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Macroscopic evolution of relativistic charged matter with chirality imbalance is described by the chiral
magnetohydrodynamics (chiral MHD). One such astrophysical system is high-density lepton matter in
core-collapse supernovae where the chirality imbalance of leptons is generated by the parity-violating weak
processes. After developing the chiral MHD equations for this system, we perform numerical simulations
for the real-time evolutions of magnetic and flow fields and study the properties of the chiral MHD
turbulence. In particular, we observe the inverse cascade of the magnetic energy and the fluid kinetic
energy. Our results suggest that the chiral effects that have been neglected so far can reverse the turbulent
cascade direction from direct to inverse cascade, which would impact the magnetohydrodynamics
evolution in the supernova core toward explosion.
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I. INTRODUCTION

Relativistic matter with chirality imbalance (chiral mat-
ter, in short) is relevant to various physical systems from
hot electroweak plasmas in the early Universe [1,2], quark-
gluon plasmas created in heavy ion collision experiments
[3], dense electromagnetic plasmas in neutron stars [4–7],
and neutrino matter in core-collapse supernovae [8]
to emergent chiral matter near band crossing points of
Weyl (semi)metals [9–12]. In such chiral matter, anomalous
transport phenomena that are absent in usual parity-
invariant matter emerge. Two prominent examples are
the current along the direction of a magnetic field, called
the chiral magnetic effect (CME) [9,13–15], and the current
along the direction of a vorticity, called the chiral vortical
effect (CVE) [16–19]. Notably, the CME and CVE have
close connection with the quantum violation of the chiral
symmetry (or nonconservation of the chiral charge) in
relativistic quantum field theories, known as the chiral
anomaly [20,21]. The macroscopic evolution of charged
chiral matter at a long time distance and long timescale is
then described by the hydrodynamic theory by incorpo-
rating the effects of the chiral transport phenomena and the
chiral anomaly. This is the chiral magnetohydrodynamics
(chiral MHD) [8,22–26].
It is natural to expect that real-time evolution of chiral

matter described by the chiral MHD is qualitatively differ-
ent from that of nonchiral matter described by the conven-
tional MHD. Analytically tractable regimes of the chiral
MHD have been studied in Refs. [8,22–27]. Among others,
inverse cascade of the fluid kinetic energy, i.e., the energy
transfer from large to small scales, in addition to the inverse

cascade of the magnetic energy [28,29], in the chiral MHD
turbulence was predicted for pure chiral matter under
certain conditions [24]. This should be contrasted with
the direct energy cascade (the energy transfer from small
to large scales) in usual nonchiral matter. More recently,
chiral MHD equations were numerically studied for high-
temperature electroweak plasmas in the early Universe,
and inverse energy cascade was indeed observed [30–32].1
A possible realization of the chiral MHD turbulence in
Weyl metals was also discussed [36].
One realization of chiral matter in astrophysical systems

is the lepton matter in core-collapse supernovae, where the
chirality imbalance of leptons is generated through the
electron capture process that involves only left-handed
leptons [6,8],

pþ e−L → nþ νeL: ð1Þ
Although some of the chirality imbalance of electrons is
erased by the finite electron mass [37,38], not all the
imbalance is washed out. In particular, production of
chirality imbalance is more effective as the temperature
becomes higher [39] (see also Ref. [40] for another possible
scenario). An alternative mechanism is that a fluid helicity
generated by the CVE of the neutrinos effectively plays the
role of the chirality imbalance of electrons and leads to the
analog of CME for electrons even without such a chirality
imbalance [8].

1The anomalous hydrodynamics with the CME in external
electromagnetic fields has been studied in heavy ion physics
[33–35].
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In this paper, we perform the three-dimensional (3D)
numerical simulations of fully nonlinear chiral MHD
equations for the high-density charged chiral matter at
the core of a core-collapse supernova and study the
properties of the chiral MHD turbulence. As a starting
point of numerical simulations and for simplicity, we focus
on the CME and chiral anomaly, but we ignore the CVE,
fluid helicity, and cross-helicity as well as the contributions
of the chiral transport in the neutrino matter in this paper. In
this sense, our computations here should not be taken as a
quantitative prediction. Rather, our motivation here is to
show qualitatively new features due to the chiral effects that
have been so far disregarded in the context of core-collapse
supernovae. In fact, we observe the inverse cascade of the
magnetic energy and the fluid kinetic energy due to the
chiral effects in the high-density matter at the supernova
core, similarly to the high-temperature electroweak plasmas
in the early Universe.
This behavior is to be contrasted with conventional

multidimensional neutrino radiation-hydrodynamic sim-
ulations for core-collapse supernovae (see Refs. [41,42]
for reviews). In most of the 3D supernova models, the
direct cascade of turbulent flows in the postshock region
is dominant over the inverse cascade [42–44]. On the
other hand, the dominance of the inverse cascade over the
direct cascade (leading to a formation of large-scale flow)
has been often observed in axisymmetric (2D) models.
This large-scale flow may account for the vigor explosion
found in the 2D models [41] though the detailed mecha-
nism is under discussion [45]. The qualitative difference
of our 3D turbulent behaviors from these previous results
can be understood from the difference of the conservation
laws between the two: while the conventional hydro-
dynamic theory respects the conservation of the energy
alone, the chiral MHD respects the conservations of
not only the energy but also a nonzero helicity.2 Our
results suggest that the chiral effects can reverse the
turbulent cascade direction from direct to inverse cascade,
which may be relevant to the mechanism of supernova
explosions.
This paper is organized as follows. In Sec. II, we

formulate the chiral MHD equations for protons and
electrons with a chirality imbalance in the supernova core.
In Sec. III, we provide the numerical results of the 3D chiral
MHD turbulence. Sections IV and V are devoted to the
discussion and conclusion, respectively. Throughout the
paper, we use the units ℏ ¼ c ¼ e ¼ 1 unless otherwise
stated.

II. CHIRAL MHD IN THE SUPERNOVA CORE

A. Chiral MHD equations

Here, we generalize the conventional MHD by including
the CME in the presence of a chirality imbalance of
electrons generated by the process (1) in the supernova
core. The chirality imbalance of electrons is characterized
by the chiral chemical potential μA ≡ ðμR − μLÞ=2 (or the
axial charge density nA defined below), where μR;L is the
chemical potential of the right- or left-handed electron.
Alternatively, the fluid helicity produced by the CVE of
neutrinos can be regarded as an effective chiral chemical
potential μA. The precise value of μA (including the
effective one) in the supernova core is determined by the
microscopic process (1), the chirality flipping due to
the finite electron mass [37], and nonlinear chiral MHD
evolutions and is beyond the scope of the present paper. In
this paper, we will treat nA as a free parameter instead, and
we will study the behaviors of the chiral MHD turbulence
with nonzero nA.
We start from relativistic continuity and momentum

equations for the proton with the mass M and electron
with the mass m (e.g., Ref. [47]),

∂tðγpρpÞ þ ∇ · ðρpγpvpÞ ¼ 0; ð2Þ

∂tðγeρeÞ þ ∇ · ðρeγeveÞ ¼ 0; ð3Þ

∂tðρphpγ2pvpÞ þ ∇ · ðρphpγ2pvpvpÞ
¼ −∇Pp þ γpnpEþ Jp × Bþ Fpe; ð4Þ

∂tðρeheγ2eveÞ þ ∇ · ðρeheγ2eveveÞ
¼ −∇Pe − γeneEþ Je × Bþ Fep; ð5Þ

where ρ is the mass density, v is the velocity, γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor, P is the pressure, E is

the electric field, B is the magnetic field, J is the electric
current density, and h ¼ 1þ P=ρþ ϵ is the specific
enthalpy with ϵ being the specific internal energy.3

Subscripts “p” and “e” denote physical variables of protons
and electrons, respectively. Fpe and Fep represent the
friction force between two fluid species and satisfy
Fpe ¼ −Fep. The expressions of Jp and Je are given by

Jp ¼ γpnpvp; ð6Þ

Je ¼ −γeneve þ ξBB; ð7Þ

where n is the number density. The second term of the rhs
in Eq. (7) is the CME, which arises due to the chirality
imbalance of electrons.

2In the case of 2D fluids, the conservation of enstrophy, in
addition to the conservation of energy, leads to the inverse energy
cascade [46]. Although the conservation of enstrophy is absent in
three dimensions, the conservation of a nonzero helicity that is
specific in three dimensions can lead to the inverse cascade, as we
will explicitly show in this paper.

3Note that the energy density ε is related to the specific internal
energy ϵ via ε ¼ ρð1þ ϵÞ.
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For a single right-handed electron with the chemical
potential μR, the chiral magnetic conductivity ξB in the
Landau frame reads [18,19,48],4

ξB ¼ μR
4π2

�
1 −

1

2

nRμR
εþ P

�
−

1

24

nRT2

εþ P
≃

μR
8π2

; ð8Þ

where nR and ε are the charge and energy densities of
right-handed electrons. In the last line, we used μR ≫ T
(expected in the supernova core) and the thermodynamic
relation εþ P ≃ μRnR. In the system with right- and left-
handed electrons, the equation above is modified to the
form with replacing μR with μR − μL. Since the chemical
potential is linked to the charge density via the relation
ni ¼ μ3i =ð6π2Þði ¼ R;LÞ for a noninteracting relativistic
Fermi gas (which we assume for simplicity) with μ ≫ T,5

the chiral magnetic conductivity is given by

ξB ¼ 1

8π2
ðμR − μLÞ

¼ 1

8

�
3

π4

�
1=3

½ðne þ nAÞ1=3 − ðne − nAÞ1=3�; ð9Þ

where nA ¼ nR − nL is the axial charge density and ne ¼
nR þ nL is the total charge density of electrons, which can
be replaced approximately by ρ=M because of the charge
neutrality (ne ¼ np ¼ ρ=M) that we assume in our system.
In the following, we will derive one-fluid chiral MHD

equations from two-fluid hydrodynamic equations for
protons and electrons above. We assume that jvpj ≪ 1
and jvej ≪ 1 and then use the nonrelativistic approxima-
tions γ ≈ 1 and h ≈ 1, which can be justified in the case of
the supernova core.
First, we derive one-fluid continuity and momentum

equations from Eqs. (2)–(7). As usual, the continuity
equation is obtained from the sum of Eqs. (2) and (3) as

∂tρþ ∇ · ðρvÞ ¼ 0; ð10Þ

where the one-fluid mass density ρ and velocity v defined
below can be approximated for M ≫ m by

ρ≡ ρp þ ρe ¼ nðM þmÞ ≃ nM; ð11Þ

v≡Mvp þmve
M þm

≃ vp: ð12Þ

The momentum equation is obtained from the sum of
Eqs. (4) and (5) for M ≫ m and M ≫ mhe by

∂tðρvÞ þ ∇ · ðρvvÞ ¼ −∇Pþ J × B: ð13Þ

where P≡ Pp þ Pe is the total pressure and J is the total
current density defined by

J ≡ Jp þ Je

¼ ½nðvp − veÞ� þ ½ξBB� ¼ JMHD þ JCME; ð14Þ

where JMHD is the current density due to the velocity
difference between positive and negative charges and JCME
is that due to the CME. By adding the viscous term in
Eq. (13) as usual (see, e.g., Refs. [49,50]), we obtain

ρDtv ¼ −∇Pþ J × Bþ ∇ ·Π; ð15Þ

where Dt is the Lagrangian time derivative and Πij ¼
2ρνSij is the viscous stress tensor with the viscosity ν and
the strain rate tensor,

Sij ¼
1

2

�
∂jvi þ ∂ivj −

2

3
δij∂ivi

�
: ð16Þ

The bulk viscosity is neglected for simplicity in this study.
Let us next derive Ohm’s law and the resulting energy

and induction equations. Multiplying Eq. (4) by m=ρ and
Eq. (5) by M=ρ and taking their difference, we have

mDt

�
JMHD

n

�
þ 1

ρ
ðm∇Pp −M∇PeÞ

¼ Eþ 1

ρ
ðmJp −MJeÞ × B − ηJMHD; ð17Þ

where η is the resistivity and the canonical relation of Fep ¼
ηnJMHD is used. The second term of the rhs is rewritten by

1

ρ
ðmJp−MJeÞ×B¼

�
v−

M−m
ρ

JMHD−
M
ρ
JCME

�
×B:

ð18Þ

ForM ≫ m and for a sufficiently long timescale t ≫ 1=ωpe

with ωpe being the plasma frequency of electrons, Eq. (17)
becomes

4We note that there is an ambiguity on the choice of the frame
in relativistic hydrodynamics. In the frame where the CME takes
the familiar form of the electric current, jCME ¼ μRB=ð4π2Þ, the
CME also contributes to the energy-momentum tensor, e.g.,
T0i
CME ¼ Ti0

CME ¼ μRBi=ð8π2Þ [18,19,48], which would change
the momentum equation (15) below. (Such contributions seem to
be missed in Refs. [30–32].) Following Ref. [8], we take here the
Landau frame such that the CME contributes to j, but not to Tμν.

5In general, the charge density of a noninteracting relativistic
Fermi gas is given, as functions of the chemical potential and the
temperature, by

n ¼ μ3

6π2
þ μT2

6
:

In the limit μ ≫ T, which is the regime of our interest, the first
term on the rhs becomes dominant. In contrast, for μ ≪ T
relevant to the early Universe studied in Refs. [31,32], the second
term mainly determines the charge density.
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Eþ v × B − ηJMHD ¼ 1

n
J × B −

1

n
∇Pe; ð19Þ

where the first and second terms on the rhs are the Hall term
and the electron pressure term, respectively. In Eq. (19), we
neglect the electron inertia and the proton pressure by
focusing on lower-frequency motions of the plasma than
the electron plasma oscillation due to the local charge
separation. This is an essential difference between our one-
fluid chiral MHD system and the original two-fluid
description of the chiral plasma. When ignoring the terms
on the rhs for simplicity, the modified Ohm’s law including
the CME becomes

Eþ v × B ¼ ηðJ − JCMEÞ: ð20Þ

Note that the Joule-heating term in the internal energy
equation can be evaluated from Eq. (20) by J · E. Hence,
the energy equation is given by

ρDtϵ ¼ −P∇ · vþ 2ρνS2 þ ηJ · ðJ − JCMEÞ: ð21Þ

Furthermore, from Faraday’s law ∂tB ¼ −∇ × E, the
induction equation modified by the CME is obtained as

∂tB ¼ ∇ × ðv × BÞ þ η∇2Bþ η∇ × ðξBBÞ: ð22Þ

Here, Ampère’s law J ¼ ∇ × B is used. The last term on
the rhs is the correction due to the CME.
Finally, the time evolution of nA is given by the chiral

anomaly equation [20,21],

∂μJ
μ
A ¼ 1

2π2
E · B; ð23Þ

where JμA is the axial 4-current. Using Eq. (19), this can be
rewritten as

∂tnA ¼ η

2π2
ðJ − JCMEÞ · B; ð24Þ

where, for our step-by-step strategy, we ignore the advection
term, the diffusion term, the so-called chiral separation effect
(CSE) [51,52], JACSE ¼ ξABB with ξAB being the transport
coefficient, and the cross-helicity JA0CSE ¼ ξABv · B, for sim-
plicity. Note that, under this simplification, Eq. (24) can be
understood as the conservation of helicity (fermion helicity
plus magnetic helicity, but without cross-helicity and fluid
helicity) [8]; see also the remark below.
For an equation of state (EOS), we adopt the ideal gas

law,

P ¼ ðΓ − 1Þρϵ; ð25Þ

for simplicity, where Γ ¼ 5=3 in the adiabatic index. Then,
we can close the system. The set of Eqs. (9), (10), (15),

(21), (22), and (24) coupled with the EOS (25) is solved
simultaneously in our simulation.
Before proceeding further, we comment on several sim-

plifications of our formulation in this paper. Here and below,
we focus on the CME and chiral anomaly, but for simplicity,
we ignore the CVE, JCVE ¼ ξωω, the CSE expressed by
JACSE ¼ ξABBþ ξAωω, and the other types of helicity (fluid
helicity and cross-helicity). Here, ω≡ ∇ × v is the fluid
vorticity, and ξω is the chiral vortical conductivity. In
particular, we ignore the contributions of the chiral effects
of neutrinos. Incorporating the CVE and CSE is necessary to
ensure the conservation of total helicity (summation of the
fermion helicity, magnetic helicity, fluid helicity, and cross-
helicity), which would be an important question to be studied
in the future; see Refs. [8,53] for such a generic conservation
law of helicity. The importance of the CVE in the chiralMHD
turbulence will briefly be discussed in Sec. IVB.

B. Chiral plasma instability

To build up the simulation model, we should bear in
mind the driving mechanism of the chiral MHD turbulence.
The presence of the CME induces the amplification of the
magnetic field due to the chiral plasma instability (CPI);
see, e.g., Refs. [5,6,8] in the context of neutron stars and
supernovae. By inserting the perturbation δB ∝ expðik ·
xþ σtÞ into the induction equation (22) around the sta-
tionary uniform background v ¼ B ¼ 0, we obtain the
dispersion equation for the CPI,

σ ¼ ηξBk − ηk2; ð26Þ

where k ¼ jkj is the wave number. Shown by the solid line
in Fig. 1(a) is the real part of σ ¼ σðkÞ that characterizes the
growth rate of the CPI. The dashed line denotes the linear
dispersion relation neglecting the k2 term in Eq. (26). The
vertical and horizontal axes are normalized by the maxi-
mum growth rate σmax ¼ ηξ2B=4 and ξB, respectively. The
CPI grows only in the low–wave number regime,

k < kcrit ¼ ξB; ð27Þ

and becomes maximum when k ¼ ξB=2, indicating that the
onset of the CPI is due solely to the presence of the chirality
imbalance. While the growth rate of the CPI becomes larger
with the increase of η, themagnetic diffusion term plays a role
in, as usual, suppressing the modes in the high–wave number
regime k > kcrit (see the dashed line). The typical wavelength
of theCPI becomes longerwith the decrease of ξB, suggesting
the tendency toward inverse energy cascade under the
situation in which ξB decreases as a function of time.
It is worth noting here that the CME is somewhat similar

to the α effect in the mean-field dynamo theory [54–56].
When dividing the variables of the induction equation into
the ensemble-averaged values and fluctuating components,
the α effect appears in the turbulent electromotive force as
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an induction term. It is a consequence of the forced
symmetry breaking in rotating astrophysical bodies, such
as the Sun, stars, and accretion disks, and has been widely
studied as an origin of the large-scale magnetic field
commonly observed in these objects [57–60]. On the other
hand, the CME is a pure quantum effect that originates
from the explicit parity symmetry breaking by the chirality
of fermions. Although one can expect common traits in the
macroscopic hydrodynamic evolutions between them (see
Refs. [25,31,32,61] for the chiral MHD turbulence in the
early Universe), there is also a difference: the total helicity
is vanishing for the α effect in the nonchiral matter, whereas
this is not the case in chiral matter. In particular, a nonzero
magnetic helicity can be generated globally in chiral matter.

III. NUMERICAL RESULTS

A. Simulation setup

We perform a series of 3D simulations by adopting a
local Cartesian model, which zooms in on a small patch of
the proto-neutron star (PNS), with the cubic periodic box.
See Fig. 1(b) for the schematic view of our numerical
model. In most of our simulations, the size of the
simulation domain L and the grid size Δ≡ L=N (N is
the number of numerical grids) are determined so as to
resolve the critical wavelength of the CPI defined by
λcrit ≡ 2π=ξB, that is,

Δ ≪ λcrit ≪ L: ð28Þ

We will discuss how the resolution and the box size of the
simulation model affect the behaviors of the chiral MHD
turbulence in Secs. III C and III E.
The MHD equations are solved by the second-order

Godunov-type finite-difference scheme that employs an
approximate MHD Riemann solver [62,63]. The magnetic
field evolves with the consistent method of characteristics-

constrained transport (MoC-CT) scheme with including the
CME as a part of the electromotive force (see Refs. [64,65]
for the MoC-CT method). The chirality imbalance is
updated according to Eq. (24) straightforwardly with the
MHD variables.
All the numerical models have the same initial density

and pressure of ρ ¼ 5.0 and P ¼ 1.0 in the unit of
100 MeV ¼ 1, which are equivalent to ρ ≃ 1013 g=cm3

and P ≃ 1034 erg=cm3 of the typical PNS (see, e.g.,
Ref. [66]). For the fiducial run, we adopt the uniform
axial charge density nA ¼ 0.1 ð≡nA0Þ, which corresponds
to ξB ¼ 4.2 × 10−3 ð≡ξB0Þ, the uniform viscosity ν ¼ 0.1
ð≡ν0Þ, the uniform resistivity η ¼ 100.0 ð≡η0Þ, and a
resolution of N3 ¼ 2563 grid points. Since λcrit for these
values of the parameters is estimated as λcrit ¼ 1.5 × 103,
we choose L ¼ 2 × 104 ð≡L0Þ to satisfy the condition (28).
As stated in Sec. I, a few physical processes are relevant

for the origin of the finite axial charge density nA.
One scenario is the chiral imbalance produced by the
electron capture process (1) before the neutrino trapping
(ρc ≲ 1012 g=cm3 with ρc the central density of stars). After
the neutrino trapping, the electron capture process slowly
proceeds since the inverse process blocks the production
of the imbalance and diffusion process of the neutrino
controls the net rate. In an alternative scenario, the fluid
helicity of the trapped neutrino also plays the role of nA.
This fluid helicity could be induced by the rotation or
the convection of the star. In this study, we change nA
parametrically since we cannot treat these effects in a self-
consistent manner that requires a global neutrino radiation-
hydrodynamics simulation.
The resistivity η of moderately degenerate electrons is

expected to be of the order of 0.1–1.0 (under the scaling of
100 MeV ¼ 1) in the PNS (see, e.g., Ref. [67]). Since η
chosen in our fiducial model is larger than the actual value,
the dependence of the chiral MHD turbulence on η is

(a) (b)

FIG. 1. (a) Dispersion relation of the CPI. (b) Setup for our local box simulation. The global structure of the supernova core (right) and
extracted local Cartesian patch (left). The box size L is chosen so as to resolve λcrit.
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studied in Sec. III D. In contrast, the viscosity ν due to
electrons is expected to be Oð10−2Þ and is compatible with
the value chosen in the fiducial run. The dependence of the
chiral MHD turbulence on the magnetic Prandtl number
(≡ν=η) is beyond the scope of this study but a target of our
future work.
In addition to the fiducial run, we simulate a number of

models with varying model parameters, such as N, η, L,
and nA, to study their impacts on the chiral MHD
turbulence. The parameters adopted in our simulation
models are listed in Table I with a few diagnostic quantities.
A random small “seed” magnetic field with the amplitude
jδBj < 0.01, which gives the maximum value ≃ 1012 G in
the cgs unit, is introduced into the initial stationary state
with jvj ¼ 0.0.

B. Fiducial run

The basic property in the evolution and saturation of the
chiral MHD turbulence is illustrated with the fiducial model
(model 1) as an example. We first define the strength of the
mean magnetic field by

hB2i1=2 ≡
�
1

V

Z
B2d3x

�
1=2

; V ≡
Z

d3x; ð29Þ

where B≡ jBj is the magnitude of the magnetic field and
the angular brackets denote the volume average. Similarly,
the mean magnetic and kinetic energies are defined by

ϵM ≡ 1

4π
hB2i; ϵK ≡ 1

2
hρv2i; ð30Þ

respectively, where v≡ jvj is the magnitude of the flow
velocity. Figure 2(a) shows the temporal evolution of hB2i1=2
at the early evolutionary stage. In addition, the evolutions of
ϵM (red solid) and ϵK (blue dashed) are also depicted in
Fig. 2(b). The horizontal axes are normalized by the growth
time of the most growing mode of the CPI defined by

τCPI ≡ σ−1max ¼ 4ðηξ2B;iniÞ−1; ð31Þ

where ξB;ini is the initial value of ξB. For the fiducial model,
τCPI is evaluated as 2.3 × 103. The dashed line in the panel
(a) is a reference slope proportional to expðσmaxtÞ.
As seen in Fig. 2(a), the early evolution of hB2i1=2 agrees

with the linear analysis of the CPI. During this stage, the
magnetic field is amplified by a factor of Oð104Þ. After the
early exponential growth, it enters the nonlinear stage at
t ≃ 20τCPI. We emphasize that the saturation amplitude and
amplification factor of the magnetic field do not depend on
the strength of the initial magnetic field but on the initial

TABLE I. Summary of the simulation runs. Two diagnostic quantities Bsat and ξB;sat are defined by Bsat ≡
hB2ðtsatÞi1=2 and ξB;sat ≡ hξBðtsatÞi, where tsat is the time when the system reaches saturation. See the text for further
explanations.

N3 η L nA ξB;ini τCPI Bsat ξB;sat=ξB;ini

Model 1 2563 100.0 2 × 104 0.1 4.2 × 10−3 2.3 × 103 2.5 × 10−2 0.077
Model 2 1283 100.0 2 × 104 0.1 4.2 × 10−3 2.3 × 103 2.3 × 10−2 0.075
Model 3 643 100.0 2 × 104 0.1 4.2 × 10−3 2.3 × 103 1.4 × 10−2 0.077
Model 4 1283 10.0 2 × 104 0.1 4.2 × 10−3 2.3 × 104 2.5 × 10−2 0.078
Model 5 1283 1.0 2 × 104 0.1 4.2 × 10−3 2.3 × 105 2.7 × 10−2 0.077
Model 6 1283 1.0 1 × 105 0.1 4.2 × 10−3 2.3 × 105 1.1 × 10−2 0.024
Model 7 643 1.0 1 × 104 0.1 4.2 × 10−3 2.3 × 105 3.6 × 10−2 0.15
Model 8 323 1.0 4 × 103 0.1 4.2 × 10−3 2.3 × 105 4.9 × 10−2 0.39
Model 9 1283 1.0 4 × 103 0.416 2.1 × 10−2 9.2 × 103 1.2 × 10−1 0.075
Model 10 1283 1.0 1 × 105 0.020 8.4 × 10−4 5.7 × 106 5.5 × 10−3 0.078

FIG. 2. Temporal evolutions of hB2i1=2 at the early exponential-
growth stage [panel (a)] and ϵM (red solid) and ϵK (blue dashed)
[panel (b)] for the fiducial run.

MASADA, KOTAKE, TAKIWAKI, and YAMAMOTO PHYS. REV. D 98, 083018 (2018)

083018-6



chirality imbalance (see Sec. III E). Hence, the magnetic
field can be amplified to the same level as long as we use
the same ξB as that of the fiducial model, even if a weaker
initial magnetic field is applied.
The frozen-in property between the plasma and the

magnetic field causes the coevolution of the flow field.
As shown in Fig. 2(b), ϵK rapidly grows when t≲ 100τCPI
and then reaches a saturation amplitude an order of
magnitude smaller than ϵM. When t≳ 200τCPI, ϵK gradu-
ally decreases probably due to the viscous dissipation of
the small-scale structure of the flow field. For example,
the viscous timescale of the flow structure with the size
l ≃ L=100 can be evaluated as τvis ¼ l2=ν ≃ 200τCPI.
Since the chiral MHD turbulence is sustained by the

energy conversion from the chirality imbalance to the
magnetic energy, hξBi decreases with the increase of
the magnetic energy. Shown in Fig. 3 is the temporal
evolution of hξBi normalized by ξB;ini. After the rapid drop
stage, it decreases gradually in proportion to ðt=τCPIÞ−3=5
and finally reaches saturation at t ¼ tsat ≃ 103τCPI with the
floor value ξB;sat ≡ hξBðtsatÞi ≃ 0.077ξB;ini.
As will be examined in Sec. III E in detail, the floor value

ξB;sat is definitely influenced by L. Using the value of ξB;sat
in Table I, λcrit of the CPI at the saturated stage (t ≃ 103τCPI)
is evaluated as

λcrit ¼
2π

ξB;sat
≃ 2.0 × 104 ¼ L0; ð32Þ

suggesting that the energy conversion from the chirality
imbalance into the magnetic energy is terminated when ξB
is reduced to the value at which the unstable wavelength of
the CPI becomes comparable to the size of the calculation
domain.
As expected from the temporal behavior of hξBi, the

spatial structures of B and v exhibit the inverse energy
cascade. Series of snapshots of the distributions of Bx

and vx at different times on the x–y cutting plane at z ¼ 0
are shown in Figs. 4 and 5. The red and blue tones depict
the positive and negative values of the fields. The vertical
and horizontal axes are normalized by L=2. While Bx and
vx have small-scale structures in the early evolutionary
stage [panels (a)–(f)], they evolve as time passes to
organize the large-scale structure with the spatial scale
comparable to the size of the calculation domain [panels
(g)–(i)]. It should be stressed that, since there is no specific
direction in our simulation, not only the x component but
also the y and z components of B and v also have similar
large-scale structures; see Fig. 6 for the 3D structures of B
and v, in which their magnitudes at the early and fully
nonlinear stages are visualized.
The inverse-cascade process of the chiral MHD turbu-

lence can be seen in the temporal evolution of the 3D
spectrum of the magnetic energy density ϵMðkÞ as shown in
Fig. 7(a). Here, ϵMðkÞ is defined by

ϵMðkÞ≡ 1

2

X
kx;ky;kz

B̂ðkÞ · B̂�ðkÞ; ð33Þ

where B̂ðkÞ is the 3D Fourier transform of BðxÞ with B̂�ðkÞ
being its complex conjugate and the summation is over
all kx, ky, and kz such that k2x þ k2y þ k2z ¼ k2. The blue and
red curves correspond to the initial and nonlinear states (at
t ≃ τCPI and t ≃ 290τCPI). The gray lines are the spectra at
the time between these two states. In Fig. 7(b), not only
ϵMðkÞ (red) but also the spectrum of the kinetic energy
density ϵKðkÞ (blue), which is calculated in a similar
manner as Eq. (33), at the fully nonlinear stage
(t ≃ 500τCPI) are shown. The horizontal axes are normal-
ized by kL ¼ 2π=L in both panels.
ϵMðkÞ begins to grow for k≲ kcrit, which is the linearly

unstable regime of the CPI, and thus it is the energy
injection scale for the chiral MHD turbulence. While the
magnetic energy is dominantly contained in the low–wave
number modes, it is transferred to the smaller-scale
structure via the direct cascade process. A similar evolution
history can also be seen in ϵKðkÞ, despite a remarkable
difference in the spectral slopes, roughly ϵMðkÞ ∝ k−3 and
ϵKðkÞ ∝ k−2 in the low-k regime. Not only the spatial
distribution of the field structures in Figs. 4–6 but also the
spectra in Fig. 7 indicate that a more prominent large-scale
structure develops in the magnetic field than in the
velocity field.

C. Dependence on resolution

To conduct the parametric study, we need to know how
many grids are required at least to correctly capture the
behavior of the chiral MHD turbulence. The convergence is
checked by comparing the models with different resolu-
tions. Models 2 and 3 have the number of grids N3 ¼ 1283

and N3 ¼ 643 with keeping the other parameters the same
as in the fiducial model with N3 ¼ 2563 (model 1).

FIG. 3. Temporal evolution of hξBi normalized by ξB;ini. The
dashed line is a reference slope proportional to ðt=τCPIÞ−3=5.
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Figure 8 shows the temporal evolution of (a) ϵM
and (b) hξBi for the models with different resolutions.
The red, blue, and green lines denote models 1–3, respec-
tively, in both panels. We find that the saturation amplitude
of ϵM converges whenN ≳ 128. Model 3 has an insufficient
resolution, yielding the lower saturation amplitude. In
contrast, ξB;sat is not affected by the resolution, suggesting
again that it is determined numerically by the size of the
calculation domain.
The convergence of the numerical result can be con-

firmed more quantitatively by comparing the spectra of the
models. Shown in Fig. 9(a) is ϵMðkÞ at the saturated stage
for the models with different resolutions. The red, blue, and
green lines correspond to models 1–3, respectively. Models
1 and 2 with N3 ¼ 2563 and 1283 have almost the same
spectral profiles and amplitudes. However, the spectrum
of the model 3 with N3 ¼ 643 deviates significantly from

them, verifying that it is insufficient for correctly capturing
the chiral MHD turbulence.
The distributions of Bx at the saturated stage on the x–y

cutting plane at z ¼ 0 for the models 1–3 are presented
in Figs. 9(b)–9(d). The red and blue tones depict the
positive and negative values of the magnetic field. While
the large-scale magnetic structure with the wavelength
comparable to the box size is a common outcome of the
nonlinear evolution of the chiral MHD turbulence as a
result of the inverse cascade, the strength of the magnetic
field is an order of magnitude weaker in the lowest
resolution model (model 3) than in the sufficiently resolved
models (models 1 and 2).
From these results, the convergence seems to be

achieved when

λCPI=Δ≳ 7: ð34Þ

1.0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. A series of snapshots of the distribution of Bx on the x–y cutting plane at z ¼ 0. The vertical and horizontal axes are both
normalized by L=2.
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At the same time, our results imply that even lower
resolution calculation is acceptable as long as we are only
interested in ξB;sat.

D. Dependence on resistivity

One of the key parameters for the CPI and its driven
MHDturbulence is the resistivity η.As described inFig. 1(a),
one of the interesting features of the CPI is that its linear
growth rate becomes higher with the increase of η, while it
suppresses theMHD turbulence inmost cases of the conven-
tional nonchiral MHD. The effects of η on the nonlinear
behavior of the chiralMHD turbulence is of our interest here.
We run the models 4 and 5 with η ¼ 10 and 1 and then
compare them with the model 2 with η ¼ 100. We take the
resolution and the other parameters to be the same.
In Fig. 10, we show the temporal evolution of ϵM for the

models with η ¼ 1 (red), 10 (blue), and 100 (green),

respectively. The difference between panels (a) and
(b) is the normalization unit of time. In panel (a), the
simulation time of each model is normalized in common
by τCPI for the model with η ¼ η0, τCPI;f ≡ 4ðη0ξ2B;iniÞ−1. In
contrast, in panel (b), it is normalized by τCPI evaluated
with η of each model.
As seen in panel (a), the actual growth time of the chiral

MHD turbulence becomes shorter with increasing η, which
is consistent with the linear analysis of the CPI [see
Eq. (26)]. However, when normalizing the simulation time
by τCPI of each model, the evolution history until the
nonlinear stage is identical between the models. In addition,
the saturation amplitude of ϵM is also roughly the same
between the models in spite of the difference of η.
The independence of the nonlinear behavior of the chiral

MHD turbulence on η can be seen even in the comparison
of the spectra. Shown in Fig. 11 is ϵMðkÞ at the saturated

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. A series of snapshots of the distribution of vx on the x–y cutting plane at z ¼ 0. The vertical and horizontal axes are both
normalized by L=2.
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stages for these models. The red, blue, and green lines
denote the models with η ¼ 1, 10 and 100, respectively.
Regardless of the size of η, the chiral MHD turbulence
exhibits a similar spectral property. All the results suggest
that η does not have a strong impact on the nonlinear
behavior of the chiral MHD turbulence though it changes
the linear growth rate of the CPI.
The evolution history of hξBi might be one of the few

differences between these models. The temporal evolutions

of ξB for these models are shown in Fig. 12. Three dashed
lines are the reference slopes proportional to ðt=τCPIÞ−3=5,
ðt=τCPIÞ−6=5, and ðt=τCPIÞ−3, respectively. While ξB;sat is
almost the same, tsat is difference between them. With
decreasing η, the normalized time required for the satu-
ration becomes shorter. This might be because the higher
magnetic diffusion makes the magnetic structure harder to
grow at the nonlinear stage.

E. Dependence on box size

As discussed in Sec. III B, ξB;sat, which is responsible for
the conversion efficiency of the chirality imbalance into the
magnetic energy, is expected to be determined by the size
of the calculation domain in our local-box model. To verify
this, we examine the response of the chiral MHD turbu-
lence to the change of L. The models with L ¼ 5L0; L0=2,
and L0=5 (models 6, 7, and 8) are compared with model 5
with L ¼ L0. We keep, as far as possible, the ratio λCPI=Δ
constant rather than the number of grids, except for the
largest box model with L ¼ 5L0 (model 6) in which case
the higher resolution of N3 ¼ 6403 is required. As was
shown in Sec. III C, the insufficient resolution does not
matter as long as we focus on ξB;sat. The other physical
parameters are kept unchanged from model 5 with the
fiducial box size.
Shown in Fig. 13 is the temporal evolution of hξBi for

each model until the saturation. The orange, red, green,
and blue lines are for the models with L ¼ 5L0, L0, L0=2,
and L0=5, respectively. The distributions of Bx on the
x–y cutting plane at z ¼ 0 at the saturated stage are also
demonstrated for each model in Fig. 14. The axes of
all the panels are normalized by L0=2 of the fiducial
model.
We find that ξB;sat is different when L is varied, despite

the same physical parameters except for L. It is inversely
correlated with L, i.e., ξB;sat ∝ L−1 (see Table I), and

(a) (b)

(c) (d)

FIG. 6. 3D visualization of B [panels (a) and (b)] and v [panels
(c) and (d)] at the early evolutionary stage (t ¼ 10τCPI) and fully
nonlinear stage (t ¼ 400τCPI), respectively. The red and blue
tones denote the lower and higher magnitudes of the fields.

FIG. 7. (a) Temporal evolution of ϵMðkÞ. The blue and red curves denote the initial state at t ¼ τCPI and nonlinear state at t ¼ 290τCPI.
The gray curves are the states between them. (b) ϵMðkÞ (red) and ϵKðkÞ (blue) at the saturated state (t ¼ 500τCPI). The dashed lines are
reference slopes proportional to k−3 and k−2.
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provides the critical wavelength of the CPI comparable
to the box size of each model, λcrit ¼ 2π=ξB;sat ≃ L. In
Fig. 14, we can indeed confirm that the spatial structure of
the magnetic field is comparable to the domain size. All
these results verify our hypothesis that ξB;sat is restricted

numerically by the calculation domain and furthermore
implies that the structures of B and v can evolve to the
macroscopic scale comparable to the size of the PNS if we
can enlarge the simulation domain to the system scale with
keeping the sufficient resolution.

FIG. 8. Temporal evolutions of (a) ϵM and (b) hξBi for the models with different numerical resolutions. The red, blue, and green lines
are for the models with N ¼ 2563, 1283, and 643, respectively.

FIG. 9. (a) ϵMðkÞ for the models with different resolutions. The dashed line is a reference slope proportional to k−3. The x–y
distributions of Bx at the saturated stage for the models with (b) N ¼ 643 (model 3), (c) 1283 (model 2), and (d) 2563 (model 1).

CHIRAL MAGNETOHYDRODYNAMIC TURBULENCE IN … PHYS. REV. D 98, 083018 (2018)

083018-11



F. Dependence on axial charge density

Finally, we study the dependence of the behavior
of the chiral MHD turbulence on the initial value of
nA. Remember that nA is directly related to ξB [see
Eq. (9)], and thus it is the most important parameter in

our simulation. In models 9 and 10, we set nA ¼ 0.416
and 0.020, i.e., ξB ¼ 5ξB0 and ξB0=5, respectively. For a
fair comparison between the models, we need to keep the
ratio L=λcrit constant because, as discussed in Sec. III E,
L=λcrit affects ξB;sat or the energy conversion efficiency.
Therefore, the box sizes L ¼ L0=5 and L ¼ 5L0 are
adopted for models 9 and 10, correspondingly. The other
parameters are kept unchanged from model 5 with ξB ¼
ξB0 and L ¼ L0.
Shown in Figs. 15(a) and15(b) are the temporal evolutions

of hB2i1=2 and hξBi for thesemodels. The blue, red, and green
lines denote the models with ξB ¼ 5ξB0, ξB0, and ξB0=5,
respectively. Note that, in both panels, the simulation time is
normalized by τCPI of each model. The vertical axis of the
panel (b) is normalized by ξB;ini of each model.

FIG. 10. Temporal evolutions of ϵM for the models with
different values of η. The red, blue, and green lines correspond
to the models with η ¼ 1, 10, and 100, respectively. The
normalization of the horizontal axis is different between panels
(a) and (b). In panel (a), the horizontal axis is normalized by τCPI;f.
In panel (b), the normalization unit is τCPI.

FIG. 11. ϵMðkÞ at the saturated stage for the models with
different values of η. The red, blue, and green lines correspond to
the models with η ¼ 1, 10, and 100, respectively. The dashed line
is a reference slope proportional to k−3.

FIG. 12. Temporal evolutions of hξBi normalized by ξB;ini for
the models with different values of η. The red, blue, and green
lines correspond to the models with η ¼ 1, 10, and 100,
respectively.

FIG. 13. Temporal evolutions of hξBi for the models with the
different box sizes. The blue, green, red, and orange lines denote
the models with L ¼ 5L0, L0, L0=2, and L0=5. The vertical axis
is normalized by the initial value of hξBi for each model.
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At the early stage t≲ 10τCPI, the evolution history of
hB2i1=2 is consistent with the linear analysis of the
CPI and does not depend on ξB;ini. However, at the
nonlinear stage, there exists a remarkable difference
despite hξBi=ξB;ini being almost the same [see panel
(b)]. We can evaluate Bsat ≡ hB2ðtsatÞi1=2 from the time
average of hB2i1=2 at the nonlinear stage, as plotted in

Fig. 16 as a function of ξB;ini. From this, we find the
scaling relation,

Bsat ∝ ξB;ini; ð35Þ
indicating that the magnetic field strength maintained by
the chiral MHD turbulence is a linear function of the total
amount of ξB;ini generated in the supernova core.

(a)

(c) (d)

(b)

FIG. 14. Distributions of Bx at the saturated stages on the x–y cutting plane at z ¼ 0 for the models with (a) L ¼ 5L0, (b) L ¼ L0,
(c) L ¼ L0=2, and (d) L ¼ L0=5. The axes are normalized by L0=2 for all the models.

FIG. 15. Temporal evolutions of (a) hB2i1=2 and (b) ξB for the models with the different initial values of nA. The red, blue, and green
lines denote the models with ξB;ini ¼ 5ξB0, ξB0, and ξB0=5.
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IV. DISCUSSION

A. Turbulence scaling

The spectrum of the chiral MHD turbulence was pre-
viously discussed for high-temperature plasmas in the early
Universe in Ref. [31]. They observed the weak turbulence
scaling with ϵMðkÞ ∝ k−2 in the turbulent scales k≲ ξB in
the magnetically dominated turbulence, where the flow
field is a consequence of driving by Lorentz force [68,69].
Note that our spectral scaling ϵMðkÞ ∝ k−3 and ϵKðkÞ ∼ k−2

in the low-k regime in Fig. 7(b) at the fully nonlinear stage
is different from theirs.
The reason for this difference can be explained by the

evolution of hξBi. While the spectrum in Ref. [31] is the
case before hξBi reaches the floor value, our spectra in
Fig. 7(b) are derived after that, where λcrit ∼ L, and the
turbulent scales are absent. Since the chiral MHD turbu-
lence has smaller scales than the instability scale, its
spectrum shows the steeper slope than in the turbulent
scales.
Figure 17 shows the spectra of ϵMðkÞ and ϵKðkÞ before

hξBi reaches the floor value (t ≃ 300τCPI) for the fiducial
model. It can be seen that ϵMðkÞ is roughly proportional to
k−2 in the range k≲ hξBi, as is consistent with the weak
turbulence scaling discussed in Ref. [31]. In addition, we
also observe that ϵKðkÞ ∼ k−5=3 in this stage. This suggests
that the chiral MHD turbulence has weak turbulence
scalings, ϵMðkÞ ∝ k−2 and ϵKðkÞ ∝ k−5=3, in the regime
k≲ hξBi for high-density matter in the supernova core
as well.

B. Chiral vortical effect

In this study, we have ignored the CVE just for
simplicity. Including the CVE modifies the induction
equation as [8]

∂tB ¼ ∇ × ðv × BÞ þ η∇2Bþ η∇ × ðξBBþ ξωωÞ: ð36Þ

When taking account of the CVE, the energy reconversion
from the flow field to the magnetic field is naively
expected, because a helical flow field is generated as a
consequence of the chiral transport phenomena [8]. The
ratio ϵM=ϵK may be varied depending on ξω.
In the actual PNS system, the CVE may provide

significant change for the chiral MHD turbulence, since
the helical and vortical flow motions should be excited not
only locally but also globally through several macroscopic
effects mainly due to the global rotation and the stratified
structure; see, e.g., Refs. [57,59,60,70]. In the region with
the magnetic field parallel to the vortical axis, the CVE
should enhance the magnetic energy by the conversion
from the fluid helicity to the magnetic helicity. In an
opposite way, it should be possible that the magnetic energy
is reduced by the CVE in the region with the magnetic field
antiparallel to the vortical axis. A quantitative understand-
ing of the CVE in the actual global system of the PNS is
beyond the scope of this paper and is a target of our
future work.

V. SUMMARY

In this paper, we have performed 3D numerical simu-
lations of the chiral MHD turbulence, driven by the CPI, in
the vicinity of the PNS in the supernova core. We adopted a
local Cartesian model which zooms in on a small patch of
the PNS. Our findings are summarized as follows.
(1) The magnetic field is amplified exponentially in

accordance with the linear analysis of the CPI in the
early evolutionary stage and then enters the non-
linear stage at around t ≃Oð10ÞτCPI. Not only the
magnetic field but also the flow field coevolve due
to the frozen-in property of the plasma and mag-
netic field. The kinetic energy of the chiral MHD

FIG. 16. Scaling relation between Bsat and ξB;ini normalized by
the fiducial value ξB0. FIG. 17. ϵMðkÞ (red) and ϵKðkÞ (blue) at t ¼ 300τCPI before ϵK

begins to decrease for the fiducial model. The arrow shows hξBi
at the corresponding time. The dashed lines are reference slopes
proportional to k−2 and k−5=3.
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turbulence is an order of magnitude smaller than the
magnetic one at the nonlinear stage.

(2) The magnetic and velocity fields exhibit the inverse
energy cascade. While they have small-scale struc-
tures in the early evolutionary stage, they evolve to
organize the large-scale structure with the spatial
scale comparable to the size of the calculation
domain. This conforms with what the linear analysis
of the CPI predicts, i.e., the typical wavelength of
the CPI is proportional to the chiral magnetic
conductivity, λcrit ∝ ξB, and it becomes longer as
ξB decreases with time. At the saturated stage, the
Fourier spectra of the magnetic and kinetic energy
densities have slopes in proportion to k−3 and k−2,
respectively.

(3) Two numerical parameters impact the chiral MHD
turbulence: one is the resolution, and the other is
the box size. The sufficient condition for resolving
the chiral MHD turbulence is λcrit=Δ≳ 7, where Δ
is the grid size. While the lower resolution run
provides the lower amplitude of the chiral MHD
turbulence, the floor value of ξB is predominantly
determined by the size of the calculation domain
(less sensitive to the numerical resolution). The
larger the size of the calculation domain is, the
lower the floor value of ξB is. Therefore, the spatial
structures of the magnetic and flow fields become
larger with increasing the box size, implying that
they can evolve to a macroscopic scale comparable
to the size of the PNS if the calculation domain is
enlarged to the system scale with keeping the
sufficient resolution.

(4) One of the key physical parameters for the CPI is the
resistivity η because the growth rate of the CPI
becomes larger with increasing η. We found from the
parametric study that the size of η does not have a
significant impact on the chiral MHD turbulence
itself, though the time required for the saturation of
the CPI largely depends on it.

(5) The strength of the chiral MHD turbulence is
essentially determined by the initial axial charge
density. The scaling relation between the saturated

value of the mean magnetic-field strength and the
initial value of the chiral magnetic conductivity is
given by Bsat ∝ ξB;ini. This indicates that the mag-
netic-field strength maintained by the chiral MHD
turbulence is a linear function of the total amount of
ξB generated in the supernova core.

Our results suggest that the chiral effects of leptons
would impact the dynamics of the PNS formation and
supernova explosions by driving the strong MHD tur-
bulence with the strong magnetic field. The next step
of our study is modeling and taking account of the
chiral effects into the global multidimensional MHD
supernova simulations (e.g., Refs. [71,72]) to elucidate
their dynamical impacts more quantitatively. In particu-
lar, it would be important to incorporate the contribu-
tions of the chiral transport of neutrinos [8], since
they carry away most of the gravitational energy of an
original massive star.
It should be remarked here that neutrinos are not always

in thermal equilibrium, especially outside the supernova
core, where hydrodynamics for neutrinos is not applicable.
To take into account the effects of the left-handed-ness of
neutrinos away from thermal equilibrium, one needs to use
the so-called chiral kinetic theory [73–75], instead of the
conventional kinetic theory (Boltzmann equation). Such a
direction is deferred to future work.
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