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Scalar-tensor gravity, with the screening mechanisms to avoid the severe constraints of the fifth force in
the Solar System, can be described with a unified theoretical framework, the so-called screened modified
gravity (SMG). Within this framework, in this paper we calculate the waveforms of gravitational-waves
(GWs) emitted by inspiral compact binaries, which include four polarization modes, the plus hþ, cross h×,
breathing hb, and longitudinal hL modes. The scalar polarizations hb and hL are both caused by the scalar
field of SMG, and satisfy a simple linear relation. With the stationary phase approximations, we obtain their
Fourier transforms, and derive the correction terms in the amplitude, phase, and polarizations of GWs,
relative to the corresponding results in general relativity. The corresponding parametrized post-Einsteinian
parameters in the general SMG are also identified. Imposing the noise level of the ground-based Einstein
Telescope, we find that GW detections from inspiral compact binaries composed of a neutron star and a
black hole can place stringent constraints on the sensitivities of neutron stars, and the bound is applicable to
any SMG theory. Finally, we apply these results to some specific theories of SMG, including chameleon,
symmetron, dilaton and fðRÞ.
DOI: 10.1103/PhysRevD.98.083023

I. INTRODUCTION

Einstein has laid the foundation of general relativity
(GR) [1] and gravitational waves (GWs) [2] more than one
hundred years ago. In recent years, the LIGO and Virgo
collaborations have detected several GWs from binary
systems, and realized our century-long dreams of detecting
GWs directly [3–8]. This inaugurates the new era of
gravitational astronomy. Since GR was proposed, it has
been tested in various circumstances [9,10]. However, most
of these tests focused mainly on the weak field regimes.
The coalescence of a compact binary system can produce
strong gravitational fields. Therefore, the GWobservations
allow us to test GR in the highly dynamical and strong field
regime for the first time [11].
It is well known that there exist two independent GW

polarizations hþ and h× in GR [12,13]. However, in a

metric theory of gravity, considering the symmetric proper-
ties of the Riemann tensor and the Bianchi identity, there
can be at most six different polarizations [9]. Eardley and
collaborators developed the Eð2Þ classification scheme of
GW polarizations to classify metric theories of gravity,
but their discussions are limited to null GWs [14,15].
This scheme is based on the transformation properties of
the polarizations under the little group Eð2Þ of the Lorentz
group. Afterwards, the Eð2Þ classification scheme is
extended to include nearly all null waves in [9]. A GW
detector measures a linear combination of the GW polar-
izations, which is called the response function [12].
With GW detections, we can test GR in two different

approaches, one is theory-independent and the other is
theory-dependent. In the theory-independent approach,
the deviations from GR are characterized by several param-
eters. Theory-independent tests can constrainmanydifferent
theories at the same time. The parametrized post-Einsteinian
(ppE) framework is a theory-independent approach. The
standard ppE framework was proposed by Yunes and
Pretorius [16], and they only considered the two tensor
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polarizations, hþ and h×, emitted by a compact binary on a
quasicircular orbit. The Fourier transform of the response
function in metric theories of gravity is parametrized by four
ppE parameters in the standard ppE framework. Recently,
the standard ppE framework has been extended to include all
the six polarizations and there are more parameters in this
extended ppE framework [17]. In contrast to the theory-
independent approach, the theory-dependent approach con-
strain a specific theory by comparing GWwaveforms of this
theory with GW signals. Although this approach can only
test one particular theory at a time, it can directly constrain
the fundamental physics in this theory.
In this paper, we construct the GW response function in

the screened modified gravity (SMG) for theory-dependent
tests of GR. We only consider compact binaries on
quasicircular orbits, as the radiation reaction can circularize
the orbit to a great accuracy [18]. SMG is a scalar-tensor
theory with screening mechanisms and is a simple exten-
sion of GR. In SMG there are a conformal coupling
function AðϕÞ and a scalar potential VðϕÞ. The scalar
potential can act as dark energy to accelerate the expansion
of the Universe. The behavior of the scalar field is
controlled by an effective potential, which is defined
through VðϕÞ and AðϕÞ and depends on the environmental
density. The fluctuation about the minimum of the effective
potential acquires an environmental dependent mass ms,
which is an increasing function of the local matter density.
Then, the scalar field can be screened in high density
regions due to the short range of the fifth force [19].
As natural extensions of GR, scalar-tensor theories have

been studied for decades [20–34]. The leading order GW
waveforms produced by binary systems in Brans-Dicke
theory have been calculated in [35]. These calculations
were extended to higher post-Newtonian (PN) orders in
[36–38]. In these works, the authors ignored the breathing
polarization hb produced by the scalar field. The breathing
polarization hb in Brans-Dicke theory was obtained in
[17,39,40]. However, all these works focused on the scalar-
tensor theory with massless scalar field. The GW energy
flux in the massive Brans-Dicke theory was worked out in
[41], but the screening mechanism was not adopted. In
[42], taking into account the screening mechanism in SMG,
we obtained the GW energy flux emitted by the compact
binary system, as well as the solutions of the tensor and
scalar fields which are expressed in terms of the mass
quadrupole moment and the scalar multipole moments,
respectively.
In this paper, based on the results of [42], we work out in

details the GWwaveforms produced by an inspiral compact
binary system on a quasicircular orbit in SMG. We find that
there are four polarizations in SMG, i.e., the plus polari-
zation hþ, the cross polarization h×, the breathing polari-
zation hb and the longitudinal polarization hL. In addition,
there is a simple linear relation between hb and hL
stemming from the scalar field equation, and only three

dynamical degrees of freedom (d.o.f.) exist in SMG. The
relation between hb and hL is consistent with the previous
result [24]. In the original Eð2Þ classification, the authors
pointed out that for a given theory, if the d.o.f. of the
gravitational field is less than the number of polarizations,
these polarizations are linearly dependent in a manner
dictated by the detailed structure of the theory [15]. The
relation between hb and hL is a good example of this
statement. Using the stationary phase approximation, we
derive the Fourier transforms of the GW waveforms.
Comparing with the predictions in GR, we identify the
four ppE parameters of SMG. Then, we forecast the
constraints that the Einstein Telescope may impose on
SMG. Applying these constraints to some specific SMG
models, including chameleon model [43,44], symmetron
model [45], and dilaton model [46], we obtain constraints
on the model parameters.
It is well known that fðRÞ gravity can be rewritten as a

scalar-tensor theory [47–50]. Therefore, our results of SMG
can be applied to fðRÞ gravity, too. In doing so, we obtain
the GWwaveforms produced by an inspiral compact binary
system in the general fðRÞ gravity with screened mecha-
nisms, and derive the ppE parameters of fðRÞ theory.1

Then, we constrain three specific fðRÞ models, including
the Starobinsky model [52], Hu-Sawicki model [53], and
Tsujikawa model [54].
The rest of the paper is organized as follows: In Sec. II,

we briefly review SMG. In Sec. III, we investigate the
orbital motion of the compact binary system and the orbital
decay driven by the gravitational radiation. In Sec. IV, we
calculate the GW waveforms and their Fourier transforms
in SMG. In Sec. V, we calculate the ppE parameters in
SMG and constrain three specific SMG models. In Sec. VI,
we apply the results of SMG to fðRÞ gravity, while in
Sec. VII, we summarize our main results and present some
concluding remarks.
For the metric, Riemann and Ricci tensors, we follow the

conventions of Misner, Thorne, and Wheeler [13]. We set
the units so that c ¼ ℏ ¼ 1, and therefore the reduced
Planck mass isMPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
, where G is the Newtonian

gravitational constant.

II. SCREENED MODIFIED GRAVITY

SMG is the scalar-tensor theory with screening mech-
anisms. The action of a general scalar-tensor theory in the
Einstein frame takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
þ Sm½A2ðϕÞgμν;Ψm�; ð1Þ

1Note that, the number of d.o.f. of GW in general fðRÞ theory
is also derived in [51].
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where gμν is the metric in the Einstein frame, g its
determinant, R the Ricci scalar derived from gμν, ϕ the
scalar field, VðϕÞ the potential, and AðϕÞ the conformal
coupling function.Ψm denotes collectively the mater fields.
Because of the conformal coupling function AðϕÞ, there is a
direct interaction between the scalar field and the matter
fields. Therefore, the scalar field will generate a fifth force
that will be felt by the matter fields. Since there is no
evidence of the fifth force in the Solar System [10], we need
a mechanism to screen it in the high density environments.
The scalar-tensor theory with a screening mechanism is
called screened modified gravity. The screening mecha-
nism will be explained in the following section.
For a compact object, its internal gravitational energy

contributes to its total mass. In the scalar-tensor theory, the
effective gravitational constant depends on the local value
of the scalar field. Thus, the scalar field can affect the
internal structure of a compact object and its total mass.
Eardley suggested that the constant inertial mass m of the
compact object should be replaced by a function of the
scalar field ϕ, i.e., mðϕÞ [22]. Then the matter action in
Eq. (1) becomes

Sm ¼ −
X2
a¼1

Z
maðϕÞdτa: ð2Þ

Variations of the action S, respectively, with respect to gνν
and ϕ yield the field equations

Gμν ¼ 8πGðTμν þ Tϕ
μνÞ; ð3Þ

and

∇μ∇μϕ ¼ ∂
∂ϕ ðVðϕÞ − TÞ; ð4Þ

where

Tμν ¼ 1ffiffiffiffiffiffi−gp
X2
a¼1

maðϕÞ
uμauνa
u0a

δð3Þðx − xaðtÞÞ; ð5Þ

is the energy-momentum tensor of point particles with uμa
the four-velocity of the particle a, and T ¼ gμνTμν is the
trace of Tμν. The energy-momentum tensor of the scalar
field is

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμν½∂αϕ∂αϕþ 2VðϕÞ�: ð6Þ

It can be shown that the behavior of the scalar field is
controlled by the effective potential

VeffðϕÞ ¼ VðϕÞ − T: ð7Þ

For a negligibly self-gravitating object, the effective poten-
tial can be rewritten as [23]

VeffðϕÞ ¼ VðϕÞ þ ρAðϕÞ; ð8Þ

where ρ is the conserved energy density in the Einstein
frame [29].

III. GRAVITATIONAL RADIATION IN SMG

It is well known that there is no mass dipole radiation in
GR as a result of the law of conservation of momentum, and
quadrupole radiation is the leading order contribution to
the gravitational radiation [12,13]. However, in the scalar-
tensor theory, the scalar dipole moment does not vanish in
the center-of-inertial-mass frame, and the compact binary
system generally exhibits a time-dependent scalar dipole
moment [22]. Therefore, the scalar dipole radiation exists
in the scalar-tensor theory. In this section, we review some
results from [42] about the motion and gravitational
radiation of a compact binary system. The details can be
found in [42].
In the wave zone (faraway from the binary system), the

metric tensor and the scalar field can be expanded around
the Minkowski background ημν and the scalar background
ϕ0, respectively,

gμν ¼ ημν þ hμν; ϕ ¼ ϕ0 þ φ: ð9Þ

The bare potential VðϕÞ and the coupling function AðϕÞ
can be expanded around ϕ0 as follows,

VðϕÞ ¼ V0 þ V1φþ V2φ
2 þ V3φ

3 þOðφ4Þ;
AðϕÞ ¼ A0 þ A1φþ A2φ

2 þ A3φ
3 þOðφ4Þ: ð10Þ

Then, the effective mass of the scalar field is

m2
s ≡ d2Veff

dϕ2

����
ϕ0

¼ 2ðV2 þ ρbA2Þ: ð11Þ

Thus, the effective mass of the scalar field ms depends on
the background matter density ρb. In the high density
environment, the mass ms becomes large and the range of
the fifth force is too short to be detectable by the Solar
System experiments. In the low density cosmological
background, the magnitude of the scalar mass can be of
the Hubble scale to drive the acceleration of the universe
[46]. As a result, the scalar field is screened in high
density environments (e.g., the Solar System), while in
the low density environments (e.g., the cosmological
scales), it plays a crucial role. This is the so-called
screening mechanism.
In the weak-field limit, linearizing the field equations (3)

and (4) yields [42]
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□h̄μν ¼ −16πGτμν; ð12Þ

and

ð□ −m2
sÞφ ¼ −16πGS; ð13Þ

where h̄μν ¼ hμν − 1
2
ημνhαα is the trace reversed metric

perturbation, τμν is the total energy-momentum tensor
and S is the source term of the scalar field. The expressions
of τμν and S are given by Eqs. (16) and (19) in [42]. The
inertial mass of the compact object maðϕÞ can also be
expanded around the scalar background ϕ0,

maðϕÞ ¼ ma

�
1þ sa

�
φ

ϕ0

�
þO

�
φ

ϕ0

�
2
�
; ð14Þ

where ma ¼ maðϕ0Þ and

sa ≡ ∂ðlnmaÞ
∂ðlnϕÞ

����
ϕ0

; ð15Þ

is the sensitivity, which characterizes how the gravitational
binding energy of a compact object responds to its motion
relative to the additional fields. In SMG, the object’s
sensitivity is proportional to its screened parameter ϵa [42],

sa ¼
ϕ0

2MPl
ϵa: ð16Þ

Considering the object (labeled as a) with uniform density,
the screened parameter (i.e., the scalar charge) has been
calculated previously, which is given by [42]

ϵa ¼
ϕ0 − ϕa

MPlΦa
; ð17Þ

where Φa ¼ Gma=Ra is the surface gravitational potential
of the ath object, and ϕa is the position of the minimum of
the effective potential Veff inside this object and is generally
inversely correlated to the matter density ρ [23]. Since the
background matter density is always much less than that of
the compact object, we have ϕ0 ≫ ϕa.
In a inspiral compact binary system, we treat the compact

objects as point particles and denote their masses asm1 and
m2 and their positions as r1 and r2. In the center-of-
inertial-mass frame, this two-body system can be reduced
to a one-body system, i.e., a point particle with reduced
mass μ ¼ m1m2=ðm1 þm2Þ orbits around the total mass
m ¼ m1 þm2. The equation of motion is [42]

d2r
dt2

¼ −
Gmr
r3

; ð18Þ

where r≡ r1 − r2 is the relative coordinate, and the
effective Newtonian constant G is given by [42]

G ¼ G

�
1þ 1

2
ϵ1ϵ2

�
: ð19Þ

During the gravitational radiation of the compact inspiral
system, the orbital eccentricity decreases very quickly, and
the orbital eccentricity is expected to be essentially zero
before the binary enters the frequency bandwidth of
ground-based GW detectors [18]. For this reason, in this
paper we consider only the quasicircular orbit (that is,
circular apart from an adiabatic inspiral), and then the
Kepler’s third law is satisfied,

ω ¼
�
Gm
r3

�
1=2

; ð20Þ

where ω is the orbital frequency.
The gravitational radiation carries away the orbital

energy of the binary system, which induces the increasing
of the orbital frequency with time. Using the results of [42],
the time derivate of the orbital frequency to leading order is
given by,

_ωðtÞ ¼ 96

5
ðGMcÞ53ω11

3

�
1þ 5

192
ðGmωÞ−2

3ϵ2d

�
; ð21Þ

where ϵd ≡ ϵ1 − ϵ2 is the difference in the screened
parameter between the two objects. The first term in the
square bracket is the contribution of the mass quadrupole
radiation and the second term represents the scalar dipole
radiation. When ϵd ¼ 0, this result reduces to that of GR.

IV. GRAVITATIONAL-WAVE
WAVEFORMS IN SMG

In this section, for the general SMG, we construct the
time-domain GW waveforms, as well as their Fourier
transforms using the stationary phase method.

A. Time-domain waveforms

In [42], using the method of Green’s function, the
linearized field equations (12) and (13) have been solved
in the wave zone. The metric perturbation is expressed in
terms of the mass multipole moments and the scalar field is
expressed in terms of the scalar multipole moments. Since
we are calculating the lowest order waveform, analogous to
GR, we need the metric perturbation only to quadrupole
order. Similarly, for the scalar field, we need the scalar
monopole, dipole and quadrupole moments. The solutions
of the tensor and scalar fields are given by [42]

h̄ij ¼ 2G
D

∂2

∂t2
X2
a¼1

mariar
j
a; ð22Þ

and
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φ ¼ −MPl
G
D

Z
∞

0

dzJ1ðzÞ
X2
l¼0

1

l!
NL∂l

tML
l ; ð23Þ

whereD is the coordinate distance from the compact binary
to the observer, J1ðzÞ is the Bessel function of the first kind
and the capital letter L is a multi-index and represents l
indices i1i2 � � � il. The quantity NL is given by

NL ¼ Ni1Ni2 � � �Nil ; ð24Þ

where Ni is the component of the direction unit vector N̂ of
D. The scalar multipole moments ML

l are given by2

ML
l ≡Mi1i2���il

l ðt; D; zÞ

¼
X
a

ϵa

�
marLa ðt −DÞ − 1

ulþ1
marLa ðt −DuÞ

�
; ð25Þ

with rLa ðtÞ ¼ ri1a ðtÞri2a ðtÞ � � � rilaðtÞ and u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

msD
Þ2

q
.

The calculations of the GW waveforms are based primarily
on Eqs. (22) and (23) which were obtained from the
previous work [42].
Expressing the tensor h̄ij in terms of the relative

displacement and velocity of the two compact objects of
the binary system, we have

h̄ij ¼ 4Gμ
D

�
vivj −

Gm
r3

rirj
�
t−D

: ð26Þ

For the scalar field φ, retaining only terms to the order of
GMPlmv2=D in the monopole and quadrupole parts and to
the order GMPlmv=D in the dipole term, we have

φðt;DÞ¼−
GMPl

D

Z
∞

0

dzJ1ðzÞ
�
M0þNi

_Mi
1þ

1

2
NiNjM̈

ij
2

�

¼−
GMPl

D

Z
∞

0

dzJ1ðzÞ
�
e−msDðϵ1m1þϵ2m2Þ

þμϵd

�
N̂ ·vðt−DÞ− 1

u2
N̂ ·vðt−DuÞ

�

þΓ
�
−
Gμm
r3

ðN̂ ·rÞ2þμðN̂ ·vÞ2
�
t−D

−
Γ
u3

�
−
Gμm
r3

ðN̂ ·rÞ2þμðN̂ ·vÞ2
�
t−Du

	
; ð27Þ

where Γ≡ ðϵ1m2 þ ϵ2m1Þ=m, rðtÞ ¼ r1ðtÞ − r2ðtÞ is the
relative coordinate and vðtÞ ¼ v1ðtÞ − v2ðtÞ is the relative

velocity of the two objects. Note that the terms proportional
to ϵd represent the scalar dipole contributions and the terms
proportional to Γ represent the scalar quadrupole contri-
butions. Therefore, ϵd and Γ are the indicators of the scalar
dipole and quadrupole moments, respectively. The monop-
ole contribution takes the Yukawa form e−msD=D and is
constant in time. Since we focus on the wavelike behavior
of the scalar field in this article, the monopole contribution
will be discarded in the following discussions.
Comparing Eq. (27) with the scalar wave in the massless

Brans-Dicke theory (Eqs. (5.2a) and (5.2b) in [40]), we find
that when the compact binary system is in circular orbit,
there are only three terms in the expression of the scalar
wave in the massless Brans-Dicke theory. That is to say, the
mass of the scalar field can double the number of terms in
the scalar wave. For the later convenience we express the
scalar field as follows

φðt;DÞ ¼ ψ1ðt −D; N̂Þ
D

þ
Z

∞

0

dzJ1ðzÞ
1

D

×

�
ψ2ðt −Du; N̂Þ

u2
þ ψ3ðt −Du; N̂Þ

u3

	
; ð28Þ

where

ψ1ðt −D; N̂Þ≡ −GMPl

�
ϵdμN̂ · v þ Γ

�
−
Gμm
r3

ðN̂ · rÞ2

þ μðN̂ · vÞ2
�	

t−D
;

ψ2ðt −Du; N̂Þ≡GMPlϵdμðN̂ · vÞt−Du;

ψ3ðt −Du; N̂Þ≡GMPlΓ
�
−
Gμm
r3

ðN̂ · rÞ2 þ μðN̂ · vÞ2
�
t−Du

:

ð29Þ

Note that we have used the relation
R∞
0 dzJ1ðzÞ ¼ 1.

Under the influence of GWs,3 assuming that the distance
between the test particles is less than the wavelength of
the GWs and the test particles move slowly, we find that
the separation of the test particles ξi obeys the geo-
desic deviation equation d2ξi=dt2 ¼ −R̄0i0jξ

j [12], where
R̄0i0j are the electric components of the Riemann tensor.
Correspondingly, the GW field hij is defined by
∂2hij=∂t2 ¼ −2R̄0i0j [11].
In a metric theory of gravity, there exist at most six

polarization modes. When a GW travels in the N̂ ¼ ẑ
direction, these polarizations can be expressed as2Actually, the definition of ML

l (Eq. (61) in [42]) includes
contributions of the kinetic energy of the compact objects and
gravitational binding energy between them. But these corrections
will not affect the GW waveforms to the required order in this
paper, so we ignore these corrections.

3In this paper, we consider the effects of GWs in the Jordan
frame. The overhead bar denotes the quantity in the Jordan frame
except the trace reversed metric perturbation.
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hijðtÞ ¼

0
B@

hb þ hþ h× hx
h× hb − hþ hy
hx hy hL

1
CA: ð30Þ

Note that the GW field hij differs from the metric perturba-
tion hij in general, although these two quantities can be
derived from each other [17]. Considering the displacement
induced by the six polarizations on a sphere of test particles
(see Fig. 1 in [15] or Fig. 10.1 in [9]), hþ, h×, and hb are
purely transverse, hL is purely longitudinal, and hx and hy
aremixed [15]. The response function hðtÞ of a GWdetector
is a certain linear combination of the GW polarizations,

hðtÞ ¼
X
A

FAhAðtÞ; ð31Þ

where A ¼ þ, ×, b, L, x, y, and FA is the detector antenna
pattern function, which depends on the geometry and orienta-
tion of the detector. Note that the results in this paper can be
applied to any antenna pattern function. In the next sectionwe
consider Einstein Telescope (ET), a third-generation GW
detector, as an example. The detector antenna pattern func-
tions of ET are given in Eqs. (C6)–(C13) in [39].
We turn now to the polarizations of GWs in SMG. Since

the geodesic deviation equation only applies to the Jordan
frame, we consider the Jordan frame metric

ḡμν ¼ A2ðϕÞgμν ¼ A2
0

�
ημν þ hTTμν þ 2A1

A0

φημν

�
: ð32Þ

From the Jordan frame metric ḡμν, we can derive the Jordan
frame Riemann tensor R̄0i0j straightforwardly,

R̄0i0j ¼ −
1

2
A2
0

�
−
2A1

A0

φ;ij þ
�
hTTij þ 2A1

A0

φδij

�
;00

�
: ð33Þ

In order to obtain the GW polarizations from the Riemann
tensor, we need to replace the spatial derivatives of the
scalar field with the time derivative. Using the relations

∂i∂j

�
ψ1ðt −D; N̂Þ

D

�
¼ 1

D
NiNj∂2

tψ1 þO
�

1

D2

�
; ð34Þ

∂i∂j

�
ψ2ðt−P; N̂Þ

Du2

�
¼ 1

Du2
NiNj

�
dP
dD

�
2∂2

tψ2 þO
�

1

D2

�
;

ð35Þ

∂i∂j

�
ψ3ðt−P; N̂Þ

Du3

�
¼ 1

Du3
NiNj

�
dP
dD

�
2∂2

tψ3 þO
�

1

D2

�
;

ð36Þ

with P≡Du and dP=dD ¼ 1=u, we have

R̄0i0j ¼ −
1

2
A2
0

∂2

∂t2
�
hTTij þ ðδij − NiNjÞ

2A1

A0

φ − NiNj
2A1

A0

1

D

Z
∞

0

dzJ1ðzÞ
�
1

u2
− 1

��
ψ2

u2
þ ψ3

u3

�	
: ð37Þ

The factor A2
0 in Eq. (32) should be absorbed by a coordinate rescaling x

0μ ¼ A0xμ. In the x0μ coordinates, the Jordan frame
Riemann tensor is

R̄0
0i0j ¼ −

1

2

∂2

∂t02
�
hTTij þ ðδij − NiNjÞ

2A1

A0

φ − NiNj
2A1

A0

1

D

Z
∞

0

dzJ1ðzÞ
�
1

u2
− 1

��
ψ2

u2
þ ψ3

u3

�	

¼ −
1

2

∂2

∂t02 fðδij − NiNjÞhb þ NiNjhL þ hTTij g: ð38Þ

We observe that the massive scalar field induces two polarizations, hb and hL. Due to the existence of the longitudinal
polarization hL,Ψ2 component of the Weyl tensor is nonzero and SMG is of class II6 in the Eð2Þ classification [9,14,15]. In
SMG, there are three dynamical d.o.f. (i.e., two tensor degrees and one scalar degree), but four GW polarization modes.
This is an excellent illustration of a discrepancy between the number of polarizations in the Eð2Þ classification and the
number of dynamical d.o.f.
From the Riemann tensor (38), we can identify the waveforms of the four polarizations of GWs in SMG. The breathing

polarization is4

hbðtÞ ¼ −
2A1

A0

GMPl

D
fμϵdv sin θ cosðΦÞ þ ΓG2=3M5=3

c ω2=3sin2θ cosð2ΦÞgt−D

þ 2A1

A0

GMPl

D

Z
∞

0

dzJ1ðzÞ
�
1

u2
μϵdv sin θ cosðΦÞ þ 1

u2
ΓG2=3M5=3

c ω2=3sin2θ cosð2ΦÞ
	

t−Du
; ð39Þ

4The breathing polarization is also called conformal polarization [55].
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and the longitudinal polarization is

hLðtÞ ¼ −
2A1

A0

GMPl

D

Z
∞

0

dzJ1ðzÞ
�
1

u2
− 1

��
1

u2
μϵdv sin θ cosðΦÞ þ 1

u2
ΓG2=3M5=3

c ω2=3sin2θ cosð2ΦÞ
�
t−Du

: ð40Þ

The waveforms of the tensor polarizations are

hþðtÞ ¼ −
�
1þ 1

2
ϵ1ϵ2

�2
3 4ðGMcÞ5=3ω2=3

D
1þ cos2θ

2
cosð2ΦÞjt−D; ð41Þ

h×ðtÞ ¼ −
�
1þ 1

2
ϵ1ϵ2

�2
3 4ðGMcÞ5=3ω2=3

D
cos θ sinð2ΦÞjt−D; ð42Þ

where ΦðtÞ ¼ R
t ωðt0Þdt0 is the orbital phase of the binary system, θ is the inclination angle of the binary orbital

angular momentum along the line of sight, Mcð≡μ3=5m2=5Þ is the chirp mass. Note that we have used the relations
N̂ · v ¼ v sin θ cosΦ, N̂ · r ¼ r sin θ sinΦ, and v ¼ ωr.
We perform the integrals containing the Bessel function in hb and hL in the limitD → ∞. The detailed steps are discussed

in Appendix A. After performing these integrals, we derive the waveform of the breathing polarization,

hb ¼ hb1 þ hb2; ð43Þ

hb1ðtÞ ¼ −
2A1

A0

GMPl

D
μϵdðGmωÞ13vsðωÞ sin θ cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

p þΦ
�����

t−Du1

; ð44Þ

hb2ðtÞ ¼ −
2A1

A0

GMPl

D
ΓG2=3M5=3

c ω2=3vsð2ωÞ2sin2θ cos
�

m2
sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω2 −m2
s

p þ 2Φ
�����

t−Du2

; ð45Þ

and the waveform of the longitudinal polarization,

hL ¼ hL1 þ hL2; ð46Þ

hL1ðtÞ ¼ −
m2

s

ω2

2A1

A0

GMPl

D
μϵdðGmωÞ13vsðωÞ sin θ cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

p þΦ
�����

t−Du1

; ð47Þ

hL2ðtÞ ¼ −
m2

s

4ω2

2A1

A0

GMPl

D
ΓG2=3M5=3

c ω2=3vsð2ωÞ2sin2θ cos
�

m2
sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω2 −m2
s

p þ 2Φ
�����

t−Du2

; ð48Þ

where un¼nω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2−m2

s

p
jt−D and vsðωÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

s=ω2
p

is the speed of the scalar wave with frequency ω, which is
smaller than the speed of light.5

We find that, to the required order, both the breathing
polarization hb and the longitudinal polarization hL have two
frequency modes. In addition, the amplitude of hL decreases

with time, while other polarizations all chirp (that is, both of
their amplitudes and frequencies increase with time). Since
hb1 and hL1 are proportional to ϵd, they stem from the scalar
dipole radiation as mentioned above. Similarly, since hb2 and
hL2 are proportional to Γ, they stem from the scalar quadru-
pole radiation. In particular, we find the simple linear
relationships between hb and hL, given by,

hL1 ¼
m2

s

ω2
hb1; hL2 ¼

m2
s

4ω2
hb2: ð49Þ

5To avoid the severe constraints from the vacuum gravi-
Čerenkov radiation by matter such as cosmic rays [56], one
normally requires m2

s=ω2 ≪ 1.
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These relations are the direct consequence of the linearized
field equation (13), which can be understood as follows:
Considering awave packetφðt; D; N̂Þ centered at a frequency
ωGW, from Eq. (13) we find

∂2
Dφ ¼

�
1 −

m2
s

ω2
GW

�
∂2
tφ; ð50Þ

where we have used the relations ∂iφ ¼ Ni∂Dφ and
∂2
tφ ¼ −ω2

GWφ. Applying Eq. (50) to the electric compo-
nents of the Riemann tensor (33), we have

R̄0i0j ¼ −
1

2
A2
0

�
−
2A1

A0

NiNj

�
1 −

m2
s

ω2
GW

�
φ;00

þ
�
hTTij þ 2A1

A0

φδij

�
;00

�
: ð51Þ

Consequently,

hb ¼
2A1

A0

φ; hL ¼ m2
s

ω2
GW

2A1

A0

φ ¼ m2
s

ω2
GW

hb: ð52Þ

This linear relation has also been obtained in the case of plane
waves in [24]. IfωGW is in the bandwidth of the ground-based
detectors, ωGW ≃ 100 Hz, and the reduced Compton wave-
length of the scalar field is roughly of the cosmological scales,
m−1

s ≃ 1 Mpc, then m2
s=ω2

GW ≃ 10−32. Therefore, it is very
hard to detect the longitudinal polarization hL.
Having obtained the amplitude ratio between the two

scalar polarizations, we now turn to discuss the amplitude
ratio between the scalar polarizations and the tensor
polarizations. It follows immediately from Eqs. (41),
(44), and (45) that the amplitude ratios of hb1 to hþ and
hb2 to hþ are

jhb1j
jhþj

≈
A1MPl

A0

×
ϵd
v
×

sin θ
1þ cos2θ

;

jhb2j
jhþj

≈
A1MPl

A0

× Γ ×
sin2θ

1þ cos2θ
: ð53Þ

When the GW emitted by the compact binary enters the
bandwidth of the ground-based detector, the relative
velocity of the compact binary v is of order 0.1. As a
result, the relative intensity of hb1 and hb2 is controlled by
ϵd and Γ. For the binary neutron star (BNS) system or
binary white dwarf (BWD) system, if we assume that the
screened parameters of NSs or WDs are the same, then
ϵd ∼ 0 and hb2 is dominant over hb1, that is, the quadrupole
contribution is dominant over the dipole contribution in
this situation. For the binary black hole (BBH) systems,
since the sensitivity of BH is zero (see Appendix B)
and ϵd ¼ Γ ¼ 0, there is no scalar radiation. Mean-
while, the tensor polarizations also reduce to those of
GR. Sotiriou and Faraoni [25] have proved that isolated

BHs in scalar-tensor gravity are not different from those
given in GR. Our results suggest that, up to the quadrupole
order, the inspiral BBH systems in scalar-tensor gravity are
also the same as those in GR. On the other hand, for the NS-
BH binaries, since ϵBH ¼ 0, ϵd and Γ are in the same order
of the magnitude, we find that jhb1j is several times larger
than jhb2j. Similar results also apply to the WD-BH and
NS-WD systems.

B. Waveforms in the stationary phase approximation

In GW data analysis, one often works with the Fourier
transforms of the GW waveforms. During the inspiral, the
change in orbital frequency over a single period is
negligible, and we can apply the stationary phase approxi-
mation (SPA) to compute the Fourier transform. Now we
take the plus polarization hþ as an example to illustrate
SPA. The Fourier transform of hþðtÞ is

h̃þðfÞ ¼
Z

hþðt0=A0Þei2πft0dt0 ¼ A0

Z
hþðtÞei2πfA0tdt;

ð54Þ

where A0 comes from the coordinate rescaling. Substitution
of Eq. (41) into the above equation yields

h̃þðfÞ ¼ −A0ð1þ
1

2
ϵ1ϵ2Þ23 ×

4ðGMcÞ5=3
D

×
1þ cos2θ

2

1

2
ei2πfA0D

Z
ωðtÞ2=3½eið−2ΦðtÞþ2πfA0tÞ

þ eið2ΦðtÞþ2πfA0tÞ�dt: ð55Þ

The second term in the square bracket does not have a
stationary point, i.e., a value of t satisfying dð2ΦðtÞþ
2πfA0tÞ=dt ¼ 0. Thus, the second term is always oscillat-
ing fast and its integration can be neglected.
The stationary phase point of the first term t� is

determined by

d
dt

ð−2Φþ 2πfA0tÞjt¼t� ¼ 0; ωðt�Þ ¼ πfA0: ð56Þ

Expanding the exponential around t� to second order,

− 2ΦðtÞ þ 2πfA0t

¼ −2Φðt�Þ þ 2πfA0t� − _ωðt�Þðt − t�Þ2 þ � � � ; ð57Þ

we obtain h̃þðfÞ analytically
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h̃þðfÞ ¼ −A0

�
1þ 1

2
ϵ1ϵ2

�2
3 4ðGMcÞ5=3

D
1þ cos2θ

2

×
1

2
ωðt�Þ2=3

ffiffiffiffiffiffiffiffiffiffiffi
π

_ωðt�Þ
r

eiΨþ ; ð58Þ

with the phase Ψþ ¼ 2πfA0ðDþ t�Þ − 2Φðt�Þ − π=4.
Using the time derivative of the orbital frequency in

Eq. (21), we can eliminate t� in the phaseΨþ in terms of the
frequency f,

2πfA0t� − 2Φðt�Þ

¼
Z

t�

tc

ð2πfA0 − 2ωðtÞÞdtþ 2πfA0tc − 2Φc

¼
Z

ωðt�Þ

ωðtcÞ
ð2πfA0 − 2ωÞ dω

_ω
þ 2πfA0tc − 2Φc

¼ 3

128
ðGMcπfA0Þ−5

3

�
1 −

5

336
ðGmπfA0Þ−2

3ϵ2d

�
þ 2πfA0tc − 2Φc; ð59Þ

where tc is the time at which ω → ∞ and Φc ¼ ΦðtcÞ.

Combining the above results, we find the Fourier trans-
form of the plus polarization,

h̃þðfÞ ¼ −
�
1þ 1

2
ϵ1ϵ2

�2
3

�
5π

24

�1
2

×
A0ðGMcÞ5=6

D

×
1þ cos2θ

2
ðπfA0Þ−7=6

×

�
1 −

5

384
ðGmπfA0Þ−2=3ϵ2d

�
eiΨþ ; ð60Þ

with the phase Ψþ ¼ 2πfA0ðDþ tcÞ − 2Φc − π
4
þ

3
128

ðGMcπfA0Þ−5
3½1 − 5

336
ðGmπfA0Þ−2

3ϵ2d�. When ϵ1 ¼
ϵ2 ¼ 0 and A0 ¼ 1, the expression of h̃þðfÞ reduces to
that of GR.
Following a similar procedure, we can derive the Fourier

transforms of other polarizations. In particular, the cross
polarization is

h̃×ðfÞ ¼ −
�
1þ 1

2
ϵ1ϵ2

�2
3

�
5π

24

�1
2

×
A0ðGMcÞ5=6

D
× cos θðπfA0Þ−7=6 ×

�
1 −

5

384
ðGmπfA0Þ−2=3ϵ2d

�
eiΨ× ; ð61Þ

with the phase Ψ× ¼ Ψþ þ π=2.
The Fourier transform of the breathing polarization is

h̃bðfÞ ¼ h̃b1ðfÞ þ h̃b2ðfÞ; ð62Þ

where

h̃b1ðfÞ ¼ −
5π

48
A1Mp

Gμ
D

ϵdðGmÞ13ðGMcÞ−5
6ð2πfA0Þ−3

2 sin θ

×

�
1 − 32m2

sDðGMcÞ53ð2πfA0Þ23 −
5

384
ðGm2πfA0Þ−2

3ϵ2d −
m2

s

2ð2πfA0Þ2
�
eiΨb1 ; ð63Þ

h̃b2ðfÞ ¼ −
1

2

�
5π

24

�1
2

A1Mp
GMc

D
ΓðGMcÞ23ðGMcÞ−5

6ðπfA0Þ−7
6sin2θ

×

�
1 −

22

5
ðGMcÞ53m2

sDðπfA0Þ23 −
5

384
ðGmπfA0Þ−2

3ϵ2d −
m2

s

4ðπfA0Þ2
�
eiΨb2 ; ð64Þ

with the corresponding phases

Ψb1ðfÞ ¼ 2πfA0ðDþ tcÞ −
m2

sD
4πfA0

−
π

4
−Φc þ

3

256
ð2πfA0GMcÞ−5

3

�
1 −

5

336
η
2
5ϵ2dðGMc2πfA0Þ−2

3

�
; ð65Þ

Ψb2ðfÞ ¼ 2πfA0ðDþ tcÞ −
m2

sD
4πfA0

−
π

4
− 2Φc þ

3

128
ðπfA0GMcÞ−5

3

�
1 −

5

336
η
2
5ϵ2dðGMcπfA0Þ−2

3

�
¼ Ψþ −

m2
sR

4πfA0

: ð66Þ

η ¼ μ=m is the symmetric mass ratio. The Fourier transform of the longitudinal polarization is
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h̃LðfÞ ¼ h̃L1ðfÞ þ h̃L2ðfÞ; ð67Þ

where

h̃L1ðfÞ ¼ −
�
5π

48

�1
2

A1Mp
Gμ
D

ϵdðGmÞ13m2
sðGMcÞ−5

6ð2πfA0Þ−7
2 sin θ

×

�
1 −

256

5
ðGMcÞ53m2

sDð2πfA0Þ23 −
5

384
ðGm2πfA0Þ−2

3ϵ2d −
m2

s

2ð2πfA0Þ2
�
eiΨL1 ; ð68Þ

h̃L2ðfÞ ¼ −
1

8

�
5π

24

�1
2

A1Mp
GMc

D
ΓðGMcÞ23m2

sðGMcÞ−5
6ðπfA0Þ−19

6 sin2θ

×

�
1 −

22

5
ðGMcÞ53m2

sDðπfA0Þ23 −
5

384
ðGmπfA0Þ−2

3ϵ2d −
m2

s

4ðπfA0Þ2
�
eiΨL2 ; ð69Þ

with the corresponding phases

ΨL1 ¼ Ψb1; ð70Þ

ΨL2 ¼ Ψb2 ¼ Ψþ −
m2

sD
4πfA0

: ð71Þ

Note that h̃LðfÞ has the same phases as h̃bðfÞ because of the linear relations (49). The phase difference − m2
sD

4πfA0
, which takes

the form predicted by Will [57], is a result of the mass of the scalar field.
The response function of GW detectors in SMG is given by

hðtÞ ¼ F×h×ðtÞ þ FþhþðtÞ þ FbhbðtÞ þ FLhLðtÞ; ð72Þ

and the corresponding Fourier transform is

h̃ðfÞ ¼ F×h̃×ðfÞ þ Fþh̃þðfÞ þ Fbh̃bðfÞ þ FLh̃LðfÞ≡ h̃ð1ÞðfÞ þ h̃ð2ÞðfÞ; ð73Þ

where h̃ð1ÞðfÞ ¼ Fbh̃b1ðfÞ þ FLh̃L1ðfÞ and h̃ð2ÞðfÞ ¼ F×h̃×ðfÞ þ Fþh̃þðfÞ þ Fbh̃b2ðfÞ þ FLh̃L2ðfÞ.
Note that in Eqs. (60)–(71) the distanceD, the masses m, μ,Mc, ms, and the time tc are in the Einstein frame, which can

be transformed into the Jordan frame by the relations [23],

t̄c ¼ A0tc; D̄ ¼ A0D; m̄ ¼ m=A0; μ̄ ¼ μ=A0; M̄c ¼ Mc=A0: ð74Þ

Combining Eqs. (60)–(71) and using the above relations, we obtain

h̃ð1ÞðfÞ ¼ ðGM̄cÞ56
D̄

�
5

48

�1
2

π−
1
2ð2fÞ−7

6

�
−
J
2
ðGm̄m̄sÞ2ð2πfGm̄Þ−13

3 −
5

384
JA

−4
3

0 ϵ2dð2πfGm̄Þ−3 þ
�
J −

E
2
ðGm̄m̄sÞ2

�
ð2πfGm̄Þ−7

3

−
256

5
Jm̄2

sD̄Gm̄ηA
10
3

0 ð2πfGm̄Þ−5
3 −

5

384
EA

−4
3

0 ϵ2dð2πfGm̄Þ−1 þ Eð2πfGm̄Þ−1
3 − 32Em̄2

sD̄Gm̄ηA
10
3

0 ð2πfGm̄Þ13
�

× exp

�
i

�
2πfðD̄þ t̄cÞ −

π

4
þ ψðfÞ − m̄2

sD̄
4πf

�	
; ð75Þ
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h̃ð2ÞðfÞ ¼
�
5

96

�1
2

π−
2
3
ðGM̄cÞ56

D̄
f−

7
6

�
T

�
−
FL

16
ðGm̄m̄sÞ4ðπfGm̄Þ−4 þFL

4
ðGm̄m̄sÞ2S−1ðπfGm̄Þ−8

3

þ 1

4
ðGm̄m̄sÞ2ðFL −FbÞðπfGm̄Þ−2 − 11

10
FLðGm̄m̄sÞ3m̄sD̄ηA

10
3

0 ðπfGm̄Þ−4
3 þFbS−1ðπfGm̄Þ−2

3 þFb

−
22

5
FbGm̄m̄2

sD̄ηA
10
3

0 ðπfGm̄Þ23
�
þ ½QþQS−1ðGm̄πfÞ−2

3�e−iφð2;0ÞPð2;0Þ

	
× exp

�
i

�
2πfðD̄þ t̄cÞ−

π

4
þ 2ψðf=2Þ

�	
;

ð76Þ

where

E ¼ −FbA1MPlϵd sin θ

�
1þ 1

2
ϵ1ϵ2

�
1=3

; J ¼ −FLA1MPlϵd sin θðGm̄m̄sÞ2
�
1þ 1

2
ϵ1ϵ2

�1
3

;

Q ¼ A5=3
0

�
1þ 1

2
ϵ1ϵ2

�
2=3

; S−1 ¼ −
5

384
ϵ2dA

−4=3
0 ; T ¼ −A2=3

0 A1MPlΓ
�
1þ 1

2
ϵ1ϵ2

�
2=3

sin2θe−i
m̄2
s D̄
4πf ;

ψðfÞ ¼ 3

256
ð2πfA2

0GM̄cÞ−5
3

�
1 −

5

336
ϵ2dA

−4
3

0 ðGm̄2πfÞ−2
3

�
−Φc: ð77Þ

Similar to [39], we have defined e−iφð2;0ÞPð2;0Þ ≡ −½Fþð1þ
cos2 θÞ þ 2iF× cos θ�.
Considering the results of the Solar System experiments,

we have constrained jA0 − 1j to be less than 10−10 in the
Milky Way background in various specific models of SMG
[23]. So, it is natural to assume that A0 cannot deviate from
unity too much in the background of other galaxies, e.g.,
the host galaxy for a GW event. Therefore, we will set
A0 ¼ 1 in the following discussion and the overhead bars in
Eqs. (75) and (76) can be dropped.

V. PARAMETRIZED POST-EINSTEINIAN
PARAMETERS

In the standard ppE framework, one considers possible
deviation of the two tensor polarizations ðhþ; h×Þ from the
GR predictions. As Yunes and Pretorius found in [16], the
Fourier transform of the response function in metric
theories of gravity can be generically cast in the form,

h̃ðfÞ ¼ h̃GRðfÞð1þ αðπMcfÞa3ÞeiβðπMcfÞ
b
3 ; ð78Þ

where ðα; β; a; bÞ are the four ppE parameters and h̃GRðfÞ
denotes the GR prediction of the Fourier transform of the
response function. αðπMcfÞa3 denotes the non-GR correc-
tion to the GW amplitude while βðπMcfÞb3 corresponds to
that of the GW phase [58]. For instance, the ppE para-
meters of Brans-Dicke theory are ðαBD; βBD; aBD; bBDÞ ¼
ð112

3
βBD;− 5

3584
η
2
5ðs1 − s2Þ2 1

2þωBD
;−2;−7Þ, where s1, s2 are

the sensitivities of the compact objects in Brans-Dicke
theory and ωBD is the coupling constant [17].
Since the standard ppE framework only includes the two

tensor polarizations ðhþ; h×Þ, to obtain the ppE parameters

in SMG, we focus on the two tensor polarizations ðhþ; h×Þ,
and the Fourier transform of the response function becomes

Fþh̃þ þ F×h̃×

¼
�
5

96

�
1=2

π−2=3
ðGMcÞ5=6

D
f−7=6

× ½QþQS−1ðGmπfÞ−2=3�e−Ψþe−iφð2;0ÞPð2;0Þ; ð79Þ

where Q ¼ ð1þ 1
2
ϵ1ϵ2Þ2=3, S−1 ¼ − 5

384
ϵ2d, and Ψþ¼

2πfðDþ tcÞ− π
4
þ 3

128
ðπfGMcÞ−5=3½1− 5

336
ϵ2dðGmπfÞ−2=3�−

2Φc. From the formula, we can identify the ppE parameters
in SMG as follows,

α ¼ −
5

384
ϵ2dη

2=5; β ¼ −
5

14336
ϵ2dη

2=5;

a ¼ −2; b ¼ −7; ð80Þ

where the coefficient Q has been absorbed into the
definition of G. The same as that of Brans-Dicke theory,
we obtain the ratio α=β ¼ 112=3, which is a result of the
fact that the non-GR corrections to the Fourier transform of
the tensor polarizations in these two theories all originate
from the dipole radiation in the GW energy flux [17]. The
ppE parameters α and β in these two theories all depend on
the difference between the scalar charges and the sym-
metric mass ratio η. In the test mass limit (η → 0), α and β
become zero in these two theories. Since the extend ppE
framework does not have enough parameters to parametrize
Eqs. (75) and (76) [17] and the tensor polarizations are
dominant over the scalar polarizations, we will not apply
the extended ppE framework to SMG.
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It is important to emphasize that the results derived
above are quite general, which are applicable for any SMG
model and for any kind of compact binary systems.
Therefore, we expect the observations of gravitational
radiation by various compact binaries, in particular the
asymmetric binaries, could place constraints on the SMG
theories. For instance, the future space-based LISA mission
could detect the GW signals of NS-BH binaries, WD-BH
binaries, BH-main sequence (BH-MS) binaries, as well as
NS-WD binaries, which provide the excellent opportunity
to constrain the sensitivities of NSs, WDs and MSs. In this
paper, we consider only the GW signals from the inspiral
NS-BH binaries, observed by the ground-based ET, to
constrain the SMG theories, and leave the other potential
constraints as a future work.
In previous work [39], we found that, by observing the

GWs of NS-BH binaries up to redshift z ¼ 5, ET could
potentially place the stringent constraints on the Brans-
Dicke theory, and the bound on the coupling constant ωBD

could be ωBD > 106 × ðNGW=104Þ1=2, where NGW is the
total number of observed GW events, and the sensitivities
of the compact objects are fixed to be s1 ¼ 0.5 for BH and
s2 ¼ 0.2 for NS. As illustrated in [39], this constraint is
dominant by the non-GR contribution of GW phases
through ppE parameter βBD. So, the bound on ωBD can
be translated into a constraint on βBD as follows,

jβBDj < 1.3 × 10−10η2=5
�

104

NGW

�1
2

: ð81Þ

Since the ppE parameters in SMG are quite similar to those
in Brans-Dicke theory, in particular the values of a and b
are exactly the same for both theories, we anticipate that ET
could also place constraints on the ppE parameter β of
SMG at the same level,

jβj ¼ 5

14336
ϵ2dη

2=5 < 1.3 × 10−10η2=5
�

104

NGW

�1
2

; ð82Þ

that is jϵdj < 6 × 10−4 × ð104=NGWÞ1=4 for NS-BH binary
system.
The scalar field outside a single BH in SMG is [42]

ϕ ¼ ϕ0 þ φ ¼ ϕ0 −MPl
GmBHϵBH

D
e−msD: ð83Þ

Since the BH in SMG has no scalar hair (the scalar field is
constant) [25], we have ϵBH ¼ 0 (Note that, the same result
is also obtained by different methods in Appendix B).
Therefore, jϵdj ¼ jϵNS − ϵBHj ¼ ϵNS and the constraint
becomes

ϵNS < 6 × 10−4
�

104

NGW

�1
4

: ð84Þ

In SMG, we recall that the screened parameter of a NS
can be approximated by [42]

ϵNS ¼
ϕ0

MPlΦNS
; ð85Þ

where ΦNS ¼ GmNS=RNS is the surface gravitational
potential of the NS in the NS-BH system. Then, the upper
bound on ϵNS can be translated into a bound on the scalar
background ϕ0 as follows

ϕ0

MPl
< 1.2 × 10−4

�
104

NGW

�1
4

�
mNS

1.4M⊙

��
10 km
RNS

�
: ð86Þ

In the previous work [42], we have obtained the constraint
ϵWD < 4.2 × 10−3 from the orbital period derivative _P of
the NS-WD system PSR J1738þ 0333 in SMG. And the
corresponding constraint on the scalar background is
ϕ0=MPl < 3.3 × 10−8. This constraint is tighter than the
constraint (86) because the WD is less compact than NS,
ΦWD=ΦNS ∼ 10−4. Since the space-based LISA mission
could detect the GW signals of WD-BH binaries and NS-
WD binaries, it is hopeful to improve this constraint by the
LISA mission.
In the following discussions, we apply the constraint of

(86) to some specific SMG models.

A. Chameleon

The chameleon model is proposed by Khoury and
Weltamn [43,44], which allows the scalar field to evolve
on the cosmological time scales while shielding the fifth
force by acquiring a large scalar mass in dense energy
environment. Since the original chameleon model is ruled
out by the combined constraints of the Solar System and
cosmology [23], we consider the exponential chameleon
model here. The scalar potential and the conformal cou-
pling function are given by [26]

VðϕÞ ¼ Λ4 exp

�
Λα̃

ϕα̃

�
; AðϕÞ ¼ exp

�
β̃ϕ

MPl

�
; ð87Þ

where α̃ and β̃ are the positive dimensionless constants and
Λ corresponds to the dark energy scale. The scalar back-
ground in the host galaxy for a GWevent is at the minimum
of the effective potential (7), which is given by [42],

ϕ0 ¼
�
α̃MPlΛ4þα̃

β̃ρb

� 1
α̃þ1

: ð88Þ

Using the GW constraint (86), we obtain
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ϕ0

MPl
¼ Λ

MPl

�
α̃MPlΛ3

β̃ρb

� 1
α̃þ1

< 1.2 × 10−4: ð89Þ

Substituting the reduced Plank mass MPl¼2.4×1018GeV
and the dark energy scale Λ ¼ 2.24 × 10−3 eV into this
inequality, and assuming that the density of the host galaxy
is close to that of the Milky Way ρb ¼ 10−42 GeV4, we
obtain the constraint on the parameters of the exponential
chameleon model

log10 β̃ > log10 α̃ − 2.8α̃þ 0.32: ð90Þ

B. Symmetron

In the symmetron model, the vacuum expectation value
of the scalar field depends on the local mass density.
In regions of high density, the scalar field is drawn
toward ϕ ¼ 0, and the effective potential is symmetric
under the transformation ϕ → −ϕ. In regions of the low
density, this symmetry is broken. The scalar potential
function and the conformal coupling function in this model
take the form [45]

VðϕÞ ¼ V −
1

2
μ̃ϕ2 þ λ

4
ϕ4; AðϕÞ ¼ 1þ ϕ2

2M2
; ð91Þ

where μ̃ and M are mass scales, λ is a positive dimension-
less coupling constant, V is the vacuum energy of the bare
potential VðϕÞ. Similarly, we obtain the scalar background
in the galaxy ϕ0 ¼ ms=

ffiffiffiffiffi
2λ

p
which is proportional to the

scalar mass [42]. Assuming the reduced Compton wave-
length m−1

s is roughly of the cosmological scales
ðm−1

s ∼ 1 MpcÞ, and using the upper bound ϕ0=MPl <
1.2 × 10−4, we have a weak constraint on λ,

λ > 2.3 × 10−107: ð92Þ

C. Dilaton

The dilation model inspired from string theory has an
exponential potential function and a quadratic conformal
coupling function [46]

VðϕÞ ¼ V exp

�
−

ϕ

MPl

�
; AðϕÞ ¼ 1þ ðϕ − ϕ⋆Þ2

2M2
;

ð93Þ

where V is a constant with the dimension of the energy
density, M labels the energy scale of the theory, and ϕ⋆ is
approximately the value of the scalar field today.
Applying the GW constraint ϕ0=MPl < 1.2 × 10−4 to the

scalar background

ϕ0 ¼ ϕ⋆ þ
M2ρΛ0

MPlρb
; ð94Þ

we obtain

M
MPl

< 4.5: ð95Þ

VI. GRAVITATIONAL WAVES IN f ðRÞ GRAVITY

In this section, we consider the GW waveforms in metric
fðRÞ gravity. Since fðRÞ gravity can be cast into the form
of a scalar-tensor theory, we can directly apply the results of
Sec. IV to fðRÞ gravity. We also obtain the ppE parameters
of fðRÞ gravity and discuss the GW observational con-
straints on some specific fðRÞ models.
The total action for fðRÞ gravity takes the form [47]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
fðR̄Þ þ Sm½ḡμν;Ψm�; ð96Þ

where Ψm denotes collectively the matter fields and the
overhead bar denotes the quantities in the Jordan frame.

After the field redefinition, f0ðR̄Þ ¼ exp ð−
ffiffiffiffiffiffiffiffi
16πG
3

q
ϕÞ, and

the conformal rescaling gμν ¼ expð −2ϕffiffi
6

p
MPl

Þḡμν, this action

can be rewritten as Eq. (1), with the bare potential VðϕÞ ¼
f0ðR̄ÞR̄−fðR̄Þ
16πGf0ðR̄Þ2 and the conformal coupling function AðϕÞ ¼

1ffiffiffiffiffiffiffiffi
f0ðR̄Þ

p ¼ expð ϕffiffi
6

p
MPl

Þ [47,48].
Having rewritten fðRÞ gravity as a scalar-tensor theory,

we can apply the results of Sec. V to derive the ppE
parameters of fðRÞ gravity and constrain it by GW
observations.
Using the relation between R̄ and ϕ, the screened

parameter of a NS can be rewritten as

ϵNS ¼
ffiffiffi
6

p

2

ð1 − f0ðR̄∞ÞÞ
ΦNS

; ð97Þ

where R̄∞ ¼ 8πGρg and ρg is the average galactic density.
From Eq. (80), the ppE parameters of a NS-BH binary

system in fðRÞ gravity are given by,

αNS−BH ¼ −
5

256

½1 − f0ðR̄∞Þ�2
Φ2

NS
η2=5;

βNS−BH ¼ −
15

28672

½1 − f0ðR̄∞Þ�2
Φ2

NS
η2=5;

aNS−BH ¼ −2; bNS−BH ¼ −7: ð98Þ

Similarly, the ppE parameters of a NS-WD binary system in
fðRÞ gravity are
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αNS−WD ¼ −
5

256
½1 − f0ðR̄∞Þ�2

�
1

ΦNS
−

1

ΦWD

�
2

η2=5;

βNS−WD ¼ −
15

28672
½1 − f0ðR̄∞Þ�2

�
1

ΦNS
−

1

ΦWD

�
2

η2=5;

aNS−WD ¼ −2; bNS−WD ¼ −7: ð99Þ

Now, we apply the constraint of Eq. (82) to fðRÞ gravity.
Since this constraint is derived from the potential obser-
vations of NS-BH binaries, we should impose it on βNS−BH,
which reads

j1 − f0ðR̄∞Þj < 0.98 × 10−4
�

104

NGW

�1
4

�
mNS

1.4M⊙

��
10 km
RNS

�
:

ð100Þ

Note that this constraint is independent of the form of fðRÞ
and should be satisfied for any fðRÞ gravity. Let us focus on
the specific fðRÞ models as follows,

ðAÞ∶ fðRÞ ¼ R − m̃2
c1ðR=m̃2Þn

c2ðR=m̃2Þn þ 1
; ðc1; c2; n > 0Þ;

ð101Þ

ðBÞ∶ fðRÞ ¼ R − μ̃Rc tanh

�
R
Rc

�
; ðμ̃; Rc > 0Þ; ð102Þ

ðCÞ∶ fðRÞ ¼ R − μ̃Rc

�
1 −

�
1þ R2

R2
c

�−k�
; ðμ̃; k; Rc > 0Þ:

ð103Þ

Model A is proposed by Hu and Sawicki [53], in which the
mass scale is m̃2 ¼ 8πGρ0

3
, where ρ0 is the average matter

density in the universe today. Models B and C are proposed
by Tsujikawa [54] and Starobinsky [52], respectively, in
which Rc roughly corresponds to the order of observed
cosmological constant for μ̃ ¼ Oð1Þ. Since the free param-
eters of Model A are in one-to-one correspondence with
that of Model C [48], we discuss only Models A and B in
the following discussions.
In the Hu-Sawicki model, the constraint (100) becomes

j1 − f0ðR̄0Þj < 0.98 × 10−4
�

104

NGW

�1
4

�
mNS

1.4M⊙

�

×

�
10 km
RNS

��
8πGρg
R̄0

�
nþ1

: ð104Þ

where R̄0 is the scalar curvature of a spatial flat
Friedmann-Lemaître-Robertson-Walker universe at the
present epoch [53].

In the Tsujikawa model, the constraint (100) becomes

μ̃

cosh2 μ̃R̄∞
2Λ0

< 0.98 × 10−4
�

104

NGW

�1
4

�
mNS

1.4M⊙

�

×

�
10 km
RNS

��
8πGρg
R̄0

�
nþ1

ð105Þ

where Λ0 is the observed cosmological constant [59].
Then, the inequality μ̃

cosh2 μ̃R̄∞
2Λ0

< 0.98 × 10−4 can be satisfied

by all μ̃ > 0, where we have used R̄∞
Λ0

¼ ρg
ΩΛρc

, ΩΛ ¼ 0.692,

and ρc ¼ 0.86 × 10−26 kgm−3 [59] and assumed
ρg ¼ 10−24 g cm−3.

VII. CONCLUSIONS

SMG is a kind of scalar-tensor theories with screening
mechanisms to suppress the fifth force in dense regions.
Based on the previous work [42], in this paper we have
calculated the GW waveforms of an inspiral compact
binary system on a quasicircular orbit in general SMG.
We find that in SMG there are three propagation degrees,
two massless tensor degrees and one massive scalar degree.
However, there exist four polarizations in the Eð2Þ clas-
sifications, since the massive scalar field induces two
polarization modes (the breathing polarization hb and
longitudinal polarization hL). Due to the existence of hL,
SMG is class II6 in the Eð2Þ classification. We have also
obtained a simple linear relation between the two scalar

polarizations, hL ¼ m2
s

ω2
GW

hb, which is a consequence of

the linearized scalar field equation and consistent with
the previous work [24]. As a result, the amplitude of the
longitudinal mode will decrease with time, which is differ-
ent from the chirping nature (both amplitude and frequency
increase with time) of GWs. Employing the stationary
phase approximation, we have derived the Fourier trans-
forms of the four polarization modes, and found a scalar

mass induced phase difference − m2
sD

4πf between h̃L2 and h̃þ,
which is consistent with the previous results obtained in
[57]. In comparison with the GW waveforms of GR, we
have identified the ppE parameters in general SMG.
Applying to some specific SMG models, including cha-
meleon, symmetron, dilaton, and fðRÞ, the dependences of
the ppE parameters on the corresponding model parameters
have been obtained. Considering the potential observations
of ET on the GWs emitted by NS-BH binaries, we have
obtained a constraint of ϵNS < 6 × 10−4 even for the
conservative estimations with 104 GW events in the red-
shift range z < 5, which is a general result and applicable to
any SMG model.
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APPENDIX A: EVALUATION OF INTEGRALS
ARISING IN THE WAVEFORMS OF THE

SCALAR POLARIZATIONS

We follow the method described in Appendix B of [41]
to calculate the integrals with the Bessel function in
Eqs. (39) and (40):

I1¼
Z

∞

0

dzJ1ðzÞ
1

u2
ωðt−DuÞ13cosðΦðt−DuÞÞ;

I2¼
Z

∞

0

dzJ1ðzÞ
1

u3
ωðt−DuÞ23cosð2Φðt−DuÞÞ;

I3¼
Z

∞

0

dzJ1ðzÞ
�
1

u2
−1

�
1

u2
ωðt−DuÞ13cosðΦðt−DuÞÞ;

I4¼
Z

∞

0

dzJ1ðzÞ
�
1

u2
−1

�
1

u3
ωðt−DuÞ23cosð2Φðt−DuÞÞ;

ðA1Þ

with u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

msD
Þ2

q
and ωðtÞ ¼ dΦðtÞ=dt, which can-

not be calculated analytically. However, we can obtain their
asymptotic behavior in the wave zone (D → þ∞) [60,61].
Choosing a parameter λ such that msDλ ≫ 1 and splitting
I1 into two parts, the asymptotic expansion of the first part
can be obtained by performing integrations by parts as
follows,Z

msDλ

0

dzJ1ðzÞ
1

u2
ωðt −DuÞ13 cosðΦðt −DuÞÞ

¼ −J0ðzÞ
1

u2
ωðt −DuÞ13 cosðΦðt −DuÞÞjmsDλ

0 þ � � �
¼ ωðt −DÞ13 cosðΦðt −DÞÞ − J0ðmsDλÞ

×
1

1þ λ2
ωðt −D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Þ13 cosðΦðt −D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
ÞÞ

þ � � � ðA2Þ

where we have used the relation J00ðzÞ ¼ −J1ðzÞ. For the
second part, when we perform integrations by parts, it can
be exactly canceled with the λ-dependent terms in the
above equation. Therefore, all the contributions that come
from the endpoint msDλ can be ignored.

Substituting the asymptotic expression of the Bessel
function

JνðxÞ ≃
ffiffiffiffiffi
2

πx

r
cos

�
x −

νπ

2
−
π

4

�
; ðA3Þ

into the second part, the integral can be approximated by

I01 ¼
Z

∞

msDλ
dz

ffiffiffiffiffi
2

πz

r
cos

�
z −

3

4
π

�
1

u2
ωðt −DuÞ13 cosðΦðt −DuÞÞ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2msD
π

r Z
∞ffiffiffiffiffiffiffiffi
1þλ2

p du
ωðt −DuÞ13
ðu2 − 1Þ34u

ℜ½eiðmsD
ffiffiffiffiffiffiffiffi
u2−1

p
−3
4
πþΦðt−DuÞÞ þ eiðmsD

ffiffiffiffiffiffiffiffi
u2−1

p
−3
4
π−Φðt−DuÞÞ�;

ðA4Þ

where ℜ denotes the real part of the argument. When
ω > ms, the first term has a stationary point u1 which is
determined by

ρ0ðu1Þ ¼
msDuffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p − ωðt −DuÞDju¼u1 ¼ 0; ðA5Þ

that is

u1 ¼
ωðt −Du1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðt −Du1Þ2 −m2
s

p ; ðA6Þ

where ρðuÞ ¼ msD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
− 3

4
π þΦðt −DuÞ.

In real situations, we always have ω ≫ ms. Therefore,
the stationary point is very close to unity and we can
approximate u1 by

u1 ¼
ωðt −DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðt −DÞ2 −m2
s

p : ðA7Þ

Expanding ρðuÞ around u1 to the second order

ρðuÞ ¼ ρðu1Þ þ
1

2
ρ00ðu1Þðu − u1Þ2 þ � � � ðA8Þ

then the dominant contribution to the integral I01 is

I01∼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2msD
π

r
ωðt−Du1Þ13
ðu21−1Þ34u1

ℜ

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

ρ00ðu1Þ

s
eiðρðu1Þþπ

4
Þ
#
: ðA9Þ

Thus, to the leading order, we have I1
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I1 ≃ ωðt −DÞ13 cosðΦðt −DÞÞ
− ωðt −Du1Þ−2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðt −Du1Þ2 −m2

s

q
× cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðt −Du1Þ2 −m2

s

p þΦðt −Du1Þ
�
; ðA10Þ

with u1 being given by Eq. (A7).
Similarly, we can obtain the asymptotic expression of the

other three integrals

I2 ∼ ωðt −DÞ23 cosð2Φðt −DÞÞ

− ωðt −Du2Þ23
�
1 −

m2
s

4ωðt −Du2Þ2
�

× cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ωðt −Du2Þ2 −m2

s

p þ 2Φðt −Du2Þ
�
;

I3 ∼
m2

s

ω
8
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

q
cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

p þΦ
�����

t−Du1

;

I4 ∼
m2

s

4ω2

�
1 −

m2
s

4ω2

�
ω

2
3 cos

�
m2

sDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

p þΦ
�����

t−Du2

;

ðA11Þ

where u2 is given by

u2 ¼
2ωðt −DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ωðt −DÞ2 −m2
s

p : ðA12Þ

APPENDIX B: THE SENSITIVITY OF BH IN SMG

In Sec. V, we derived the screened parameter of BH by
the similar way of Appendix A in [27]. In this Appendix,
we will derive this result by a different method.
The BH mass in the Einstein frame mðϕÞ is constant and

does not evolve with the scalar field [28]. From the
definition of the sensitivity

s≡ ∂ðlnmÞ
∂ðlnϕÞ

����
ϕ0

; ðB1Þ

we find that in SMG, both the sensitivity sBH and the
screened parameter ϵBH of BHs are zero.
The action of the SMG, as a kind of scalar-tensor

theories, in the Jordan frame is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p 1

16πG

�
ϕ̄ R̄−

ωðϕ̄Þ
ϕ̄

ḡμν∂μϕ̄∂νϕ̄ −Uðϕ̄Þ
�

þ Sm½ḡμν;Ψm�; ðB2Þ

where ωðϕ̄Þ is the coupling function, Uðϕ̄Þ is the
scalar potential and R̄ is the Ricci scalar derived from
the Jordan frame metric ḡμν ≡ AðϕÞ2gμν. The Jordan frame
Ricci scalar R̄ and the Einstein frame Ricci scalar R are
related by the relation R̄ ¼ A−2½R − 6gμν∇μ∇ν lnA −
6gμνð∇μ lnAÞ∇ν lnA� [62]. Using this relation, we obtain

ωðϕ̄Þ ¼ 2πG

�
d lnAðϕÞ

dϕ

�
−2

−
3

2
;

Uðϕ̄Þ ¼ VðϕÞ
AðϕÞ4 ; ϕ̄ ¼ AðϕÞ−2: ðB3Þ

The BH mass in the Jordan frame is given by m̄ðϕ̄Þ ¼
AðϕÞ−1m [28], that is, m̄ðϕ̄Þ ¼ ϕ̄

1
2m. Thus, the sensitivity of

a BH in the Jordan frame is

s̄BH ¼ ∂ðln m̄Þ
∂ðln ϕ̄Þ

����
ϕ̄0

¼ 1

2
: ðB4Þ

So, we find that the sensitivity of a BH in the general SMG
is the same as that in Brans-Dicke theory [22,27].
In addition, Sotiriou and Faraoni proved that a stationary
BH in a general scalar-tensor theory is the same as in GR
and that the scalar field is constant in this spacetime [25].
As a result, the screened parameter of a BH, which is zero,
also satisfies the relation

ϵa ¼
ϕ0 − ϕa

MPlΦa
; ðB5Þ

although this relation is derived from a star composed of a
perfect fluid [23].
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