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We apply the Wigner-function approach and chiral kinetic theory to investigate the angular momentum
and polarization of chiral fluids composed of Weyl fermions with background electric/magnetic fields and
vorticity. It is found that the quantum corrections in Wigner functions give rise to nonzero antisymmetric
components in the canonical energy-momentum tensors, which are responsible for the spin-orbit
interaction. In global equilibrium, conservation of the canonical angular momentum reveals the
cancellation between the orbital component stemming from side jumps with nonzero vorticity and the
spin component in the presence of an axial chemical potential. We further analyze the conservation laws
near local equilibrium. It turns out that the canonical angular momentum is no longer conserved even in the
absence of background fields due to the presence of a local torque coming from the spin-orbit interaction

involving temperature/chemical-potential gradients, which is implicitly led by collisions.
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I. INTRODUCTION

Recently, there have been intensive studies upon the
transport properties of chiral matter composed of Weyl
fermions, which involve parity-odd transport such as the
chiral magnetic/vortical effects (CME/CVE) in relation to
quantum anomalies [1-4]. In experiments, relativistic
heavy ion collisions (HIC) and Weyl semimetals provide
the suitable testing grounds for exploring such anomalous
transport [5,6]. Particularly, recent observations of the
negative magneto-resistance in Weyl semimetals suggest
the existence of CME [7]. In HIC, the light quarks in quark
gluon plasmas (QGP) could be approximated as massless
fermions at finite temperature. Despite further interactions
with gluons, these quarks move collectively and form a
chiral fluid. Such a fluidlike scenario following the
charge and energy-momentum conservations in HIC could
be rather different from the case in Weyl semimetals.
Nevertheless, at high-temperature regime, the fluidlike
behaviors of Weyl semimetals have been observed in a
recent experiment [8]. It is thus intriguing and imperative to
further investigate the anomalous transport of chiral fluids.
In theory, there exist a variety of approaches to analyze
anomalous transport of Weyl fermions including field-
theory calculations based on Kubo formula [3,4,9], kinetic
theory [10-21], relativistic hydrodynamics [22-25], lattice
simulations [26-32], and gauge/gravity duality [33-36]. In
addition, the anomalous transport induced by rigid-body
rotation has been investigated in some theoretical studies
[37,38]. Moreover, the recent studies of nonequilibrium
anomalous transport upon chiral fluids have incorporated
interactions based on the chiral kinetic theory (CKT)
[17-20,39].
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On the other hand, the observations of global polariza-
tion for A hyperons in HIC [40,41] have triggered increas-
ing studies upon the spin-polarization formation and
angular momenta of relativistic fluids. In fact, the studies
of spin polarization led by global rotation can be traced
back to the Barnett effect [42] and Einsteinde Haas effect
[43]. In the context pertinent to HIC, a variety of theoretical
models were proposed to address the relevant issues such as
the microscopic spin-orbital coupling model [44,45], the
statistical-hydrodynamic model [46-51], and the kinetic-
theory approach with Wigner functions [10,52,53].
Also see Ref. [54] for a review of some aforementioned
approaches. More recently, to understand the spacetime
evolution of local polarization and vorticity, the relativistic
hydrodynamics with spin-1/2 particles has been introduced
in Refs. [55-58]. Nevertheless, the authors therein just
focus on massive fermions. There were also related studies
for polarized relativistic fluids through an effective-field-
theory approach [59,60]. For Weyl fermions, the local
polarization has been investigated via the Wigner functions
in Refs. [10,61], while the orbital angular momentum and
collisions have not been incorporated in the previous
studies. Although the polarization density characterized
by a Pauli-Lubanski pseudovector is independent of the
orbital contributions in terms of the Wigner-function
construction [48,52], the orbital part in fact encodes the
angular-momentum transfer between the fluid and internal
degrees of freedom such as the spin of quasiparticles.

In this paper, we employ the CKT in Wigner-function
formalism to analyze the interplay between spin and orbital
angular momentum near local equilibrium in chiral fluids,
which may shed some light upon the spacetime evolution of
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polarization for Weyl fermions and the role of inter-
actions therein. The paper is organized as the following:
In Sec. II, we first review the construction of angular-
momentum (AM) tensors through the canonical and
Belinfante energy-momentum (EM) tensors for spin-
1/2 fermions with background electric/magnetic fields
and further write down the corresponding phase-space
distributions via Wigner functions. In Sec. III, we then
implement the Wigner functions and CKT up to O(#) to
evaluate the AM-tensor density and analyze the angular-
momentum conservation with the interplay between spin
and orbital components for chiral fluids in global and
(near-)local equilibrium. In Sec. IV, we finally make short
conclusions and outlook.

II. ANGULAR MOMENTA FROM
WIGNER FUNCTIONS

A. Angular-momentum tensors for fermions

For simplicity, we will focus on only the dynamics
of fermions under background electric/magnetic fields.

Considering the quantum electrodynamics (QED)
Lagrangian with background gauge fields,
_(ih <
£=w<3r”D,,—m>w, (1)

<~ - -
where D, =D, — D; and D, =0, +ieA,/h denotes
the covariant derivative. Based on the Noether’s theorem
and equations of motion, we obtain the canonical EM
tensor,

_ ih PaS 12 DA
T =Tm T, T™ :%WJ’{”DD}V/, T = %1/77[”1)”]1//,

and the canonical AM tensor or the so-called mass-energy-
momentum tensor or the generalized angular momentum
(see e.g., [62-64]),

A A A
ME" = M + MY,
A h

A - = g
Mg = El//{?ﬂ, iy = _Eeﬂﬂw VYsY oY
Mj':"w lh _ 2 Y4 l/l)ﬂ

0 = ?l//y (x DY —x )l//

= XTW — XVTH + XTH — x* j‘”’ 2)

where AWBY} = A#BY + A¥B#, AlWBY) = A¥BY — AVBH,

I =L[y*, y"], and D only acts on y and . For the
canonical EM tensor 7", we decompose it into a sym-
metric EM tensor 7% and an anti-symmetric one 7%,
where T is also known as the Belinfante EM tensor. For
the canonical AM tensor, we can also separate the con-
tributions from the spin and orbital angular momentum.

Here M’;’;”O represent the spin/orbital AM tensors. Such a
decomposition for the canonical AM tensor is widely
utilized in the study of nucleon spins in deep inelastic
scattering (DIS) [65,66] (see Ref. [64] for a comprehensive
review). The canonical AM tensor can be related to the
Belinfante AM tensor constructed by only the symmetric
EM tensor [62—-64],

M}l}ﬂl/ — YHTW _ T — %l/—/(xﬂy{/lgv} _ xu},{ﬂBu})w’
(3)
through equations of motion and a total-derivative terms,
2
M =

My + 3V P, (4)

where @,VWHW] corresponds to a superpotential antisym-
metric in 4, # and y, v." In the absence of background fields,
both Mé”” and Mf,f‘” are conserved,

A A
HME = o,ME" =0, (5)
based on the conservation of the symmetric EM tensor.
The conservation of ME* also implies alegi”n = -27%/.

Accordingly, the antisymmetric component of T# serves
as a source or sink for spin currents. When having
background fields peculiarly an electric field or in the
case for local equilibrium of relativistic fluids, the
conservation laws turn out to be more involved due to
collisions. We will further discuss such a case in a later
section.

We may now construct the quantum expectation values
for M’g‘/'jg(q,X) in phase space via the Wigner-function
formalism. Wigner functions are defined as the Wigner
transformation of lesser/greater propagators,

<(>)

s (g x) = / BYEES P (xy).  (6)

where §<(x,y) = (" (y)w(x)) and $7 (x. y) = (w(x)y"(y))
as the expectation values of fermionic correlators with ¥ =
x—yand X = (x + y)/2. Here the gauge link is implicitly
embedded to keep gauge invariance and hence g, denotes
the kinetic momentum. For convenience, we will work in

the Weyl basis w! = (] .y%), which gives

Tn Ref. [64], it is shown VP = xrGP» — X¥GPM# where
GPv =L (MY + MY+ M%), One can thus write down the
exact relation between canonical and Belifante AM tensors in
phase space in terms of Wigner functions. Furthermore, given

Eq. (14) as will be derived shortly, we find M¥(X) =
ME(X) + L ePhed (X1 J5,(X)). However, this relation will be
further modified when collisions are involved.
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Based on (7), we can now construct the expectation values
of EM and AM tensors for Weyl fermions,”
() = Tis(oto(2) DS (.
+60 (D — DI)S7 (x.y),
() = Tl (0 - DS (x.y)
+64 (DY~ DI)S7 (x.y)), (8)
and
(M) = 2 it (o,55(x.y) 5,7 (x.).
(i) = (D — Dk~ DY 4 DY)
x (Sg(x.y)o* + S (x.y)5")). ©)

One can then perform the Wigner transformation to write
down the expectation values in terms of the Wigner
functions in phase space. It is useful to exploit the rule
of transformation found in [67] such that

<

= Vi o
DS (x.y) = 7—171 I, |S (¢.X),

<

. < \Y
DS (ny) = (4 7'M, )5 (4. ), (10)
where

. ) n )
vu = 8;: +J0(D)Fvﬂaqv Hﬂ =4y, + EJI(D)FUﬂatp

0=, (1)
We will hereafter use 9, = 9/0X* for convenience. Here
Jo(0), ji(d) are modified Bessel functions and 0, in [J
only act on the field strength F,, when having spacetime-
dependent background fields. Making the # expansion,
which corresponds to the gradient expansion for 0, < g,
one finds

*For the computation of (M**), we treat x* in M4" as the
position-space operator, which then acts on both y(x) and ().

hZ
Vi = O+ Fudl = 52 (0,007 F 0% + O(*),

h2
I, =¢q,+ E@,,@ZFW@Z + O(n*). (12)

< < < <
Using (10) and parametrizing Sp = 6”Sg, and S; = 0”S;,,
the Wigner transformation of (8) yields

T(q.X) =T1S5" (¢.X),  T"(q.X)=TIS;"(¢.X),

<
M (q.X) =—he*Ss,(¢.X),

Mg* (q.X)=X"T*(¢.X) = XTH(q.X)
<A
+h(F VP =3, VH)Sy (9.X), (13)
< < < < < < _
where Sy, = Sg, + S1, Ssy = Sgy — Spy, and T =
T* + T%*. Combining M¥*(g,X) and M%*(q,X), one
thus obtain the canonical AM tensor in phase space

M’g‘ “(q,X). After integrating over momentum space, we
acquire the canonical AM-tensor density as

4
M 0= [ S L0 (0. X)+ M8 (0 )

:—geiuvaSp(XH(XMTM(X)—X”T*"(X)), (14)

in which the total-derivative terms in M%* (g, X) do not
contribute and the expression is anticipated from its field-
theory definition. In addition, by carrying out the same
procedure, we also find the Belinfante AM tensor

M} (q.X) = XFT*(q,X) — X*T*(q. X)

h <A}
R @i —ovis, @.x). (9

and its density

4
M (X) = / (21”314 M (g, X)

= XFT™(X) — X*T*(X), (16)

which takes the expected form as well.

B. Angular-momentum density and polarization

In this subsection, we briefly discuss the particle
polarization constructed from AM tensors. The usual
relativistic angular momentum is defined by integrating

g
Mg

space, which could be used to define the polarization.
We can thus define the AM density in phase space in terms

(¢,X) over a spacelike hypersurface in position
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of a temporal direction characterized by a local timelike
vector perpendicular to the hypersurface (In DIS, it is
instead taken along a light-cone direction.), ##(X), nor-
malized as 7i> = 1. The AM densities in phase space are
then written as M{ (g, X) = ﬁ,lMAC”/”B(q, X). On the other
hand, from M’C /5> We can accordingly introduce the Pauli-

Lubanski pseudovectors,

1
W’é/B(q,X) = _Eeﬂyaﬁnu(MC/B)aﬂ(q’X)’ (17)

in which we further promote ¢, to I1, here as opposed to the
usual definition. Inversely, we have

Mc/B(q X) = P WC/Bv(q X) +nn Mc/B(q’X)

- i, M 5(q. X). (18)
where  W¢ p(q,X) = (IT- 1)~ Wy, 5(g. X). From (13),
— H
since T* = II*Sy, it is found
<pu h <A

—nSs —

V_V’é(q,X) )G"”“/jl—[yﬁiaq[avﬁ]Sv s (19)

200 11

where we use (IT-S5) = 0 from the master equations of
Wigner functions [18,67]. We also find

W(gq. X)

<A
e””“ﬂl'l,,fuaq[avﬂ]Sv .

< n
=~ VTILX,Syp~ G
(20)

The canonical Pauli-Lubanski pseudovector is usually
proposed to define the polarization of particles in HIC
[48,52]. One may utilize W(q, X) to define the polarization
vector.” By integrating over momentum space in Eq. (19),
one may define the polarization density characterized by
just the axial-charge current [52],

L = [ oW =550, @

In a particular case when the superindices a, f in

(1/3
C/B

one could have consistent definitions for polarization in

(g,X) are the spatial directions transverse to 7*,

terms of either MC[;B(q,X) or We p(g,X) through the
relation,

3 . . . . .
For massive fermions, one may consider the normalization by
the mass of fermions instead of 7 - ¢ [48].

PPl MEfy(a.X) = P, Wesp (4. %) (22)
where P‘(‘h)a, =ny — n“ny with 7, being the Minkowski-
spacetime metric. As shown in Eq. (19), the last term
starting at O(h) coming from the orbital angular
momentum could also contribute to the spectrum of
polarization for both massless and massive fermions, which
will be more practical for the phenomenology in HIC.
Nonetheless, we will investigate the spectrum of polariza-
tion elsewhere and only focus on the study of AM-tensor
density in this paper.

III. SPIN-ORBIT INTERACTION
OF CHIRAL FLUIDS

A. Global equilibrium

We may now implement the thermal-equilibrium Wigner
functions perturbatively derived from Kadanoff-Baym-like
(KB-like) equations shown in Refs. [18-20] to compute the
AM-tensor density and analyze angular-momentum con-
servation of chiral fluids composed of Weyl fermions. For
simplicity, we first consider the global-equilibrium case
with constant temperature and chemical potentials in the
presence of only magnetic fields and fluid vorticity.

The Wigner function for right-handed fermions up to
O(h) was derived in Ref. [18],

<p

95(q°)\ 4n
+ heﬂbaﬂqu(zﬂ #qz)) fgl ) (23)
where
w €ﬂl/(lﬂ

=— 24

corresponds to the spin tensor depending on a frame vector
n¥. Here we denote Dﬂfém = A,;fg[o —Cy, where A, =
0y + Fudy, Cp=3570" —5570) with ;%) being
lesser/greater self-energies and fg”) and f,(;l) =1- f<q”>
being the distribution functions of incoming and outgoing
particles, respectively. Also, the frame vector n* comes
from the choice of the spin basis, which is different from 72#
for fixing the temporal direction in local spacetime
although one can set n* = i* for particular conditions.
In addition, &(q - n) represents the sign of ¢ - n. The O(h)
terms in (23) contributes to the leading-order quantum
corrections for the anomalous transport, in which the spin-
tensor-dependent term dubbed as the side-jump term
engenders the magnetization current and partial contribu-
tion of the CVE. On the other hand, the last term in (23)
leads to the CME in equilibrium and the modified
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dispersion relation from the magnetic-moment coupling in
CKT. It is found that the global-equilibrium distribution
function takes the form [17,19]

fzq(n) _

(e + 1)
iz

s= (2 =+ 00, ). e

where # = 1/T is the inverse of temperature T, jix = pug/T
with py being a charge chemical potential for right-handed
fermions, and u* represents the fluid velocity. Now,
Eq. (23) and Eq. (25) result in the global-equilibrium
Wigner functions for right-handed fermions [19],

<H
SRgeq

fle”mﬂFa 0
+ fﬂaqvé(qz)] (q )’ (26)
where £\ = (efl¢u=#r) 4 1)=1 corresponds to the usual

Fermi-Dirac distribution function and @* denotes the fluid
vorticity defined as

1
ot = Ee/‘”"ﬂuv(aauﬁ). (27)

Note that Eq. (26) is independent of the choice of n*. For
left-handed fermions, the sign in front of each O(#) term
should flip.

Given Eq. (26), we may evaluate the EM/AM tensor
densities, which are independent of the temporal direction
n#. Carrying out the explicit computations of the symmetric
EM tensor and charge current in global equilibrium, for the
first-order inviscid hydrodynamics of right-handed fer-
mions up to O(h), it is found [19]

Thyeq = Wtt*cr = PRO" + oy,
d4q <v <u
= / (271_)4 (qﬂSRgeq + quRgeq),
H H d4 N
JRgeq - NR”” + URnon = 2/ (271') SRgeCl’ (28)

where O = »* — y*u” and the nondissipative quantum
corrections in global equilibrium take the form

H*Ig;lon = hga)R (a)ﬂul/ =+ afu”) + thR(Bﬂuy + BDM”),
URnon = hUBRB” =+ thRa)ﬂ, (29)

and the transport coefficients read

120 4 ' 8z
NR—%3<ﬂR+ﬁ32>, %R_T;O_'_%)’
OBR = fjfz , Sor %3 <ﬁR +ﬂ%) = Ng,
gBRzg—j<1+3§>:‘%’e. (30)

Note that the electric/magnetic fields in this paper are
defined with respect to the fluid velocity,

1
wF,, =E, EeﬂmﬂuyFaﬂ = B,
Faﬂ = —eﬂmﬂB/‘u” + uﬂEa - I/taEﬁ. (31)
Nonetheless, unlike the case for massive fermions

[48,56], in which the quantum corrections only come from
distribution functions, the antisymmetric EM tensor is
nonzero for Weyl fermions. By using Eq. (26), we find*

/(;’4) (C] SRgeq

- = Eg(z)R(

T,

<v
M
ARgeq — 9" Skeeq)

o' — u' o). (32)

Note that such a nonvanishing 7'%.., originates from the
side-jump term. Our finding also agrees with what has been
recently found in Ref. [68] by the density operator
approach. Combining the symmetric and antisymmetric
parts, we thus obtain

T,

W = U UVeR — PO + hpg (BUu + Bul)

n
+ chmR(3a)"u” + @’ut) (33)

for right-handed fermions. Now, incorporating also the
contributions from left-handed fermions, for which the
O(h) corrections should flip the signs, the vector/axial-
charge currents read

Jll

V/5geq — ‘]Rgeq + JLgeq

= Ny st + hogy sB" + ho,ys0t,  (34)
where

“In fact, the side-jump term and the delta-function-derivative
term both lead to the 7 corrections with magnetic fields on Ty, .
whereas these contributions exactly cancel each other. See

Eq. (A15) for details.
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NV:”6V(T2+3”5+”V>, Ns=E5 c ( 3”V+”5>,

4 2
T uy "’ﬂs
<6 + 87> )’

Hs)v Mvﬂs
(35)

UBV/s——4 5 Opy =

and py s = pg + py . These charge currents are nothing but
the CME, CSE, and CVE. Note that the axial-charge
chemical potential s can be regarded as a spin chemical
potential since the spin component of the angular
momentum is characterized by the axial-charge current.
Furthermore, we find

n
Tﬁvgeq = T%egeq Tl/:ULgeq ngv (0" — "), (36)
and thus
T/éle/q Tl]?;;eq + Tﬁléeq
= utubey — py®O*” + hégy (B u* + B*u")
h
+ 5 6{0V(3wﬂuy + wyu”) (37)

where ey = 3py = eg + €1, is parity even while

HyHs
Epv =Epr—EBL :W,

Eov="C6wr— S0 = <T2+4_2(3/"V +ﬂ5)) =N; (38)

are parity-odd. By inserting J% and 7%/ into Eq. (14), one is
able to write down the spin/orbital AM-tensor density,

M}, (X). Eventually, in global equilibrium, one finds

M* (x

h
Sgeq( ) = Eeiﬂyp<N5up + hGBSBp + hawap)a

@Au]
— 3 )-i—flfBV(B’{u”]—f—B”]u’l)

Mg‘;eq(X) = Xl {ev <u’1u"]

h
+ §N5(3a)lu"] + o) ul)} . (39)
For Mé’;’;q( ), the leading-order term simply comes from

nonzero axial- charge (spin) density, while the axial-charge
currents from CSE/CVE yield subleading effects. However,
when us = 0, the CSE/CVE contribution should dominate

over M’;’;’;q( ) and accordingly over L{,.,(X) in Eq. (21).

i
For Mpeeq

classical rotation of fluids, while the # corrections are
related to CME/CVE in Tl¢q and the w-dependent 77,

Ageq’
which exist only when pus # 0.

(X), the first term in (39) corresponds to just

In global equilibrium, it is trivially to show the con-
servation of charge currents and symmetric EM tensor,
94y j50eq = OuTeeq = 0. Nevertheless, it is now nontrivial
to show the conservation of the canonical angular momen-
tum. Using Eq. (36), we firstly check 9, Ty, = 0 based on
0-w=0and u-Jw" = 0 in global equilibrium. One thus
obtain

Ay
8A M Cgeq

h
= —Eé‘lﬂypal(.lsgeq)p + ZT”U (40)

Ageq®

By taking J%

Sgeq
BAM'lc”g”eq = O up to O(h). It is found that the spin part is not

conserved by itself at the leading order, which has to be
compensated by the orbital angular momentum particularly
from the side-jump contribution. The nonvanishing 7%,
here plays a role for the angular-momentum transfer.
Physically, it is understood that the collectively orbiting
Weyl fermions, which contribute to the rotation of fluids,
change the direction of a net spin for the fluid cell since the
spin directions are enslaved by the moving directions based
on the conservation of helicity. When ps =0, from
Eq. (34), one finds

= Nsu” and Eq. (36), one also derives

2

h
ouu, "2 (0o, + a5,

Sgeq
+ ops(B'@” — B* ")), (41)

where we employ u - dw* = 0 and u - 9B* = ¢**Pu, B, wy
in global equilibrium from Bianchi identities. However, to
derive the orbital angular momentum at the same order, we
have to apply the Wigner functions up to O(#?), which
have not been derived so far in literature. It is anticipated
that this unknown Ty, at O(A*) should cancel the spin
part and preserve the total angular momentum.

B. (Near-)local equilibrium

In local equilibrium with inhomogeneous temperature
and chemical potentials, the interaction between Weyl
fermions is involved and the conservation laws do not
trivially hold. Nevertheless, these conservation laws can be
determined by the kinetic theory given the details of
collisions. For Weyl fermions, it is again more convenient
to first work in the right/left-handed bases and later
combined the results from two sectors. For right-handed
fermions, it is shown 1 1n Ref. [19] that the local-equilibrium
distribution function f g (") takes the same form as Eq. (25)
in the comoving frame, n* = u*. The nondissipative anoma-
lous transport for J v/ and 7" also remains unchanged in

local equilibrium. However, there exist dissipative correc-
tions coming from interactions. To acquire a general feature
with manifest interpretation in physics, we may simplify
the collisional kernels by employing the relaxation-time
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approximation (RTA). Moreover, we also neglect the inter-
actions between right/left handed fermions for simplicity. In
such an approximation near local equilibrium, the CKT for
right-handed fermions can be simplified as [19,20]

O(q. X) £ ~ - L 251, (42)

TR

where 5f, = £ — peal) genotes the deviation of the
distribution function from local equilibrium and

v
() En

(q-u)

O(g.X) = [q ‘A+n A, + hS(y (0,F )%

+ h(&,,S’(‘;))AD] . (43)

The constant 7 represents the relaxation time characterizing
the inverse strength of interactions between the Weyl
fermions with same chirality. We may write the near-
local-equilibrium deviations on the symmetric EM tensor
and charge four currents as 7" = T** — T};, and 6Jy, )5 =

J’\I//s - ‘]}‘t//Sleq' Here T{‘e':l and Jl\l//Sleq
sions as global-equilibrium ones by simply replacing
constant thermodynamic parameters therein to the local-
equilibrium ones with spatial inhomogeneity. In the follow-
ing computations, we also apply the gradient expansion and
only preserve the 1st-order-derivative (O(0)) terms in the
nonequilibrium deviations.

Solving Eq. (42) for fg,") and plugging the solution into
Wigner functions, after combining with the contribution
from left-handed fermions, the nonequilibrium vector/
axial-charge currents take the form,

have the same expres-

T
5Ji\t//5L = ?R (Gus/vEY 1L + 0wy /sE5.1)

1
+ Ny st (? NT—u- Gu’i) + O(h), (44)

where V| = @, V" for an arbitrary (pesudo)vector V# and
Evysy = E, + TO,jiy 5. Here we drop the higher-derivative
terms and quantum corrections since the classical part
has already led to the O(%) contribution in the angular
momentum. The axial-charge current induced by electric
fields is also dubbed as the chiral electric separation
effect (CESE) [69], for which the corresponding conduc-
tivity has been computed in QED plasmas and weakly
coupled QGP and as well in holographic models [69-72].
In addition, the nonequilibrium deviation upon the sym-
metric EM tensor contains only viscous corrections up to
O(d). More precisely, one finds I = @*@“5T 5 =
(0 u)®" +nor*, where 7 = 0,04 u’ + 0w’ —
21”°6/3)/2 denotes the shear strength and 7, /{ correspond
to shear/bulk viscosities [73]. Here #,/{ depend on 7,
while their explicit forms are not important in our study.

Although there exist no nonequilibrium O(#) corrections
up to O(9), the O(h) corrections will set in at O(5?)
including anomalous Hall effects and viscous corrections
on CME/CVE [19,20]. Nonzero IT"* simply contributes to
part of the orbital angular momentum conserved independ-
ently and irrelevant to the spin component in hydrodynam-
ics. Note that we omit the computations of nonequilibrium
charge densities and energy-density current since they
should vanish according to the matching conditions as
discussed later.

On the other hand, by carrying out an explicit calculation
with the local-equilibrium Wigner functions, we obtain the
nonvanishing 7% depending on also electric fields and
temperature/chemical-potential gradients,

h
Ty = —Efwv(””wb - ')

voy
het Py,

T (%vTaﬂﬂv + 64,5 TOpjis

05T
+ 3N5 % - Gvaﬁ> s (45)

where we utilize

h
TZZEQ/L - :FzéwR/L(uﬂwy - uyw”)

hetvePy _ 0,T
F——=— | 0wr/LTOpfig/1, + Ng/1 -
2 T
GwR/LgR/Lﬁ
_ JoR/LER/LY 46
: (46)

as derived in Eq. (A16). It is clear to see that T%" #
h e 9,Js, near local equilibrium and hence 7% and M
are no longer conserved. However, such nonconservation
has been foreseen by the KB-like equations as the master
equations for Wigner functions and CKT shown in
Eq. (A7), from which we derive

, h
Ty = Ze’mﬁ (anSﬂ + 2na/((q n)Cs p—n- Csﬂuﬂ))

q
h u,o0J
= Zé‘”’/aﬂ (80,]5/; + TRSL/}> , (47)

where we take the RTA to acquire the second equality. It
turns out that the near-local-equilibrium corrections on 7%’
implicitly depend on collisions even though they can be
directly derived from local-equilibrium Wigner functions.
By using Eq. (44), one can check that Eq. (47) agrees with
Eq. (46) up to O(h0).

Moreover, by utilizing the results in Refs. [19,20], in the
RTA, the CKT yields the following conservation laws or the
so-called matching conditions,
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u,8J% hE-B u,5J%
aﬂjﬂ:_ﬂ , aﬂ‘]/;:_ - _ K 5’
TR 2r TR
u, 0T
9,T" = F ]y, — ”TR . (48)

When a system respects the charge and energy-
momentum conservation, we should impose uﬂéJ"‘, /5= 0
and u,6T" =0, which allows us to define the local-
equilibrium temperature, chemical potentials, and fluid
velocity. Then, solving the six conservation equations in
Eq. (48) with constitutive equations in anomalous hydro-
dynamics yields the hydrodynamic equations of motion
(EOM), which give rise to the temporal derivatives with
respect to the fluid velocity on six thermodynamic param-
eters, u - OT, u - Opiy /5> and u - Ou*. Note that the temporal
component of u" is fixed by the normalization condition,
u?> = 1. One can in fact perform the explicit calculations for
u, ST /5 and u,6T" from Jf, and show that these terms
mdeed vanish w1th hydrodynamic EOM. Also, the hydro-
dynamic EOM do not affect 7%".

Finally, by implementing Eq. (48) and Eq. (47), we
may write down the conservation laws for canonical
EM/AM-tensor densities,

0,T" = 8,T" + 8, T

w,6T" h 1S

— Y
—F PJV/) _
R TR

and

u}
oMY = XWFrg,,, — —’X[f‘éTf’”]

UaJ
——ai<x[ﬂ oJiap L 5“’) (50)

TR

By parametrizing 6Js,; = TRfSJ_ﬂ, where JNSM can be read
out from Eq. (44), the above equations can be further
written as

B u, 0T h 7
ayTW = FW)JVP - ﬂTR * Zeﬂmﬁu"(aﬂ —u au/’)JSL/j
h ~
+§u (w-Js1), (51)

and
i v u v
ML = XwFrgy,, — ix[ﬂ(STP 1
h
+ 5 e Py, + Xruo/

+ X (0, = - Oug) | Tsip. (52)

As discussed previously, in relativistic hydrodynamics, the
symmetric EM tensor 7 is required to be conserved
except for the coupling between the field strength and the
vector-charge currents such that u,6T7*” = 0. According to
Eq. (52), it is expected that the electric field can break the
AM-momentum conservation. Nonetheless, even when

=0, the last term in Eq. (52) stemming from the
nonequilibrium axial-charge current triggered by temper-
ature/chemical-potential gradients still causes a nonzero
torque, which locally breaks conservation of the canonical
angular momentum. Because the spin current is charac-
terized by an axial-charge current, such a term could be also
regraded as a nontrivial spin-orbit interaction. Such an
effect also stems from side jumps. Since such a local torque
is internal, it should vanish globally when integrating over
the position space, which could be seen from Eq. (50).° The
net torque should only comes from the external fields.
Furthermore, in a steady state such that the nonequilibrium
vector/axial-charge currents vanish, 7% and T** follow
the same conservation laws and so do M* and M}"”. As
opposed to MA" v Mﬂ” ¥ is locally conserved in the absence
of electric ﬁelds, Wthh seems to be a better conserved
quantity for hydrodynamics, whereas the local angular-
momentum transfer through the spin-orbit interaction is not
manifested. From Eq. (50), one may alternatively define a
locally conserved AM tensor in the absence of background
fields,

A 20
Ml"” M/l;w n A <X[ﬂ€maﬂ w> (53)
TR

which can be decomposed into the canonical AM tensor

and the spin-orbit coupling. The M and M}* are then
connected by the pseudo-gauge transformatlon.6

It is worthwhile to note that the side jumps in (local)
equilibrium do not yield entropy production, which man-
ifests the nondissipation of the CVE. By carrying out a
direct calculation of the entropy-density current from the
Wigner function in equilibrium, as shown in Appendix. B
one finds

It is clear that the last term of (50) will be a surface term when
A=1 as one of spatial components, which vanishes when
integrating over position space. When 1 =0 as the temporal
component, the situation is more subtle. Since Jyu; as accel-
eration of the fluid velocity will be proportional to 9;T or O;u as
the gradients of either temperature or chemical potentials based
on the hydrodynamic EOM when E¥ = 0, the last term in (50)
should be accordingly proportional to €/*9,T0 i1 as the cross
product of the gradients of temperature and of chemlcal poten-
tials. Such a term should also vanish when integrating over
position space. The same argument could be applied to (49).

From the field-theory construction, M#"* and Mi;”” are related
by the pseudo-gauge transformation with the equations of
motion. However, in the Wigner-function approach, the equations
of motion are Kaddanof-Baym(KB)-like equations instead of the
simple Dirac equations in the presence of collisions.
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1
Steq = T ('p + Tiqity = pyTy1eq + ADB" + hD "),

leq”v
(54)
where Dgjy = Dpjor — DpjaL and
1 n*T? EBr
_ 2 © ) — SBR/L
Dyr =g 5 <MR/L T3 ) =7
3

1 luR/L ga)R/L

wR/L = 15 ( Hr/L + 2 ) T (55)

The result takes the same form as what has been proposed
in anomalous hydrodynamics [22], in which only the
symmetric EM tensor contributes. One can explicitly show
that Bﬂsﬁq = 0. Near local equilibrium, the nonequilibrium

fluctuations such as viscous effects will modify s# and
cause entropy production. It is not clear whether 7%" could
appear in s* for nonequilibrium cases, while such correc-
tions should be at least at O(79*) and pertinent to
collisions, which might be associated with e.g., the viscous
corrections upon CME/CVE [20].

IV. CONCLUDING REMARKS AND OUTLOOK

In this paper, we have investigated the interplay between
the spin and orbital components of the canonical angular
momentum for chiral fluids in the framework of Wigner
functions and CKT. It is found that the side jumps result in
non-vanishing antisymmetric component of the canonical
EM tensor in global equilibrium with nonzero vorticity and
an axial chemical potential, which is responsible for the
angular-momentum transfer between the spin and fluid.
Near local equilibrium, we further obtained the antisym-
metric component depending on temperature/chemical-
potentials gradients and electric fields. As indicated by
KB-like equations, such contributions are implicitly asso-
ciated with collisions stemming from the spin-orbit inter-
action, which further breaks local AM conservation. Also,
we have explicitly shown that the entropy-density current is
not affected by the spin-orbit interaction in equilibrium. It
thus takes the same form as proposed from anomalous
hydrodynamics and causes no entropy production in
equilibrium.

In general, we have shown that there exists nontrivial
angular-momentum transfer from the spin-orbit interaction
up to O(h) in chiral fluids. However, in the zero axial-
charge chemical potential, it is crucial to investigate the
similar scenario up to O(h?), which incorporates the
polarization led by CSE and CVE. The study thus requires
future exploration upon the higher-order quantum correc-
tions on Wigner functions and CKT. On the other hand, it is
also intriguing to further investigate the polarization spec-
trum characterized by the Pauli-Lubanski pseudo vector

with the quantum corrections from the orbital angular
momentum.
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APPENDIX A: DERIVATION OF THE
ANTISYMMETRIC EM TENSOR

In this Appendix, we present some details of computa-
tions for the results shown in the context. Here we only
consider right-handed fermions, for which we will omit the
subindices R for convenience. Based on the Dyson-
Schwinger equations under the Wigner transformation up
to O(h), we shall obtain the following Kaddanof-Baym
(KB)-like equations for right-handed fermions [18],

<

BN < -
6”<q”+%A”>S :%(Z<S —¥s ), (A1)

ih < ih, > <
(qﬂ—?Aﬂ)S o =-Z (ST -5 (A2

<
By parametrizing S

difference equations,

<
= 6"S, , the above equation yield the

< <
h{o".5°}D, S, = 2il0".53,S,
<

hlo*,D,S, = 2i{c",5}q,S, . (A3)

where [A, B = AB — BA and {A,B} = AB + BA and

< < > <
DS, =A,S, — %58, +%5,

(A4)

with A, =9, + F,, ai%. In Eq. (A3), the traceless part
linear to the Pauli matrices yields

< < <p
ho' n*(D,S, —=D,S, ) ==20" €4,;n"q"S

<v < <
ho' € n*DPS  =26" (q-nS, —q,n-S ), (AS5)
where V/| = (¥ — n#n*)V,, for an arbitrary vector V# and

we set n-o = [. By integrating over momentum space,
Eq. (AS5) becomes
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h
E(n”alﬂjv—n-ajyl—2/((q-n)CLﬂ—n-quﬂ)>
q

=€ "Tﬂ”

a,u/}u

n
Eeww)nu <a/1‘lp -2 / C/lqp) = 2lef§unw
q

which then results in

(A6)

o h
T = Ze’“"’/} <8aJ/; + 2na/((q . n)CLﬁ —(n- C)qm))
q
(A7)

For left-handed fermions, the O(h) terms should flip
the sign.

The perturbative solution for Wigner functions solved
from Eq. (A1) is shown in Eq. (23). Near local equilibrium,
it is found [19,20]

<u

Sy = 20l 0)|3(07) (¢ + 5 (g )

- wﬂ(q : u)>aq<u - hS;(lz)Ebaqu> (Ag)

n
+§(B”u" — Bu# +€””“ﬂEau,;)8qy5(q2)} fg)), (A9)

where fg()) = (eflan=m) + 1)~! and we explicitly write
down the electric/magnetic-fields dependence via

1
S E = B = B + P E . (AL0)
Here we also introduce the following notations,
. (q-u) .
E/j = T (%T—q (0ﬁ6+Kﬁ6)’
£, =E, +To,p, (A1)
where
0, = (O,u, +0yu,)/2,
1
Kop = 3 (Ugtt - Oug — ugu - Ouy). (A12)
In the local rest frame, u* ~ (1,0), one finds
=0 - NI ho. 2
Sieq = 27€(q0) |0(q°) | q +§(q~a))8q0 _EBlaqjé(q )
x< i, (A13)
and

<i

_ . h e
Sieq = 27€(qy) [5(612) <ql - Ew’CIoaqo - hS({,)EjatN)

I\JIN

(B9, — e E,d,)3(q ﬂfq. (A14)

We subsequently employ the Wigner functions above to
calculate 7%". It is found

d*q <i <0
T?xlleq* _/(2”) (QO)(SRleqq SRleqql)
— -2 [ (a6 0 0) - o 0
+(°B'0303(4%) + 4'B/04;5(¢7))f4)
_ _ha]);T3 <ﬂR+ﬂR> (A15)
and

ij d4q _ <i <ji .
STAleq = /We(qO) (SRlequ - SRleqql)

[ Ea [
o g

iln i T 0
g )QnElaquEI)

—qE (e g/

—eittg) 2NL) (qz)fgo)}

0q*
uvaf 0T E
—_yzévjfwT< T@ﬂ/ul-I—NOL_G“; /})

(A16)

APPENDIX B: THE ENTROPY-DENSITY
CURRENT

We may perform the direct calculation of the entropy-
density current through the Wigner function. By introduc-
ing the Boltzmann’s H function for fermions (see e.g.,
Ref. [74]),

H(f) = ~fInf = (1= f)In(1 = f),
we may construct the entropy-density current via the
Wigner function by replacing f with H,

(B1)

4

va 85((]2) (1)
+ he* ﬂ‘]yFaﬂqu H(fq") (B2)
where we focus on right-handed fermions. Since we

are particularly interested in an equilibrium case, we
then take n# = u* and £ = £ = (9 4 1)~ with
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g=p(q-u—ugr+hq-w/(2q-u)). The entropy current
in equilibrium hence becomes

u dq _ 2\( v
sRleq =2 —€(q : M) 5(q )(q + hS(u)Av)

(n)
85(612)) H( leq(u))'

+ flé‘”“’ﬁqua/} qu q (B3)

It is now more convenient to write the H function as

leq(u leq(u leq(u
HE) = gfg™™ —n(1 = £59¢). (B4)

We may first compute the contribution from the first
component up to O(h),

4

v, 85((12) leq(u)
+ het ﬁQvFa/)’qu g
= /}T;Ig;eq uy — ﬁR‘]’IlQleq
dq _
+h/W€(Q'M)5(42)
ﬂ q- @ v
" ( (q—- Cgrias g @s)

where ¢© = (g - u — ug). By using

2S’Z:>Apg<°>=£<<uﬂ<q~u><q~w>—qﬂ<q~w>—wﬂ<q~u>2>

+ eﬂmﬂqauﬁév)’ (B6)
we obtain’
S’; = ﬁTI;elfequv - ﬂRJ’Iz’leq
d*q _ 0
~ hpe? / Gl W) a7
Ty = qh h v
= ﬁTRlequl/ - ﬂRJRleq - E'BNRCU : (B7)

Here E, is defined in (A11) and one can easily check its
contribution vanishes in the integral. However, as shown in
(46), it is found T’y u, = ANg@" /2. We thus find

"When including the contribution from antiparticles, one
should keep in mind that the normal ordering is implicitly taken
and the corresponding divergent term should be dropped.

S‘; = ﬂT’IéI;equv - ﬁRJ‘IJQleq’ (Bg)

which incorporates only the symmetric EM tensor.
Subsequently, we should evaluate the contribution from
the second term in (B4) up to O(h),

4
sh=-2 / %é(q-u) (5(q2)(fi‘ +AS()A,)

v aé(qz) leq(u)
+ et /}quaﬁqu ln(l —Jq )

dq B 95(4%)
= — — . U uvof
2/(2ﬂ)3€(q u)(<5(q )¢+ P F oy o )

xIn(1 - )
hé(q*) <6I”(61'60)
(=N 24w

v 0
O+ S(1) AD> 1Y >>. (B9)

Performing explicit calculations, we obtain

4
=2 [ atael (a1 - )

ot - (o) 125 B

hp z°T? hp w
:ﬂuﬂpR+8_le<ﬂ%+T Bﬂ"i‘ﬁ Tz/lR—f‘ﬂ—I; 60”7

(B10)

in which we employ the integration by part to acquire the
first term in the second equality from the logarithmic term
in the integrand. Similar to the case for s’,‘, the E,, term
does not contribute. Combining (B8) and (B10), we derive
the entropy-density current for right-handed fermions in
equilibrium,

B MM
SRieq = 51 T 5711

1
=7 (' PR+ Tieqty = HrJ Rieq + ADBRBY + AD g 0"),

(B11)
where
1 T? $BR
Dgr = = | 1z ===
BR =g 2 </4R + 3 ) T
1 1 SR
D, =— | TPup +=5) =227, B12
®R 12 < HR + ”2> 2T ( )

One may further compute s’{]eq for left-handed fermions,

where the O(#) terms flip the signs, and obtain the total
entropy-density current ., = Sgieq + STeq-
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