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In this paper, we use the recent updated source properties of GW170817 to constrain the hybrid equation
of state (EOS) constructed by a three-window modeling between the hadronic EOS and quark EOS.
Specifically, the hadronic EOS is described by the NL3ωρ model whose corresponding pure neutron star
(NS) is already excluded by the constraint of tidal deformability (TD) from GW170817, and the quark EOS
is calculated with the 2þ 1 flavors Nambu-Jona-Lasinio (NJL) model. We also consider four other

constraints on the hybrid EOS. As a result, we find the parameter set (B
1
4; μ̃;Γ) can be well constrained,

indicating the possible existence of the hybrid star (HS) with a crossover inside. The type of the two stars in
the binary system for nine representative hybrid EOSs is shown in this paper too. Furthermore, the HSs
restricted by five constraints do not suggest a pure quark core but a mixed phase in the center.
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I. INTRODUCTION

The simultaneous direct detection of the gravitational
wave (GW) and its electromagnetic counterpart by LIGO-
VIRGOcollaboration [1] and∼70 astronomical detectors [2]
opens a new era of multi-messenger astronomy. All these
observations indicate that the event GW170817 is related to a
binary neutron star(BNS) merger. Many works have fol-
lowed up after that. In paper [3], the central engine of the
short gamma ray burst (GRB) has been studied; while in
paper [4], the study of heavy elements as well as their
abundance in the universe has been done. In addition to that,
the internal structure of NSs has also been studied with
thorough analysis of the new data [5–18], but definitive
answers are still difficult to find.
It is believed that with more observations of GW events

in the future, a better understanding and constraint on the
EOS can be achieved, thus considerably promoting
research on dense nuclear matter physics [19]. In fact,
during the inspiral phase, a star can exert a static tidal field
on its companion in the binary, and the quadrupolar
response of the field is relevant to the EOS-dependent

TD parameter. In papers [20–23], the authors demonstrate
the connection between this parameter and the inspiral
signal of GW. From the observation data of GW170817, the
LIGO-VIRGO collaboration provided a constraint on the
dimensionless TD for 1.4 M⊙ as Λð1.4 M⊙Þ ≤ 800 [1].
The upper limit is revised to be 900 for a low-spin prior in
the recent paper [24]. The restriction considerably
influences the study of pure hadronic NSs [6], quark stars
[11], and HSs [9,15]. It is noteworthy that for the study of
HSs, different aspects and approaches to hadron-quark
phase transition will lead to different results. For example,
in Ref. [9], a first-order phase transition is considered with
the parametrization approach; and in Ref. [15] a smooth
phase transition with the Gibbs construction is adopted.
Different from the Gibbs construction, the three-window

interpolating approach corresponds to a crossover hadron-
quark phase transition and the EOS of which can be
differentiated to infinite order during the transition region.
In addition to that, this interpolating approach is feasible
especially when we demand a mall radii of NSs, i.e.,
R≲ 13 km, or the EOS to be soft at low density but stiff at
high density [25]. Considering the possibility of HSs with a
crossover between hadronic matter and quark matter inside
[25–31], it is reasonable to evaluate the influence of TD
parameter on stars of this type. Thus, in this paper, we will
investigate the constraint on HSs constructed by the three-
window interpolating approach [26,27] to connect the
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quark phase and hadronic phase, which is described by the
2þ 1 flavors NJL model [32–36] and relativistic mean field
(RMF) NL3ωρ model [37,38], respectively. It is note-
worthy that many studies [25,27–30] with this approach
have obtained good results for the mass of HSs, namely,
the maximum mass compatible with 2 M⊙. However, the
choice of the interpolating parameters (μ̃;Γ) seems some-
what arbitrary in relevant studies. With the recent updated
source properties of GW170817 [24] as well as other four
constraints (the mass constraint from PSR J0348þ 0432
[39], the studies of hadron-quark transition in Refs. [40,41]
implying that μdeconfinement > μChiralRestoration ∼ 1 GeV at
zero temperature with finite chemical potential, the stability
of hybrid EOSs [29], the stability of the heaviest HS) on
hybrid EOSs, we try to restrict the parameter space and
demonstrate the type of two stars in the binary for nine
representative hybrid EOSs.
The article is organized as follows: In Sec. II, we present

the EOS of hadronic matter at low densities and calculate the
EOS of quark matter at high densities. A link between the
two phases via three-window interpolating approach is also
introduced. Then the methods of constraining parameters are
presented in Sec. III. In Sec. IV, we give the result of hybrid
EOSs and the restricted parameter space of it. A brief
summary and discussion are provided in Sec. V. Finally,
detailed derivations and calculations of quark condensate
are presented in the Appendix.

II. CONSTRUCTION OF THE HYBRID EOS

A. EOS of hadronic matter

The RMF model NL3ωρ [37,38] is very successful in
describing the confined hadronic matter in beta-equilibrium.
The Lagrangian of it reads

L¼
X
N¼p;n

ψ̄N

�
γμ
�
i∂μ−gωNωμ−

gρN
2

τ ·ρμ

�

− ðmN −gσNσÞ
�
ψN þ1

2
∂μσ∂μσ−

1

2
m2

σσ
2

−
1

4
ΩμνΩμνþ

1

2
m2

ωωμω
μ−

1

4
ρμν ·ρμνþ

1

2
m2

ρρ
μ ·ρμ

−
1

3
bmNðgσNσÞ3−

1

4
cðgσNσÞ4þΛωðg2ωωμω

μÞðg2ρρμ ·ρμÞ:
ð1Þ

Compared with the RMF model NL3, this Lagrangian
has one more term, i.e., nonlinear ωρ term, resulting in
softer dependence of the symmetry energy on density. In
addition, the exclusion of a quartic term on the ω meson
makes the EOS ofNL3ωρmodel very stiff at large densities.
Thus, the neutron star constructed by NL3ωρ has a very
large maximum mass, which is calculated to be about 2.75
solar mass (M⊙), well above the 2.01� 0.04 M⊙ constraint
of PSR J0348þ 0432 [39]. In Ref. [37], we can see from
calculations of microscopic neutron matter that this model

is compatible with various critical constraints: theoretical,
experimental and astrophysical. The saturation properties
of NL3ωρ are shown in the following: saturated density
ρ0 ¼ 0.148 fm−3, energy per nucleon E=A ¼ −16.2 MeV,
incompressibility K ¼ 271.6 MeV, symmetry energy J ¼
31.7 MeV, slope of symmetry energy L ¼ 55.5 MeV.
It is known that the structure of a neutron star can be

divided into four parts, that is, the envelope, the outer crust,
the inner crust and liquid core as the energy density
increases. The envelope of the neutron star with energy
density smaller than 106 g=cm3 possesses a tiny mass
(10−10 M⊙), and its conformation and structure can also be
affected by many factors such as strong magnetic field [42]
and the accretion of interstellar matter. Therefore, in this
paper, we will restrict our calculation to ϵ > 106 g=cm3.
Then to build an EOS for the hadronic matter, in the outer
crust where ρ < 3 × 10−4 fm−3, we employ the Baym-
Pethick-Sutherland (BPS) EOS which describes the nuclear
matter in this region quite well; in the inner crust and the
core where ρ > 3 × 10−4 fm−3, we adopt NL3ωρ EOS
which characterizes the properties of hadronic matter in
this region very well. In the meanwhile, these two EOSs
intersect at the density of 3 × 10−4 fm−3. As a result, the
maximum mass of neutron star calculated by this hadronic
EOS is about 2.754 M⊙ with a radius R ¼ 13.01 km,
implying a very small mass of the outer crust too. In
addition, we do not consider the contribution of hyperons in
this paper because the interactions among them are com-
plicated and still unknown.

B. EOS of quark matter

The Lagrangian of the 2þ 1 flavors NJL model has a
general form as

L ¼ ψ̄ði∂ −mÞψ þ
X8
i¼0

G½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�

− Kðdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �Þ; ð2Þ
here G and K are four-fermion and six-fermion coupling
constant, respectively; λi; i ¼ 1 → 8 is the Gell-Mann

matrix and λ0 ¼
ffiffi
2
3

q
I (I is the identity matrix). In this

model, the quark propagator Si can be expressed as

Siðp2Þ ¼ 1

p −Mi
; ð3Þ

where the subscript i ¼ u, d, s denotes the flavor of the
quark and Mi represents the constituent quark mass. Then
the gap equation can be derived with the mean field
approximation as

Mi ¼ mi − 4Ghψ̄ψii þ 2Khψ̄ψijhψ̄ψik: ð4Þ
Here hψ̄ψii and mi are the quark condensate and current
quark mass of flavor i, respectively, and (i, j, k) is a
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permutation of (u, d, s). On account of the isospin
symmetry between the u and d quark in the 2þ 1 flavors
NJL model, we can obtain thatMu ¼ Md, hψ̄ψiu ¼ hψ̄ψid,
and mu ¼ md. By definition, the quark condensate is

hψ̄ψii ¼ −
Z

d4p
ð2πÞ4 Tr½iS

iðp2Þ�

¼ −Nc

Z þ∞

−∞

d4p
ð2πÞ4

4iMi

p2 −M2
i

: ð5Þ

The trace “Tr” is performed in Dirac and color spaces.
To proceed with the following calculation, we will make a
Wick rotation from Minkowski space to Euclidean space
and introduce the proper time regularization (PTR). After
that, a generalization from zero temperature and chemical
potential to zero temperature but finite chemical potential
will be made. The detailed definition and derivation
can be found in the Appendix. Then the quark condensate
becomes

hψ̄ψii ¼

8>>>>>><
>>>>>>:

− 3Mi
4π2

R∞
τUV

dτ e
−τM2

i

τ2
; ðfor T ¼ 0; μ ¼ 0Þ

− 3Mi
π2

Rþ∞ffiffiffiffiffiffiffiffiffiffi
μ2−M2

i

p dp
½1−Erfð

ffiffiffiffiffiffiffiffiffiffiffi
M2

i þp2
p ffiffiffiffiffiffi

τUV
p Þ�p2ffiffiffiffiffiffiffiffiffiffiffi

M2
i þp2

p ; ðfor T ¼ 0; μ ≠ 0; and Mi < μÞ

3Mi
4π2

�
−M2

i Eið−M2
i τUVÞ − e

−M2
i
τUV

τUV

�
; ðfor T ¼ 0; μ ≠ 0; and Mi > μÞ

where the integral limit τUV is a ΛUV (ultraviolet cutoff)-
related parameter and is defined as τUV ¼ Λ−2

UV.
Now, from the seven parameters present in the above

equations, five are fitted to reproduce experimental data
(fπ ¼ 92, Mπ ¼ 135, MK0 ¼ 495, Mη ¼ 548, and Mη0 ¼
958 MeV) at zero temperature and chemical potential, that
is, similar to the process in Ref. [43], (Mu;ΛUV) to fit (fπ ,
Mπ), (Ms, G, K) to fit (MK0 ;Mη;Mη0), while the parameter
mu is fixed before the fitting. Once the above six parameters
have been fixed, the value of the current quark massms can
be determined as ms ¼ Ms þ 4Ghs̄si − 2Khūui2. Then for
different values of mu, the result of parameter sets is listed
in Table I. In the latest edition of the Review of Particle
Phys [44], we notice that the current quark mass m̄ and
ms are well constrained as m̄ ¼ ðmu þmdÞ=2 ¼ 3.5þ0.5

−0.2 ,
ms ¼ 95þ9

−3 MeV. Thus, we will choose the parameter sets
of mu ¼ 3.3 and 3.4 MeV to continue the following
calculations.

To get the EOS of quark matter at zero temperature and
finite chemical potential, we have to deduce the relation of
quark density and chemical potential, which is derived as

ρiðμÞ ¼ hψþψii
¼ −Nc

Z
d4p
ð2πÞ4 tr½iSiγ0�

¼ 2Nc

Z
d3p
ð2πÞ3 θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q �

¼
	

1
π2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

i

p
Þ3; μ > Mi

0; μ < Mi

; ð6Þ

where “tr” means the trace in Dirac space, and the result is
shown in Fig. 1. From this figure, we find that the chemical
potential dependence of quark density for mu ¼ 3.3 and
3.4 MeV are very similar: the critical point μc ¼ 200 MeV
for the u, d quark and μc ¼ 320 MeV for the s quark. After
these corresponding points, the quark densities start to be
nonzero and increase smoothly as the chemical potential
increases.
It is noted that the dynamical masses of quarks listed on

Table I seem abnormally low compared to what is standard
in the literature and the difference between the dynamical
mass in vacuum for the strange quark and its critical
chemical potential is relatively large (∼40 MeV). In the
following, we demonstrate the reasons for that: it is well
known that the NJL model is not a renormalizable theory,
so we need to use an appropriate regularization to eliminate
the ultraviolet (UV) divergence. In the framework of the
usual NJL model, the three-dimensional momentum cutoff
(ΛUV) regularization is often used to realize that. In this
regularization scheme, dynamical quark masses are
Mu ∼ 350 MeV, Ms ∼ 520 MeV, which are much larger

TABLE I. Parameter set fixed in our work. The coupling
constants G and K have the unit of MeV−2 and MeV−5,
respectively, while the unit of other parameters in this table is MeV.

mu ms ΛUV G K Mu Ms

3.2 99 1380 1.41 × 10−6 2.36 × 10−14 194 357
3.3 102 1350 1.46 × 10−6 2.55 × 10−14 195 361
3.4 104 1330 1.51 × 10−6 2.75 × 10−14 197 364
3.5 108 1310 1.56 × 10−6 2.96 × 10−14 198 367
3.6 110 1290 1.61 × 10−6 3.18 × 10−14 199 371
3.7 113 1270 1.66 × 10−6 3.41 × 10−14 200 374
3.8 116 1250 1.72 × 10−6 3.64 × 10−14 202 377
3.9 119 1235 1.77 × 10−6 3.89 × 10−14 203 380
4.0 121 1220 1.82 × 10−6 4.15 × 10−14 204 384
4.1 125 1200 1.88 × 10−6 4.42 × 10−14 205 388
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than the corresponding dynamical quark masses obtained
herein, and the chiral phase transition in this case for zero
temperature and finite chemical potential is first order. It
should be pointed out that, for a QCD effective model, ΛUV
implies the adaptation range of the effective model. Under
the normal NJL model framework, the UV cutoff ΛUV is
about 630 MeV, which means that the NJL model regu-
larized by a three-dimensional momentum cutoff cannot be
used, in principle, for physical systems with energy scales
greater than ΛUV ¼ 630 MeV. We know that the energy
scale involved in the study of neutron stars is about 1 GeV;
thus, in this case, we have to abandon the commonly used
three-dimensional momentum cutoff and use PTR instead.
This is because PTR is not plagued by the interruption of
UV momentum. In this scheme, we can see that the integral
limit τUV is actually a soft cutoff with the integral variable τ
presenting in the exponential function, and the UV cutoff
ΛUV ¼ ðτUVÞ−1=2 is set to be larger than 1 GeV by fitting the
experimental data. Additionally, the chiral phase transition
for T ¼ 0 with finite chemical potential is a crossover in
PTR. From above we can see that different regularization
schemes cause different results. In fact, a certain regulari-
zation approach is already employed in the process of
parameter fixing. For example, in Refs. [30,45,46], PTR is
also used in the NJL model, and the dynamical masses of
quarks in these studies (Mu ∼ 210, Ms ∼ 400 MeV are also
quite smaller than the usual dynamical quark masses in the
normal NJL molel (Mu ∼ 350,Ms ∼ 520 MeV). In Fig. 1 of
the manuscript, we demonstrate the densities of quarks
versus the chemical potential for mu ¼ 3.3, 3.4 MeV whose
corresponding dynamical masses of s quark in vacuum are
fixed to be about 360 MeV. The difference between dynami-
cal mass in vacuum and μC for s quark is about 40 MeV.
Actually, for other studies in the framework of the 2þ 1
flavors NJL model with PTR, such as Refs. [30,46], the
difference is also large, that is, ∼40 MeV in Ref. [46] and
∼80 MeV in Ref. [30].

Considering the internal environment of a hybrid star, we
have to take the chemical equilibrium and electric charge
neutrality into account,8<

:
μd ¼ μu þ μe:

μs ¼ μu þ μe:
2
3
ρu − 1

3
ρd − 1

3
ρs − ρe ¼ 0.

ð7Þ

Then we can get the baryon chemical potential depend-
ence of the quark densities, which is presented in Fig. 2. As
we can see, for a given flavor of quark, the density
dependences on baryon chemical potential for mu ¼
3.3 MeV and 3.4 MeV are also very similar. The critical
baryon chemical potential is μcB ¼ 600 MeV for u and d
quark, and μcB ¼ 920 MeV for s quark. After the corre-
sponding μcB, each density in this picture increases monoto-
nously and smoothly.
According to definition, at zero temperature and finite

chemical potential, the EOS of QCD can be written as
[47,48]

PðμÞ ¼ Pðμ ¼ 0Þ þ
Z

μ

0

dμ0ρðμ0Þ; ð8Þ

here Pðμ ¼ 0Þ represents the negative pressure of the
vacuum, which is taken as a phenomenological model-
dependent parameter. Furthermore, it can reflect the con-
finement of QCD just like in the MIT bag model. Same to
Ref. [28], we regard Pðμ ¼ 0Þ as −B (vacuum bag
constant). From Eq. (8), we can deduce that similar
behaviors of quark densities between two schemes mu ¼
3.3 and 3.4 MeV will result in similar EOSs of quark
matter. Thus, we will take the scheme of mu ¼ 3.4 MeV to
continue the following study. After we determine the value
of B, the energy density can be calculated by [49,50]

ϵ ¼ −Pþ
X
i

μiρi: ð9Þ

FIG. 1. Quark number density of u, d and s quark as a function
of μ at T ¼ 0 with parameters fixed for mu ¼ 3.3, 3.4 MeV,
respectively. Four lines (two red lines and two green lines) nearly
coincide and so do the other two blue lines.

FIG. 2. Considering the chemical equilibrium and electric
charge neutrality of the quark system, density of u, d and s
quark with parameters fixed for mu ¼ 3.3, 3.4 MeV are shown,
respectively. Two red lines nearly coincide and so do two green
lines and two blue lines.
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C. Hybrid EOS constructed by a three-window
modeling

To get the hybrid EOS with a crossover hadron-quark
phase transition, we have to employ a suitable interpolating
approach to connect the hadronic EOS and quark EOS. In
Refs. [25,26,28–30], a three-window modeling is adopted.
In particular, Refs. [25,26,29] employ the ϵ-interpolation in
ϵ-ρ plane or/and P-interpolation in P-ρ plane; Refs. [28,30]
take P-interpolation in P-μ plane. Just as Ref. [29] claims,
the three-windowmodeling is a phenomenological modeling
approach. Beyond mere interpolation, different interpolating
schemes will have different additional thermodynamic
corrections to the interpolated variables, meanwhile, the
additional corrections have to preserve the thermodynamic
consistency between the variables. In fact, any interpolating
approach above is applicable. Although the hybrid EOSs
in these three schemes contain different variables, they all
satisfy the thermodynamic consistency in the crossover
region. As a result, they should match each other in the
same plane. In addition, for densities that are very small or
very large, the hybrid EOSs will revert to the hadronic EOS
or quark EOS, thus matching each other too. In this paper,
we will use the same interpolating approach as Refs. [28,30].
By definition, the interpolation function is

PðμÞ ¼ PHðμÞf−ðμÞ þ PQðμÞfþðμÞ;

f�ðμÞ ¼
1

2

�
1� tanh

�
μ − μ̃

Γ

��
; ð10Þ

and the energy density is obtained from the thermodynamic
relation

ϵðμÞ ¼ ϵHðμÞf−ðμÞ þ ϵQðμÞfþðμÞ þ Δϵ;

Δϵ ¼ μðPQ − PHÞgðμÞ; ð11Þ
where PH and PQ denote the pressure in the hadronic phase
and quark phase, respectively. The sigmoid interpolating
functions f� can realize a smooth DPT in the region of
μ̃ − Γ≲ μ ≲ μ̃þ Γ, which is named the window of the
function. In this region, hadrons are hybrid with quarks: they
coexist and interact strongly. In Eq. (11), Δϵ is the additional
term that guarantees thermodynamic consistencywith gðμÞ ¼
2
Γ ðeX þ e−XÞ−2 andX ¼ ðμ − μ̃Þ=Γ. FromEqs. (10) and (11),
we can see that there are two parameters in our interpolating
procedure: the central baryon chemical potential of the
interpolating area μ̃ and half of the interpolating interval Γ.
From the study above, we can conclude that the con-

structed hybrid EOS contains three parameters undeter-
mined totally, i.e., B, μ̃, and Γ. Thus, we can regard our
hybrid EOS as a function of these three parameters.

III. METHODS

In our study, we consider the following five constraints
to restrict the EOS of hybrid stars:

(1) The mass constraint from PSR J0348þ 0432 re-
quires the maximum mass of the neutron star larger
than 1.97 M⊙ [39].

(2) Because of the uncertainty of μdeconfinement, many
studies employ an assumption that μdeconfinement ∼
μChiralRestoration [26–28]. However, the studies of
QCDphase diagram [40,41] imply thatμdeconfinement >
μChiralRestoration ∼ 1 GeV at zero temperature with fi-
nite chemical potential. Thus, in this paper, we take
a relatively loose constraint that μ̃ − Γ ≥ 1 GeV in the
hybrid construction.

(3) The latest update of the source properties for
GW170817 from LIGO and Virgo collaborations
[24] demonstrates that the dimensionless combined
tidal deformability Λ̃ has a considerable change
compared with the former observable, that is, Λ̃ ∼
280þ490

−190 for the case of symmetric 90% credible
interval and Λ̃ ∼ 280þ410

−230 for the case of highest
posterior density (HPD) 90% credible interval. The
definition of it is shown in the following:

Λ̃ ¼ 16

13

ðM1 þ 12M2ÞM4
1Λ1 þ ðM2 þ 12M1ÞM4

2Λ2

ðM1 þM2Þ5
:

ð12Þ

HereΛ1,Λ2 are the deformability of the twomembers
of BNS, and M1, M2 are the corresponding gravita-
tional masses, respectively. The detailed calculation
method of Λ and its dependence on M can be found
in Ref. [22]. With the additional waveform model
SEOBNRT, the chirp mass M ¼ ðM1M2Þ3=5
ðM1 þM2Þ−1=5 is fixed to 1.186� 0.0001 M⊙ (This
value determines the relation of M1 and M2).

(4) The stability in interpolating between the quark EOS
and hadronic EOS demands dP=dρ > 0, and it is
very restrictive to the interpolated EOS [29]. Ac-
tually, dP=dρ is relevant to the sound velocity of the
system which is defined as v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

dP=dϵ
p

. Via
Eqs. (8) and (9), we can derive that v2 ¼ dP=dϵ ¼
dP=ð−dPþ ρdμþ μdρÞ ¼ 1=μ · dP=dρ. Thus, this
constraint is equivalent to v2 > 0.

(5) The stability of the hybrid star with a maximum
mass requires μC > μBE, where μC is the baryon
chemical potential in the center of the star, and μBE
represents the baryon chemical potential of the
intersection between quark binding energy and
hadronic binding energy. For μ < μBE, the hadronic
matter is more stable with a lower binding energy
than quark matter; but for μ > μBE, the inverse is
true. Therefore, μC > μBE should be satisfied to
forbid the quark matter decaying into the hadronic
matter in the center of the heaviest star. Only in this
way can the deconfined regime (pure or mixed
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phase) be achieved, and the hybrid star, instead of
the pure neutron star (a scenario which we find ruled
out by the latest observation data from GW170817
pertaining tidal deformability) exist.

IV. RESULTS

We choose B
1
4 ¼ 167, 170, and 171 MeV as three

representative values to compare the EOSs of quark matter
and hadronic matter, and the result is shown in Fig. 3. We
can see that for a larger value of B

1
4, the pressure is also

larger for the same μB, but quark EOSs do not differ too
much in these three cases. The intersections of quark EOSs
and the NL3ωρ EOS are located at around μB ¼ 1.3 GeV.
Then we calculate the binding energy ϵ=ρ of quarks for the
three representative values of B

1
4, and compare the result

with that of the NL3ωρ model, which is shown in Fig. 4.
From this figure, we can find that for a certain density, as B

1
4

increases, the binding energy also increases, and the
intersections of quark binding energy and hadronic binding
energy are close to ρ ¼ 0.004 GeV3. In the left side domain
of the intersection, the binding energy of hadrons is smaller
than that of quarks, indicating hadrons are more stable than
quarks. However, in the right side domain of the inter-
section, conversely, quarks are more stable with a smaller
binding energy than hadrons.
Then we extend our study to various hybrid EOS

models with different parameter sets of (B
1
4; μ̃;Γ). With

the five constraints considered in Sec. III, it is possible for
us to get reasonable choice of the parameter set. First, we
consider the constraint on (B

1
4;Γ) and (B

1
4; μ̃) with an

appropriate value of μ̃ and Γ, respectively. In other words,
supposing the allowed space of (B

1
4; μ̃;Γ) forming a three-

dimensional image, we extract its projection on Γ-B1
4 plain

and μ̃-B
1
4 plain, respectively. The result is presented in

Fig. 5. From the graph, we can see that for the hybrid
EOS, the range of B

1
4 is restricted to (166.16,

171.06) MeV, and as B
1
4 increases, the allowed intervals

FIG. 3. Comparison of quark EOSs and hadronic EOS. The
black solid line is the NL3ωρ EOS while the red dashed line, the
green dot-dashed line and the blue dotted line are the quark EOSs
with B

1
4 ¼ 167, 170, and 171 MeV, respectively.

FIG. 4. Comparison of binding energy of hadrons and quarks.
The black solid line is for the NL3ωρ EOS while the red dashed
line, the green dot-dashed line and the blue dotted line are for the
quark EOSs with B

1
4 ¼ 167, 170, and 171 MeV, respectively.

(a)

(b)

FIG. 5. Constraints on parameter set (B
1
4; μ̃;Γ). The gray shaded

region is the allowed space for the subparameter set (a) (B
1
4;Γ)

and (b) (B
1
4; μ̃), respectively, with five constraints considered in

Sec. III.
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of Γ and μ̃ reduce with both the upper limit and lower limit
rising. In particular, for B

1
4 ¼ 166.16 MeV, the range of Γ

and μ̃ is (1.47, 2.51) GeV and (2.47, 3.51) GeV,

respectively; but for B
1
4 ¼ 171.06 MeV, Γ and μ̃ are

constrained to 3.37 and 4.37 GeV, respectively.
Generally, if we want to get the constraint on the

subparameter set (μ̃;Γ), B1
4 should be fixed to a certain

value. In the following, we will study it for three repre-
sentative schemes, i.e., B

1
4 ¼ 167, 170, and 171 MeV, and

the result is shown in Fig. 6. From the comparison of the
three subgraphs (a), (b), and (c), we can see that the area of
allowed parameter space of (μ̃;Γ) experiences expansion
and then narrowing as B

1
4 increases. For B

1
4 ¼ 167 MeV,

(a)

(b)

(c)

FIG. 6. Constraints on subparameter set (μ̃;Γ) with (a)B1
4 ¼ 167,

(b)B
1
4 ¼ 170 MeV, and (c)B

1
4 ¼ 171 MeV, respectively. The gray

shaded region is the allowed parameter space for these three cases.
The black solid line, green dashed line, red dotted line, and orange
dot-dashed line correspond to the constraints (2), (3), (4), and (5) in
Sec. III, respectively. The mass constraint (1) does not appear in
these graphs because this constraint is relatively loose. When
μ̃ > 1.95 GeV, the maximum masses of hybrid stars constructed
by the hybrid EOS are already well beyond 1.97 M⊙.

FIG. 7. The sound velocities of the nine representative hybrid
EOSs with parameter set of ðB1

4; μ̃;ΓÞ ¼ ð167; 2.6; 1.58Þ, (167,
3.0, 1.98), (167, 3.5, 2.48), (170, 3.0, 1.9), (170, 3.4, 2.3), (170,
3.8, 2.7), (171, 3.45, 2.45), (171, 3.8, 2.75), and (171, 4.2, 3.19),
corresponding to the red solid line, red dotted line, red dashed
line, green dashed line, green dotted line, green solid line, blue
dashed line, blue dotted line, and blue solid line, respectively.

FIG. 8. The M − R relation of the hybrid stars constructed by
the nine representative hybrid EOSs with parameter set of
ðB1

4; μ̃;ΓÞ ¼ ð167; 2.6; 1.58Þ, (167, 3.0, 1.98), (167, 3.5, 2.48),
(170, 3.0, 1.9), (170, 3.4, 2.3), (170, 3.8, 2.7), (171, 3.45, 2.45),
(171, 3.8, 2.75), and (171, 4.2, 3.19), corresponding to the red
solid line, red dotted line, red dashed line, green dashed line,
green dotted line, green solid line, blue dashed line, blue dotted
line, and blue solid line, respectively. The gray shaded area
represents the mass constraint of PSR J0348þ 0432.
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the allowed region is long and narrow with μ̃ ∈ ð2.57; 3.56Þ
and Γ ∈ ð1.54; 2.56Þ GeV. In addition, the longitudinal
distance of the μ̃ − Γ ¼ 1 line and the SEOBNRT line is
about 0.03 for μ̃ ¼ 2.5 GeV; while, for μ̃ ¼ 3.6 GeV, the
distance is about 0.04 GeV. For B

1
4 ¼ 170 MeV, the

allowed space is larger than that of B
1
4 ¼ 167 MeV with

μ̃ constrained to (2.99, 3.99) GeV and Γ constrained to
(1.85, 2.99) GeV. The longitudinal distance of μ̃ − Γ ¼ 1
line and SEOBNRT line is about 0.14 here for μ̃ ¼ 2.99,
and 0.22 for μ̃ ¼ 4 GeV. For B

1
4 ¼ 171 MeV, the area of

the allowed region reduces compared to B
1
4 ¼ 170 MeV,

that is, (3.42, 4.36) and (2.42, 3.36) GeV for the range of μ̃
and Γ, respectively. And the longitudinal distance of the
constrained area expands and then narrows as μ̃ increases.
In fact, from our calculations, we also find the following
two trends with B

1
4 increasing: (i) The intersection of the

μ̃ − Γ ¼ 1 line and SEOBNRT line as well as the inter-
section of the μ̃ − Γ ¼ 1 line and ðv=cÞ2min ¼ 0 line move to
the right side of the μ̃-Γ plane, and (ii) the SEOBNRT line is
trending to the direction of the μ̃ axis but the ðv=cÞ2min ¼ 0

line is trending to the μ̃ − Γ ¼ 1 line. It should be
mentioned that the mass constraint is not shown in
Fig. 6, because the mass constraint here is relatively loose
compared with the other four constraints.
For a more detailed demonstration of the properties of

hybrid EOSs with the parameter set in the constrained
region of Fig. 6, we will choose three representative points
of (μ̃;Γ) for each of the scheme: B

1
4 ¼ 167 , 170, and

171 MeV, to get nine hybrid EOSs. And then we calculate
the corresponding sound velocities, M − R relation and
tidal deformability (Λ1, Λ2), which are shown in Figs. 7–9,
respectively. From Fig. 7, we can see that all sound
velocities of the hybrid stars are smaller than 0.7 times
speed of light, demonstrating the rationality of the hybrid
EOSs. In Fig. 8, the maximum gravitational masses of HSs
are from 2.10 M⊙ to 2.19 M⊙ with a radius from 11.99 to
12.13 km, well beyond the mass constraint of 1.97 M⊙.
And the radius of the hybrid stars with a mass of 1.4 M⊙ is
from 11.90 to 12.18 km. The detailed information of HSs
based on these nine hybrid EOSs is listed in Table II.
According to the chirp mass prediction from SEOBNRT,
the mass of two stars in the BNS is calculated to be

FIG. 9. Comparison of the tidal deformability of hybrid stars
constructed by the nine representative hybrid EOSs with param-
eter set of ðB1

4; μ̃;ΓÞ ¼ ð167; 2.6; 1.58Þ, (167, 3.0, 1.98), (167,
3.5, 2.48), (170, 3.0, 1.9), (170, 3.4, 2.3), (170, 3.8, 2.7),
(171, 3.45, 2.45), (171, 3.8, 2.75), and (171, 4.2, 3.19),
corresponding to the red solid line, red dotted line, red dashed
line, green dashed line, green dotted line, green solid line, blue
dashed line, blue dotted line, and blue solid line, respectively.
For B

1
4 ¼ 167 and 170 MeV, the tidal deformability is very

similar. The orange solid line represents the tidal deformability
(Λ1, Λ2) calculated by NL3ωρ EOS. Both the black dashed line
and gray dashed line are the 90% posterior probability enclosed
inside for the low spin prior case in GW170817. The difference
is that the gray one represents the former prediction and the
black one is the recent prediction in the light of the additional
waveform model SEOBNRT. The brown dotted line indicates
the Λ1 ¼ Λ2 boundary.

TABLE II. Some quantities of HSs corresponding to the nine representative hybrid EOSs: maximum gravitational
massMmax, radius Rm, central baryon chemical potential μC, radius of 1.4 M⊙ star Rð1.4Þ, central baryon chemical
potential of 1.17 M⊙ star μCð1.17Þ, central baryon chemical potential of 1.36 M⊙ star μCð1.36Þ, central baryon
chemical potential of 1.59 M⊙ star μCð1.59Þ, and the combined dimensionless tidal deformability Λ̃ with flat prior
(symmetric/HPD).

B
1
4 μ̃ Γ Mmax Rm μC Rð1.4Þ μCð1.17Þ μCð1.36Þ μCð1.59Þ Λ̃

[MeV] [GeV] [GeV] ½M⊙� [km] [GeV] [km] [GeV] [GeV] [GeV] (symmetric/HPD)

167 2.6 1.58 2.10 12.13 1.60 12.15 1.15 1.18 1.23 601=570
3.0 1.98 2.14 12.00 1.63 12.00 1.15 1.18 1.23 595=565
3.5 2.48 2.17 12.07 1.65 12.09 1.15 1.18 1.23 590=561

170 3.0 1.90 2.15 11.99 1.63 11.90 1.15 1.19 1.23 602=571
3.4 2.30 2.17 12.00 1.65 11.99 1.15 1.19 1.24 595=565
3.8 2.70 2.19 12.01 1.67 12.00 1.16 1.19 1.24 592=561

171 3.45 2.45 2.14 12.00 1.66 12.00 1.16 1.20 1.25 632=600
3.8 2.75 2.17 12.03 1.67 12.18 1.16 1.19 1.24 599=568
4.2 3.19 2.17 12.00 1.68 12.00 1.16 1.19 1.25 624=592
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1.17 M⊙–1.36 M⊙ and 1.36 M⊙–1.59 M⊙, respectively.
Therefore, we also present the corresponding central
baryon chemical potential μC for 1.17 M⊙, 1.36 M⊙,
and 1.59 M⊙ in this Table. We can see that the value of
μCð1.17Þ in each hybrid EOS is larger than the correspond-
ing μ̃ − Γ, i.e., the starting point of DPT in our hybrid
EOS, thus suggesting that both two stars of BNS from
GW170817 can be HSs shown in Table II. In addition, nine
values of μC in this table are all located in their corre-
sponding interpolating window, namely, the phase transi-
tion region, demonstrating that the heaviest star constructed
by our hybrid EOS does not have a pure quark core but a
mixed-phase inside. The combined dimensionless tidal
deformability Λ̃ with a flat prior (symmetric/HPD) are
also shown in Table II whose values are all in the region of
the 90% credible interval predicted by SEOBNRT. In
Fig. 9, we can see that the constraint for tidal deformability
pairs Λ1 and Λ2 from SEOBNRT shrinks significantly
compared to the former. Although the relation of Λ1 and Λ2

for NL3ωρ EOS is very close to the former constraint, it is
far beyond the recent prediction of SEOBNRT. Different
from that, the results from the nine representative hybrid
EOSs are all in accordance with the constraint. Among
them, the hybrid EOSs with the schemes of B

1
4 ¼ 167 and

170 give very similar tidal deformability parameter.

V. SUMMARY AND DISCUSSION

In this paper, we try to use the constraint of the additional
waveform model SEOBNRT on tidal deformability from
the latest GW170817 source properties [24] to restrict the
hybrid EOS constructed by a smooth three-window inter-
polating approach on the P-μ plain [28,30] between the
hadronic phase and quark phase. The quark matter is
described by the 2þ 1 flavors NJL model, and the hadronic
matter is characterized by the RMF NL3ωρ model [37,38].
In the 2þ 1 flavors NJL model, there are seven model
parameters and five of them can be fixed by fitting five
experimental data if the other two (mu and ms) are
determined. To satisfy the prediction of these two param-
eters from the recent study [44], we choose two sets of
parameters within mu ¼ 3.3 and 3.4 MeV, respectively, to
continue the following calculation but to find the quark
densities under these two schemes are very similar, which
can spontaneously cause a similarity between their corre-
sponding EOSs. Thus, the parameter set within mu ¼
3.4 MeV is set as the representative one to participate in
our calculations. It is noteworthy that three parameters are
still free in the hybrid EOS, i.e., B

1
4 from the quark EOS and

μ̃ and Γ from the interpolating process.
Then, by the constraint of SEOBNRT, the mass pre-

diction from PSR J0348þ 0432 [39], the studies of
hadron-quark transition in Refs. [40,41] implying that
μdeconfinement > μChiralRestoration ∼ 1 GeV at zero temperature
with finite chemical potential, the stability of hybrid

EOS [29], and the stability of the heaviest HS, we restrict
the subparameter set (B

1
4, μ̃) and (B

1
4, Γ) to a reasonable

space by projecting the allowed space of (B
1
4, μ̃, Γ) to Γ-B1

4

plain and μ̃-B
1
4 plain, respectively. We find that B

1
4 is well

constrained to a range of (166.16, 171.06) MeV, differing
from the result of (134.1, 141.4) MeV in Ref. [11] and
fð140; 143ÞMeV; for a4¼ 0.5; ð147;155ÞMeV for a4 ¼
0.6g in Ref. [15]. In addition to that, different value of B

1
4

can result in different parameter space of (μ̃;Γ). Therefore,
we set B

1
4 ¼ 167, 170, and 171 MeV, respectively, to study

the difference. Then we find that as B
1
4 increases, the

restricted parameter space (μ̃;Γ) is moving to the upper
right along the line of μ̃ − Γ ¼ 1, and becomes larger first
and then shrinks. For a detailed study of the constrained
hybrid EOS, we choose nine representative parameter sets
to calculate their corresponding sound velocities, M − R
relation and tidal deformability. As a result, these repre-
sentative hybrid EOSs are relatively soft but with the
maximum mass of HSs well beyond 2 M⊙ and radius
about 12 km. By a comparison of the phase transition
window μ̃ − Γ≲ μ ≲ μ̃þ Γ and the central baryon chemi-
cal potential of 1.17 M⊙, 1.36 M⊙, 1.59 M⊙, and Mmax,
we can see that both two member stars of BNS from
GW170817 are HSs, and they do not have a quark core but
a mixed-phase in center. What’s more, the NL3ωρmodel to
construct the pure neutron star has already been excluded
by the observation of tidal deformability from GW170817,
but this model is still suggested to be effective to describe
the hadronic phase in HSs.
Further, it should be noted that we also considered the

possibility of an hybrid EOS constructed with the NL3
hadronic model but could not find a parameter set satisfy-
ing the five constraints presented in this paper. In addition,
the Maxwell construction between hadronic phase and
quark phase can be viewed as a limit situation of Γ ¼ 0 and
μ̃ fixed to the intersection of quark EOS and hadronic EOS
in P-μ plane. From Fig. 5(a), we can see that the parameter
space implies Γ ≠ 0; thus, hybrid EOSs constructed with
the NL3ωρ model and the 2þ 1 flavors NJL model by this
approach should be excluded.
In a word, calculations of the hybrid EOS are still model

dependent, but two prospects are hopeful in the future: on
one hand, a better constrained tidal deformability from the
future observation of GW will help the further reduction of
the parameter space; on the other hand, the determination of
hadron-quark transition point μdeconfinement and the EOS
from the first principle of QCD in future are expected to
give a definitive answer.
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APPENDIX: DERIVATION OF QUARK
CONDENSATE

In QCD, the quark condensate is defined in the
Minkowski space. However, it is noteworthy that non-
perturbative theories are always proposed and calculated
in the Euclidean space, such as lattice QCD (LQCD),
because Euclidean QCD action at zero chemical potential
defines a probability measure where various numerical
simulation algorithms are available. What’s more, calcu-
lating in the Euclidean space is not only for pragmatic:
Euclidean lattice field theory is considered as a primary
candidate currently for rigorous definition of the interact-
ing quantum field theory since it makes the definition of
generating functional via a proper limiting procedure
possible [51]. Thus, we will take a Wick rotation to
translate calculations from the Minkowski space to the
Euclidean space. In addition, we also introduce PTR
because the Lagrangian of NJL model cannot be renor-
malized. The PTR is defined as

1

An ¼
1

ðn − 1Þ!
Z

∞

0

dττn−1e−τA

→ UVcutoff
1

ðn − 1Þ!
Z

∞

τUV

dττn−1e−τA: ðA1Þ

With the two operations above, the quark condensate
defined in Eq. (5) at zero temperature and chemical
potential becomes

hψ̄ψii ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
4iMi

ðpEÞ2 þM2
i

¼ −
Nc

ð2πÞ4
Z þ∞

−∞

Z þ∞

−∞
d3p⃗dp4

4Mi

p2
4 þ p⃗2 þM2

i

¼ −
3Mi

π2

Z þ∞

0

dp
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
i

p

¼ −
3Mi

π
2
5

Z
∞

τUV

Z þ∞

0

dτdpτ−
1
2p2e−τðM2

iþp2Þ

¼ −
3Mi

4π2

Z
∞

τUV

dτ
e−τM

2
i

τ2
; ðA2Þ

where the superscript E denotes the Euclidean space.
On account of the temperature of NSs which can be

approximated to zero compared with the chemical poten-
tial, we have to generalize our calculation to zero temper-
ature and finite chemical potential. In the Euclidean space,
it is equivalent to perform a transformation [52] of

p4 → p4 þ iμ: ðA3Þ

And then we can derive the quark condensate in the
following,

hψ̄ψii ¼−Nc

Z þ∞

−∞

d4p
ð2πÞ4

4Mi

ðp4þ iμÞ2þM2
i þ p⃗2

¼−
3Mi

π3

Z þ∞

0

dp
Z þ∞

−∞
dp4

p2

ðp4þ iμÞ2þM2
i þp2

¼

8>>><
>>>:
−3Mi

π2

Rþ∞ffiffiffiffiffiffiffiffiffiffi
μ2−M2

i

p dp
½1−Erfð

ffiffiffiffiffiffiffiffiffiffiffi
M2

i þp2
p ffiffiffiffiffiffi

τUV
p Þ�p2ffiffiffiffiffiffiffiffiffiffiffi

M2
i þp2

p ; Mi< μ

3Mi
4π2

�
−M2

i Eið−M2
i τUVÞ− e

−M2
i
τUV

τUV

�
; Mi> μ

ðA4Þ

where EiðxÞ ¼ −
Rþ∞
−x dy e−y

t is an exponential integral
function and ErfðxÞ ¼ 2ffiffi

π
p

R
x
0 e

−η2dη is the error function.

We can see that the quark condensate depends on its
constituent mass and chemical potential. Specifically,
for μ < Mi, the quark condensate is independent of the
chemical potential, just like the result in Ref. [53].
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