
 

Highly reflective low-noise etalon-based meta-mirror

Johannes Dickmann1,* and Stefanie Kroker1,2
1Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
2Technische Universität Braunschweig, LENA Laboratory for Emerging Nanometrology,

Pockelsstraße 14, 38106 Braunschweig, Germany

(Received 23 July 2018; published 23 October 2018)

We present a concept of a mirror for application in high-reflectivity low-noise instruments such as
interferometers. The concept is based on an etalon with a metasurface (meta-etalon) on the front and a
conventional multilayer stack on the rear surface. The etalon in combination with the metasurface enables a
dedicated spatial weighing of the relevant thermal noise processes and by this a substantial reduction of the
overall readout thermal noise. As examples, we illustrate the benefit of the proposed etalon for thermal
noise in two applications: the test masses of the Einstein Telescope gravitational wave detector and a single-
crystalline cavity for laser frequency stabilization. In the Einstein Telescope, the thermal noise of the etalon
even at room temperature outperforms existing concepts for operation temperatures at 10 K. For the laser
stabilization cavity, a reduction of the modified Allan deviation of an order of magnitude is predicted.
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I. INTRODUCTION

Thermal noise limits the sensitivity of high-precision
measurement devices like interferometric gravitational
wave detectors and Fabry-Pérot cavities for the frequency
stabilization of lasers [1–5]. Among the noise sources, the
Brownian thermal displacement noise of the optical mirror
coatings sets the most severe limitation. There are two
approaches to reduce thermal noise. The first one addresses
the material properties of the optical coatings in stacks of
alternating dielectric layer pairs. In this case, the coating
thermal noise is mainly determined by the mechanical loss
of the coating layers [6–9]. The mechanical loss can be
substantially reduced by the use of crystalline coating
layers instead of amorphous materials [10–13]. However,
thermal noise scales with the coating thickness. Equally, the
reflectivity of multilayer stacks increases with the number
of layer pairs. For example, coating stacks with a reflec-
tivity of >99.9994% typically requires 30 to 40 quarter-
wavelength layers [1,14,15]. This inherent relationship
between reflectivity and thermal noise sets a limit to the
ultimate noise performance that can be achieved.
The second approach waives the use of alternating

layer pairs and therewith the increase of thermal noise
with reflectivity. The approach is based on periodic sub-
wavelength structures (hereinafter referred to as “metasur-
faces”) manufactured from a dielectric material with a
high refractive index. These structures are designed to
provide an optical resonance based on two coupled Bloch
modes [16,17]. The modes interfere constructively in the

backward direction of the incoming light, enabling a high
reflectivity with high spectral and angular tolerance
[18,19]. The Bloch modes are localized in a surface layer
with a thickness of less than the wavelength of light [17].
With respect to thermal noise, the main advantage of the
metasurfaces is that their reflectivity does not scale with
their thickness. The minimum thickness is about λ=4n,
where λ is the wavelength of light and n the refractive index
of the metasurface. Basic proof-of-principle experiments in
interferometry have been performed [20]. However, the
maximum reflectivity of 99.8% that was experimentally
achieved so far is not sufficient [18] for application in
interferometric gravitational wave detectors or laser
cavities for frequency stabilization [4,14].
In past years, advances for the rigorous computation of

the thermal noise of arbitrarily shaped reflective surfaces
were made [21–23]. This lays the foundation for a deeper
understanding of the complex interplay of dissipative
processes and thermal noise in these systems and prepares
the ground for new possibilities in the design of low-noise
optical elements.
In this contribution, we present a concept which over-

comes limitations in the reflectivity of metasurfaces and
simultaneously provides an excellent thermal noise perfor-
mance. This is realized by combining the optical functions
of a conventional multilayer mirror and a metasurface
while suppressing the coupling of mechanical fluctuations
between each other by the use of an antiresonant etalon
(hereinafter referred to as a “meta-etalon”). To illustrate the
potential of the proposed concept, we perform a holistic
analysis of thermal noise for the low-frequency detector of
the Einstein Telescope gravitational wave detector (ET-LF)*johannes.dickmann@ptb.de

PHYSICAL REVIEW D 98, 082003 (2018)

2470-0010=2018=98(8)=082003(10) 082003-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.082003&domain=pdf&date_stamp=2018-10-23
https://doi.org/10.1103/PhysRevD.98.082003
https://doi.org/10.1103/PhysRevD.98.082003
https://doi.org/10.1103/PhysRevD.98.082003
https://doi.org/10.1103/PhysRevD.98.082003


[14] and for crystalline silicon cavities for the frequency
stabilization of laser light [4].
The article is organized as follows. In Sec. II we describe

the basic layout of the meta-etalon. In Sec. III, we give a
brief introduction into the computation of the relevant
thermal noise contributions. In Sec. IV, the results of the
optical optimization and the noise evaluation are presented
and discussed. Computational details and material param-
eters can be found in the appendixes.

II. ETALON-BASED META-MIRROR

Figure 1 shows a schematic of the etalon-based meta-
mirror (meta-etalon). The major fraction of the incident
light is reflected by the metasurface at the front. Its intensity
reflectivity R1 is determined by the refractive indices ng and
ns of the involved materials as well as by the structural
parametersW,H, and Λ. Details on the metasurface design
will be discussed in detail in Sec. IVA. The residual light
being transmitted by the metasurface propagates through
the etalon and is reflected by a conventional multilayer
stack (refractive indices n1 and n2) on the rear surface of the
etalon (intensity reflectivity R2). To achieve a high reflec-
tivity with the whole system, the etalon, forming a two-
mirror system, is thermally tuned to antiresonance [24]. For
both investigated applications, i.e., the Einstein Telescope
(ET) gravitational wave detector and the crystalline silicon

cavity for laser frequency stabilization [4,25], we choose
the etalon spacer material to be fused silica. The metasur-
face is made of single-crystalline silicon and the coating
stack on the back side of the etalon consists of altering
amorphous silica (SiO2) and tantala (Ta2O5) layers. Details
on the design can be found in Appendix B. The influence
of alternative spacer materials is discussed in Sec. IV.
The Einstein Telescope is examined at room temperature,
whereas the crystalline silicon cavity with etalon-based
meta-mirrors is investigated at 124 K because the linear
thermal expansion coefficient vanishes at this temperature,
which is beneficial for the frequency stability.

III. THERMAL NOISE ANALYSIS

In this section, we present basics and assumptions on the
thermal noise analysis for the etalon system. First, the
Brownian noise resulting from thermally activated local
transitions between the minima of asymmetric bistable
potentials, associated to quasidegenerate bond states, is
studied. It leads to a spatially fluctuating surface. The second
source of noise is volume fluctuation of the solid, which
leads to spatially fluctuating light paths and thus to a
fluctuating phase. This noise type is called thermoelastic
(TE) noise. The third noise type—the thermorefractive (TR)
noise—results from fluctuations of the refractive index. For
each component of the etalon system, i.e., the metasurface at
the front, the etalon substrate, and the multilayer stack on the
rear surface Brownian, TE and TR noise are investigated. As
shown by Evans et al., correlations between TE and TR
noise enable a partial compensation of both noise sources
summed up to thermo-optic noise [26]. Here, we consider a
worst-case scenario without any correlation between the
individual noise contributions. This uncorrelated sum of all
noise sources provides an upper limit of the overall noise that
has to be expected.
We now briefly introduce the physical quantities we use

for the discussion of thermal noise. The starting point for
both systems, ET and the crystalline silicon cavity, is the
determination of the thermal noise displacement power
spectral density S in m2 Hz−1. From that, the mirror
thermal noise of the test masses in ET is calculated as
thermal noise displacement spectral density

ffiffiffi
S

p
. As an

uncorrelated sum, this quantity reads

ffiffiffi
S

p
¼

�X
i
Si
�
1=2

: ð3:1Þ

The summation includes all noise contributions Si. To
describe the frequency stability of the silicon cavity in
dependence of the integration time τ [4] instead of thermal
displacement noise, the modified Allan deviation σy is
determined. To this end, first the thermal noise power
spectral density S is converted into a frequency noise
spectral density S̃ in Hz2 Hz−1:

FIG. 1. Schematic of the etalon-based meta-mirror for low
thermal noise and high reflectivity. The gray area indicates the
etalon spacer, the blue one the nanostructured front surface
(metasurface), and the green one the rear surface consisting of a
conventional multilayer stack. The intensity reflectivities are R1 for
the metasurface andR2 for the coating stack.W represents the ridge
width, H the ridge height, and Λ the period of the metasurface.
The metasurface materials index of refraction is denoted ng, the
substrates ns, and the altering coatings n1 and n2. The electric field
vector of the incident light is illustrated for transverse electric (TrE)
and transverse magnetic (TM) polarized light.
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S̃ ¼ c2

ðλLÞ2 S: ð3:2Þ

Here c is the speed of light in vacuum, λ the wavelength of
light, and L the length of the cavity. Again, S̃ contains the
uncorrelated sum of all noise contributions of the system.
From S̃ the modified Allan deviation at the readout
frequency f is computed [27]:

σyðτÞ ¼
�
2λ2

c2

Z
∞

0

S̃ðfÞ sin
4 ðπτfÞ
ðπτfÞ2 df

�
1=2

: ð3:3Þ

A. Brownian thermal noise

In this section we outline the computation scheme of
Brownian thermal noise for the etalon from first principles
[22,28]. The scheme employs Levin’s approach of virtual
pressures [29] and the ponderomotive pressures of the light
field resulting from the Maxwell stress tensor. The starting
point is the fluctuation-dissipation theorem (FDT). It relates
the dissipated power under the effect of a virtual pressure to
the thermal noise of an optical element [29]:

S ¼ 2kBT
π2f2

Wdiss

F2
0

; ð3:4Þ

where kB is the Boltzmann constant, T the temperature of
the optical element, f the mechanical readout frequency,
Wdiss the dissipated power under the virtual pressure, and
F0 the surface integral of the virtual pressure. The spatial
weighing of the virtual pressure is given by the Maxwell
stress tensor (in SI units):

σij ¼ ϵ0ϵrEiEj þ
1

μ0μr
BiBj −

1

2

�
ϵ0ϵrE2 þ 1

μ0μr
B2

�
δij:

ð3:5Þ
The indices i and j denote the spatial coordinate basis, Ei
are the components of the electric field, Bi the components
of the magnetic field, ϵ0ϵr is the permittivity, μ0μr is the
permeability, and δij is the Kronecker symbol. The differ-
ence of the stress tensor inside and outside the investigated
optical surface leads to the ponderomotive light pressure:

p⃗ðr⃗Þ ¼ Δσ̂ðr⃗Þ A⃗
A
ðr⃗Þ: ð3:6Þ

The quantityΔσ̂ must be evaluated directly at the surface as
the difference between the stress tensor components in
vacuum and material. A⃗=A represents the normalized
normal vector on the surface. Generally, this expression
is evaluated using the transition conditions for electric and
magnetic fields at the surface. For example, if the normal
vector of the surface is parallel to the direction i, and the
material is not magnetically active, i.e., μr ¼ 1, the pressure

can be expressed by the continuous field components either
inside or outside the material:

pi ¼
1

2

�
D2

i

ϵ0

�
1

ϵ1
−

1

ϵ2

�
þ ϵ0ðE2

j þ E2
kÞðϵ2 − ϵ1Þ

�
; ð3:7Þ

with the electric displacement field Di ¼ ϵ0ϵE and the
permittivity ϵ0ϵ1 outside and ϵ0ϵ2 inside the material.
Applying the ponderomotive pressure, modulated by the
readout frequency f, on the optical component introduces
an elastic deformation energy density Eel into the compo-
nent. This leads to a dissipation of energy, proportional to
the mechanical loss angle Φ of the material:

Wdiss ¼ 2πf
Z
V
ΦEeldV: ð3:8Þ

With the dissipated energy Wdiss and Eq. (3.4), Brownian
thermal noise can be computed. Equation (3.8) illustrates
that thermal noise is affected by the spatial distribution of
the mechanical loss in combination with the spatial dis-
tribution of the electromagnetic fields determining the
fluctuation readout. As a rule of thumb, the detrimental
effect of mechanical losses on Brownian noise is smaller,
the lower the amplitudes of the relevant electromagnetic
field components at the surface of the lossy material. That
means, to mitigate Brownian thermal noise, it is essential to
deliberately shape the spatial distribution of the mechanical
losses and, if possible, the distribution of the electromag-
netic field. This is the reason why highly reflective
metasurfaces made of high refractive index materials can
exhibit an extraordinarily low thermal noise [22,23]. In
these structures, the electromagnetic field is localized
within the volume and the field at the surface is reduced
(see Sec. IVA). This leads to a drastically reduced, i.e.,
optimized, readout of thermal noise. The computation of
thermal noise in binary high-reflectivity metasurfaces is
discussed in detail in [23].
Brownian thermal noise of plane etalons coated with

multilayer mirrors on the front and back surface can be
described by the approach investigated in [30,31]. However,
in the present case, the periodic metasurface requires us to
additionally apply a spatially oscillating pressure to the
etalon substrate. The spatial oscillation period is the period
of the metasurface. Thus, additionally, the elastic energy due
to this oscillation Eosc must be considered. For this problem,
an analytical solution does not exist yet. A comprehensive
numerical computation with finite element analysis is
challenging, because the spatial oscillating period is much
smaller than the whole etalon system (e.g., in the case
of ET by a factor of 500 000 smaller), which would
inevitably lead to an immense number of vertexes in the
finite element simulation. To circumvent this problem, we
develop a semianalytical approach. We analytically calculate
the deformation energy density induced by the smooth part
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of the pressure, which is determined by the shape of the
incident light beam. The spatial intensity profile of a
Gaussian distributed light beam reads

IðrÞ ¼ I0 exp

�
−
r2

r20

�
; ð3:9Þ

where r is the distance from the center of the beam,
measured on the reflective surface. I0 represents the intensity
at the center r ¼ 0 and r0 is the Gaussian beam radius, where
the intensity has dropped to 1=eI0. Not the total ponder-
omotive pressure acts on the front surface of the etalon,
because a small fraction 1 − R1 of the light is transmitted.
Therefore, the pressures are scaled with the coefficients e1
for the front surface and e2 for the rear surface, respectively.
For an etalon tuned to antiresonance, the coefficients can be
expressed by [31]

e1 ¼
ffiffiffiffiffiffi
R1

p ½1þ ð1þ nsÞ
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p þ R2� þ
ffiffiffiffiffiffi
R2

p ð1 − nsÞ
ð1þ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p Þ2 ;

ð3:10Þ

e2 ¼
ns

ffiffiffiffiffiffi
R2

p ð1 − R1Þ
ð1þ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p Þ2 : ð3:11Þ

Thus, by adjusting the reflectivities of the etalon’s front and
back side, it is again possible to minimize the thermal noise
readout.
The spatially oscillating part of the elastic deformation

energy is determined for one single period of the metasur-
face using COMSOL [32]. The intensity of the incident light
is assumed to be constant over the structural period. This is
valid if the Gaussian beam diameter is much larger than the
period. For ET, the period is about 6700 times smaller
than the beam radius and for the silicon cavity it is about
500 times smaller. The numerical result for a single period
is then scaled to the whole Gaussian readout following the
scheme in [23]. Both contributions to the elastic energy, the
smooth and the oscillating, are then summed to provide an
upper limit of the overall noise. In the limit of a large
substrate size with thickness h ≫ r0 and diameter d ≫ r0,
the etalon thermal noise can be computed by (using [33])

SsubB ¼ 4kBT
πf

�
Eosc þ e21

1

2
ffiffiffiffiffiffi
2π

p 1 − ν2

r0Y

�
Φ; ð3:12Þ

with the Poisson’s ratio of the substrate ν and the Young’s
modulus Y. Φ is the loss angle of the substrate material.
The third contribution to Brownian noise results from the

coating stack at the back side of the etalon. In the far field,
at the back side of substrates with thicknesses much larger
than the wavelength, any spatial modulation of the light
field caused by the metasurface can be neglected. The
etalon we consider here has a thickness which is by a factor

of 4000 larger than the wavelength of light. Thus, the
field distribution has in good approximation a Gaussian
profile—both in reflection and in transmission. With this
approximation, the coating thermal noise can be calculated
with the model by Nakagawa et al. [34]. The respective
power spectral density now has to be scaled with the factor
e22. It reads

SlayB ¼ e22
2kBT
π2f

ð1þ νÞð1 − 2νÞ
Y

d
r20
Φ; ð3:13Þ

where ν is the mean Poisson’s ratio and Y the averaged
elastic modulus of the layer stack. Φ is the averaged
mechanical loss angle of the two coating materials and d
represents the total thickness of the layer stack.

B. Thermoelastic noise

A nonlinear component of the thermo-optic noise is the
thermoelastic noise. In contrast to conventional mirrors, it
turned out not to be negligible in the composition of thermal
noise of etalon-based reflectors. However, the TE noise is
studied very well for conventional mirrors and etalons
[26,31]. The fluctuation-dissipation theorem is applicable
to this noise type, as well. The main difference to the
computation of Brownian noise is that here the dissipation
mechanism is the heat flow caused by local volume
fluctuations. In its general form, this dissipated power is [35]

Wdiss ¼ 2πκT

�
Yα

ð1 − 2νÞCρ
�

2
Z
h

Z
R

0

½∇θ�2rdr; ð3:14Þ

where κ is the thermal conductivity,C is the thermal capacity
per unit volume, Y is the Young’s modulus, ν is the Poisson’s
ratio, α is the thermal expansion coefficient, and ρ is the
density. The quantity θ is defined as the trace of the strain
tensor, which reads in cylindrical coordinates

θ ¼ ϵrr þ ϵϕϕ þ ϵzz: ð3:15Þ

The thermoelastic noise of the substrate and the multilayer
on the rear surface can be computed with the dissipated
energy given by Eq. (3.14). In accordance with the work by
Heinert et al. [21], the metasurface contribution to thermo-
elastic noise is evaluated numerically by means of rigorous
coupled wave analysis (RCWA) [36]. The computation is
performed as follows: generally, a temperature change ΔT
leads to a relative length change δ ¼ αΔT. In the case of
small temperature changes ΔT ≪ T, this results in a linear
change of the reflected lights phase:

δφ ¼ KTEδ; ð3:16Þ

where KTE is a numerically determined proportional factor.
For this computation, the following three contributions must
be considered: (i) the geometrical change of the metasurface
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ridge’s height and width, (ii) the effective movement of the
ridges towards the incident light, and (iii) the change of the
metasurface period. For more details on the implementation
of the numerical analysis, see Appendix A. Thus, the
metasurface’s contribution to TE noise reads [21]

SgratTE ¼
�

λ

4π
KTEα

�
2

ST; ð3:17Þ

where ST represents the noise power of temperature fluc-
tuations introduced in [37]

ST ¼ kBT2

π3=2r20
ffiffiffiffiffiffiffiffiffiffiffi
ρCκf

p : ð3:18Þ

C. Thermorefractive noise

The second component of the thermo-optic noise results
from the spatially fluctuating index of refraction in the
material crossed by the light field [31]. For the substrate TR
noise, the power spectral density reads [31]

SsubTR ¼ e22
kBT2βκd

π2ρ2C2r40f
2

�
1þ 1

1þ ð4π=λ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=2πCρf

p Þ4
�
;

ð3:19Þ
where β ¼ dn=dT is the thermo-optic coefficient. Similarly
to Brownian noise, also the thermorefractive noise scales
with the weighing coefficients ei. The second term of (3.19)
results from the standing wave inside the etalon tuned to
antiresonance. For the coating, TR noise follows [31]

ScoatTR ¼ e22 ×
kBT2β2effλ

2
0

π3=2
ffiffiffiffiffiffiffiffi
κρC

p
r20

ffiffiffi
f

p ; ð3:20Þ

with the effective thermo-optic coefficient of [31]

βeff ¼
1

4

β1n22 þ β2n21
n21 − n22

; ð3:21Þ

where the index 1 indicates the quantity of material 1, i.e.,
fused silica, and the index 2 indicates the material 2 of the
multilayer, i.e., tantala. The metasurface contribution to TR
noise is again computed using the RCWA code. The com-
putation is performed as follows. A change in the refractive
index of the metasurface material Δn changes the phase of
the reflected light. For small values Δn ≪ n, the phase
change of the reflected light is proportional to this change:

Δφ ¼ KTRΔn; ð3:22Þ
with the proportional constant KTR. This constant is evalu-
ated numerically (see Appendix A). Thus, the noise power
can be expressed as [21]

SgratTR ¼
�

λ

4π
KTRβ

�
2

ST: ð3:23Þ

IV. RESULTS AND DISCUSSION

A. Optical optimization

The optical design of the etalon configuration aims at a
maximum reflectivity in combination with low thermal
noise. As demonstrated in the previous section, the noise
contributions of the front side and back side have to be
weighed by the coefficients e1 and e2, which, in turn,
depend on the front side and back side reflectivities R1

and R2. Thus, in the etalon configuration, Brownian and
thermo-optic noise are actually coupled, whereby the cou-
pling is dictated by R1 and R2. In this section we illustrate
the influence of metasurface reflectivity R1 and the resulting
fabrication tolerances on the weighing factors e1 and e2. To
this end, the overall transmission of the combined etalon
system is<6 ppm and we assume a coating stack reflectivity
R2 of 99.9994% as a typical value for reflectivities of high-
performance multilayer mirrors [1] (see Table IV).
The structure parameters of the metasurface, a subwa-

velength binary grating structure with one-dimensional
periodicity, are determined by means of RCWA [36]
(wavelength 1.55 μm). As discussed in Sec. III A, the
use of structures made of a material with high refractive
index, e.g., silicon, are promising for low thermal noise.
Here, we consider the metasurface to be made of crystalline
silicon on a fused silica substrate [silicon on insulator
(SOI)]. We investigate transverse-electric polarized (TrE)
light because it is beneficial for the noise performance of
metasurfaces with one-dimensional periodicity [23].
Structure period, ridge height, and ridge width are opti-
mized to achieve high reflectivities in combination with
large tolerances for the ridge height and ridge width, which
are the critical parameters in the fabrication process. This
parameter range is maximized for a period of Λ ¼ 950 nm.
Figure 2 shows the reflectivity R1 in dependence of the
metasurfaces’ ridge height and width. The permitted
fabrication tolerances for three exemplary reflectivities
are in the range of a few tens of nanometers. For binary
structures, these tolerances are realistic in terms of tech-
nological feasibility [38].1

Besides the residual transmission of the metasurface,
material absorption in silicon may limit the feasible
reflectivity. We evaluated the influence of the silicon
material absorption on the intensity absorption of the
metasurface by means of RCWA. The measured absorption
coefficient of silicon is as low as 5 × 10−6=cm [39]. To
account for a potentially enhanced absorption due to the
large surface-to-volume ratio of the metasurface, as a
worst-case scenario, we assume the absorption coefficient
to be enhanced by a factor of 100 [40]. In this case, the
intensity absorption of the metasurface is still smaller than
10−10 and thus can be neglected.

1The metasurfaces can be fabricated, e.g., via electron beam
lithography and subsequent reactive ion etching.
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A typical spatial distribution of the electromagnetic
energy density in such a high-reflectivity structure is
illustrated in Fig. 3. The energy density is concentrated
within the volume of the silicon ridges and only slightly
enhanced at the surface of the ridges, which leads to the
aforementioned minimized readout of thermal noise.
Table I shows the weighing coefficients e1 and e2 for the

three different values of R1. The metasurface’s contribution
to Brownian thermal noise (scaling with e21) does not
significantly change with R1. That means R1 is not a
critical parameter for Brownian thermal noise. In contrast,
the contributions of thermorefractive noise scaling with e22
[compare Eqs. (3.19) and (3.20)] change by a factor of
more than 5000. Hence, the etalon allows the tuning of the

different noise contributions and provides an additional
degree of freedom for low-noise high-reflectivity mirrors.

B. Einstein Telescope

The design parameters for the end mirrors, i.e., the end
test masses, of the Einstein Telescope are summarized in
Table II. The material parameters for the computation are
listed in Table V. ET is a future interferometric gravitational
wave detector and its low-frequency part (ET-LF) will be
optimized for gravitational wave signals with frequencies
of about 1 to 250 Hz [14]. To mitigate thermal noise, the
mirrors of ET-LF are planned to operate at cryogenic
temperatures of about 10 K. The cryogenic operation of
ET will entail immense technical effort. The proposed
meta-etalon can achieve the cryogenic thermal noise
performance of amorphous multilayer mirrors even at room
temperature. To illustrate that, we compare the thermal
noise of multilayer mirrors at a temperature of 10 K to the
meta-etalon at room temperature. All other parameters,
such as laser wavelength, arm length, and laser power, are
the same as in the cryogenic design [14]. Figure 4 shows
the results of the analysis for all thermal noise contributions
using a metasurface reflectivity of R1 ¼ 99.3%.
In the entire detection bandwidth from 1 to 250 Hz,

thermal noise of the etalon is about 10% smaller than the
sensitivity of ET-LF at 10 K. Brownian thermal noise of
the etalon substrate dominates all other contributions. This
means that a further improvement of the metasurface
reflectivity R1 is not beneficial, as it only affects thermo-
optic (i.e., TE and TR) noise. Compared to mirrors based on
stand-alone high-reflectivity silicon metasurfaces as dis-
cussed for ET-LF [18,21,41], meta-etalons enable another
improvement of the overall thermal noise. This is thanks to
the reduction of Brownian thermal noise as the dominant
noise source at the expense of thermo-optic noise. The
dominance of substrate Brownian noise is additionally
remarkable because conventional multilayer mirrors are
limited by the Brownian noise of the coating stack. There
are still possibilities for further improvement, especially by
using crystalline substrate materials like sapphire or silicon.

C. Single-crystalline silicon cavity

The cavities under investigation are made of single-
crystalline silicon with a length of 21 cm (geometrical
parameters are listed in Table III). A typical application
temperature is the temperature of the zero in the thermal

FIG. 2. Contour plot of the metasurface reflectivity in depend-
ence of structure height H and widthW. The isolines indicate the
parameter spaces for reflectivities of 99.3%, 99.9%, and 99.99%,
respectively.

FIG. 3. Contour plot of the electromagnetic field energy density
in the silicon metasurface of the etalon (metasurface parameters
listed in Table IV). The energy density is normalized to the
incident energy density. The plot shows the spatial distribution in
the x�z plane of two unit cells of the structure. The energy
density is concentrated in the silicon, but it is only slightly
enhanced at the surface of the silicon. In addition, the energy
density in the area between the ridges is reduced and inside the
etalon substrate the energy density decreases rapidly. This
spatially modulated light energy density distribution leads to
the minimized readout of thermal noise.

TABLE I. Overview of the optical etalon parameters e1 and e2
for different reflectivities of the metasurface R1.

Metasurface
reflectivity R1

Coating
reflectivity R2 e1 e2

99.3% 99.999 4% 0.997 454 0.000 790
99.9% 99.999 4% 0.999 637 0.000 113
99.99% 99.999 4% 0.999 964 0.000 011
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expansion coefficient of silicon at 124 K (material param-
eters for the computation are listed in Table VI).
Figure 5 shows the noise contributions for a silicon

cavity with two meta-etalon mirrors for mechanical
frequencies from 10−3 to 107 Hz. At frequencies >1 Hz,

Brownian substrate noise dominates. At low frequencies
<0.1 Hz, the thermorefractive noise of the substrate makes
the main contribution. By changing the residual trans-
mission of the metasurface, the TR contribution of the
substrate can be tuned in the following way. For smaller
residual metasurface transmissions, the readout of the TR
substrate noise decreases with the weighing coefficient e22
(compare Sec. IVA), because the intensity circulating in the
etalon is reduced. Instead, as already mentioned above, the
substrate Brownian noise does not change significantly
with a higher reflectivity of the metasurface, because the
effective ponderomotive pressure on the front surface is
almost independent of R1. Figure 6 shows the influence of
R1 on the thermal noise as a modified Allan deviation for a
silicon cavity with two meta-etalons with R1 ¼ 99.3%,
99.9%, and 99.99%. For comparison, the measured stabil-
ities of the silicon cavities at Physikalisch-Technische
Bundesanstalt (Si1-Si3) are illustrated.
In general, the frequency stability of the meta-etalon-

based cavity is limited by Brownian substrate noise for small
integration times and by the substrate TR noise for large
integration times. The integration time, at which TR noise
becomes dominant, is crucially affected by the reflectivity
R1 of the metasurface. The higher R1 is, the larger the
integration time until which the Brownian noise floor defines
the stability. For R1 ¼ 99.99%, the stability limitation of the
meta-etalon-based cavity in terms of thermal noise is about a
factor of 10 better than for state-of-the-art cavities. The
fabrication tolerances of about 15 nm for the structure’s ridge
width and height (see Fig. 2) are in reach with available
technology. A further improvement of the frequency stability
by a factor of up to 100 can be obtained with crystalline
materials like sapphire or silicon as the etalon substrate or
lower temperatures (e.g., a few K).

FIG. 5. Thermal noise amplitudes of all meta-etalon components
(metasurface, substrate, and rear surface coating) of the Fabry-Pérot
cavity versus the mechanical readout frequency. A residual trans-
mission of 0.7% of the metasurface was assumed. The diagram
shows the Brownian (B), thermoelastic (TE), and thermorefractive
(TR) noise for each component. The black line indicates the
uncorrelated sum over all contributions. The TE coating and TE
metasurface noise are smaller than 10−8 HzHz−1=2.

FIG. 6. Modified Allan deviation versus integration time for
single-crystalline silicon Fabry-Pérot cavities with different
mirrors. Si1-Si3 are cavities with conventional multilayer mir-
rors. The black lines indicate the cavity performance with meta-
etalons as mirrors for different metasurface reflectivities R1.

FIG. 4. Room temperature thermal noise amplitudes of all
meta-etalon components (metasurface, substrate, and rear sur-
face coating) for ET-LF versus the mechanical readout fre-
quency. A residual transmission of 0.7% of the metasurface was
assumed. The plot shows Brownian (B), thermoelastic (TE),
and thermorefractive (TR) noise for each component. The black
line indicates the uncorrelated sum over all contributions. The
current design of ET at a temperature of 10 K (with state-of-the-
art amorphous multilayer mirrors) is shown by the dashed-
dotted line in magenta color.
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V. CONCLUSION

In this paper we presented a concept for a low-noise
highly reflective mirror based on an antiresonant meta-
etalon with a metasurface at the front surface and a
conventional amorphous multilayer mirror at the back
surface. To reach a high reflectivity, the meta-etalon must
be tuned to optical antiresonance. This can be done by
thermal stabilization. Generally, the tolerances for keeping
an optical resonator in antiresonance are large, which is
promising for temperature stabilization. In comparison to
low-noise metasurfaces with ultrahigh reflectivities as
stand-alone mirrors in high-finesse cavities, the two-mirror
system of the meta-etalon relaxes fabrication tolerances and
thus technological challenges in the realization.
We demonstrated as an example the benefit of the

meta-etalon based on a fused silica substrate for two
devices. For the ET, we demonstrated that the etalon
achieves the cryogenic noise performance of conventional
multilayer mirrors even at room temperature. In crystalline
silicon resonators, the meta-etalon enables a thermal noise
reduction by a factor of 10 with fused silica as substrate
material.
The meta-etalon is limited by substrate Brownian noise,

which can be further reduced by a factor of up to 100 using
crystalline substrate materials like sapphire or silicon. In
contrast, conventional mirrors are limited by the Brownian
thermal noise of the high-reflectivity coating. In the meta-
etalon, thermal noise of the metasurface and coating
thermal noise are both smaller than substrate Brownian
noise by a factor of about 104 and thus negligible. Due to
the dedicated spatial weighing of the dissipation processes
in the meta-etalon, the use of amorphous coating materials
with high mechanical losses of about 10−4 does not
compromise the noise performance of the mirror. This
can be considered as a paradigm change for the design and
optimization of high-precision sensing devices, providing
new degrees of freedom to optimal optical performance
with minimum thermal noise.
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APPENDIX A: SUPPLEMENTAL MATERIAL ON
THERMAL NOISE COMPUTATION

In this appendix we provide supplemental information in
the computation of the different types of thermal noise.

1. Brownian noise

a. Brownian noise: Metasurface

The computation of Brownian thermal noise of binary
metasurface mirrors is comprehensively discussed in [23].

The computations are based on finite element simulations
with COMSOL Multiphysics [32] and they are performed
over one period of the metasurface structure using Floquet
boundary conditions k⃗ ¼ 2π=Λe⃗x, where e⃗x represents the
unit vector in the x direction (compare Fig. 1 in Sec. I). The
simulation in COMSOL is set up as a two-dimensional
analysis in the x–z plane.
In the first step, the electromagnetic field in the structure

is computed with a spatially constant energy density of the
illuminating light field. The power of the incident light is
set to dP̃=dy ¼ 1 W=m (in the y direction). Then, the
resulting Maxwell stress tensor is applied to the interfaces
of the structure. This introduces an elastic deformation
energy of density dẼ=dy to the metasurface ridges:

dẼ
dy

¼ 5.324 × 10−30
J
m
: ðA1Þ

Following the scheme in [23], we evaluate thermal noise
for the illumination by the entire Gaussian beam:

Sð1ÞB ¼ 2kBT
π2f

Λ
r20

dẼ
dy

�
2

c
dP̃
dy

�−2
Φ: ðA2Þ

b. Brownian noise: Substrate

As discussed in Sec. III, the substrate Brownian noise
consists of twocontributions: a smooth contributiondue to the
Gaussian beam and a spatially oscillating contribution origi-
nating from the periodic metasurface. The smooth part is
evaluated analytically using Eq. (3.12) in Sec. III. The second
part is again calculated using a two-dimensional COMSOL

simulation. The resulting linear energy density reads

dẼ
dy

¼ 2.122 × 10−30
J
m
; ðA3Þ

which is about 4 orders ofmagnitude smaller than the smooth
Gaussian part.

c. Brownian noise: Coating stack

The Brownian noise of the coating stack is evaluated
analytically using Eq. (3.13) for a coating stack of 18 λ=4
doublets of silica/tantala.

2. Thermoelastic noise

Substrate and coating thermoelastic noise are computed
analytically following Sec. III. The metasurface’s TE noise
is evaluated numerically using RCWA [36]. Figure 7 shows
the linear relationship between the light phase Δφ reflected
by the metasurface and the parameter δ ¼ αΔT. The slope
of the line is the coefficient KTE:

KTE ¼ 5.21: ðA4Þ
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3. Thermorefractive noise

Substrate and coating TR noise are evaluated analytically
following Sec. III. The parameter for the determination of
the metasurface’s TR noise, KTR, is the slope of the plot
in Fig. 8:

KTR ¼ 0.71: ðA5Þ

APPENDIX B: TABLES

FIG. 8. Reflected light phase versus change of the refractive
index of the metasurface material (silicon). The values are
obtained numerically with RCWA. Red denotes the linear line fit.

TABLE II. Design parameters of the end mirrors of the Einstein
Telescope low-frequency detector [14].

Parameter Value (cm)

Mirror diameter d 50
Mirror thickness h 50
Gaussian beam radius r0 6.36

TABLE III. Parameters of the single-crystalline silicon cavity
for the stabilization of laser light at a frequency of 1.55 μm [25].

Parameter Value

Cavity length L 210 mm
Central bore diameter 2a 5 mm
Mirror diameter d 12.7 mm
Mirror thickness h 5 mm
Gaussian beam radius r0 483 μm

TABLE IV. General parameters for the noise computations of
the meta-etalon mirror.

Parameter Value

Wavelength 1550 nm
Polarization TEM00

Metasurface material c-Si
Metasurface refractive index ng 3.48
Metasurface period Λ 950 nm
Metasurface ridge width W 298 nm
Metasurface ridge height H 175 nm
Metasurface residual transmission t1 <0.7%, <0.1%, <0.01%

Substrate material SiO2

Substrate refractive index n2 1.45

Coating composition 18λ=4 doublets of SiO2=Ta2O5

Coating residual transmission t2 6 ppm

TABLE V. Material properties of the meta-etalon components
at room temperature [21,23].

Parameter Silicon Substrate Ta2O5 layer SiO2 layer

β (1=K) 1.8 × 10−4 8 × 10−6 1.4 × 10−5 8 × 10−6

α (1=K) 2.62 × 10−6 5.1 × 10−7 3.6 × 10−6 5.1 × 10−7

ρ (kg=m3) 2331 2202 6850 2202
Y (Pa) 130 × 109 72 × 109 140 × 109 72 × 109

ν 0.28 0.17 0.23 0.17
κ [W=ðKmÞ] 148 1.38 33 1.38
C [J=ðKkgÞ] 713 746 306 746
Φ 5 × 10−5 4 × 10−10 2 × 10−4 4 × 10−5

n 3.48 1.45 2.06 1.45

FIG. 7. Reflected light phase in dependence of different relative
length changes. The values are obtained numerically using
RCWA. Red denotes the linear line fit.

TABLE VI. Material properties of the meta-etalon components
at 124 K [42].

Parameter Silicon Substrate Ta2O5 layer SiO2 layer

β (1=K) 9 × 10−5 4.2 × 10−6 1.4 × 10−5 4.2 × 10−6

α (1=K) ≈0 −4.8 × 10−7 3.6 × 10−6 −4.8 × 10−7

ρ (kg=m3) 2331 2203 6850 2202
Y (Pa) 130 × 109 72 × 109 140 × 109 72 × 109

ν 0.28 0.16 0.23 0.16
κ [W=ðKmÞ] 638 0.804 33 0.804
C [J=ðKkgÞ] 328 339 306 339
Φ 5 × 10−6 10−7 2 × 10−4 4 × 10−5

n 3.48 1.45 2.06 1.45
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