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We consider the many-body system of neutrinos interacting with each other through neutral current weak
force. Emerging many-body effects in such a system could play important roles in some astrophysical sites
such as the core collapse supernovae. In the literature this many-body system is usually treated within the
mean field approximation which is an effective one-body description based on omitting entangled neutrino
states. In this paper, we consider the original many-body system in an effective two flavor mixing scenario
under the single angle approximation and present a solution without using the mean field approximation.
Our solution is formulated around a special class of many-body eigenstates which do not undergo any level
crossings as the neutrino self-interaction rate decreases while the neutrinos radiate from the supernova. In
particular, an initial state which consists of electron neutrinos and antineutrinos of an orthogonal flavor can
be entirely decomposed in terms of those eigenstates. Assuming that the conditions are perfectly adiabatic
so that the evolution of these eigenstates follow their variation with the interaction rate, we show that this
initial state develops a spectral split at exactly the same energy predicted by the mean field formulation.
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I. INTRODUCTION

Neutrinos and photons are the most abundant particle
species in the Universe [1]. In some astrophysical sites,
neutrinos can reach sufficiently high densities to form a
many-body system through mutual neutral current weak
interactions. A prominent example of such a site is a core-
collapse supernova explosion [2–5]: When the inert iron
core of a massive star reaches the Chandrasekar mass limit,
it collapses until a dense proto-neutron star forms at the
center. The proto-neutron star is initially very hot because it
carries a large amount of gravitational potential energy
which is converted into heat during the collapse. In about
10 s, it cools down by emitting of the order of 1058

neutrinos [6–8]. Since the neutrinos can easily pass through
the outer layers of the star as the matter is pushed into the
space by the shock wave, they can quickly carry the energy
and the entropy away from the proto-neutron star. In fact,
neutrino emission is a very fast and efficient cooling
mechanism not only for a proto-neutron star but also for

black hole accretion disks [9–14] and binary neutron star
mergers [15].
In this paper we explore the impact of many-body effects

due to neutrino-neutrino interactions on the flavor evolu-
tion of neutrinos. We use the core-collapse supernova as
the backdrop of our discussion on many-body effects.
However, our intention is not to give a sophisticated
analysis of neutrino flavor evolution in a realistic supernova
environment, which has already been the subject of intense
research for the past few decades due to the importance of
neutrinos in several aspects of supernova physics (see, e.g.,
[16–21]) and the possibility of observing them with the
current detectors [22–24]. The interested reader is referred
to the excellent review articles in the literature [25,26].
Here our focus is on the many-body system formed by

the neutrinos. In particular, we report on an exact solution
of this many-body system in a simplified case and its
comparison with the results obtained with the mean field
approximation, which is used to treat the neutrino-neutrino
interactions in an overwhelming majority of studies in the
literature. The mean field approximation basically amounts
to replacing the mutual interactions between individual
particles by a description in which each particle interacts
with an average field formed by all other particles. Such
a treatment greatly simplifies an interacting many-body
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system by effectively reducing it to the study of indepen-
dent particles moving in an “external” field. This field is
determined from a simple self-consistency requirement:
Since the mean field is collectively created by all the
particles in the system, it should change in line with the
evolution of individual particles. At the mathematical level,
the mean field approximation works by blocking all
entangled states in the Hilbert space because particles
moving independently in a field cannot develop entangle-
ments if they are not entangled in the first place. In practice,
one starts with an unentangled one-body initial state, i.e., a
state which consists of multiplication of one-body states.
Then the evolution of the system is restricted to such states
at later times. For a system consisting of n particles, each of
which can occupy k different states, this amounts to
replacing the original kn dimensional Hilbert space with
n individual k-dimensional Hilbert spaces.
The mean field approximation was applied to self-

interacting neutrinos quite early on [27–30] and widely
adopted in subsequent studies. It is also extensively used
in various areas such as nuclear physics, condensed matter
physics, and the physics of cold atom systems. Unlike
the case for neutrinos, in those other fields one has the
advantage of experimental access to the system under
consideration. In particular, it is usually possible to
measure the fluctuations of various quantities around
their mean field values in order to assess the accuracy
of the approximation. Although the general consensus is
that the mean field approximation becomes more and
more accurate with an increasing number of particles,
there are some cases which do not agree with this simple
expectation [31]. In fact the latter situations are usually
sought after and actively studied by theorists [32,33] and
experimentalists [34] in cold atom systems in connection
to such applications as cryptography and quantum com-
puting. Those studies intentionally create conditions
under which an initially unentangled system develops
into a macroscopically entangled state through time
evolution and, in doing so, significantly deviates from its
mean field description.
In the context of neutrino astrophysics, one is naturally

interested in the opposite question, i.e., if the mean field
approximation provides an accurate description of self-
interacting neutrinos. References [35,36] were the first
papers to tackle this difficult question. Reference [35] was
concerned with the microphysics and worked with small
neutrino wave packages which undergo distinct scatterings
from one another. The authors were interested in whether
the entanglement can build up on the system which starts
from a one-body state. In particular, they considered two
intersecting beams of neutrinos, each of which consisted
only of a particular flavor. Using a physically very trans-
parent argument, they showed that the buildup of entangled
states occurs at the timescale of an incoherent effect which
is much longer than the timescale of a coherent effect

relevant for self-interacting neutrinos.1 Therefore, Ref. [35]
concluded that the mean field picture provides an accurate
description of the problem. Reference [36] used a different
picture in which neutrinos are represented by plane waves
in a box so that they all interact with each other at the
same time. The authors approached the problem numeri-
cally by simulating the exact2 many-body behavior of 14
neutrinos and comparing it with the mean field prediction.
In particular, if the vacuum oscillations are ignored, which
was the case in both Refs. [35,36], then the mean field
picture predicts that no flavor evolution would occur for a
one-body initial state in which all neutrinos occupy flavor
eigenstates. However, Ref. [36] has found some flavor
conversion for such an initial state in the exact many-body
picture which indicated a possible breakdown of the
mean field approximation. This apparent contradiction
was resolved in a later study [37] which established the
following two results: (1) As far as the coherent effects are
concerned, the study of the problem is independent of the
size of the neutrino wave packages, so the two descriptions
of the problem in Refs. [35,36] are equivalent. (2) The time
required for the flavor conversion observed in Ref. [36]
scales as expected from an incoherent effect with an
increasing number of particles; i.e., it develops more slowly
until it becomes irrelevant in comparison to the much faster
coherent effects.
Here, our treatment of the exact many-body effects is, in

some ways, similar to that of Ref. [36]: We use the plane
wave picture, and we compare the exact many-body
behavior of the system with the mean field prediction.
However, there are important differences between our work
and Refs. [35–37]. First of all, our formalism includes the
vacuum oscillations which were ignored in those studies.
This allows us to obtain a spectral split in the exact many-
body formalism for the first time. Spectral splits (or swaps)
are a particular kind of emergent behavior in which
neutrinos of different flavors totally or partially exchange
their energy spectra [25,38]. Since they are caused by an
interplay between the one-particle terms (vacuum oscilla-
tions) and two-particle terms (self-interactions), one needs
to incorporate both effects in the calculations in order to
unfold such a behavior [39–43]. For this reason, spectral
splits are so far observed only in the mean field calcu-
lations. Another difference between our work and the
previous studies is that we use a semianalytical technique

1As the neutrinos scatter from background particles, including
other neutrinos, some diagrams with definite relative phases add
up at the amplitude level, whereas others with random relative
phases add up at the probability level. In a dense environment, the
former (coherent) addition gives rise to a much faster flavor
evolution than the latter (incoherent) addition since it is propor-
tional to the square of the background density.

2Here, and throughout this article, we use the word exact to
indicate that we are avoiding the mean field approximation. It
does not imply a precise treatment of self-interacting neutrinos, as
one usually has to employ several other simplifying assumptions.
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which allows us to numerically work with as many as 108

neutrinos. Our technique is based on the algebraic Bethe
ansatz formalism [44–48] coupled with the relatively new
Bethe ansatz solver method [49] which enables us to convert
the problem of diagonalizing a many-body Hamiltonian into
a problem of finding the roots of a polynomial.
The most important caveat of our study is that we do not

carry out a dynamical evolution calculation of the neutrino
many-body system. With 108 neutrinos, this would indeed
be a very difficult task. Instead we consider perfectly
adiabatic evolution conditions, and assume that the
dynamical evolution of eigenstates follows their slow
transformation as the external conditions change. In fact
our study is mostly concerned with how the eigenstates of
the exact many-body Hamiltonian change with the decreas-
ing neutrino density, e.g., as the neutrinos occupying a
comoving volume element move away from the center of
the supernova. In general, exact many-body eigenvalues of
the neutrino Hamiltonian cross each other at several points,
in which case the adiabatic theorem is not necessarily
applicable.3 However, we are able to identify a certain class
of many-body eigenstates whose eigenvalues do not
undergo any crossings. We also find that a state consisting
only of electron neutrinos and antineutrinos of an orthogo-
nal flavor can be decomposed entirely in terms of those
eigenstates. This makes it possible to follow the adiabatic
transformation of the neutrino ensemble if it starts from
such an initial configuration. The fact that we can presently
apply this technique to only a certain initial flavor compo-
sition is the second caveat of our study. In our Conclusions,
we briefly comment on the possibility of extending the
range of applicability of this method. We also note that we
work in the two flavor mixing scheme, and ignore the
angular dependence of the neutrino-neutrino interactions.
Between the straightforward application of the mean

field approximation and the challenging study of the exact
many-body system lies a middle ground where one tries to
calculate corrections to the mean field results in an order-
by-order fashion. Such a systematical approach was first
adopted in Ref. [51] where the authors developed a path
integral representation for the evolution operator of the
exact many-body system and showed that the application of
the saddle-point approximation to this path integral yielded
identical flavor evolution equations with the mean field
approximation. Having established this result, the authors
wrote down a Gaussian integral which captures the next
order correction. However, the numerical evaluation of this
Gaussian integral proved to be very difficult.

More recently, a different approach was adopted in
Refs. [52,53] based on the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy [54–57]. In this
method, instead of treating an n-body system with an
n-body density operator (which would be an exact treat-
ment), one constructs a hierarchy of m-body density
operators for m ¼ 1; 2;…; n − 1. The mean field approxi-
mation corresponds to the lowest order in this scheme,
and one can investigate the domain of validity of the mean
field approximation by calculating the next order terms in
the hierarchy. BBGKY hierarchy is the most systematical
way to go beyond the mean field approximation. Unlike
our study in this paper, it can be applied to any initial state,
and with enough computational power, one can look into
the actual dynamics of the system. Such systematical
studies of the self-interacting neutrinos beyond the mean
field approximation using order-by-order methods and
the study of exact many-body solutions where they are
available can nicely complement one another. In particu-
lar, it would be interesting to apply the BBGKY hierarchy
method to the initial state that we consider, under the
particular circumstances that we work with: That the mean
field result is identical to the exact many-body result in
this case might be indicative of some symmetries of the
equations describing the m > 1 terms in the hierarchy.
This paper is organized as follows: In Sec. II, we

introduce the isospin formalism based on the SUð2Þ flavor
symmetry of mixing neutrinos and discuss the exact many-
body Hamiltonian describing their vacuum oscillations
and self-interactions. The isospin formulation helps us to
emphasize the analogy between self-interacting neutrinos,
interacting spin systems, and fermionic systems with
pairing interaction that we discuss in Sec. II. In Sec. III,
we discuss the eigenstates of the many-body Hamiltonian
in the two limits where self-interactions are very strong and
very weak in comparison to the vacuum oscillations.
Finding many-body eigenstates in these two limits is a
simple exercise in algebra. In Secs. IV–VI, we elaborate on
the exact many-body eigenstates away from these limits:
We discuss the classification of those eigenstates with
respect to the z-component of the total neutrino mass
isospin (Sec. IV), and apply the Richardson-Gaudin diag-
onalization scheme with one (Sec. V) or more (Sec. VI)
Bethe ansatz variables. Note that Richardson-Gaudin diag-
onalization was applied to self-interacting neutrinos in a
previous study [41]. We recapitulate the same details only
for a subset of eigenstates that we are interested in here.
In Sec. VII, we present our main results and show that for
an ensemble of electron neutrinos, the initial state projects
only to those many-body eigenstates which do not undergo
any crossings as the neutrino density decreases, and that
following the transformation of those eigenstates with the
assumption of a perfect adiabatic evolution leads to a
spectral split. We present our results for both a simple box
distribution and a thermal distribution of the initial neutrino

3Under some simplifying assumptions, the Hamiltonian of
self-interacting neutrinos has several conserved quantities [41,42]
which may be useful in examining the behavior of the system at
those crossings. For example, in some cases conserved quantities
allow us to map the dynamics near a crossing point to the
adiabatic dynamics of another system which has no such cross-
ings [50]. Such a scheme may be the subject of another paper.
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ensemble. In order to simplify our notation, we exclude
antineutrinos from our main discussion. In the main text,
we work only with neutrinos for simplicity, and adopt the
normal mass hierarchy. We convert our results into inverted
mass hierarchy in Sec. VIII, and show that antineutrinos of
nonelectron flavor can be included into the formalism
without changing the main results of the paper in Sec. IX.
Section X is devoted to discussion and conclusions.

II. THE HAMILTONIAN

A. Isospin operators

In this paper, we consider an (effective) two flavor
mixing scenario between an electron neutrino νe and an
orthogonal flavor that we denote by νx, which can be a
muon neutrino, a tau neutrino, or a normalized linear
combination of the two. The flavor eigenstates νe and νx
are mixtures of two mass eigenstates ν1 and ν2. We denote a
state in which we have a να (for α ¼ 1, 2, e, x) with
momentum p by jνα;pi. The corresponding annihilation
operator is denoted by aαðpÞ. In principle, there are other
quantum numbers which distinguish the neutrinos with the
same momentum from each other, but we suppress them in
our notation for simplicity. Neutrino operators in the flavor
and mass bases are related by

aeðpÞ ¼ cos θa1ðpÞ þ sin θa2ðpÞ
axðpÞ ¼ − sin θa1ðpÞ þ cos θa2ðpÞ ð2:1Þ

where θ is the mixing angle.
The SUð2Þ symmetry of the two-dimensional flavor

space gives rise to the concept of neutrino isospin whereby
one of these states is designated as isospin up and the other
as isospin down. The isospin assignment is arbitrary, and in
this paper we use the following isospin doublets in the mass
and flavor bases, respectively:� jν1;pi

jν2;pi

�
and

� jνe;pi
jνx;pi

�
: ð2:2Þ

We emphasize that neutrino isospin is an entirely abstract
concept which greatly simplifies the calculations, and has
nothing to do with the actual neutrino spin. In this paper,
neutrino spin does not play a role as we completely ignore
the wrong helicity states; i.e., we assume that all neutrinos
have negative helicity, whereas all antineutrinos have
positive helicity.4 For a neutrino with negative chirality,

these components are suppressed by the ratio of neutrino
mass to its energy.
The doublet structures given in Eq. (2.2) lead to the

definition of neutrino isospin operators J⃗p whose compo-
nents are denoted by

J⃗p ¼ ðJþp;mass; J−p;massJ0p;massÞ ¼ ðJþp;flavor; J−p;flavor; J0p;flavorÞ
ð2:3Þ

in the mass and flavor bases, respectively. These compo-
nents are given by

Jþp;mass ¼ a†1ðpÞa2ðpÞ; J−p;mass ¼ a†2ðpÞa1ðpÞ

Jzp;mass ¼
1

2
ða†1ðpÞa1ðpÞ − a†2ðpÞa2ðpÞÞ ð2:4Þ

and

Jþp;flavor ¼ a†eðpÞaxðpÞ; J−p;flavor ¼ a†xðpÞaeðpÞ

Jzp;flavor ¼
1

2
ða†eðpÞaeðpÞ − a†xðpÞaxðpÞÞ: ð2:5Þ

Note that we use bold letters to indicate vectors in
configuration space and the arrows to indicate vectors
in isospin space. The components J⃗p satisfy the SUð2Þ
commutation relations

½Jþp ; J−q � ¼ 2δp;qJ0p ½J0p; J�q � ¼ �δp;qJ�p : ð2:6Þ

These relations hold in both bases and tell us that, if we
have n neutrinos in the ensemble, the dynamics of the
system takes place in the group space of SUð2Þ1 ⊗
SUð2Þ2 ⊗ � � � SUð2Þn.
In this paper, we mostly work in the mass basis. For

simplicity we drop the “mass” index from the isospin
components in the mass basis, i.e.,

J�;0
p;mass → J�;0

p : ð2:7Þ

However, we keep the “flavor” index to distinguish it from
the mass basis. In the two flavor mixing scheme, a neutrino
with momentum p oscillates with angular frequency

ω ¼ m2
2 −m2

1

2E
ð2:8Þ

in vacuum. Here E ¼ jpj is the energy of the neutrino and
mi is the mass of mass eigenstate νi for i ¼ 1, 2. Since all
neutrinos with the same energy oscillate with the same
frequency in vacuum, it is convenient to define the total
isospin operator

J⃗ω ¼
X
jpj¼E

J⃗p: ð2:9Þ

4The spin components which are ignored here, i.e., positive
helicity neutrinos, and negative helicity antineutrinos come into
play in a number of situations. For example, a strong magnetic
field may flip the neutrino helicity, and the resulting effect may
be amplified by the nonlinear nature of collective oscillations
[58–60]. Even without any magnetic fields, many-body correla-
tions may develop between right and wrong helicity states in the
presence of a net flow in the matter background as is the case in
an exploding supernova [52,61]. However, these effects are
outside of the scope of this paper.
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This sum runs over all neutrinos with the same energy E
and is referred to as the total isospin of the oscillation mode
ω. If there are additional quantum numbers besides the
momentum which distinguishes the neutrinos, they are also
summed over here. It is also useful to introduce the total
isospin operator J⃗ of the whole ensemble by summing over
all oscillation modes, i.e.,

J⃗ ¼
X
ω

J⃗ω: ð2:10Þ

The relation between the mass and flavor bases given in
Eq. (2.1) can also be written in an operator form as

aeðpÞ ¼ U†a1ðpÞU
axðpÞ ¼ U†a2ðpÞU ð2:11Þ

where U is given by

U ¼ ezJ
þ
elnð1þjzj2ÞJze−zJ− ð2:12Þ

with z ¼ tan θ. The operator U represents a rotation by θ in
the flavor space. It is a global transformation in the sense
that it involves the total isospin operator J⃗ and acts in the
same way on all neutrinos with different momenta. Clearly,
the isospin operators in mass and flavor bases are also
related by

J⃗p;flavor ¼ U†J⃗pU: ð2:13Þ
With the repeated use of the Baker-Campbell-Hausdorff
formulas, this leads to

Jzp;flavor ¼ cos 2θJzp þ
1

2
sin 2θðJþp þ J−p Þ

Jþp;flavor ¼ cos2θJþp − sin2θJ−p − sin 2θJzp

J−p;flavor ¼ cos2θJ−p − sin2θJþp − sin 2θJzp: ð2:14Þ
These formulas tell us that J⃗p;flavor is obtained by rotating

J⃗p by 2θ around the y-axis.

B. Summation convention

Equations (2.9) and (2.10) are particular examples of the
general summation convention that we use in this paper.
Any operator which is labeled by ω indicates that it is
summed over all neutrinos with the same energy corre-
sponding to ω. The same quantity with no indices means
that it is summed over all neutrinos:

Qω ¼
X
jpj¼E

Qp Q ¼
X
ω

Qω: ð2:15Þ

If an operator refers to only those neutrinos in a particular
flavor or mass eigenstate, we denote this with an upper

index as QðaÞ
p , QðaÞ

ω and QðaÞ where a ¼ 1, 2, e, x. In that
case, we have

Qp ¼ Qð1Þ
p þQð2Þ

p ¼ QðeÞ
p þQðxÞ

p ð2:16Þ

due to the completeness of both mass and flavor bases.
As an example, if we denote the number operator for

those neutrinos in mass eigenstate νi with momentum p as

NðiÞ
p ¼ a†i ðpÞaiðpÞ ð2:17Þ

then NðiÞ
ω and NðiÞ represent the number operator for all νi

neutrinos in the oscillation mode ω, and in the entire
ensemble, respectively. In this case, Eqs. (2.15) and (2.16)
tell us that

Nω ¼ Nð1Þ
ω þ Nð2Þ

ω and N ¼ Nð1Þ þ Nð2Þ ð2:18Þ

denote the number operators for all neutrinos in the
oscillation mode ω and in the entire ensemble, respectively.
We denote the eigenvalue relevant for the operator Qp

with the corresponding lowercase letter qp. For example,
the eigenvalue of the operator in Eq. (2.17) is denoted by

nðiÞp . It is important to note that qω and q do not denote the
sum of the eigenvalues but the eigenvalues of the total
operators Qω and Q, respectively. While this distinction
does not make a difference in some cases (for example, for
the number operators), it is important in the case of isospin.
If the isospin algebra ðJþp ; Jzp; J−p Þ is realized in the
representation with quantum numbers jp, then jω is the
quantum number corresponding to the total isospin algebra
ðJþω ; Jzω; J−ωÞ. Therefore, in principle, it can take all values
starting from 0 or 1=2 up to the literal sum

P
jpj¼Ejp. The

same is also true for the total isospin quantum number j of
the whole neutrino ensemble.
Finally, we note that the only exceptions to our con-

vention of denoting eigenvalues of the operators with the
corresponding lowercase letters are the z components of
the isospins. The eigenvalues of Jzp, Jzω, and Jz are denoted
by mp, mω, and m, respectively.

C. The Hamiltonian

The Hamiltonian describing the propagation of neutrinos
in vacuum is given by

Hν ¼
X
p

ðE1ðpÞNð1Þ
p þ E2ðpÞNð2Þ

p Þ ð2:19Þ

where EiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
is the energy of the neutrino

with mass mi and momentum p. The Hamiltonian in
Eq. (2.19) can also be written as

Hν ¼
1

2

X
p

fðE1ðpÞ þ E2ðpÞÞðNð1Þ
p þ Nð2Þ

p Þ

þðE1ðpÞ − E2ðpÞÞðNð1Þ
p − Nð2Þ

p Þg: ð2:20Þ
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Here we consider neutrinos in the freely streaming regime,
i.e., after they decouple from the proto-neutron star and the
processes which annihilate or create them can be ignored.

Therefore, the total number of neutrinos Nð1Þ
p þ Nð2Þ

p in any
momentum mode p is a constant. In treating such a
problem, it is natural to start with an initial state which
is an eigenstate of the total number operator Np. In this case
the first term in Eq. (2.20) is only a number and can be
dropped from the Hamiltonian. In the second term, the

ultrarelativistic approximation EiðpÞ ≈ pþ m2
i

2p can be
applied which leads to

Hν ¼
X
ω

ωB̂ · J⃗ω ð2:21Þ

where ω is the vacuum oscillation frequency given by
Eq. (2.8) and the unit vector B̂ is defined as

B̂ ¼ ð0; 0;−1Þmass ð2:22Þ

in the mass basis. Here the appearance of the minus sign in
the third component is due to our adoption of the normal
mass hierarchy (i.e., m1 < m2). In writing Eq. (2.21), we
also used the definition of neutrino isospin in the mass basis
given in Eq. (2.4). Since the Hamiltonian is a scalar, it has
the same form as in Eq. (2.21) in the flavor basis as well.
When creation and annihilation operators are rotated by θ
as given in Eq. (2.1), the isospin operators which are
quadratic in them are rotated by 2θ. As a result, the
components of B̂ are given by

B̂ ¼ ðsin 2θ; 0;− cos 2θÞflavor ð2:23Þ

in the flavor basis.
In the free-streaming regime outside of the proto-neutron

star the only important effect is scattering, which can
significantly modify the flavor evolution of neutrinos. The
scattering of neutrinos from each other and from other
background particles should be discussed separately
because in the former case identical particle effects play
an important role. In a general astrophysical environment
(as opposed to, say, a periodic crystal), scattering ampli-
tudes from different background particles into a given
direction generally add up incoherently, so their combined
effect increases only linearly with the density of back-
ground particles. However, in the forward direction, scat-
tering amplitudes from different background particles
always add up coherently, in which case their combined
effect increases quadratically with the background density.
Therefore, in a dense environment, it is enough to work
with an effective Hamiltonian which only includes the
forward scattering terms in which there is no momentum
transfer between neutrinos and the background particles
[62,63] (also see Ref. [64]). When averaged over the

background, such terms manifest themselves in the form
of an effective mass (Fig. 1). The total mass includes both
the effective mass which is diagonal in the weak interaction
basis (νe, νx) and the ordinary neutrino mass which is
diagonal in the mass basis (ν1, ν2), and it can be
diagonalized in a new basis, which is called the matter
basis (ν̃1, ν̃2). Therefore, the net effect of the background
particles is to modify the mixing angle into a corresponding
matter effective value. (For a review, see Ref. [65]). These
effective mixing parameters depend on the background
density, and they vary as the neutrinos move from the inner
dense regions of the supernova into outer layers. However,
if the density does not change significantly in the region of
a few hundred kilometers outside of the proto-neutron star
where the collective neutrino oscillations occur, one can
assume that the effective mixing parameters are approx-
imately constant. This would be a good approximation for
the cooling period of the proto-neutron star since the shock
wave is far away from its surface at those later times. (See
Ref. [66] for a review.) However, at earlier times, the
changes in the density profile just outside of the proto-
neutron star are more dramatic. In this paper, our methods
and conclusions are independent of the actual values of
the (effective) mixing parameters, as long as they can be
considered constant. In particular, the Richardson-Gaudin
diagonalization method depends on the constant density
assumption in its present form. In what follows, our
notation will refer to the vacuum values of the mixing
parameters, but they can be easily exchanged with constant
matter effective values.
When the scattering of neutrinos from each other is

considered, in addition to those diagrams which involve
no momentum transfer (forward scattering diagrams dis-
cussed above), those diagrams which involve a complete
momentum exchange between neutrinos also add up
coherently (Fig. 2) [67,68]. This is due to the fact that
these diagrams can also be viewed as forward scattering
diagrams in which neutrinos exchange their flavors. The
effect of the exchange diagrams cannot be included in the
form of effective mixing parameters as in the case of
forward scattering. In fact, with the inclusion of the
exchange diagrams, the problem turns into a many-body

FIG. 1. Forward scattering of neutrinos from the background
particles involves no momentum exchange. These diagrams
always add up coherently (i.e., at the amplitude level) and
dominate over the other diagrams which add up incoherently
(i.e., at the probability level). They manifest themselves as an
effective mass which is well defined in the weak interaction basis.
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phenomenon because the flavor transformation of each
neutrino is now affected by the flavor evolution of the
entire neutrino ensemble.
The effective Hamiltonian which describes the forward

scattering and exchange diagrams between neutrinos is
given by [41,69]

Hνν ¼
GFffiffiffi
2

p
V

X
p

X
q

ð1 − p̂ · q̂Þfa†eðpÞaeðpÞa†eðqÞaeðqÞ

þ a†xðpÞaxðpÞa†xðqÞaxðqÞ þ a†xðpÞaeðpÞa†eðqÞaxðqÞ
þa†eðpÞaxðpÞa†xðqÞaeðqÞg ð2:24Þ

where the first two terms in the curly brackets correspond
to the forward scattering diagrams shown in Fig. 2(a),
whereas the last two terms represent the exchange diagrams
shown in Fig. 2(b). In writing this Hamiltonian, the space
coordinates are integrated out with the assumption of
spacial uniformity, so one effectively works with neutrino
plane waves. Neutral current interactions between neutrinos
are treated with the Fermi 4-point interaction scheme, and
GF denotes the Fermi constant. This description is accurate
for the MeV scale energies relevant for the supernova
neutrinos. We assume that neutrinos are quantized in a box
with volume V so that the momentum p and its direction p̂
can take discrete values. As we follow the neutrinos in the
comoving frame from the surface of the proto-neutron star
to the point where neutrino self-interactions become
negligible, this box expands corresponding to a decreas-
ing neutrino density. But since we ignore neutrino creation
in the free-streaming regime, new momentum modes do
not appear.
The relativistic factor 1 − p̂ · q̂ in the Hamiltonian of

Eq. (2.24) implies that relativistic neutrinos traveling along
parallel paths cannot scatter off each other. This term turns
the flavor evolution of a neutrino into a function of its
direction of travel and significantly complicates the prob-
lem. Replacing this term with an average constant value
results in the so-called single angle approximation in which
neutrinos are assumed to undergo identical flavor evolu-
tions regardless of their direction. In this paper, we adopt
the single angle approximation together with the neutrino
bulb model [38] which approximately accounts for the fact
that the average value of the angle between the neutrinos,

and hence the factor 1 − p̂ · q̂, decreases with the distance r
from the center of the supernova by replacing the latter with

1 − p̂ · q̂ ≈DðrÞ ¼ 1

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2
ν

s !2

: ð2:25Þ

Here Rν denotes the radius of the neutrino-sphere which is
an imaginary sphere just inside the surface of the proto-
neutron star from which neutrinos thermally decouple and
start free streaming. In principle, Rν is a function of time,
and it decreases from almost 100 km at the time of the
bounce to about 10 km at late times [70]. However, the
character of collective neutrino oscillations does not
depend strongly on the value of Rν [71].
Using this approximation scheme, and the neutrino

isospin operators given in Eq. (2.5) together with the adopted
summation conventions, one can write the Hamiltonian in
Eq. (2.24) as

Hνν ¼ μðrÞJ⃗ · J⃗ ð2:26Þ

where we discard some terms which are proportional to
the total number of neutrinos in accordance with the
discussion following Eq. (2.20). We also use the fact that
scalar quantities have the same form in both mass and
flavor bases, i.e., J⃗ · J⃗ ¼ J⃗flavor · J⃗flavor. In Eq. (2.26),

μðrÞ ¼
ffiffiffi
2

p
GF

V
DðrÞ ð2:27Þ

plays the role of an effective interaction constant. Since
the normalization volume V is inversely proportional
to the neutrino density, it increases as r2 with distance
from the proto-neutron star. Together with the change of
the average angle between the neutrinos in accordance
with Eq. (2.25), μðrÞ decreases roughly as 1=r4. The total
Hamiltonian of an ensemble of neutrinos undergoing
vacuum oscillations and self-interactions is found by
adding Eqs. (2.21) and (2.26):

H ¼
X
ω

ωB̂ · J⃗ω þ μðrÞJ⃗ · J⃗: ð2:28Þ

In the rest of this paper, we work with this Hamiltonian.
It was already pointed out by several authors that

Eq. (2.28) is analogous to the Hamiltonian of a hypothetical
one-dimensional spin system with long-range interactions
in the presence of a position-dependent external magnetic
field, given by

Hspin ¼
X
i

HiB̂ · S⃗i þ GðtÞS⃗ · S⃗: ð2:29Þ

Here, i is a discrete position parameter in one dimension,
and it is assumed that a (real) spin S⃗i is located at that point.

(a) (b)

FIG. 2. Forward (a) and exchange (b) diagrams which add up
coherently in νν scattering.
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The external magnetic field everywhere points in the
direction of B̂, while its magnitude Hi at i may be position
dependent.5 In Eq. (2.29), S⃗ ¼Pi S⃗i denotes the total spin
of the system. It appears in the Hamiltonian because the
range of the spin-spin interactions is assumed to be infinite,
so every spin in the system interacts with every other one
with the same strength. The analogy of this problem with
the self-interacting neutrinos is clear once one identifies the
spin-up (j↑i) and spin-down (j↓i) states of the former with
the isospin states of the latter as

j↑i ↔ jν1i j↓i ↔ jν2i: ð2:30Þ

The interaction strength GðtÞ in Eq. (2.29) may depend on
time t. In particular, in the context of the analogy with self-
interacting neutrinos, GðtÞ is assumed to decrease with
time. In this case the spins are strongly correlated at the
beginning when G is large, but their dynamics are domi-
nated by the external field at later times when G is small.
This analogy gives us a nice picture of spectral splits
because, under the adiabatic evolution conditions, the spins
eventually align or antialign themselves with the magnetic
field as their mutual interactions slowly cease. Since B̂
points in the direction of Jz in the isospin space [see
Eqs. (2.4) and (2.22)], the neutrinos end up in one of the
mass (or matter) eigenstates after the collective oscillations
cease [39].
Correlated spin systems like the one described in

Eq. (2.29) is a popular subject in many-body physics
because several problems with internal suð2Þ symmetries
can be described in analogy with them. Besides the self-
interacting neutrinos considered here, another example is a
system of fermions with pairing interactions. While neu-
trino isospin plays the role of the spins in the former case,
this role is played by the so-called pair quasispin in the
latter. As a result, an analogy also exists between self-
interacting neutrinos, and fermions with pairing interaction
whereby the neutrino isospin and the pair quasispin are the
analogous quantities. However, this analogy does not imply
that supernova neutrinos form pairs. As is explained below,
it is a more subtle analogy which should only be thought of
as a mathematical similarity.
Pairing interaction appears in several fermionic many-

body systems. It was originally suggested by Bardeen,
Cooper, and Schrieffer (BCS) in connection with their
theory of superconductivity [72] as an effective interaction
between electrons in the presence of a lattice. Soon it was
realized that pairing also plays an important role in the
nuclear shell model as the residual interaction between
nucleons [73,74]. In trapped ultracold atomic systems, a
pairing interaction can be created between fermionic atoms

[75–77], and its strength can be controlled via Feshbach
resonances by changing the applied magnetic field [78].
This is particularly important as it allows direct exper-
imental access to the behavior of the many-body system as
the interaction constant changes with time.
The pairing model is described by the Hamiltonian

Hpair ¼
X
k

X
i

ϵkc
†
kicki − gðtÞ

X
kk0

X
ii0

c†kic
†
k̄i
ck̄0i0ck0i0

ð2:31Þ

where ϵk denotes a group of possibly degenerate energy
levels, with the index i running over such degeneracies.
These levels can be either empty or occupied by a pair of
spin-up and spin-down fermions,6 which are created by the
operators c†ki and c†

k̄i
, respectively. The interaction strength

gðtÞ is a function of time, in general. The pair quasispin
operators mentioned above are defined by

Kþ
ki ¼ c†kic

†
k̄i

K−
ki ¼ ck̄icki

Kz
ki ¼

1

2
ðc†kicki − ck̄ic

†
k̄i
Þ; ð2:32Þ

and satisfy the SUð2Þ commutation relations given in
Eq. (2.6), with J⃗p replaced with K⃗ki. These definitions
reflect the use of the quasispin doublet

�
⏤↑↓

—

�
ð2:33Þ

in which an empty level j—i is defined to have quasispin
down while an occupied level j⏤↑↓i is defined to have
quasispin up. Defining a summation convention analo-
gous to the ones introduced for neutrinos whereby K⃗k
denotes the isospin operator which is summed over the
degeneracy index i, and K⃗ denotes the total isospin
operator summed over the index k, we can write the
Hamiltonian in Eq. (2.31) as

Hpair ¼
X
k

2ϵkK
z
k − gðtÞK⃗ · K⃗: ð2:34Þ

In writing this Hamiltonian, we assume that the system
contains a definite number of pairs, and discard a constant
term related to this number. The similarity with the
previous models becomes apparent with the identification

5Magnetic permeability and gyromagnetic ratio at the cite i are
inserted into the definition of the magnetic field, so the latter is in
units of energy.

6Singly occupied energy levels decouple from the pairing
dynamics in these kinds of models because pairs cannot scatter
into these levels due to the Pauli exclusion principle. Although
such levels can be important for other characteristics of the
system under consideration, they are irrelevant for our purposes.
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j⏤↑↓i ↔ j↑i ↔ jν1i j—i ↔ j↓i ↔ jν2i: ð2:35Þ

The pairing problem was solved in the 1960s by
Richardson [45,79,80] who was able to analytically write
down the exact eigenstates and eigenvalues of the
Hamiltonian given in Eq. (2.34). His solution was based
on the Bethe ansatz technique [44]. In this method, one first
forms a trial eigenstate depending on some unknown
parameters and then tries to determine the values of these
parameters by substituting the state into the eigenvalue-
eigenstate equation. This process yields a coupled set of
algebraic equations in the unknown parameters which are
known as the Bethe ansatz equations. In 1976, also using
the Bethe ansatz technique, Gaudin [46] solved a family of
interacting spin model Hamiltonian’s which are today
known as the (rational) Gaudin magnet Hamiltonians.
These Hamiltonians were, at first glance, unrelated to
the spin Hamiltonian given in Eq. (2.29), but Gaudin
found the same Bethe ansatz equations as Richardson. In
1997, unaware of both Richardson’s and Gaudin’s work,
Cambiaggio, Rivas, and Saraceno [81] showed that the
Gaudin magnet Hamiltonians are in fact constants of
motion of the pairing Hamiltonian given in Eq. (2.31)
corresponding to its dynamical symmetries. Today, we have
a complete picture in which (a larger class of) Gaudin
magnet Hamiltonians, and all models which are related or
analogous to them, can be solved exactly by using the
Bethe ansatz technique. For a review, see Ref. [48].
The analogy between self-interacting neutrinos and the

fermions with pairing interaction was first pointed out in
Ref. [41], where the Richardson-Gaudin solution was used
to obtain the exact many-body eigenstates and eigenvalues
of the neutrino Hamiltonian given in Eq. (2.28). It was also
pointed out that the Gaudin magnet Hamiltonians men-
tioned above form a set of invariants for the collective
neutrino oscillations. (These invariants were also men-
tioned in Ref. [42] at the mean field level.) Reference [41]
also showed that, at the mean field level, and for an initial
box distribution of electron neutrinos, the formation of a
spectral split can be viewed as the evolution of relevant
fermionic degrees of freedom from quasiparticle to particle
degrees of freedom in the pairing model. A more recent
study [82] found that, again at the mean field level, but for a
more generic initial energy distribution of electron neu-
trinos, formation of a spectral split is analogous to the
BCS–Bose Einstein condensation (BEC) crossover which
was experimentally observed in cold atom systems [75–
77,83]. Here we will further exploit the analogy between
self-interacting neutrinos and the fermions with pairing
interaction to show, for the first time, the emergence of a
spectral split in the exact many-body picture.

III. EIGENSTATES IN SPECIAL CASES

The Bethe ansatz method can be applied to the neutrino
Hamiltonian for any value of the interaction constant μ.

However, in the limits of strongly and weakly interacting
systems, one can find the eigenstates and eigenvalues by
conventional methods as well. For the sake of an intuitive
understanding, it is useful to study these limits first before
we apply the Richardson-Gaudin diagonalization for the
arbitrary values of the interaction constant.

A. Eigenstates at μ → 0 limit

When the neutrino density is very low, as would be the
case when neutrinos are far from the center of the super-
nova, the self-interaction term of the Hamiltonian in
Eq. (2.28) can be ignored. In this case, the Hamiltonian
only consists of the vacuum oscillation terms:

lim
μ→0

H ¼
X
ω

ωB̂ · J⃗ω ¼ −
X
ω

ωJzω: ð3:1Þ

Since there is no coupling between different oscillation
modes in this limit, the eigenstates of the Hamiltonian are
tensor products of the eigenstates of individual isospin
components Jzω. In other words, they can be written asY

ω

jjω; mωi: ð3:2Þ

The eigenvalue corresponding to the state in Eq. (3.2) is
given by

E ¼ −
X
ω

ωmω: ð3:3Þ

Note that since the total isospin quantum number jω can
take several (degenerate) values ranging from 0 or 1=2 to
nω=2, the states jjω; mωi form a reducible representation.
However, in what follows, we will assume that J⃗ω lives in
the highest weight representation, i.e., jω ¼ nω=2 for every
ω. This choice is dictated by the symmetries of our
simplified model and the initial state. Our simplified
Hamiltonian given in Eq. (2.28) does not include any
dependence on the position, or propagation direction of the
neutrinos. In fact, it remains unchanged if we exchange any
two neutrinos with the same energy. Moreover, in this paper
we restrict ourselves to the study of a neutrino ensemble
which initially consists only of electron neutrinos; i.e., our
initial state is completely symmetric under the exchange of
any two neutrinos including those with different energies.7

Naturally the symmetry of the initial state between different
energy modes will be broken by the vacuum oscillations
once they start. But when the state evolves according to the
Hamiltonian in Eq. (2.28), it will continue to be symmetric
under the exchange of any two neutrinos with the same
energy. Among the possible jjω; mωi states, only those that
live in the highest weight (jω ¼ nω=2) representation

7Since neutrinos are fermions, their total many-body state,
which consists of spin, isospin and space parts, is antisymmetric
under the exchange of any two neutrinos. Here, our symmetry
assumption applies only to the isospin part.
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satisfy this requirement. That is to say, only those states are
invariant under the exchange of any two neutrinos with the
same ω. For this reason, although there are many more
eigenstates of the Hamiltonian, the dynamics of our initial
state is restricted to those which involve only the highest
weight representation for each ω.
Note that the total isospin quantum number j of all

neutrinos is not restricted by this symmetry. In accordance
with Eq. (2.10), j can take any value from 0 up to n=2.
Instead of using the basis in which the isospins are

summed for each ω, one can also use the basis of individual
neutrino isospins. Since the isospin being up or down
corresponds to the neutrino being in the first or second
mass eigenstate, respectively, the many-body eigenstates in
Eq. (3.2) can also be written as

jνi1 ; νi2 ;…νini ð3:4Þ

in the μ → 0 limit, where ik ¼ 1, 2. As per our discussion
above, those neutrinos in the same oscillation modes should
be symmetrized. The eigenstates in Eq. (3.4) are in a form
that one would intuitively expect because neutrinos in mass
eigenstates do not oscillate in vacuum and therefore form
the stationary states of the Hamiltonian when there are no
interactions. However, those eigenstates in Eq. (3.2) are
more suitable for the Bethe ansatz scheme. These two sets
of eigenstates are related by a set of complicated Clebsh-
Gordon coefficients which will not be reproduced here.

B. Eigenstates at μ → ∞ limit

When neutrino density is sufficiently high so that μ is
much larger than the relevant ω values in the system, one
can ignore the vacuum oscillations in the Hamiltonian in
Eq. (2.28):

lim
μ→∞

H ¼ μðrÞJ⃗ · J⃗: ð3:5Þ

This limit would be realized when the neutrinos are close to
the proto-neutron star at the center. The eigenstates of the
Hamiltonian in this limit are the jj; mi states of the total
(mass) isospin with the eigenvalue μjðjþ 1Þ:

lim
μ→∞

Hjj; mi ¼ μjðjþ 1Þjj;mi: ð3:6Þ

Here the total isospin quantum number j can take any value
from 0 or 1=2 to n=2. We emphasize once again that our
assumption of highest weight representation applies only to
the total isospin of individual oscillation modes J⃗ω, not to
the total isospin J⃗.
The operator U given in Eq. (2.12) converts the mass

isospin states to flavor isospin states:

jj; miflavor ¼ Ujj; mi: ð3:7Þ

This can be seen by summing Eq. (2.13) over all neutrinos,
and using it on both sides of Eq. (3.7). The operator U
commutes with the Hamiltonian in Eq. (3.5), which tells us
that the total flavor isospin states given in Eq. (3.7) are also
eigenstates of the Hamiltonian with the same eigenvalue in
the μ → ∞ limit. This can also be seen by noting that, when
U acts on jj; mi, it cannot change the value of j. In other
words, the right-hand side of Eq. (3.7) yields

jj; miflavor ¼
Xj
m¼−j

αðjÞm ðzÞjj; mi ð3:8Þ

where αðjÞm ðzÞ are some coefficients that can be calculated
from Eq. (2.12). Since all the states on the right-hand side
of Eq. (3.8) are degenerate with energy μjðjþ 1Þ in the
μ → ∞ limit, the state on the left-hand side is also an
eigenstate with the same energy in this limit.

IV. NUMBER CONSERVATION AND
CLASSIFICATION OF EIGENSTATES

Richardson-Gaudin diagonalization [45,46,79,80] was
applied to self-interacting neutrinos in Ref. [41], and the
resulting eigenvalues were presented in their most generic
form. In this section, we reproduce the relevant results of
Ref. [41] both for the convenience of the reader and to
set our notation. Here we restrict ourselves to only those
eigenstates which meet our symmetry criteria, i.e., only
those involving the highest weight representations jω ¼
nω=2 for each ω. [See the discussion following Eq. (3.3).]
The Hamiltonian in Eq. (2.28) commutes with the

operator B⃗ · J⃗ ¼ Jz. In the interacting spin model analogy,
this corresponds to the fact that the problem is unchanged
if we rotate the spin system around the magnetic field. For
neutrinos, it reflects the fact that we can multiply mass
eigenstates with arbitrary phases without changing the
Hamiltonian. Since Jz commutes with the Hamiltonian,8

it can be diagonalized together with it; i.e., for an energy
eigenket jψEi, we can always write

JzjψEi ¼ mjψEi: ð4:1Þ

In what follows we classify eigenstates of the Hamiltonian
according to Eq. (4.1).
Using Eqs. (2.4) and (2.17), together with the related

summation conventions, we can write Jz as

Jz ¼ Nð1Þ − Nð2Þ

2
: ð4:2Þ

Since we are in the free-streaming regime, the total number
of neutrinos N ¼ Nð1Þ þ Nð2Þ is also conserved. Together

8This is only one of the many conserved quantities related to the
dynamical symmetries of the exact many-body Hamiltonian [41].
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with Eq. (4.2), this tells us that Nð1Þ and Nð2Þ are separately
conserved, and they can also be diagonalized together with
the Hamiltonian. For the energy eigenket in Eq. (4.1) we
can write

nð1Þ ¼ n
2
þm and nð2Þ ¼ n

2
−m: ð4:3Þ

For example, for those states with ðnð1Þ; nð2ÞÞ ¼ ðn; 0Þ and
ðnð1Þ; nð2ÞÞ ¼ ð0; nÞ the action of Jz yields

m ¼ nð1Þ − nð2Þ

2
¼ � n

2
ð4:4Þ

respectively. Therefore, these states can only belong to
the j ¼ n=2 representation. In fact, they are, respectively,
the highest and lowest weight states of the total isospin
given by

jn=2;þn=2i ¼
Y
ω

���� nω2 ;þ nω
2

�
¼ jν1; ν1;…; ν1i

jn=2;−n=2i ¼
Y
ω

���� nω2 ;−
nω
2

�
¼ jν2; ν2;…; ν2i: ð4:5Þ

These are also the simultaneous eigenstates of J⃗ · J⃗ and
Jzω with the respective eigenvalues n=2ðn=2þ 1Þ and
� nω

2
. As a result, they are eigenstates of the total neutrino

Hamiltonian for any value of μ, i.e.,

Hjn=2;�n=2i ¼ E�n=2jn=2;�n=2i ð4:6Þ

with

E�n=2 ¼∓X
ω

ω
nω
2
þ μ

n
2

�
n
2
þ 1

�
: ð4:7Þ

It is easy to understand intuitively why the two states in
Eq. (4.5) are eigenstates of the Hamiltonian. A hypo-
thetical ensemble of neutrinos which are all in mass
eigenstates would not undergo vacuum oscillations. If, in
addition, all of these neutrinos occupy the same mass
eigenstate (i.e., all ν1 or all ν2), then the many-body
state would also remain unchanged under the neutrino-
neutrino interactions because both the forward and
exchange diagrams would take the state onto itself.

V. ONE BETHE ANSATZ VARIABLE

Other eigenstates of the Hamiltonian can be obtained
with the Bethe ansatz technique. As mentioned earlier, this
method is based on a trial state depending on some
unknown parameters which are known as the Bethe ansatz
variables. For our particular Hamiltonian, Bethe ansatz
states are formed with the help of the so-called Gaudin
algebra operators

Q⃗ðξÞ ¼
X
ω

J⃗ω
ω − ξ

: ð5:1Þ

Here ξ is a generic complex number which will later turn
into a Bethe ansatz variable, and its value will be deter-
mined from the requirement that the trial state is an
eigenstate.
Before we consider the most general case, it is instructive

to study the simplest nontrivial application of the formalism
in detail. For this purpose, we consider those eigenstates
with ðnð1Þ; nð2ÞÞ ¼ ð1; n − 1Þ. These eigenstates yield

m ¼ nð1Þ − nð2Þ

2
¼ −

n
2
þ 1; ð5:2Þ

under the action of Jz. Therefore, they live in j ¼ n=2,
n=2 − 1 representations. In order to find their explicit form,
one starts from the Bethe ansatz state

jξ1i ¼ Qþðξ1Þjn=2;−n=2i ð5:3Þ
where Qþðξ1Þ is given by the þ component of Eq. (5.1).
Note that this state is not normalized, but the corresponding
normalized state can be easily found as

jξ1i0 ¼
1ffiffiffiffi
G

p Qþðξ1Þjn=2;−n=2i; ð5:4Þ

where

G ¼
X
ω

1

ðξ1 − ωÞ2 : ð5:5Þ

The non-normalized Bethe ansatz states in the form of
Eq. (5.3) are usually more convenient to work with. In this
paper, we mostly work with unnormalized eigenstates
unless we specifically state otherwise. We denote the
normalized eigenstates with a prime as in Eq. (5.4).
In order to understand the trial state jξ1i, first note that in

jn=2;−n=2i, all neutrinos are ν2. [See Eq. (4.5).] The
operatorQþðξ1Þ given in Eq. (5.4) turns one of these ν2 into
a ν1 in such a way that the probability amplitude of finding
this single ν1 in the oscillation mode ω is 1=ð ffiffiffiffi

G
p ðω − ξ1ÞÞ.

We want to choose ξ1 so that this state satisfies

Hjξ1i ¼ Eðξ1Þjξ1i ð5:6Þ
for some energy Eðξ1Þ. A direct substitution of the state in
Eq. (5.3) into the left-hand side of Eq. (5.6) yields9

9In deriving Eq. (5.7), it is helpful to first calculate the
commutator

½H;Qþðξ1Þ� ¼ Qþðξ1Þð−ξ1 þ 2 μJzÞ − Jþ
�
1þ 2μ

X
ω

Jzω
ω − ξ1

�

by using the isospin commutation relations given in Eq. (2.6).
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Hjξ1i ¼ ðE−n=2 − μn − ξ1Þjξ1i

−
�
1þ 2μ

X
ω

−nω=2
ω − ξ1

�
Jþjn=2;−n=2i ð5:7Þ

where E−n=2 is the energy of the lowest weight state given
in Eq. (4.7). A comparison between Eqs. (5.7) and (5.6)
leads to the conclusion that jξ1i is an eigenstate of the
Hamiltonian if one chooses ξ1 so as to satisfy

−
1

2μ
þ
X
ω

nω=2
ω − ξ1

¼ 0: ð5:8Þ

Equation (5.8) is a Bethe ansatz equation. Solving this
equation for ξ1 and substituting the solution retrospectively
in Eq. (5.3) yields an exact eigenstate whose energy
eigenvalue is given by

Eðξ1Þ ¼ E−n=2 − μn − ξ1: ð5:9Þ
In general, Bethe ansatz variables can take complex values.
But in the particular case of a single Bethe ansatz variable,
Eq. (5.8) admits only real solutions. Therefore, ξ1 and the
resulting energy given in Eq. (5.9) are always real.
In constructing the Bethe ansatz state given in Eq. (5.3),

we started from the lowest weight (all ν2) state and
converted one ν2 into a ν1. This is what we call a raising
operator formulation. It is also possible to use the opposite
lowering operator formalism by starting from the highest
weight (all ν1) state and converting one ν1 into a ν2, i.e.,

jζ1i ¼ Q−ðζ1Þjn=2; n=2i: ð5:10Þ

These eigenstates have ðnð1Þ; nð2ÞÞ ¼ ðn − 1; 1Þ and yield

m ¼ nð1Þ − nð2Þ

2
¼ n

2
− 1; ð5:11Þ

under the action of Jz. Therefore, they also live in j ¼
n=2; n=2 − 1 representations of total isospin. Through direct
substitution, one can show that the state in Eq. (5.10) is an
eigenstate of the Hamiltonian with the energy

Eðζ1Þ ¼ Eþn=2 − μnþ ζ1; ð5:12Þ
if ζ1 obeys the Bethe ansatz equation

1

2μ
þ
X
ω

nω=2
ω − ζ1

¼ 0: ð5:13Þ

In Eq. (5.12), Eþn=2 denotes the energy of jn=2; n=2i and is
given in Eq. (4.7).
Note that the Bethe ansatz equations for the raising and

lowering formalisms [Eqs. (5.8) and (5.13)] are the same
except for the sign of the 1=2μ term. In what follows, we
discuss the solutions of the Bethe ansatz equations in the
context of the raising operator formalism. Our conclusions

also apply to the lowering operator formalism with appro-
priate sign changes.
In general, Bethe ansatz equations admit several solu-

tions, each one yielding an eigenstate. In particular, for an
n-particle system there should be n linearly independent
eigenstates with ðnð1Þ; nð2ÞÞ ¼ ð1; n − 1Þ. However, we
restrict ourselves to those states which are completely
symmetric under the exchange of any two neutrinos in
the same oscillation mode. The number of such symmetric
states with ðnð1Þ; nð2ÞÞ ¼ ð1; n − 1Þ is equal to Ω, i.e., the
number of energy modes in the system. Therefore, we
expect to find Ω eigenstates in the form of Eq. (5.3). Indeed
it is easy to see that the number of solutions of Eq. (5.8) is
Ω. As discussed below, each one of these solutions yields a
linearly independent eigenstate when substituted in
Eq. (5.3). That these states satisfy the required symmetry
condition is guaranteed by the fact that each Jþω in Qþðξ1Þ
lives in the highest weight representation jω ¼ nω=2.
Although one can work out the solutions of the Bethe

ansatz equations directly, it is often useful to refer to the so-
called electrostatic analogy which was first suggested by
Gaudin [84] and elaborated by Richardson [85]. This
analogy is based on the observation that the Bethe ansatz
equations can be interpreted as the stability conditions for
an electrostatic system on a complex plane. Let us denote
the real and imaginary axes of the complex plane by x and
y, respectively. In the electrostatic analogy, the Bethe ansatz
variable ξ1 ¼ x1 þ iy1 is interpreted as the position of a
point particle which carries one unit of positive electric
charge in the complex plane [see Fig. 3(a)]. The neutrino
oscillation frequencies fω1;…;ωng are interpreted as the
positions of some fixed point electric charges with magni-
tudes f−jω1

;…;−jωn
g, respectively. Since the oscillation

frequencies are real and positive in our case, the fixed
charges are positioned along the positive x axis.10 The
whole system is placed in a uniform electric field in the
−x direction with a strength of 1=2μ. It can be shown that
the electrostatic potential energy of such a configuration is
proportional to

V ∝
1

2μ
Reðξ1Þ −

1

2μ

X
ω

jωω −
1

2

X
ω;ω0
ω≠ω0

jωjω0 ln jω − ω0j

þ
X
ω

jω ln jξ1 − ωj: ð5:14Þ

The free charge comes to an equilibrium when the electro-
static potential energy reaches a local minimum, i.e., when

10Note that, due to our box quantized treatment, neutrino
energies and therefore the oscillation frequencies have discrete
values, leading to an electrostatic picture with point charges.
However, one can go to the continuum limit and work with a
continuous distribution of fixed charges and a (piecewise)
continuous distribution of free charges [85–87]. Also note that
the inclusion of antineutrinos introduces negative oscillation
frequencies as discussed in Sec. IX.
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∂V=∂ξ1 ¼ 0. It is easy to show that this equilibrium
condition yields the Bethe ansatz equation given in
Eq. (5.8). Note that the positions of the fixed charges and
the external field are such that the total electric field in which
the free charge moves is symmetric with respect to the x axis.
For this reason, the equilibrium position of the free charge
lies on the x axis for any value of μ. This is another way of
saying that the Bethe ansatz equations given in Eq. (5.8) can
only have real solutions.
We find the electrostatic analogy particularly helpful in

visualizing the transformation of eigenstates with changing
μ. In what follows, we first consider the solutions of the
Bethe ansatz equations and the corresponding eigenstates
in the μ → ∞ and μ → 0 limits, respectively. Our aim is to
show that they indeed agree with those discussed in Sec. III.
Then we discuss how these eigenstates transform into each
other as μ changes between these two limits.
μ → ∞ limit: In the limit where μ is very large, the

external electric field in the analogy becomes very weak. In
this limit, the stable configurations of the free charge ξ1 lie
either at −∞ or in between the fixed charges [Fig. 3(b)].
Since there is always an electric field in the −x direction,
even if it is vanishingly small, we do not have a stable
solution at þ∞. Considering that there are Ω − 1 intervals
between fixed charges, the total number of solutions is Ω,
as was mentioned earlier.
In Sec. III B we mentioned that in the μ → ∞ limit the

Hamiltonian is proportional to J⃗ · J⃗ so the eigenstates must
approach jj; mi. Can we tell which jj; mi states these Ω
solutions correspond to? The hint lies in Eq. (5.2) which
tells us that for the states with one Bethe ansatz variable,
total isospin quantum number j can take only two values:
j ¼ n=2 or j ¼ n=2 − 1. Therefore, the states jξ1i can only
be related to

��� n
2
;−

n
2
þ 1
E

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
unique

and
��� n
2
− 1;−

n
2
þ 1
E

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðΩ−1Þ−fold degenerate

ð5:15Þ

and will go to one of these states in the μ → ∞ limit. Since
j is found by adding the individual jω’s of Ω different
oscillation modes, j ¼ n=2 − 1 is ðΩ − 1Þ-fold degenerate
while j ¼ n=2 is unique. One naturally suspects that in the
μ → ∞ limit, the unique ξ1 → −∞ solution yields the
unique jn=2; n=2 − 1i state, while Ω − 1 finite solutions
between fixed charges correspond to the Ω − 1 states in the
form of jn=2 − 1; n=2 − 1i. This is indeed the case as can
be shown very easily. For the ξ1 → −∞ solution, we can
ignore the finite ω values in Eq. (5.8). This tells us that ξ1
approaches −∞ as

ξ1 → −2μ
X
ω

nω
2

¼ −μn: ð5:16Þ

Therefore, Eq. (5.9) gives the corresponding energy eigen-
value as

lim
μ→∞

Eðξ1Þ ¼ μ
n
2

�
n
2
þ 1

�
ð5:17Þ

in agreement with our guess that the ξ1 → −∞ solution
yields the j n

2
;− n

2
þ 1i state. For those solutions in which ξ1

remains finite, one can compute the energy from Eq. (5.9)
by ignoring ξ1 and ω with respect to μ. The result is

lim
μ→∞

Eðξ1Þ ¼ μ

�
n
2
− 1

�
n
2

ð5:18Þ

confirming our guess that these solutions yield the
j n
2
;− n

2
þ 1i states. Technically, this only proves that finite

(a) (b)

0 1 2 3 4 5
-20

-10

0

10

(c)

FIG. 3. (a) The Bethe ansatz variable ξ1 is interpreted as the position of a point particle with one unit of positive electric charge in the
complex plane, while the neutrino oscillation frequencies fω1;…;ωng are interpreted as the positions of fixed particles with negative
charges f−jω1

;…;−jωn
g, respectively. The self-interaction constant μ enters the electrostatic picture as an external electric field. The

equilibrium position of ξ1 in this setup is the solution of Eq. (5.8). Although Bethe ansatz variables can be complex, in general, in the
particular case of a single Bethe ansatz variable the solution is always real due to the symmetry of the problem around the x-axis. (b) If
the equilibrium position of the free charge is at −∞ in the μ → ∞ limit, then it approaches ω1 as μ → 0. If its equilibrium position is in
between ωk and ωkþ1 for k ≥ 1 in the μ → ∞ limit, then it approaches ωkþ1 as μ → 0. We assume that ω1 < ω2 < … < ωΩ.
(c) Numerical solutions for the toy model introduced in Eq. (5.24) agree with these expectations. As μ decreases (from right to left in the
figure), one of the solutions starts from −∞ and approaches the lowest oscillation frequency, while the others start in between oscillation
frequencies and approach the larger frequencies in their respective intervals.
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ξ1 solutions yield linear combinations of j n
2
;− n

2
þ 1i states

since they all have the same energy in the μ → ∞ limit.
However, any linear combination of j ¼ n=2 − 1 repre-
sentations is a j ¼ n=2 − 1 representation itself, and we can
always choose the appropriate combinations of these
representations so that each finite ξ1 solution yields a
single j n

2
;− n

2
þ 1i state. See the Appendix for a further

discussion of this point.
μ → 0 limit: In the limit where μ approaches zero, the

external electric field in the analogy becomes very large. In
such a large external field, the free charge can find a stable
configuration only when it is practically on top of one of the
fixed charges. This can also be seen easily from Eq. (5.8):
When μ → 0, the Bethe ansatz equation can only be
satisfied if ξ1 approaches one of the oscillation frequencies,
say ω̃. In this limit, the Gaudin operator given in Eq. (5.1)
diverges. In particular, we can write

ðω̃ − ξ1ÞQþðξ1Þ⟶
ξ1→ω̃

Jþω̃ ð5:19Þ

which tells us that

ðω̃ − ξ1Þjξ1i⟶
ξ1→ω̃

Jþω̃
Y
ω0

���� nω0

2
;−

nω0

2

�
ð5:20Þ

where we used Eqs. (4.5) and (5.3). We can get rid of the
coefficient on the left-hand side by normalizing both sides
of Eq. (5.20), which yields

jξ1i0⟶
μ→0

���� nω̃2 ;−
nω̃
2

þ 1

� Y
ω0ð≠ω̃Þ

���� nω0

2
;−

nω0

2

�
ð5:21Þ

where the prime indicates the normalized state [see
Eq. (5.4)]. The resulting state in Eq. (5.21) is clearly in
the form of Eq. (3.2). Note that Eq. (5.21) corresponds to a
state in which all oscillation modes contain only ν2
neutrinos, except for the mode ω̃, which contains a single
neutrino in ν1 and nω̃ − 1 neutrinos in ν2.
Transformation of eigenstates: Which eigenstates in the

μ → ∞ limit transform to which ones in the μ → 0 limit as
μ decreases? It was already mentioned that the equilibrium
position of the free charge has to be on the x axis for all μ
values. Suppose that the free charge is in equilibrium at
ξ1 → −∞ in the μ → ∞ limit. As μ decreases and the
electric field becomes stronger, this equilibrium position
has to shift until it is on top of one of the free charges.
However, since ξ1 can never be imaginary, by shifting on
the x axis it can only end up on top of the lowest oscillation
frequency ω1 in the μ → 0 limit. [See Fig. 3(b), and note
that we take ω1 < ω2 < � � � < ωΩ.] On the other hand, if ξ1
is in equilibrium in between two fixed charges ωk and ωkþ1

for k ≥ 1 in the μ → ∞ limit, then its equilibrium position
shifts towards the larger oscillation frequency ωkþ1 as μ

decreases. In the μ → 0 limit, this equilibrium position will
be on top of ωkþ1.
These considerations tell us that the eigenstate

jn=2; n=2 − 1i in the μ → ∞ limit transforms into the
eigenstate given in Eq. (5.21) for ω̃ ¼ ω1 as μ → 0. The
corresponding eigenvalue transforms as

Eðξ1Þ ¼
8<
:

μ n
2
ðn
2
þ 1Þ; as μ → ∞

ω1ðnω12 − 1Þ þ P
ωð≠ω1Þ

ω nω
2
; as μ → 0: ð5:22Þ

On the other hand, the degenerate eigenstates jn=2 −
1; n=2 − 1i in the μ → ∞ limit turn into the eigenstates
given in Eq. (5.21) for ω̃ > ω1 as μ → 0. The correspond-
ing eigenvalues transform as

Eðξ1Þ ¼
8<
:

μðn
2
− 1Þ n

2
; as μ → ∞

ω̃ðnω̃
2
− 1Þ þ P

ωð≠ω̃Þ
ω nω

2
; as μ → 0: ð5:23Þ

In order to illustrate these results, we consider a toy
model with 10 equally spaced and nondegenerate oscil-
lation modes,

ωi ¼ iω0 for i ¼ 1; 2;…; 10 ð5:24Þ
where ω0 is an arbitrary oscillation frequency. The non-
degeneracy assumption means that each mode contains
only one neutrino so we have nωi

¼ 1 and jωi
¼ 1=2 for

each i. The dimension of the corresponding Hilbert space is
210 ¼ 1024. In this particular example, we add 10 isospin
1=2’s, so the total isospin quantum number can take the
values j ¼ 5, 4, 3, 2, 1, 0 with the respective multiplicities
of 1,9,35,75,90,42. As per our classification scheme, we
can discuss the eigenstates of the Hamiltonian by grouping
them in terms of their eigenvalues under Jz, which can take
the values m ¼ �5, �4, �3, �2, �1, 0. Those states with
m ¼ �5 are the trivial eigenstates discussed in Eq. (4.5).
With one Bethe ansatz variable, we can obtain those
eigenstates with m ¼ �4, depending on whether we use
the raising or lowering formalism. Therefore, the only j
values which are relevant to us in this section are j ¼ 5, 4.
In this example, we only work with m ¼ −4 states. Note
that m ¼ þ4 states can be similarly studied with the
lowering formalism.
Based on the above discussions we expect to find 10

eigenstates with m ¼ −4: One of these eigenstates should
approach j5;−4i with its energy growing as 30μ in the
μ → ∞ limit. This state is expected to approach jν1; ν2; ν2;
ν2; ν2; ν2; ν2; ν2; ν2; ν2i in the μ → 0 limit, while its energy
approaches 53ω0=2. The other nine eigenstates should
approach j4;−4i in the μ → ∞ limit with their energies
becoming degenerate and growing as 20μ. In the μ → 0
limit, we expect these states to be like the one given above,
except that single ν1 will move to larger oscillation modes,
i.e., jν2;ν1;ν2;ν2;ν2;ν2;ν2;ν2;ν2;ν2i; jν2;ν2;ν1;ν2;ν2;ν2;ν2;
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ν2;ν2;ν2i;…. The energies of these states will be 51ω0=2;
49ω0=2; 47ω0=2;…; 35ω0=2, respectively.
In Fig. 3(c) we show the numerical solutions of the Bethe

ansatz equations given in Eq. (5.8). The behavior of the
solution ξ1 agrees with what we expect from the electro-
static analogy described above: One solution starts from
−∞ in the μ → ∞ limit and approaches the lowest
oscillation frequency in the μ → 0 limit. The other sol-
utions start in between the oscillation modes in the μ → ∞
limit and move towards the larger oscillation modes in their
respective intervals. Corresponding energy eigenvalues
calculated from Eq. (5.9) are shown in Fig. 4 on the panel
marked with m ¼ −4. The energy eigenvalue correspond-
ing to the first solution mentioned above is the top line in
this panel. As expected, it increases as 30μ as μ → ∞, and
becomes 53ω0=2 as μ → 0. The energy eigenvalues cor-
responding to the other nine solutions increase as 20μ as
μ → ∞ and approach the values 51ω0=2; 49ω0=2; 47ω0=2;
…; 35ω0=2 as μ → 0. The lowering formalism also yields 10
solutions for m ¼ þ4 eigenstates. The energy eigenvalues

corresponding to these solutions are shown in Fig. 4. Their
behavior is qualitatively similar to (although not exactly the
same as) the m ¼ −4 case. The other panels of Fig. 4 show
the energy eigenvalues of the states with other m values
which are discussed in the next section.
Note that our computation power in a standard desktop

computer allows us to solve Bethe ansatz equations for up
to 16 neutrinos. However, since the resulting 216 ¼ 65536
eigenstates make our plots almost unreadable on paper, we
choose to present a simpler example with 10 neutrinos. Also,
our choice of equally spaced and nondegenerate oscillation
modes is due to its usefulness for a simple discussion. In our
numerical simulations involving more than 10 neutrinos
occupying nonequally spaced modes, we do not see any
behavior which is qualitatively different than this example.

VI. MORE BETHE ANSATZ VARIABLES

The method outlined in the previous section can be
generalized to obtain the eigenstates with generic occupation

FIG. 4. Energy eigenvalues of the Hamiltonian as a function of μ=ω0. Vacuum frequencies are taken as ωi ¼ iω0. Each graph
represents the states with different numbers of Bethe ansatz parameters, so each figure has a different eigenvalue of Jz from m ¼ −5 to
m ¼ 5. At high densities, one can see that energy eigenvalues have a slope of jðjþ 1Þ and are grouped by the length of total isospin as
j ¼ 5, 4, 3, 2, 1, 0. One important result from the figures is that level crossings appear between all states except the highest level state in
the low density region.
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numbers. For example, let us consider those eigenstates with
ðnð1Þ; nð2ÞÞ ¼ ð2; n − 2Þ. These eigenstates yield

m ¼ nð1Þ − nð2Þ

2
¼ −

n
2
þ 2; ð6:1Þ

under the action of Jz which tells us that they live in j ¼ n=2,
n=2 − 1, n=2 − 2 representations of the total isospin. They
can be computed by starting from a trial state with two Bethe
ansatz parameters, i.e.,

jξ1; ξ2i ¼ Qþðξ1ÞQþðξ2Þjn=2;−n=2i: ð6:2Þ

The state jn=2;−n=2i has only ν2 neutrinos, but each one of
the Gaudin operators turns one of them into a ν1. Note that ξ1
which appears in this equation is not the same ξ1 which
appears in Eq. (5.3). Here, ξ1 and ξ2 are coupled with each
other and satisfy a set of equations which is different from
Eq. (5.8). Thismethod of denoting the Bethe ansatz variables
may be confusing at first. But since this is the standard
notation in the literature, we adhere to it. Also note that the
state in Eq. (6.2) is invariant under the exchange of the Bethe
ansatz variables ξ1 and ξ2, i.e.,

jξ1; ξ2i ¼ jξ2; ξ1i ð6:3Þ
because the operatorsQþðξ1Þ andQþðξ2Þ commutewith one
another.
As in the previous case, we derive the equations satisfied

by ξ1 and ξ2 by requiring that jξ1; ξ2i is an eigenstate:

Hjξ1; ξ2i ¼ Eðξ1; ξ2Þjξ1; ξ2i: ð6:4Þ

Direct substitution of Eq. (6.2) into the left-hand side of
Eq. (6.4) yields

Hjξ1; ξ2i ¼ −ðξ1 þ ξ2 þ 2μn − 2μþ E−n=2Þjξ1; ξ2i

−
�
1þ 2μ

X
ω

−nω=2
ω − ξ2

þ 2μ

ξ1 − ξ2

�
×Qþðξ1ÞJþjn=2;−n=2i

−
�
1þ 2μ

X
ω

−nω=2
ω − ξ1

þ 2μ

ξ2 − ξ1

�
×Qþðξ2ÞJþjn=2;−n=2i: ð6:5Þ

For jξ1; ξ2i to be an eigenstate, we need to choose ξ1 and ξ2
in such a way that the last two terms on the right-hand side
of Eq. (6.5) vanish. This yields a coupled set of two Bethe
ansatz equations given by

X
ω

−nω=2
ω − ξ1

¼ −
1

2μ
þ 1

ξ1 − ξ2X
ω

−nω=2
ω − ξ2

¼ −
1

2μ
þ 1

ξ2 − ξ1
: ð6:6Þ

Solving these equations for ξ1 and ξ2 and substituting them
retrospectively in Eq. (6.2) gives us an eigenstate with
energy

Eðξ1; ξ2Þ ¼ E−n=2 − ξ1 − ξ2 − 2μðn − 1Þ: ð6:7Þ

In general, the eigenstates with ðnð1Þ; nð2ÞÞ ¼ ðκ; n − κÞ
can be obtained by starting from a Bethe ansatz with κ
variables:

jξ1; ξ2 � � � ; ξκi ¼ Qþðξ1Þ � � �QþðξκÞjn=2;−n=2i; ð6:8Þ

These states have

m ¼ nð1Þ − nð2Þ

2
¼ −

n
2
þ κ; ð6:9Þ

telling us that they can live in j ¼ n=2; n=2 − 1;…; n=2 −
κ representations. It can be shown that the state in Eq. (6.8)
is an eigenstate of the Hamiltonian with the energy

Eðξ1;…; ξκÞ ¼ E−n=2 −
Xκ
α

ξα − κμðn − κ þ 1Þ ð6:10Þ

if ξ1; ξ2;…; ξκ satisfy the following set of coupled Bethe
ansatz equations:

X
ω

−nω=2
ω − ξα

¼ −
1

2μ
þ
Xκ
β≠α

1

ξα − ξβ

ðfor every α ¼ 1; 2;…; κÞ: ð6:11Þ

When written out for every ξα, Eq. (6.11) represents a set
of κ equations in κ unknowns. As discussed below, these
equations admit several solutions, each one yielding a
linearly independent eigenstate when substituted in
Eq. (6.8). Since the Bethe ansatz equations have real
coefficients, each solution ðξ1; ξ2;…; ξκÞ involves either
real numbers or complex conjugate pairs. As a result, the
energy given in Eq. (6.10) is always real.
As we increase κ (which increases nð1Þ and decreases nð2Þ

such that n ¼ nð1Þ þ nð2Þ remains constant) we need to
solve a larger and larger system of coupled algebraic
equations in order to find the relevant eigenstates. When
we go from the states with κ variables (ξ1; ξ2;…; ξκ) to the
states with κ þ 1 variables (ξ1; ξ2;…; ξκ; ξκþ1), we need to
solve the Bethe ansatz equations all over again because in
the latter case the coupling to the variable ξκþ1 changes the
values of the previous Bethe ansatz variables.11

11Some approximation techniques exist in the literature [88]
which relate the values of the Bethe ansatz variables from step κ
to those in step κ þ 1. But we do not employ such approximations
here.
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Bethe ansatz states presented above are not normalized.
The norm of the general Bethe ansatz state given in
Eq. (6.8) is equal to

hξ1; ξ2 � � � ; ξκjξ1; ξ2 � � � ; ξκi ¼ detGðξ1; ξ2 � � � ; ξκÞ ð6:12Þ
where Gðξ1; ξ2 � � � ; ξκÞ is a κ × κ matrix whose elements
are [89]

Gαβ ¼

8><
>:
P
ω

1
ðξα−ωÞ2 − 2

P
α0≠α

1
ðξα−ξα0 Þ2 if α ¼ β

2
ðξα−ξβÞ2 if α ≠ β:

ð6:13Þ

Therefore, corresponding normalized states can be
written as

jξ1;…; ξκi0 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
detG

p Qþðξ1Þ…QþðξκÞjn=2;−n=2i:

ð6:14Þ

In order to find those eigenstates for which nð1Þ > nð2Þ, it
is more economical to use the Bethe ansatz states con-
structed with lowering operators, i.e.,

jζ1; ζ2 � � � ; ζκi ¼ Q−ðζ1Þ � � �Q−ðζκÞjn=2; n=2i ð6:15Þ

which have

m ¼ nð1Þ − nð2Þ

2
¼ n

2
− κ; ð6:16Þ

telling us that they also live in j ¼ n=2; n=2 − 1;…; n=2 −
κ representations. They can similarly be shown to be
eigenstates of the Hamiltonian with the energy

Eðζ1;…; ζκÞ ¼ Eþn=2 −
Xκ
α

ζα − κμðn − κ þ 1Þ ð6:17Þ

if ζ1; ζ2;…; ζκ satisfy

X
ω

−nω=2
ω − ζα

¼ 1

2μ
þ
Xκ
β≠α

1

ζα − ζβ

ðfor every α ¼ 1; 2;…; κÞ: ð6:18Þ

As for the case with one Bethe ansatz variable, the Bethe
ansatz equations for the raising and lowering formalisms
are identical except for a change in the sign of the 1=2μ
term. In what follows, we only discuss the solutions of the
former, but our conclusions also apply to the latter with
appropriate sign changes.
The electrostatic analogy introduced in Sec. IV can be

generalized to any number of Bethe ansatz variables (see
Fig. 5). For κ free particles carrying þ1 unit of electric

charge at positions ξα ¼ xα þ iyα, the electrostatic potential
energy is given by

V ∝
1

2μ

X
α

ReðξαÞ −
1

2μ

X
ω

jωω −
1

2

X
α;β

ðα≠βÞ

ln jξα − ξβj

−
1

2

X
ω;ω0
ω≠ω0

jωjω0 ln jω − ω0j þ
X
α;ω

jω ln jξα − ωj: ð6:19Þ

The free charges come to equilibrium when this electro-
static potential energy reaches a local minimum, i.e., when
∂V=∂ξα ¼ 0 is satisfied for every α. It is easy to show that
this equilibrium condition yields the Bethe ansatz equations
given in Eq. (6.11). It was already mentioned above that the
complex solutions of the Bethe ansatz equations always
come as conjugate pairs. This is clearly visible in the
electrostatic analogy: The positions of the fixed charges
and the external electric field are such that the system can
be in equilibrium only if the free charges distribute
themselves symmetrically with respect to the x axis.
In what follows, we employ the electrostatic analogy to

show that the Bethe ansatz states presented in this section
agree with those presented in Secs. III A and III B in the
μ → 0 and μ → ∞ limits, respectively. After that we
discuss how the eigenstates and eigenvalues transform into
each other as μ decreases from very large to very small
values.
μ → ∞ limit: The external electric field in the electro-

static analogy tends to zero in the μ → ∞ limit. Clearly
there is a unique equilibrium solution in which all κ free
charges are in the x → −∞ region. There are also some
equilibrium configurations in which κ − 1 of the free
charges are in the x → −∞ region while one free charge
is located in between the fixed charges. Since interchanging
Bethe ansatz variables does not change the corresponding

FIG. 5. Electrostatic analogy for the Bethe ansatz equations for
more than one Bethe ansatz variables. Each Bethe ansatz variable
ξα is interpreted as the position of a free point particle with one
unit of positive electric charge. See the caption of Fig. 3.
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Bethe ansatz state [see Eq. (6.3)], it does not matter which
free charge is in the finite region. Therefore, the number of
such configurations is Ω − 1 because there are Ω − 1
intervals in which the single free charge in the finite region
can be located. We can continue in this manner to identify
that equilibrium configurations with κ − k free charges are
at x → −∞, while k free charges are located in the finite
region near the free charges.
As mentioned in Sec. III B, the eigenstates of the

Hamiltonian must approach jj; mi states of the total isospin
in the μ → ∞ limit. From Eq. (6.9), we see that j can only
take the values n=2 ≤ j ≤ n=2 − κ. Therefore, the equilib-
rium configurations of the free charges mentioned above
must yield the following states:���� n2 ;− n

2
þ κ

� ���� n2 − 1;−
n
2
þ κ

�
…

���� n2 − κ;−
n
2
þ κ

�
:

ð6:20Þ

The corresponding energy eigenvalues should also approach
μjðjþ 1Þ at the same time. There is only one state with j ¼
n=2 because the highest weight representation is unique.
Inspired by our results in the previous section, we guess that
this state is produced by the unique solution of the Bethe
ansatz equations in which all κ free charges are in the
x → −∞ region. The number of states with j ¼ n=2 − 1 is
Ω − 1which hints at the fact that these states are produced by
the solutions in which κ − 1 of the free charges are at
x → −∞ while one of them is in between the fixed charges.
In fact, it is very easy to analytically show that the following
is true: the equilibrium configuration(s) in which κ − k of the
variables are located at the x → −∞ region while k variables
are located near the fixed charges in the μ → ∞ limit produce
the states j n

2
− k;− n

2
þ κi for k ¼ 0; 1;…; κ. This proof can

be found in the Appendix.
μ → 0 limit: As μ becomes vanishingly small, the

electric field in the electrostatic analogy becomes very
strong. In that limit the free charges can find their
equilibrium positions only on top of the fixed charges.
Since free particles have þ1 unit of electric charge while
the fixed ones have −nω=2 unit of charge, several free
particles can end up on the same fixed particle. This can
also be seen from the Bethe ansatz equations given in
Eq. (6.11): As μ → 0, the divergence of the 1=2μ term on
the right-hand side can only be counteracted if ξα
approaches one ω, say ω̃ðαÞ. As a result, we can write

ðω̃ðαÞ − ξαÞQþðξαÞ ⟶
ξα→ω̃ðαÞ

Jþ
ω̃ðαÞ ð6:21Þ

for the relevant Gaudin operator. Since Bethe ansatz
equations in Eq. (6.11) have to be satisfied for every
α ¼ 1; 2;…; κ, Eq. (6.21) is true for every ξα. Therefore, we
can write

ðω̃ð1Þ − ξ1Þðω̃ð2Þ − ξ2Þ…ðω̃ðκÞ − ξκÞjξ1; ξ2;…; ξκi

→ Jþ
ω̃ð1ÞJ

þ
ω̃ð2Þ…Jþ

ω̃ðκÞ

Y
ω

���� nω0

2
;−

nω0

2

�
ð6:22Þ

where we used Eqs. (4.5) and (6.8). The coefficients on the
left-hand side drop when we normalize both sides of
Eq. (6.22). The result is

jξ1; ξ2;…; ξκi0 →
Y
ω

��� nω
2
; mω

E
ð6:23Þ

where the values of mω depend on the particular equilib-
rium configuration reached, i.e., the values of ω̃ðαÞ. This
state is in the form of Eq. (3.2), as expected.
Transformation of eigenstates: Now we are faced with

the question of which eigenstate in the μ → ∞ limit
transforms to which eigenstate in the μ → 0 limit as we
change μ. In general, this question is not as easy to answer
for several Bethe ansatz variables as it is for a single
variable. However, one key observation from our analysis
of a single Bethe ansatz variable survives when we increase
the number of Bethe ansatz variables: The highest energy
eigenvalue of the Hamiltonian never becomes degenerate as
we change μ from very large to very small values.
Let us first demonstrate this in the toy model with 10

equally spaced oscillation modes considered in Sec. V [see
Eq. (5.24)] before giving a more general discussion about
it. Out of the expected total of 1024 eigenstates of this toy
model, 1002 havem ¼ �3, �2, �1, 0 values which can be
obtained with two, three, four, and five Bethe ansatz
variables, respectively. We found all of the 1002 solutions
associated with these m values by numerically solving the
corresponding Bethe ansatz equations given in Eqs. (6.11)
and (6.18). Our numerical solution utilizes the method
introduced in Ref. [49]. Since each solution involves
several complex variables, it is impractical to present all
of them here. In Fig. 4 we present the energy eigenvalues
that we calculate by substituting these solutions in
Eqs. (6.10) and (6.17). This figure also includes the
eigenvalues of m ¼ �4, �5 eigenstates for completeness.
Note that m ¼ �4 eigenvalues were already discussed in
the previous section, and m ¼ �5 eigenvalues are taken
from Eq. (4.5). Notice that for each m, the highest energy
eigenvalue grows as 30μ as expected from the fact that
these states become j5mi in the μ → 0 limit.
In general, it is difficult to identify which eigenstate in

the μ → ∞ limit is connected to which eigenstate in the
μ → 0 limit from Fig. 4. As can be seen in the insets, the
eigenvalues cross each other at several points in the low μ
region. The only exceptions are the highest energy eigen-
values. For each m, the highest energy eigenvalue is
distinctly nondegenerate for any value of μ. Using this
observation, it is possible to identify which state in the
μ → 0 limit is connected to the state j5; mi in the μ → ∞
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limit. All one needs to do is to identify the highest energy
eigenstate at μ ¼ 0 for a given value of m. As per Eq. (4.3)
such a state should include nð1Þ ¼ 5þm neutrinos in the ν1
state and nð2Þ ¼ 5 −m neutrinos in the ν2 state. Since
having isospin-up (down) neutrinos at lower (higher)
oscillation modes increases the energy, the highest energy
state is found by placing all available ν1’s (ν2’s) in the
lowest (highest) oscillation modes. This way one concludes
that the states

j5; mi ⟷ jν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}
5þm

; ν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}
5−m

i ð6:24Þ

are analytically connected to each other through the
running of μ.
This can also be understood by examining the behavior

of Bethe ansatz variables corresponding to the highest
energy eigenvalues. In Fig. 6, we show the solutions in
Eq. (6.11) with two, three, four, and five Bethe ansatz
variables corresponding to the highest energy eigenstates
with m ¼ −3, −2, −1, 0, respectively. [The solution with a
single Bethe ansatz variable corresponding to the highest
energy eigenvalue with m ¼ −4 is already shown in the
lowest line of Fig. 3(c).] As expected from the discussion
above, these solutions are such that all variables start from
the x → −∞ region when μ → ∞, yielding the maximum
energy at this limit according to Eq. (6.10). As μ decreases,
the Bethe ansatz variables approach the finite region and
settle on top of the lowest possible vacuum oscillation
frequencies. This configuration yields the maximum energy
in the μ → 0 limit. According to Eqs. (6.22) and (6.23),
those neutrinos in the lowest oscillation modes are then
converted to ν1, while those occupying the high oscillation
modes remain ν2. This behavior is explicitly shown in
Fig. 7 for five Bethe ansatz variables corresponding to the
m ¼ 0 case. As can be seen in this figure, the free charges
form an arc in the complex plane which closes in on the
fixed changes as μ decreases.
Although we obtained Eq. (6.24) in the context of our

simple example, the rest of this paper is based on the
assumption that it is always true; i.e., the highest energy
eigenvalues of the Hamiltonian for any value of m never
become degenerate, so the states���� n2 ; m

�
⟷ jν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}

n
2
þm

; ν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i ð6:25Þ

are analytically connected to each other by running μ. We
assume that this is true even when we allow more than one
neutrino in the same oscillation mode. Whether or not the
latter is allowed, the meaning of the right-hand side of
Eq. (6.25) is clear: ν1’s fill up all available states starting
from the lowest possible oscillation modes, and ν2’s fill up
the rest. One oscillation mode in the middle can possibly

contain both ν1 and ν2. In that case, they should be
symmetrized as per our discussion below Eq. (3.3).
As mentioned in Sec. II, the neutrino Hamiltonian given in

Eq. (2.28) and the pairing Hamiltonian given in Eq. (2.31)
differ by an overall minus sign such that the highest energy
eigenstates of the former (for different values of m)
correspond to the ground states of the latter (for different
numbers of pairs). The nondegeneracy of these states is a
well-known phenomenon which is observed in numerical
solutions of the Bethe ansatz equations under a variety of
conditions. Although these solutions are studied in the
context of fermion pairing in the literature, in what follows

FIG. 6. Real and imaginary parts of the solutions of Bethe
ansatz equations for the simple example given in Eq. (5.24).
These are the solutions which correspond to the highest energy
eigenstates. All Bethe ansatz variables approach infinity as
μ → ∞. At the μ → 0 limit they settle onto the vacuum oscillation
frequencies beginning from the lowest one. This configuration
yields the highest energy eigenstate at the μ → 0 limit. [See
Eq. (6.24)]. Note that for low values of μ, complex conjugate
Bethe ansatz variables approach each other and collide on the real
axis, forming two distinct real solutions.
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we discuss them using the language of self-interacting
neutrinos. No general proof of Eq. (6.25) exists in the
literature. However, a proof for large values of n and m is
originally given by Gaudin [84] and later elaborated by
Richardson [85]. This proof is based on the observation that
as the number of Bethe ansatz variables (κ) increases, the
solutions of the Bethe ansatz equations organize themselves
into (piecewise) continuous arcs which are symmetric with
respect to the x axis in the electrostatic analogy. In particular,
those solutions corresponding to the highest energy states on
the left-hand side of Eq. (6.25) form a single continuous arc.
As the interaction constant decreases and the external
electrostatic field becomes stronger, this arc of free charges
closes itself onto the line of fixed charges on the x axis in
order to find a stable configuration. During the transition the
arc stays a single continuous structure. As a result, when it
closes in on the line of fixed charges, the Bethe ansatz
variables approach the lowest oscillation frequencies, con-
verting the ν2’s in these modes into ν1’s. The resulting state
is the right-hand side of Eq. (6.25). The analytical proofs of
Gaudin and Richardson have been shown to agree with the
numerical results for up to n ¼ 1600 and κ ¼ 800 in
Ref. [90] for the case of equally spaced oscillation modes
similar to the one introduced in Eq. (5.24).
One can also discuss Eq. (6.25) from the point of view of

experiments involving cold atomic systems. In such experi-
ments where one can control the strength of the pairing
interaction, the system is observed to move from very weak
(BCS) to very strong (BEC) interaction regimes smoothly.
This so-called crossover behavior indicates that the ground
state of the system never undergoes a level crossing with
one of the excited levels as itmoves between these two limits.
A level crossing would show itself as abrupt changes in the
measurable quantities, which is not observed experimentally.

This is true for any number of particle pairswhich correspond
to differentm values in the neutrino case,whether or not these
pairs occupy degenerate energy levels. For a review, see
Refs. [75–77].

VII. SPECTRAL SPLITS IN EXACT
MANY-BODY SYSTEMS

In this section, we show that, under the assumption of
perfect adiabaticity, the nondegeneracy of the highest
energy eigenstates of the neutrino Hamiltonian for different
m values [cf. Eq. (6.25)] leads to a spectral split in the
energy spectrum of a neutrino ensemble which initially
consists of electron neutrinos only.
According to the adiabatic theorem, in a scenario in

which μ changes sufficiently slowly with time, the time
evolution of the highest energy eigenstates for each m
will be such that they will continue to occupy the same
instantaneous eigenstates. In particular, apart from a
phase, the state on the left-hand side of Eq. (6.25) will
evolve into the state on the right-hand side as μ slowly
decreases from very large to very small values under
the adiabatic evolution conditions. Here we do not specify
how slow is sufficiently slow. But the conditions for
perfect adiabaticity are typically satisfied in a core collapse
supernova [39].
In the experimental setups involving cold atom systems,

one can control how slowly the interaction constant
changes with time and ensure that the system stays in its
ground state instead of being excited to the next energy
level. In the case of neutrinos, one may intuitively think
that, even if the perfectly adiabatic conditions are satisfied,
the system would not stay on the highest energy eigenstate
but would make a transition to a lower energy state.
However, one should keep in mind that the neutrino system
that we consider in Eq. (2.28) is dissipationless; i.e., the
energy of the system is conserved.
Since Jz is a conserved quantity of the problem, the

adiabatic theorem can be applied to any combination of
highest energy eigenstates for different m values. In other
words, based on Eq. (6.25), if the initial state at μ → ∞ is in
the form

jψiinitial ¼
Xn=2

m¼−n=2
cm
��� n
2
; m
E
; ð7:1Þ

then it will evolve into

jψifinal ¼ Ujψiinitial

¼
Xn=2

m¼−n=2
cmϕmjν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}

n
2
þm

; ν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i ð7:2Þ

in the μ → 0 limit. Here U denotes the evolution operator
from the μ → ∞ limit to the μ → 0 limit under the adiabatic

FIG. 7. The behavior of the five Bethe ansatz variables
corresponding to the m ¼ 0 case as μ decreases. The free charges
organize themselves into an arc in the complex plane which is
symmetric with respect to the x axis. As μ decreases, which
increases the external electrostatic field, the arc of free charges
closes in on the fixed changes. As μ → 0, the Bethe ansatz
variables settle on the lowest oscillation modes.
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approximation, and ϕm are some phases which contain both
dynamical and geometrical components associated with the
adiabatic evolution. Their actual values are irrelevant for
our purposes because they do not affect the final energy
distributions.
Equations (7.1) and (7.2) are particularly useful when we

consider an initial neutrino ensemble which consists
entirely of electron neutrinos. Regardless of how many
neutrinos each oscillation mode contains, such a state is the
highest weight state in the flavor basis because all flavor
isospins are up:

jψiinitial ¼ jνe; νe;…; νei ¼ jn=2; n=2iflavor: ð7:3Þ
Using Eqs. (2.11) and (2.12), this state can be written as

jψiinitial ¼ U†jν1; ν1;…; ν1i

¼
Xn=2

m¼−n=2
ðcos θÞðn2þmÞðsin θÞðn2−mÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

n
2
þm

�s
jn=2; mi: ð7:4Þ

Assuming that this state evolves adiabatically as described
above, Eq. (7.2) tells us that it will turn into

jψifinal ¼
Xn=2

m¼−n=2
ðcos θÞðn2þmÞðsin θÞðn2−mÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

n
2
þm

�s
ϕmjν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}

n
2
þm

; ν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i ð7:5Þ

as μ → 0.
This final state is a superposition of 2nþ 1 orthogonal

components, each one with a split structure, i.e., filled by
ν01s up to a certain point and by ν2’s after that. In fact, for
each one of these components, we can write

jν1;…;ν1|fflfflfflfflffl{zfflfflfflfflffl}
n
2
þm

;ν2;…;ν2|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i

¼
�Ys−1

k¼1

����nωk

2
;
nωk

2

�������nωs

2
;mωs

��� YΩ
k¼sþ1

����nωk

2
;−

nωk

2

��
:

ð7:6Þ

This equation is very simple to understand. It tells us that
lower oscillation modes containing only ν1’s live in the
highest weight states, while the higher oscillation modes
containing only ν2’s live in the lowest weight states. A single
oscillation mode labeled by s may contain both types of
neutrinos in a completely symmetrized way [see the dis-

cussion followingEq. (6.25)] and hasmωs
¼ ðnð1Þωs − nð2Þωs Þ=2.

This particular mode can be found from the condition that

Xs−1
k¼1

nωk
≤
n
2
þm ≤

Xs
k¼1

nωk
ð7:7Þ

which simply tells us that the number of ν1 ’s on the left-hand
side of Eq. (7.6) is more than enough to fill the first s − 1
oscillation modes, but not enough to fill the sth oscillation
mode. We call s the split index, and the corresponding
frequencyωs the split frequency.Clearly theyboth dependon
the value ofm. For this reason, inwhat followswe change the
notation as

s → sðmÞ and ωs → ωsðmÞ: ð7:8Þ
In fact, since the final state in Eq. (7.5) contains components
with all possiblem values, every allowed oscillation mode is
a split frequency for one or more of these components.
However, what we are interested in is the normalized energy
distributions given by

ΦðαÞðωÞ ¼ 1

n
hNðαÞðωÞi: ð7:9Þ

Hereα can takevalues in e, x, 1, 2. The initial neutrino energy
distributions can be easily written down in the flavor basis as

ΦðeÞ
initialðωÞ ¼

nω
n

ΦðxÞ
initialðωÞ ¼ 0: ð7:10Þ

This follows from the facts that the number of neutrinos in the
oscillation mode ω is nω, and the initial state in Eq. (7.4)
contains nothing but electron neutrinos.
Final neutrino energy distributions are easiest to calcu-

late in the mass basis. It is helpful to first note that Eq. (2.4)
leads to

NðaÞ
ω ¼ nω

2
� Jzω ð7:11Þ

where a ¼ 1, 2. Here, and in what follows, we use the
upper sign for a ¼ 1 and lower sign for a ¼ 2. Substituting
Eq. (7.6) into Eq. (7.5) and calculating the expectation

value of NðaÞ
ω using Eq. (7.11) leads to

ΦðaÞðωkÞ ¼
nωk

2n
� 1

n

Xn=2
m¼−n=2

ðcos θÞðnþ2mÞðsin θÞðn−2mÞ

×

�
n

n
2
þm

�
mωk

ð7:12Þ

where

mωk
¼

8>>><
>>>:

nωk
=2; for k < sðmÞ

nð1ÞωsðmÞ−n
ð2Þ
ωsðmÞ

2
; for k ¼ sðmÞ

−nωk
=2; for k > sðmÞ

ð7:13Þ

in accordance with Eq. (7.6).
The calculation of the final energy distribution of neu-

trinos involves the numerical computation of Eqs. (7.12)
and (7.13). However, for the typical number of neutrinos
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that we work with, which extends up to n ¼ 108, it becomes
impractical to directly calculate the factorials involved in the
ð n
n
2
þmÞ term. For this reason, we use the fact that

ðcos θÞðnþ2mÞðsin θÞðn−2mÞ
�

n
n
2
þm

�

≈
1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p exp

�
−
ðm − m̄Þ2

2σ2

�
ð7:14Þ

where

m̄ ¼ n

�
cos2θ −

1

2

�
σ ¼ ffiffiffi

n
p

cos θ sin θ: ð7:15Þ

The left-hand side of Eq. (7.14) is nothing more than the
binomial distribution, while the right-hand side is the
Gaussian distribution with mean value m̄ and standard
deviation σ. These two distributions approximate very well
to each other at the large n values that we work with.
SubstitutingEq. (7.14) intoEq. (7.12) leads to the formula for
the final neutrino energy distributions that we use in our
numerical computations:

ΦðaÞðωkÞ

¼ nωk

2n
� 1

n

Xn=2
m¼−n=2

1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p exp

�
−
ðm − m̄Þ2

2σ2

�
mωk

: ð7:16Þ

One can now calculate the final energy distribution by
numerically computing mωk

from Eqs. (7.7) and (7.13) for
a given initial distribution and by substituting them
in Eq. (7.16).
The simplest case that one can consider is an extension

of the toy model that we introduced in Eq. (5.24). This time
we divide the interval into Ω ¼ 107 equally spaced oscil-
lation modes and allow each mode to contain only a single
neutrino (i.e., nωk

¼ 1) so that the total number of neutrinos
is n ¼ 107. This brings us to the continuum limit of this
example. [See Fig. 8(a).] In this particular case, Eq. (7.13)
is simply reduced to

mωk
¼
�−1=2 if k > n

2
þm

þ1=2 otherwise
ð7:17Þ

whose substitution in Eq. (7.16) yields the final energy
distribution shown in Fig. 8(b). In this example we take
ω0 ¼ 5 × 10−7 km−1. We adopt solar mixing parameters
for demonstration purposes because a smaller mixing angle
brings the split point in Fig. 9(b) too close to the edge of the
distribution.
Next, we consider another example in which the

electron neutrinos are initially in a thermal energy dis-
tribution; i.e., the fraction of neutrinos in the (ω, ωþ dω)
interval is given by

ΦðeÞ
initialðωÞdω ¼ 1

ðkTÞ3Γð3ÞF2ð0Þ
E2dE

eE=kT þ 1
: ð7:18Þ

Here k, Γ, and F2 denote the Boltzmann constant, the
Gamma function, and the complete Fermi-Dirac integral
of rank 2, respectively. The variables ω and E are related
by Eq. (2.8). This initial distribution is shown in Fig. 9(a)
as a function of energy. In this example, we take n ¼ 108

neutrinos distributed over Ω ¼ 1200 oscillation modes
which are equally spaced in energy. We take the temper-
ature as kT ¼ 10 MeV. Numerical calculation of the final
energy distribution involves finding sðmÞ for each m from
Eq. (7.7) and substituting them in Eqs. (7.13) and (7.16).
The result is shown in Fig. 9(b). The final distribution
involves a single sharp swap of neutrino energy distribu-
tions at the low energy region.
In spite of the fact that the final state given in Eq. (7.5)

is a superposition of 2nþ 1 states with different split
frequencies, the final energy spectra involves only a single
split. This is due to the fact that the Gaussian distribution in

(b)

(a)

FIG. 8. Adiabatic evolution of initial box distribution of
electron neutrinos. This is the extension of the toy model that
we introduced in Eq. (5.24). This time we consider Ω ¼ 107

equally spaced oscillation modes each containing a single
neutrino. We take ω0 ¼ 5 × 10−7 km−1 and adopt the normal
mass hierarchy with solar mixing parameters.
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Eq. (7.14) has a very small fractional width. In a distribu-
tion, the concept of fractional width describes the ratio
between the terms which are considerably different from
zero and the total number of terms. In the context of our
problem, it is given by σ=ð2nþ 1Þ, and its significance can
be seen from the following discussion: Since σ is propor-
tional to

ffiffiffi
n

p
as shown in Eq. (7.15), we see that only those

states in the interval

m ∼ m̄�Oð ffiffiffi
n

p Þ ð7:19Þ
significantly contribute to the sum in Eq. (7.16). As we
increase the number of neutrinos, the number of such states

increases. However, since the total number of the terms in
Eq. (7.16) is equal to 2nþ 1, the fraction of the states
which significantly contribute to the sum decreases as
σ=ð2nþ 1Þ ∼ n−1=2. Given that the number of oscillation
modes in the system is constant, one can intuitively infer
that the split frequencies of these significantly contributing
states should approach each other. In fact, for the states in
the interval given in Eq. (7.19) the split frequencies fall into
the interval

ωs ∼ ω̄s

	
1�O

�
1ffiffiffi
n

p
�


: ð7:20Þ

Here ω̄s is the split frequency corresponding to m̄. This can
be easily seen by taking the continuum limit of Eq. (7.7).
Let ρω be the density of oscillation modes so that ρωdω is
the number of modes between ω and ωþ dω. In this limit,
the difference between the upper and lower bounds of
Eq. (7.7) is infinitesimally small, and one can writeZ

ωs

0

nωρωdω ¼ n
2
þm: ð7:21Þ

In particular, substituting the value of m̄ from Eq. (7.15)
leads to the equation for the corresponding split frequency
ω̄s: Z

ω̄s

0

nωρωdω ¼ ncos2θ: ð7:22Þ

Equation (7.21) also tells us that a small spread dm ∼
Oð ffiffiffi

n
p Þ around m̄ leads to a spread

dωs ¼
dm

nω̄s
ρω̄s

∼
ffiffiffi
n

p
nω̄s

ρω̄s

ð7:23Þ

around ω̄s. Assuming that the neutrino distribution is
practically nonzero in a finite region around ωs, we can
write nω̄s

ρω̄s
∼Oðn=ωsÞ from Eq. (7.22). When substituted

in Eq. (7.23), this directly leads to Eq. (7.20).
For the first example presented in Fig. 8(b), Eq. (7.22)

yields ω̄s ¼ 3.435 km−1. For the second example presented
in Fig. 9(b), it leads to ω̄s ¼ 9.03 × 10−3 km−1 which
corresponds to E ¼ 21.0 MeV. Both results agree very
well with the values seen in the respective figures.
The results obtained in this section agree very well with

the established understanding of the mean field behavior
of the system. In recent years, systematic numerical studies
of the mean field flavor evolution equations have shown
that spectral splits develop around some instabilities which
are located at particular spectral crossing12 points [91,92].
However, those initial spectra with no crossings can still
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(a) Initial Fermi-Dirac distribution of electron neutrinos.
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(b) Final distributions in mass basis.

FIG. 9. Adiabatic evolution of an initial thermal distribution of
electron neutrinos. We take n ¼ 108 neutrinos distributed over
Ω ¼ 1200 oscillation modes which are equally spaced in energy
[cf. Eq. (7.18)]. We take the temperature as kT ¼ 10 MeV, and
adopt the normal mass hierarchy with solar mixing parameters.
Note that we use a pseudo-random number generator in order to
distribute n neutrinos into Ω energy bins according to Fermi-
Dirac probability distribution. This guarantees that each energy
bin has an integer number of neutrinos and a corresponding
well-defined isospin quantum number. The use of the pseudo-
random number generator causes the wiggles seen in the original
distribution.

12These are different than the level crossings between different
many-body energy eigenstates. Spectral crossings are defined as
the energies (or frequencies) at which the initial spectra of
different neutrino flavors become equal.
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display such behavior (see, e.g., Refs. [40,82]). In general,
an elegant way to analytically understand the appearance
of spectral splits in the mean field case is through the
linearized stability analysis which reformulates the small
amplitude solutions of the mean field equations as linear-
ized eigenvalue-eigenfunction relations [93]. In this analy-
sis, some spectral crossings are associated with complex
eigenvalues which lead to instabilities and induce spectral
splits. However, spectra with no crossings are associated
with purely real eigenvalues for which the linearized
analysis breaks down. This special case is considered in
Ref. [40] and also applies to the examples that we consider
in this paper because initially we have only a single flavor.
As was discussed in Ref. [40], one expects only a single
spectral split to develop in this particular case. For the
normal mass hierarchy, the spectral swap occurs for the
frequencies which are higher than the split frequency (or for
energies lower than the split energy). Given these consid-
erations, the single split frequency in the final spectra can
be directly calculated from a simple conservation law in the
mean field picture as explained below.
The z component of total mass isospin, which is an exact

invariant of the Hamiltonian in Eq. (2.28), is still conserved
on average under the mean field approximation. In other
words, the mean field flavor evolution equations leave the
expectation value

hJzi ¼ cos 2θhJzflavori − sin 2θhJxflavori ð7:24Þ

unchanged. Here the right-hand side of the equality follows
from the inversion of Eq. (2.14). The conservation of this
quantity was first discussed in Ref. [40] and is generally
known as lepton number conservation in the literature due
to the typically small effective mixing angles employed
close to the proto-neutron star. As was shown in Ref. [40]
this conservation law can be used to calculate a single
split frequency. The value of the conserved quantity in
Eq. (7.24) is most easily computed using the right-hand
side for the initial state and the left-hand side for the final
state. This gives

1

2

�Z
ω̄s

0

nωρωdω −
Z

∞

ω̄s

nωρωdω

�
¼ n

2
cos 2θ ð7:25Þ

where we used the definitions of isospin operators given in
Eqs. (2.4) and (2.5) together with the summation con-
ventions introduced in Sec. II B. The left-hand side of
Eq. (7.25) simply reflects the fact that in the final state the
ν1 neutrinos are assumed to fill up the levels up to ω̄s, while
ν2 neutrinos fill up the rest; the right-hand side follows from
the fact that all neutrinos are νe in the initial state. On the
other hand, the total number of neutrinos n is equal toZ

∞

0

nωρωdω ¼ n: ð7:26Þ

Substitution of Eq. (7.26) in Eq. (7.25) immediately leads toZ
ω̄s

0

nωρωdω ¼ ncos2θ ð7:27Þ

which gives the same spectral split frequency as Eq. (7.22).
However, note that while Eq. (7.22) is derived using the
exact conservation of Jz in the original many-body formal-
ism, Eq. (7.27) is derived from the conservation of the
average value hJzi. The derivation of the split frequency
using the conservation of hJzi in the mean field formalism
was first carried out in Ref. [40].

VIII. INVERTED HIERARCHY

In previous sections we worked in the normal mass
hierarchy by setting m1 < m2. In this section, we convert
our results into inverted mass hierarchy. For this purpose,
we introduce the operator

R ¼ e−iπJ
x ð8:1Þ

which converts ν1 and ν2 into each other:

R†a1ðpÞR ¼ −ia2ðpÞ R†a2ðpÞR ¼ −ia1ðpÞ: ð8:2Þ

As a result, it transforms the vacuum oscillation
Hamiltonian in Eq. (2.19) into

R†HνR ¼
X
p

ðE1ðpÞNð2Þ
p þ E2ðpÞNð1Þ

p Þ ð8:3Þ

so that now the heavier mass belongs to ν1 and the lighter
mass belongs to ν2. The operator R transforms the isospin
operators as

R†JzωR ¼ −Jzω R†J�ωR ¼ J∓ω ð8:4Þ

and leaves the self-interaction term J⃗ · J⃗ invariant. As a
result, it converts the Hamiltonian H given in Eq. (2.28)
into

R†HR ¼ −
X
ω

ωB̂ · J⃗ω þ μðrÞJ⃗ · J⃗ ð8:5Þ

which describes the vacuum oscillations and self-interac-
tion of neutrinos in the inverted mass hierarchy. An initial
state in the form of Eq. (7.1) evolves into Eq. (7.2) under
the adiabatic conditions in the normal mass hierarchy. In
the case of inverted mass hierarchy, the same initial state
would evolve into a different final state given by

jψ̃ifinal ¼ R†URjψiinitial: ð8:6Þ

This new final state can be easily found by first noting that
Eq. (8.4) implies
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Rjj; mi ¼ ð−1Þjjj;−mi ð8:7Þ

which leads to

Rjψiinitial ¼
Xn=2

m¼−n=2
c−mð−1Þn2

���� n2 ; m
�
; ð8:8Þ

where we substituted Eq. (8.7) into Eq. (7.1) and changed
m → −m in the summation. According to Eq. (7.2), this
state would evolve into

URjψiinitial ¼
Xn=2

m¼−n=2
c−mϕmð−1Þn2jν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}

n
2
þm

; ν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i:

ð8:9Þ

Then, another application of R† leads to

jψ̃ifinal ¼
Xn=2

m¼−n=2
c−mϕmjν2;…; ν2|fflfflfflfflffl{zfflfflfflfflffl}

n
2
þm

; ν1;…; ν1|fflfflfflfflffl{zfflfflfflfflffl}
n
2
−m

i ð8:10Þ

where we used Eq. (8.2). A comparison of the final states
given in Eqs. (7.2) and (8.10) reveals that the final states in
normal and inverted mass hierarchies are related by cm ↔
c−m and ν1 ↔ ν2. The rest of the analysis follows the same
lines as in the case of the normal mass hierarchy. For an
initial state in the form of Eq. (7.3), this leads to the final
energy distributions given by

ΦðaÞðωkÞ

¼ nωk

2n
� 1

n

Xn=2
m¼−n=2

1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p exp

�
−
ðmþ m̄Þ2

2σ2

�
ð−mωk

Þ

ð8:11Þ

where σ, m̄ and mωk
have the same values as in the case of

normal mass hierarchy given in Eqs. (7.13) and (7.15).
Once again, the upper sign is for a ¼ 1 and the lower sign
for a ¼ 2. For the thermal initial distribution of electron
neutrinos given in Fig. 9(a), Eq. (8.11) yields the final
distribution in the mass basis given in Fig. 10. The single
split frequency ω̄s in this figure can be calculated using
an analysis similar to the one which led to Eq. (7.22). In the
case of inverted mass hierarchy, this analysis leads to the
analogous equationZ

∞

ω̄s

nωρωdω ¼ ncos2θ ð8:12Þ

which agrees with what one would calculate from the mean
field approximation using the conservation of the average
value hJzi. Equation (8.12) yields ω̄s ¼ 5.04 × 10−3 km−1

which corresponds to E ¼ 37.4 MeV for the parameters
that we use in this example. This value agrees very well
with Fig. 10.

IX. ANTINEUTRINOS

The most convenient way to include antineutrinos into
this formalism is by using the doublets�−jν̄2;pi

jν̄1;pi

�
and

�−jν̄x;pi
jν̄e;pi

�
: ð9:1Þ

Here jν̄a;pi denotes an antineutrino in a mass (a ¼ 1, 2) or
flavor (a ¼ e, x) eigenstate with momentum p. If we denote
the corresponding annihilation operator by baðpÞ, the
isospin operators for this doublet structure are given by

J̄þp;mass ¼ −b†2ðpÞb1ðpÞ; J̄−p;mass ¼ −b†1ðpÞb2ðpÞ

J̄zp;mass ¼
1

2
ðb†2ðpÞb2ðpÞ − b†1ðpÞb1ðpÞÞ ð9:2aÞ

J̄þp;flavor ¼ −b†xðpÞbeðpÞ; J̄−p;flavor ¼ −b†eðpÞbxðpÞ

J̄zp;flavor ¼
1

2
ðb†xðpÞbxðpÞ − b†eðpÞbeðpÞÞ ð9:2bÞ

in mass and flavor bases, respectively. As we did for
neutrinos, we drop the “mass” index from the antineutrino
mass isospin operators:

J̄�;0
p;mass → J̄�;0

p : ð9:3Þ

Following the established practice in this field, we define the
“energy” as E ¼ −jpj for antineutrinos. Accordingly their
“vacuum oscillation frequencies” ω defined in Eq. (2.8) are
also allowed to take negative values. Characterizing anti-
neutrinos with the doublet in Eq. (9.1) and using negative
energies helps one to seamlessly integrate them into the
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FIG. 10. Final distributions of neutrinos in the mass basis in the
case of inverted mass hierarchy. All other parameters are the same
as those in Fig. 9.
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formulation (see Refs. [94,95], for example). One only needs
to keep in mind that the physical values of energy and
vacuum oscillation frequency for antineutrinos are equal to
−E and −ω, respectively. The summation formula in
Eq. (2.9) generalizes to antineutrinos as

J⃗ω ¼
X

jpj¼−E

⃗J̄p: ð9:4Þ

This formula tells us that J⃗ω for ω < 0 represents the total
isospin of all antineutrinos with energy E < 0. The formula
for the summation over all modes given in Eq. (2.10) is now
generalized to include both positive and negative oscillation
frequencies so that J⃗ represents the total isospin of both
neutrinos and antineutrinos. In this case the operator U
defined in Eq. (2.12) transforms both neutrinos and anti-
neutrinos between flavor and mass bases. Finally, the
summation convention for other quantities described in
Sec. II B also generalizes in a similar fashion: Q̄p and
Qω<0 refer to the antineutrino analogs of the corresponding
neutrino quantities, while Q refers to the same quantity
summed over all neutrinos and antineutrinos. In particular, n
now denotes the total number of neutrinos and antineutrinos
in the ensemble.
With these definitions, the many-body Hamiltonian

describing neutrinos and antineutrinos which undergo
vacuum oscillations and self-interactions is given by

H ¼ −
X
ω

ωJzω þ μJ⃗ · J⃗: ð9:5Þ

This Hamiltonian has the same form as the one given in
Eq. (2.28) except that now the range of ω extends to include
negative values corresponding to antineutrinos. Because of
the reversed definition of isospin doublets for antineutrinos,
Eq. (2.30), describing its analogy with the other many-body
systems, is now generalized to

j⏤↑↓i ↔ j↑i ↔
�−jν̄2i for ω < 0;

jν1i for ω > 0;

j—i ↔ j↓i ↔
� jν̄1i for ω < 0;

jν2i for ω > 0.
ð9:6Þ

Since the form of the Hamiltonian does not change when
we include antineutrinos, and since all calculations that we
carried out so far depend only on the isospin structure
and the corresponding SUð2Þ commutators, our results
can be extended to include antineutrinos in a trivial way.
The following procedure achieves this goal:
(1) One first shifts the origin of the range of ω to allow

for negative frequencies.
(2) Then, for the negative frequencies one needs to

substitute

ν1 → −ν̄2; ν2 → ν̄1: ð9:7Þ
In connection with the Bethe ansatz formalism, the

first step would correspond to shifting the origin of the

coordinate system in the electrostatic analogy shown in
Fig. 5. Clearly the electrostatic system is invariant under a
translation along the x axis, reflecting the invariance of
Bethe ansatz equations under a transformation which
takes ω → ωþ a and ξα → ξα þ a where a is a real
parameter. Therefore, all the conclusions that we draw
from the Bethe ansatz formalism about the many-body
eigenstates of the Hamiltonian and how they change as the
neutrino self-interactions decrease are still valid.
The substitution in Eq. (9.7) also leads to

νe → −ν̄x; νx → ν̄e ð9:8Þ
in agreement with the mixing formula in Eq. (2.1). In
particular, the initial state that we started with in Eq. (7.3)
becomes

jψiinitial ¼ jν̄x;…; ν̄x|fflfflfflfflffl{zfflfflfflfflffl}
ω<0

; νe;…; νe|fflfflfflfflffl{zfflfflfflfflffl}
ω>0

i ¼
���� n2 ; n2

�
flavor

: ð9:9Þ

As μ decreases from very large to very small values under
the assumption of perfect adiabaticity, this state evolves to

jψifinal ¼
Xn=2

m¼−n=2
ðcos θÞðn2þmÞðsin θÞðn2−mÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

n
2
þm

�s
ϕmj⇑;…;⇑|fflfflfflffl{zfflfflfflffl}

n
2
þm

;⇓;…;⇓|fflfflfflffl{zfflfflfflffl}
n
2
−m

i: ð9:10Þ

This result is obtained by making the substitution given in
Eq. (9.7) for negative frequencies in Eq. (7.5). The states
j⇑i and j⇓i refer to the neutrino mass isospin: They are
defined as

j⇑i ¼
�−jν̄2i for ω < 0;

jν1i for ω > 0;

j⇓i ¼
� jν̄1i for ω < 0;

jν2i for ω > 0.
ð9:11Þ

For the final state in Eq. (9.10), the normalized energy
distribution functions are given by the same formula as in
Eq. (7.16) except that ωk can now be both positive and
negative, and a takes values in f⇑;⇓g. The þ sign in
Eq. (7.16) is for⇑ and the − sign is for⇓. The value ofmωk

in Eq. (7.16) can now be found from

mωk
¼

8>>><
>>>:

nωk
=2; for k < sðmÞ

nð⇑Þ
ωsðmÞ−n

ð⇓Þ
ωsðmÞ

2
; for k ¼ sðmÞ

−nωk
=2; for k > sðmÞ

ð9:12Þ

with sðmÞ defined by the same formula as in Eq. (7.7). With
these definitions, Eq. (7.16) now gives us both neutrino and
antineutrino distributions as
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Φð⇑ÞðωÞ ¼
�
Φðν̄2ÞðωÞ for ω < 0;

Φðν1ÞðωÞ for ω > 0;

Φð⇓ÞðωÞ ¼
�
Φðν̄1ÞðωÞ for ω < 0;

Φðν2ÞðωÞ for ω > 0;
ð9:13Þ

in accordance with Eq. (9.11). Note that the minus sign in
Eq. (9.11) has no consequences in the final energy spectra
given in Eq. (9.13) because they cancel each other when we
calculate the expectation values.
In Fig. 11, we show the numerical results for an initial

thermal distribution of νe and ν̄x with the respective
temperatures of 10 MeV and 12 MeV [Fig. 11(a)]. The
final energy distributions shown in Fig. 11(b) exhibit a
single spectral split in the neutrino sector. This can be easily
understood with an analysis similar to the one provided
between Eqs. (7.19) and (7.23) which leads to the same
formula as in Eq. (7.20) with the mean split frequency ω̄s
given by the formula

Z
ω̄s

−∞
nωρωdω ¼ ncos2θ: ð9:14Þ

This formula is the same as what one would derive from the
conservation of hJzi within the mean field approximation.
For the thermal distributions adopted in Eq. (7.18), it yields
ω̄s¼5.70×10−3km−1, which corresponds to E¼33.3MeV
and agrees with Fig. 11.

X. CONCLUSIONS

We considered the many-body system formed by neu-
trinos undergoing vacuum oscillations and self-interactions
through a neutral current weak force. As is standard in the
literature, we represented neutrinos as plane waves in a box
so that they all interact with each other at the same time. In
the effective two flavor mixing scenario that we work with,
this many-body system is analogous to a system of spins
with long-range interactions, and to a system of fermions
with pairing. We study this neutrino many-body system in
the context of a core collapse supernova where it is believed
to play an important role with such emergent effects as the
spectral splits. However, this current study is not meant to be
a comprehensive analysis of many-body effects under the
complicated setting of a real supernova. We retain only some
of the simple aspects of supernova such as a decreasing self-
interaction rate as the neutrinos radiate from the proto-
neutron star at the center. A constant matter background can
also be incorporated by using matter effective mixing
parameters instead of vacuum mixing parameters, although
we did not explicitly do this in our numerical calculations.
The focus of our study is the exact many-body behavior

of self-interacting neutrinos in comparison to their behavior
under the commonly used mean field approximation. The
latter formulation reduces the 2n-dimensional Hilbert space
to n individual two-dimensional Hilbert spaces for n
neutrinos by omitting the entangled neutrino states. Our
technique also involves the reduction of the dimensionality
of the Hilbert space, but in a different way. Rather than
omitting part of the Hilbert space, we first determined and
classified the exact many-body eigenstates of the neutrino
Hamiltonian using the Richardson-Gaudin formalism and
then identified those eigenstates which project onto our
initial state. This strategy allows one to work with a smaller
part of the full Hilbert space without any omissions.
Our choice of the initial state in this paper is the simplest

one that can be studied with this prescription. It consists of
only electron neutrinos (to which antineutrinos of the
orthogonal flavor can also be added). It projects only on
the highest energy eigenstates of the Hamiltonian for all
possible values of the conserved z component of the total
mass isospin operator. Those eigenstates do not undergo
any level crossings with the other eigenstates, allowing one
to easily follow their evolution under the assumption of
perfect adiabaticity. We have shown that our initial state
adiabatically develops into a superposition of some states,
each with a different split point. However, we have shown
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FIG. 11. Adiabatic evolution of an initial distribution of thermal
νe and ν̄x. We take the temperature kT ¼ 10 MeV for neutrinos
and kT ¼ 12 MeV for antineutrinos. We have 108 neutrinos
occupying 1200 oscillation modes which are equally spaced in
energy. The same is also true for antineutrinos. We adopt the
normal mass hierarchy with solar mixing parameters.
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that those states which significantly contribute to the sum
have their split frequencies within ð100= ffiffiffi

n
p Þ% of a mean

split frequency. This mean split frequency dominates the
final energy distribution, so it is the only apparent pattern in
it. The formula for this mean split frequency is the same as
what one would obtain with the mean field approximation
based on average conservation of the z component of total
mass isospin. Therefore, our study demonstrates the val-
idity of the mean field approximation in this particular
context in an analytical way.
Although previous studies of the exact many-body

dynamics of self-interacting neutrinos have demonstrated
the validity of the mean field approximation in their specific
settings, this is the first study to include the effects of the
vacuum oscillations and the first one to demonstrate the
formation of a spectral split which results from an interplay
between vacuum oscillation and self-interaction terms. The
spectral splits that we obtain in the exact many-body picture
are the same as those in the mean field case. In particular,
they develop at the same frequency or energy as indicated
by Eqs. (7.22) and (7.27). As is the case in the mean field
formulation, the swap appears in the region which has
lower (higher) energy than the split energy in the normal
(inverted) mass hierarchy scenarios.
Two important caveats of our study are the lack of a

real dynamical evolution and the choice of a particularly
simple initial state. Our initial conditions involve no
spectral crossings between different neutrino flavors. In
that sense, they correspond to the special case examined in
Ref. [40] in the mean field approximation. At present, our
formulation does not apply to the splits which arise from
instabilities which develop around spectral crossing
points, i.e., those discussed in Refs. [91–93]. It may be
possible to overcome this limitation and apply the for-
malism to a more general initial condition. This would
require a careful examination of the behavior of the
system around the points where many-body energy
eigenvalues overlap with one another. Self-interacting
neutrinos have several dynamical symmetries, and our
preliminary studies indicate that the corresponding con-
servation laws may help us to identify the evolution of a
particular many-body energy eigenstate at an energy
crossing point. This will be the subject of a future study.
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APPENDIX: ENERGY EIGENVALUES OF
BETHE ANSATZ STATES IN STRONGLY

INTERACTING REGIME

In the text we have argued that the Bethe ansatz states
with κ variables given in Eq. (6.8) go to the jj;mi states of

the total isospin operator given in Eq. (6.20) in the μ → ∞
limit. In this appendix, we show that, in particular, the
solution of the Bethe ansatz equations in which k of the
Bethe ansatz variables remain finite in the μ → ∞ limit
while κ − k of them go to −∞ produces the eigenstate
j n
2
− k;− n

2
þ κi.

Since the eigenvalue of Jz is fixed to −n=2þ κ by the
number of Bethe ansatz variables, we only need to establish
the value of j. This can be determined by calculating the
energy of the Bethe ansatz state in the μ → ∞ limit and
comparing it with Eq. (3.6).
Since the ordering of the Bethe ansatz variables is not

important, we can begin by reordering our variables in
such a way that those that approach −∞ for large μ are
ξ1; ξ2;…; ξκ−k and those that stay finite are ξκ−kþ1;…; ξκ.
Then, the Bethe ansatz equations for the first p variables
can be written as follows in the μ → ∞ limit:

−
n
ξα

¼ 1

μ
−
Xκ
β≠α

2

ξα − ξβ
ðA1Þ

for α ¼ 1; 2;…; κ − k. Here we ignored the ω values
which are finite valued, so the sum on the left-hand side
of Eq. (6.11) is performed to yield the total number of
neutrinos, n. The sum on the right-hand side of Eq. (A1)
can be separated into two parts, one running over the first
κ − k (infinite valued) ξβ’s and the other running over the
last k (finite valued) ξβ’s:Xκ
β≠α

2

ξα − ξβ
¼

Xκ−k
βð≠αÞ¼1

2

ξα − ξβ
þ

Xκ
β¼κ−kþ1

2

ξα − ξβ

¼ 2

ξα
ðkþ LαÞ: ðA2Þ

Here Lα is given by

Lα ¼
Xp

βð≠αÞ¼1

ξα
ξα − ξβ

: ðA3Þ

Substituting it into Eq. (A1) we find

ξα ¼ μð2Lα þ 2k − nÞ: ðA4Þ
Note that Lα depends on ξα, so Eq. (A4) is not an explicit
solution. However, this expression is very useful in
calculating the energy. By substituting Eq. (A4) in
Eq. (6.10), we find the energy of the eigenstate jξ1; ξ2;…;
ξκ−k; ξκ−kþ1;…; ξκi as

E ¼ E−n=2 − κμðn − κ þ 1Þ −
Xκ−k
α¼1

ξα

¼ E−n=2 − μpð2k − nÞ þ 2μ
Xκ−k
α¼1

Lα ðA5Þ

where we ignored the contribution of finite valued Bethe
ansatz variables in the energy. By summing both sides of
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Eq. (A3) over α and antisymmetrizing the result, one finds
that

Xκ−k
α¼1

Lα ¼ ðκ − kÞðκ − k − 1Þ: ðA6Þ

Therefore, the energy in Eq. (A5) is equal to

E ¼ μðn=2 − kÞðn=2 − kþ 1Þ: ðA7Þ

This energy is consistent with Eq. (3.6) with j ¼ n=2 − k.
However, we know that all representations with j < n=2
come in multiplicities. Therefore, Eq. (A7) can only tell
us that, in the μ → ∞ limit, the state jξ1; ξ2;…; ξκ−k;
ξκ−kþ1;…; ξκi approaches a linear combination of multiple

jn=2 − k;−n=2þ κi states belonging to different represen-
tations with the same j ¼ n=2 − k. On the other hand, those
representations with the same j can always be linearly
combined to produce another such representation because
any linear combination of jj; mi states gives jðjþ 1Þ andm
under the actions of J⃗ · J⃗ and Jz, respectively. For this
reason, we have a degree of freedom in choosing those
representations which come with multiplicities when we
add several spins or isospins, as long as they are orthogonal
to each other. Since the eigenstates of a Hermitian
Hamiltonian are also orthogonal to each other, the j ¼
n=2 − k representations can be chosen in such a way that
the limit of our Bethe ansatz state jξ1; ξ2;…; ξκ−k; ξκ−kþ1;
…; ξκi as μ → ∞ coincides with a particular jn=2 −
k;−n=2þ κi state.
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