos?0
h+<f>:_A0( ) ( )

1+§€1€2 D >

1 T
Zolt 2/3 l‘PJr’ 58

with the phase ¥, = 2zfAy(D + t,) — 2®(z,) — n/4.

Using the time derivative of the orbital frequency in
Eq. (21), we can eliminate ¢, in the phase ¥, in terms of the
frequency f,

2nfApt, —2®(1,)

- / " (2 f Ay — 20(1))di + 22 Agt, — 20,

1.
o(t,) d
- / (2rfAg —20) 2L 4 2mfAgt, — 20,
w(u) @

128 336
+ 2nfAgt, — 2@, (59)

—_(GM_ xfAy)3 [1 —i(Gmano) ?ed]

where ¢, is the time at which @ — oo and ®, = ®(z,.).

- 1 3/57\% Ay(GM,)3/°
hy(f) = —<1 +§€1€2>3(2—Z>2 XO(T)X cos O(mfAy)~"/0 x

with the phase ¥, =¥, + 7/2.
The Fourier transform of the breathing polarization is

Combining the above results, we find the Fourier trans-
form of the plus polarization,

- 1 $/57\1 Ay(GM,)>/°
h+(f):—(1+§€1€2> (ﬁ) X%

1 4 cos?d ~
X f(”ﬂ‘\o) 7/6

{1 —i(Gmano) —2/3

2| i,
384 ed}e , (60)

with the phase W, =272fAy(D+1.) -2, -5+
35 (GM zfAg) 31 = 3 (GmafAy) €3] When ¢
e, =0 and Ay = 1, the expression of & (f) reduces to
that of GR.

Following a similar procedure, we can derive the Fourier
transforms of other polarizations. In particular, the cross
polarization is

5 .
1—@(Gm7zfA0) 2362 | e, (61)

hy(f) = hypi () + B (f), (62)

where

- S Gu
hy (f) = _EAlMp

€4(Gm)5(GM )3 (2 fAy) 2 sin @

5 m? .
X |:1 - 32m§D(GML)%(2n'fA0)% 384 (GmZﬂ'on) 3€d W} e"Pbl, (63)
~ 571' GM 2 5
) = -1 (24) A, e DG, (G, g o) Fsinto
22 5 2 5 m% .
X [1 —?(GMC)im%D(ﬂon)i——g)g (GmrfAgy)~ %ed —(ﬂon)z} e, (64)
with the corresponding phases
mD n 3 5 5 2
Parlf) = 20D +10) =y = = @t 5 ar M) 1 = e 2nan (69
sz T 3 5 5 2 2 mzR
by =2xfAy(D +1t,)————= =20, A 73 5¢2(GM nfAy) 5| =W, ———o.
) = 28 A0+ 1) = =520 4 2 (mAGM) 1 - S (GM A | =W, - L (69

n = pu/m is the symmetric mass ratio. The Fourier transform of the longitudinal polarization is
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h(f) = hia (f) + hea (), (67)

where

Fua(f) = - (5”)AM Gt c (Gm)fm2(GM,) (2 Ag) Fsin

48
256 s 5 m? .
1——(GM,)5 2rfA 3——G 2 3 S I\PLI’ 68
1 =220 (GM D ansan)t - 53 (Gmaafan i - o ] (68)
5 GM
huath) = = (32) 4unt, ST, i Gt Hnpan) o
22 5 m; ;
l:l — ? (GM ) (ﬂfA0)3 - g (Gmrcon) 36(1 W] e TLZ, (69)
with the corresponding phases
TLI = ‘Pbl s (70)
m2D
VY ,o=%,=¥, -———. 71
L2 b2 T dnfA, (71)
Note that /2, (f) has the same phases as hy, (f) because of the linear relations (49). The phase difference — ;5 f A which takes
the form predicted by Will [57], is a result of the mass of the scalar field.
The response function of GW detectors in SMG is given by
h(t) = Fyhy (1) + F by (1) + Fphy (1) + Frh (1), (72)
and the corresponding Fourier transform is
h(f) = Fuh(f) + Foho(F) + Fyhy(f) + Frho(f) = RO(f) + B (f), (73)

where 2V (f) = Fyhy (f) + Fohy (f) and B2 (f) = Fohy (f) + F b (f) + Fyhpo (f) + Frhpa(f).
Note that in Egs. (60)—(71) the distance D, the masses m, u, M ., m, and the time ¢, are in the Einstein frame, which can
be transformed into the Jordan frame by the relations [23],

i, = Aot,, D = AyD, m=m/A, i=u/A, M, = M_/A,. (74)

Combining Egs. (60)—(71) and using the above relations, we obtain

A (f) = (GA; o) < 458> ~f) {—g (G, ) (2xfGin)~% — ;ﬁm S22 fGin) + <J - g (Gmmy) (21fGin)
- 22—61m2DGm;1 JnfGm) - ;ﬁEAS%ed@ﬂ FGin)™ + E(2nfGimn)™ — 32Em>DGinnAL (2x me)%]
_2 =
cexpi 2D +1) =S wtr) - 52 (75)
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3 5\ L(GM,)i _, Fr, .__

<) = | — 3 6 __

hz(f)—(96)7r < f {T[ 16(Gmm
11

1
—(Giming)*(Fp — —
+ 4 (Gmm (F, o

’ Fy)(f Gimn) -

F(Gmin,)’in

22 _ 10
- ?FbGﬁwthiyAgo(ﬂfGrh)ﬂ + [0 + OS_ (Ginzf)3]e~

) (xfGm)~

F
+TL(Gﬁ1ﬁ13)zS_1(nfGﬁ1)‘§

DA (nfGin)™ + F,S_ (nfGim) ™ + F,

2-°>P(2,0)} X exp{i [an(D +17.) —%—f—Zz//(f/Z)] },

(76)
where
, 1 13 1\
E = —F,,AlMpledsme 1 +§€1€2 s J = —FLAlMpledsm@(Gmms) 1 +§€1€2 s
1 2/3 5 _ 1 2/3 2D
0=A"(1+-c6,) . S, = A T =-APAMT(1+-e1e,)  sin?0e”57,
2 384 2
3 5
W(f) = 52c 2afARGHM,) [1 T3¢ o \Gm2nf) ] ,. (77)

Similar to [39], we have defined e""/’<2~°>P(2$0) =
cos? 0) + 2iF, cos 0.

Considering the results of the Solar System experiments,
we have constrained |Ay — 1| to be less than 107'° in the
Milky Way background in various specific models of SMG
[23]. So, it is natural to assume that A, cannot deviate from
unity too much in the background of other galaxies, e.g.,
the host galaxy for a GW event. Therefore, we will set
Ay = 1 in the following discussion and the overhead bars in
Egs. (75) and (76) can be dropped.

—[F (1+

V. PARAMETRIZED POST-EINSTEINIAN
PARAMETERS

In the standard ppE framework, one considers possible
deviation of the two tensor polarizations (4, h, ) from the
GR predictions. As Yunes and Pretorius found in [16], the
Fourier transform of the response function in metric
theories of gravity can be generically cast in the form,

-~ b
3

h(f) = her(£)(1 + a(aM f)5)eP Mz (T8)
where (a, 3, a, b) are the four ppE parameters and /gy (f)
denotes the GR prediction of the Fourier transform of the
response function. a(zM,f)5 denotes the non-GR correc-

tion to the GW amplitude while f(zM_f)3 corresponds to
that of the GW phase [58]. For instance, the ppE para-
meters of Brans-Dicke theory are (app, fep» dBp, PRD) =

(42 Bgp. —ﬁ;ﬁ(sl —55)? 2+wnn —2,-7), where s, s, are
the sensitivities of the compact objects in Brans-Dicke
theory and wgp is the coupling constant [17].

Since the standard ppE framework only includes the two

tensor polarizations (%, h, ), to obtain the ppE parameters

in SMG, we focus on the two tensor polarizations (h_, h,),
and the Fourier transform of the response function becomes

Foh, + Fyh,
— i 1/271.—2/3 (GMC)S/6f_7/6
96 D
x [0+ 08 (Gmaf) e e 0 Py, (79)
where Q= (1+1e6)*3, S_;=-55€ and ¥, =

2 (D+ 1) =5+ 35 (1 GM) (1 = 35€3(Gma )2~
2®,.. From the formula, we can identify the ppE parameters
in SMG as follows,

@y P ”.

b=-7,

2
~ 143364
a=-2, (80)
where the coefficient Q has been absorbed into the
definition of G. The same as that of Brans-Dicke theory,
we obtain the ratio «/f = 112/3, which is a result of the
fact that the non-GR corrections to the Fourier transform of
the tensor polarizations in these two theories all originate
from the dipole radiation in the GW energy flux [17]. The
PpE parameters a and f in these two theories all depend on
the difference between the scalar charges and the sym-
metric mass ratio #. In the test mass limit (# — 0), a and
become zero in these two theories. Since the extend ppE
framework does not have enough parameters to parametrize
Egs. (75) and (76) [17] and the tensor polarizations are
dominant over the scalar polarizations, we will not apply
the extended ppE framework to SMG.
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It is important to emphasize that the results derived
above are quite general, which are applicable for any SMG
model and for any kind of compact binary systems.
Therefore, we expect the observations of gravitational
radiation by various compact binaries, in particular the
asymmetric binaries, could place constraints on the SMG
theories. For instance, the future space-based LISA mission
could detect the GW signals of NS-BH binaries, WD-BH
binaries, BH-main sequence (BH-MS) binaries, as well as
NS-WD binaries, which provide the excellent opportunity
to constrain the sensitivities of NSs, WDs and MSs. In this
paper, we consider only the GW signals from the inspiral
NS-BH binaries, observed by the ground-based ET, to
constrain the SMG theories, and leave the other potential
constraints as a future work.

In previous work [39], we found that, by observing the
GWs of NS-BH binaries up to redshift z =5, ET could
potentially place the stringent constraints on the Brans-
Dicke theory, and the bound on the coupling constant wgp,
could be wpp > 10° x (Ngw/10*)'/2, where Ngyw is the
total number of observed GW events, and the sensitivities
of the compact objects are fixed to be s; = 0.5 for BH and
s, = 0.2 for NS. As illustrated in [39], this constraint is
dominant by the non-GR contribution of GW phases
through ppE parameter figp. So, the bound on wgp can
be translated into a constraint on fgp as follows,

10% \2
Bn| < 1.3 x 10710%/5 <—>2 (81)
GW

Since the ppE parameters in SMG are quite similar to those
in Brans-Dicke theory, in particular the values of a and b
are exactly the same for both theories, we anticipate that ET
could also place constraints on the ppE parameter f of
SMG at the same level,

5

Pl = 14336

10* )z
2> < 1.3 x 1071025 (—) . (82)
Ngw

that is |e4| < 6 x 107 x (10*/Ngw)'/# for NS-BH binary
system.
The scalar field outside a single BH in SMG is [42]

Gmpgye
=+ ¢ =dy— MPI$E_’"“D- (83)

Since the BH in SMG has no scalar hair (the scalar field is
constant) [25], we have egg = 0 (Note that, the same result
is also obtained by different methods in Appendix B).
Therefore, |e;| = |ens — €gn| = €xs and the constraint
becomes

104 \4
ens < 6% 1074 (N—)4 (84)

GW

In SMG, we recall that the screened parameter of a NS
can be approximated by [42]

bo
=——, 85
ENS Mo ®@ns (85)
where ®yg = Gmyg/Rys is the surface gravitational
potential of the NS in the NS-BH system. Then, the upper
bound on eyg can be translated into a bound on the scalar
background ¢, as follows

104 \4 10 k
ﬂ<1.2x10—4< )4( 7N )( m>. (86)
Mpy Ngw,) \1.4Mg )\ Rys

In the previous work [42], we have obtained the constraint
ewp < 4.2 x 1073 from the orbital period derivative P of
the NS-WD system PSR J1738 + 0333 in SMG. And the
corresponding constraint on the scalar background is
¢o/Mp < 3.3 x 1078, This constraint is tighter than the
constraint (86) because the WD is less compact than NS,
®yp/Pyns ~ 107, Since the space-based LISA mission
could detect the GW signals of WD-BH binaries and NS-
WD binaries, it is hopeful to improve this constraint by the
LISA mission.

In the following discussions, we apply the constraint of
(86) to some specific SMG models.

A. Chameleon

The chameleon model is proposed by Khoury and
Weltamn [43,44], which allows the scalar field to evolve
on the cosmological time scales while shielding the fifth
force by acquiring a large scalar mass in dense energy
environment. Since the original chameleon model is ruled
out by the combined constraints of the Solar System and
cosmology [23], we consider the exponential chameleon
model here. The scalar potential and the conformal cou-
pling function are given by [26]

vig) = e (). A<¢>=exp(f,";>, (87)

where & and f are the positive dimensionless constants and
A corresponds to the dark energy scale. The scalar back-
ground in the host galaxy for a GW event is at the minimum
of the effective potential (7), which is given by [42],

~ day L
bo = (M)” ) (88)
Ppp

Using the GW constraint (86), we obtain
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$o A <55M pA’
Mp Mp \ fp,
Substituting the reduced Plank mass Mp =2.4x10' GeV
and the dark energy scale A =2.24 x 1073 eV into this
inequality, and assuming that the density of the host galaxy
is close to that of the Milky Way p, = 10 GeV*, we

obtain the constraint on the parameters of the exponential
chameleon model

)r“ <12x10%.  (89)

logo f > logo @ — 2.8a + 0.32. (90)

B. Symmetron

In the symmetron model, the vacuum expectation value
of the scalar field depends on the local mass density.
In regions of high density, the scalar field is drawn
toward ¢ = 0, and the effective potential is symmetric
under the transformation ¢ — —¢. In regions of the low
density, this symmetry is broken. The scalar potential
function and the conformal coupling function in this model
take the form [45]

TR

A(¢) =1 M2

Vig) = V—%W +§¢4,
where ji and M are mass scales, A is a positive dimension-
less coupling constant, V is the vacuum energy of the bare
potential V(¢). Similarly, we obtain the scalar background
in the galaxy ¢ = m,/+/24 which is proportional to the
scalar mass [42]. Assuming the reduced Compton wave-
length m3' is roughly of the cosmological scales
(ms' ~1 Mpc), and using the upper bound ¢y/Mp <
1.2 x 10~*, we have a weak constraint on A,

A>23x 107107, (92)

C. Dilaton

The dilation model inspired from string theory has an
exponential potential function and a quadratic conformal
coupling function [46]

— 2
v =vexp (). a) =1+ 0L

(93)

where V is a constant with the dimension of the energy
density, M labels the energy scale of the theory, and ¢, is
approximately the value of the scalar field today.

Applying the GW constraint ¢py/ Mp; < 1.2 x 107 to the
scalar background

M?p,
¢ = ¢* + 0 9 94
0 Mpipy, 64
we obtain
M
— < 45. (95)
Pl

VI. GRAVITATIONAL WAVES IN f(R) GRAVITY

In this section, we consider the GW waveforms in metric
f(R) gravity. Since f(R) gravity can be cast into the form
of a scalar-tensor theory, we can directly apply the results of
Sec. IV to f(R) gravity. We also obtain the ppE parameters
of f(R) gravity and discuss the GW observational con-
straints on some specific f(R) models.

The total action for f(R) gravity takes the form [47]

1 -
=—— [ d*xv/-gf(R G ¥ 6
S =16 | TV (R) + Sulgu. Fal. - (96)
where ¥, denotes collectively the matter fields and the
overhead bar denotes the quantities in the Jordan frame.

After the field redefinition, f’(R) = exp (—,/1%%), and
the conformal rescaling g,, = exp(\/%%)gw, this action
Pl

can be rewritten as Eq. (1), with the bare potential V(¢) =

['(R)R—f(R)

6z Ry and the conformal coupling function Ap) =

| ¢
e exp(\/aMPl) [47,48].

Having rewritten f(R) gravity as a scalar-tensor theory,
we can apply the results of Sec. V to derive the ppE
parameters of f(R) gravity and constrain it by GW
observations.

Using the relation between R and ¢, the screened
parameter of a NS can be rewritten as

V6 (1 - f'(Ry,))
=% 97
ENS 3 Dys (97)
where R, = 8nGp, and p,, is the average galactic density.
From Eq. (80), the ppE parameters of a NS-BH binary
system in f(R) gravity are given by,

5 1= (R,
ONS-BH = —ﬁ#ﬂz/ :

_ 15 [l_f/(koo)]z 2/5
Pns—BH = _28672 CDZNS nr-,

bns-pn = —7. (98)

)

ans-H = —2,

Similarly, the ppE parameters of a NS-WD binary system in
f(R) gravity are
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2
ONS-WD — —ﬁ[l _f/(Roo)]z <———) ’12/5,

15 o !
Pns-wp = ~ 38672 [1—f'(Rs)? <— -

ans—wp = —2, bns-wp = —T7. (99)

Now, we apply the constraint of Eq. (82) to f(R) gravity.
Since this constraint is derived from the potential obser-
vations of NS-BH binaries, we should impose it on fins_pHs,
which reads

R 104\ 3 10 k
|1 —f(Rs)| <0.98 x 1074 4 mns m\
Ngw 1.4M Rys

(100)

Note that this constraint is independent of the form of f(R)
and should be satisfied for any f(R) gravity. Let us focus on
the specific f(R) models as follows,

Cq (R/ﬁlz)n

(A): f(R) :R—ﬁlzm’

(C],Cz, n> 0)’

(101)

(B): f(R) = R - iR, tanh<R5), (iR, >0), (102)

c

2

(C): f(R) =R —ﬁRL[l - (1 +%>_k],(ﬂ,k, R.>0).

c

(103)

Model A is proposed by Hu and Sawicki [53], in which the

mass scale is m? = 8’[3& where p, is the average matter

density in the universe today. Models B and C are proposed
by Tsujikawa [54] and Starobinsky [52], respectively, in
which R, roughly corresponds to the order of observed
cosmological constant for i = O(1). Since the free param-
eters of Model A are in one-to-one correspondence with
that of Model C [48], we discuss only Models A and B in
the following discussions.

In the Hu-Sawicki model, the constraint (100) becomes

|1 = f"(Ry)] < 0.98 x 107* <1_O4>‘_‘< mys )

Ngw 1.4M
(10 km) (87[Gpg) nt1
X = .
Rys R
where R, is the scalar curvature of a spatial flat

Friedmann-Lemaitre-Robertson-Walker universe at the
present epoch [53].

(104)

In the Tsujikawa model, the constraint (100) becomes

i 10* \
— <098 x 107 (—)4 <m>
cosh? ’éT‘: New 1.4M
8 <10 km) (8ﬂGpg> n+l
Rys Ry

where A, is the observed cosmological constant [59].

Then, the inequality h’:f‘koo < 0.98 x 107 can be satisfied
COS! W

(105)

by all fi > 0, where we have used ;\—‘” = %, Qp = 0.692,

0
and p.=086x10"20kgm™ [59] and assumed
p, =107 gem™.

VII. CONCLUSIONS

SMG is a kind of scalar-tensor theories with screening
mechanisms to suppress the fifth force in dense regions.
Based on the previous work [42], in this paper we have
calculated the GW waveforms of an inspiral compact
binary system on a quasicircular orbit in general SMG.
We find that in SMG there are three propagation degrees,
two massless tensor degrees and one massive scalar degree.
However, there exist four polarizations in the E(2) clas-
sifications, since the massive scalar field induces two
polarization modes (the breathing polarization h;, and
longitudinal polarization 4;). Due to the existence of i,
SMG is class 114 in the E(2) classification. We have also
obtained a simple linear relation between the two scalar
polarizations, & :%hb, which is a consequence of
the linearized scalar field equation and consistent with
the previous work [24]. As a result, the amplitude of the
longitudinal mode will decrease with time, which is differ-
ent from the chirping nature (both amplitude and frequency
increase with time) of GWs. Employing the stationary
phase approximation, we have derived the Fourier trans-
forms of the four polarization modes, and found a scalar

. . ZD ~ ~
mass induced phase difference — %= between A, and A,
4drf +

which is consistent with the previous results obtained in
[57]. In comparison with the GW waveforms of GR, we
have identified the ppE parameters in general SMG.
Applying to some specific SMG models, including cha-
meleon, symmetron, dilaton, and f(R), the dependences of
the ppE parameters on the corresponding model parameters
have been obtained. Considering the potential observations
of ET on the GWs emitted by NS-BH binaries, we have
obtained a constraint of eyg < 6 x 107 even for the
conservative estimations with 10* GW events in the red-
shiftrange z < 5, which is a general result and applicable to
any SMG model.
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APPENDIX A: EVALUATION OF INTEGRALS
ARISING IN THE WAVEFORMS OF THE
SCALAR POLARIZATIONS

We follow the method described in Appendix B of [41]
to calculate the integrals with the Bessel function in
Egs. (39) and (40):

w(t—Du)icos(2®(t—Du)),
- 1) %w(l—Du)%cos (®(t—Du)),

51 ot Dufeos 20(1-Du))

(A1)

)2 and (1)

1+ G5 = d®(t)/dt, which can-

not be calculated analytically. However, we can obtain their
asymptotic behavior in the wave zone (D — +o0) [60,61].
Choosing a parameter A such that m DA > 1 and splitting
I, into two parts, the asymptotic expansion of the first part
can be obtained by performing integrations by parts as
follows,

with u =

myDA 1 .
/ dzJ,(z) — o(t — Du)s cos(®(t — Du))
0 u

= —10(2) e~ Du cos(@(s ~ D) 1 -
= (1 — D) cos(D(1 — D)) — Jo(m;DA)
1 jﬂzw(z — DV 1 ) cos(@(t — VT +72))
oo (A2)

where we have used the relation J{(z) = —J;(z). For the
second part, when we perform integrations by parts, it can
be exactly canceled with the A-dependent terms in the
above equation. Therefore, all the contributions that come
from the endpoint m DA can be ignored.

Substituting the asymptotic expression of the Bessel
function

(A3)

into the second part, the integral can be approximated by

- /mdzﬁm(z__ﬂ)

— o(t — Du)3 cos(®(t — Du))
2mgD t—Du)
/\/1+7 (u® = 1)iu

I m;DVi?—1-31+®(t—Du)) 4 el m DV u?—1-3n—-®(t— Du))]’
(A4)
where M denotes the real part of the argument. When

@ > my, the first term has a stationary point u; which is
determined by

, - mgDu B B -
p (”l) - m a)(l DM)D|u:u1 =0, (AS)
that is
-D
Uy = (L)(f Ml) (A6)

Vol = Duy)> = m}

where p(u) = mDVu? —1 -3z + ®(t — Du).

In real situations, we always have @ > m,. Therefore,
the stationary point is very close to unity and we can
approximate u; by

w(t—D)
e w(t— D)2 —=m? (A7)

Expanding p(u) around u; to the second order

1
plu) = plur) +5p" () (u=wy)* - (A8)
then the dominant contribution to the integral 7/ is
I A /2msDw(t—DL3t])3 9 2z 0| (A9)
2 T (u2—1)iu p"(uy)

Thus, to the leading order, we have I,
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I, ~ w(t — D)3 cos(®(r — D))

—w(t - Dul)_%\/w(t — Duy)? — m?
( m2D
X €08
Vo(t — Duy)? — m?
with u; being given by Eq. (A7).

Similarly, we can obtain the asymptotic expression of the
other three integrals

Ot - Du1)>, (A10)

I, ~w(t — D)i cos(2®(t — D))
2
—w(t—Duy)i(1 - —2——
o u2) < dor(t — Du2)2>
( m2D
X COS8
V4o(t — Duy)?> — m?
2 2D
I; Nm—i @’ —m%cos(L+<I>>

Vo —m?
2 2 2
mj m;\ 2 m;D
14 NW (1 _W>w3cos<a)2—_rn§+q)>

+20(t - Du2)>,

3

t—Du,

’

t—Du,

(A11)
where u, is given by

Y 2w(t — D)
2 \/4a)(t—D)2 —m%.

(A12)

APPENDIX B: THE SENSITIVITY OF BH IN SMG

In Sec. V, we derived the screened parameter of BH by
the similar way of Appendix A in [27]. In this Appendix,
we will derive this result by a different method.

The BH mass in the Einstein frame m(¢) is constant and
does not evolve with the scalar field [28]. From the
definition of the sensitivity

o))

(Inm)
A(ng)|,’

N

(B1)

we find that in SMG, both the sensitivity sgy and the
screened parameter egy of BHs are zero.
The action of the SMG, as a kind of scalar-tensor
theories, in the Jordan frame is
[ 0@
S, = | d*x/—9g——|pR-——L5%0,00, — U
J / X gl6ﬂ'G |:¢ ¢ gﬂ ;445 u¢ (¢)

+ S (G Wil (B2)
where (¢) is the coupling function, U(¢) is the
scalar potential and R is the Ricci scalar derived from
the Jordan frame metric g, = A(p)? 9y~ The Jordan frame
Ricci scalar R and the Einstein frame Ricci scalar R are
related by the relation R =A"?[R—-6¢*V,V,InA -
69" (V,InA)V, In A] [62]. Using this relation, we obtain

o(d) = 22G <d lnA(¢>> s %

dg
NNA())

V@) = g =AD"

(B3)

The BH mass in the Jordan frame is given by m(¢) =
A(¢)"'m [28], that is, i (¢h) = ¢2m. Thus, the sensitivity of
a BH in the Jordan frame is

_ O(Inm) 1
) = ——=C = —. B4

BT 0ng) ;2 (B4)
So, we find that the sensitivity of a BH in the general SMG
is the same as that in Brans-Dicke theory [22,27].
In addition, Sotiriou and Faraoni proved that a stationary
BH in a general scalar-tensor theory is the same as in GR
and that the scalar field is constant in this spacetime [25].
As aresult, the screened parameter of a BH, which is zero,
also satisfies the relation

€ :¢0_¢a
¢ Mqu)a ’

(BS)

although this relation is derived from a star composed of a
perfect fluid [23].

[1] A. Einstein, Ann. Phys. (Berlin) 354, 769 (1916).

[2] A.Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 1, 154 (1918).

[3] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[4] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[5] B.P. Abbott ef al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 118, 221101 (2017).

[6] B.P. Abbott ef al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[7]1 B.P. Abbott er al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

083023-16


https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101

WAVEFORMS OF COMPACT BINARY INSPIRAL ...

PHYS. REV. D 98, 083023 (2018)

[8] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 851, L35 (2017).

[9] C. M. Will, Theory and Experiment in Gravitational Physics
(Cambridge University Press, Cambridge, England, 1993).

[10] C. M. Will, Living Rev. Relativity 17, 4 (2014).

[11] K. Thorne, Gravitational radiation, in 300 Years of Gravi-
tation (Cambridge University Press, Cambridge, England,
1987), p. 330.

[12] M. Maggiore, Gravitational Waves. Volume 1: Theory and
Experiments (Oxford University Press, New York, 2008).

[13] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973).

[14] D.M. Eardley, D.L. Lee, A.P. Lightman, R. V. Wagoner,
and C. M. Will, Phys. Rev. Lett. 30, 884 (1973).

[15] D. M. Eardley, D. L. Lee, and A. P. Lightman, Phys. Rev. D
8, 3308 (1973).

[16] N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003 (2009).

[17] K. Chatziioannou, N. Yunes, and N. Cornish, Phys. Rev. D
86, 022004 (2012); 95, 129901(E) (2017).

[18] P.C. Peters, Phys. Rev. 136, B1224 (1964).

[19] C. Burrage and J. Sakstein, Living Rev. Relativity 21, 1
(2018).

[20] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

[21] V. Faraoni, Cosmology in Scalar-Tensor Gravity (Springer
Science & Business Media, New York, 2004).

[22] D. M. Eardley, Astrophys. J. Lett. 196, L59 (1975).

[23] X. Zhang, W. Zhao, H. Huang, and Y. F. Cai, Phys. Rev. D
93, 124003 (2016).

[24] M. Maggiore and A. Nicolis, Phys. Rev. D 62, 024004
(2000).

[25] T.P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103
(2012).

[26] P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury, and A.
Weltman, Phys. Rev. D 70, 123518 (2004).

[27] C.M. Will and H. W. Zaglauer, Astrophys. J. 346, 366
(1989).

[28] T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999).

[29] J. Wang, L. Hui, and J. Khoury, Phys. Rev. Lett. 109,
241301 (2012).

[30] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D.M
Shoemaker, and N. Yunes, Classical Quantum Gravity 29,
232002 (2012).

[31] N. Yunes, P. Pani, and V. Cardoso, Phys. Rev. D 85, 102003
(2012).

[32] Z. Cao, P. Galaviz, and L.-F. Li, Phys. Rev. D 87, 104029
(2013).

[33] L. Sagunski, J. Zhang, M. C. Johnson, L. Lehner, M.
Sakellariadou, S. L. Liebling, C. Palenzuela, and D. Neilsen,
Phys. Rev. D 97, 064016 (2018).

[34] M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno,
Phys. Rev. D 89, 084005 (2014).

[35] C. M. Will, Phys. Rev. D 50, 6058 (1994).

[36] S. Mirshekari and C. M. Will, Phys. Rev. D 87, 084070
(2013).

[37] N. Sennett, S. Marsat, and A. Buonanno, Phys. Rev. D 94,
084003 (2016).

[38] L. Bernard, Phys. Rev. D 98, 044004 (2018).

[39] X. Zhang, J. Yu, T. Liu, W. Zhao, and A. Wang, Phys. Rev.
D 95, 124008 (2017).

[40] R.N. Lang, Phys. Rev. D 91, 084027 (2015).

[41] J. Alsing, E. Berti, C. M. Will, and H. Zaglauer, Phys. Rev.
D 85, 064041 (2012).

[42] X. Zhang, T. Liu, and W. Zhao, Phys. Rev. D 95, 104027
(2017).

[43] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104
(2004).

[44] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026
(2004).

[45] K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104,
231301 (2010).

[46] P. Brax, C. van de Bruck, A.-C. Davis, and D. Shaw, Phys.
Rev. D 82, 063519 (2010).

[47] T.P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451
(2010).

[48] T. Liu, X. Zhang, and W. Zhao, Phys. Lett. B 777, 286
(2018).

[49] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

[50] S. Nojiri, S. Odintsov, and V. Oikonomou, Phys. Rep. 692, 1
(2017).

[51] D. Liang, Y. Gong, S. Hou, and Y. Liu, Phys. Rev. D 95,
104034 (2017).

[52] A. A. Starobinsky, JETP Lett. 86, 157 (2007).

[53] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

[54] S. Tsujikawa, Phys. Rev. D 77, 023507 (2008).

[55] C. de Rham, Living Rev. Relativity 17, 7 (2014).

[56] J. W. Elliott, G. D. Moore, and H. Stoica, J. High Energy
Phys. 08 (2005) 066.

[57] C.M. Will, Phys. Rev. D 57, 2061 (1998).

[58] S. Tahura and K. Yagi, Phys. Rev. D 98, 084042 (2018).

[59] P. A.R. Ade et al., Astron. Astrophys. 594, A13 (2016).

[60] C.M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers I: Asymptotic Methods
and Perturbation Theory (Springer Science & Business
Media, New York, 1999).

[61] FE. Olver, Asymptotics and Special Functions (AK Peters/
CRC Press, Natick, 1997).

[62] R.M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984).

083023-17


https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.80.122003
https://doi.org/10.1103/PhysRevD.86.022004
https://doi.org/10.1103/PhysRevD.86.022004
https://doi.org/10.1103/PhysRevD.95.129901
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1086/181744
https://doi.org/10.1103/PhysRevD.93.124003
https://doi.org/10.1103/PhysRevD.93.124003
https://doi.org/10.1103/PhysRevD.62.024004
https://doi.org/10.1103/PhysRevD.62.024004
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevD.70.123518
https://doi.org/10.1086/168016
https://doi.org/10.1086/168016
https://doi.org/10.1103/PhysRevLett.83.2699
https://doi.org/10.1103/PhysRevLett.109.241301
https://doi.org/10.1103/PhysRevLett.109.241301
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1103/PhysRevD.85.102003
https://doi.org/10.1103/PhysRevD.85.102003
https://doi.org/10.1103/PhysRevD.87.104029
https://doi.org/10.1103/PhysRevD.87.104029
https://doi.org/10.1103/PhysRevD.97.064016
https://doi.org/10.1103/PhysRevD.89.084005
https://doi.org/10.1103/PhysRevD.50.6058
https://doi.org/10.1103/PhysRevD.87.084070
https://doi.org/10.1103/PhysRevD.87.084070
https://doi.org/10.1103/PhysRevD.94.084003
https://doi.org/10.1103/PhysRevD.94.084003
https://doi.org/10.1103/PhysRevD.98.044004
https://doi.org/10.1103/PhysRevD.95.124008
https://doi.org/10.1103/PhysRevD.95.124008
https://doi.org/10.1103/PhysRevD.91.084027
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.95.104027
https://doi.org/10.1103/PhysRevD.95.104027
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevD.82.063519
https://doi.org/10.1103/PhysRevD.82.063519
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physletb.2017.12.051
https://doi.org/10.1016/j.physletb.2017.12.051
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1134/S0021364007150027
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.77.023507
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.1088/1126-6708/2005/08/066
https://doi.org/10.1088/1126-6708/2005/08/066
https://doi.org/10.1103/PhysRevD.57.2061
https://doi.org/10.1103/PhysRevD.98.084042
https://doi.org/10.1051/0004-6361/201525830

