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We apply the Wigner-function approach and chiral kinetic theory to investigate the angular momentum
and polarization of chiral fluids composed of Weyl fermions with background electric/magnetic fields and
vorticity. It is found that the quantum corrections in Wigner functions give rise to nonzero antisymmetric
components in the canonical energy-momentum tensors, which are responsible for the spin-orbit
interaction. In global equilibrium, conservation of the canonical angular momentum reveals the
cancellation between the orbital component stemming from side jumps with nonzero vorticity and the
spin component in the presence of an axial chemical potential. We further analyze the conservation laws
near local equilibrium. It turns out that the canonical angular momentum is no longer conserved even in the
absence of background fields due to the presence of a local torque coming from the spin-orbit interaction
involving temperature/chemical-potential gradients, which is implicitly led by collisions.
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I. INTRODUCTION

Recently, there have been intensive studies upon the
transport properties of chiral matter composed of Weyl
fermions, which involve parity-odd transport such as the
chiral magnetic/vortical effects (CME/CVE) in relation to
quantum anomalies [1–4]. In experiments, relativistic
heavy ion collisions (HIC) and Weyl semimetals provide
the suitable testing grounds for exploring such anomalous
transport [5,6]. Particularly, recent observations of the
negative magneto-resistance in Weyl semimetals suggest
the existence of CME [7]. In HIC, the light quarks in quark
gluon plasmas (QGP) could be approximated as massless
fermions at finite temperature. Despite further interactions
with gluons, these quarks move collectively and form a
chiral fluid. Such a fluidlike scenario following the
charge and energy-momentum conservations in HIC could
be rather different from the case in Weyl semimetals.
Nevertheless, at high-temperature regime, the fluidlike
behaviors of Weyl semimetals have been observed in a
recent experiment [8]. It is thus intriguing and imperative to
further investigate the anomalous transport of chiral fluids.
In theory, there exist a variety of approaches to analyze
anomalous transport of Weyl fermions including field-
theory calculations based on Kubo formula [3,4,9], kinetic
theory [10–21], relativistic hydrodynamics [22–25], lattice
simulations [26–32], and gauge/gravity duality [33–36]. In
addition, the anomalous transport induced by rigid-body
rotation has been investigated in some theoretical studies
[37,38]. Moreover, the recent studies of nonequilibrium
anomalous transport upon chiral fluids have incorporated
interactions based on the chiral kinetic theory (CKT)
[17–20,39].

On the other hand, the observations of global polariza-
tion for Λ hyperons in HIC [40,41] have triggered increas-
ing studies upon the spin-polarization formation and
angular momenta of relativistic fluids. In fact, the studies
of spin polarization led by global rotation can be traced
back to the Barnett effect [42] and Einsteinde Haas effect
[43]. In the context pertinent to HIC, a variety of theoretical
models were proposed to address the relevant issues such as
the microscopic spin-orbital coupling model [44,45], the
statistical-hydrodynamic model [46–51], and the kinetic-
theory approach with Wigner functions [10,52,53].
Also see Ref. [54] for a review of some aforementioned
approaches. More recently, to understand the spacetime
evolution of local polarization and vorticity, the relativistic
hydrodynamics with spin-1=2 particles has been introduced
in Refs. [55–58]. Nevertheless, the authors therein just
focus on massive fermions. There were also related studies
for polarized relativistic fluids through an effective-field-
theory approach [59,60]. For Weyl fermions, the local
polarization has been investigated via the Wigner functions
in Refs. [10,61], while the orbital angular momentum and
collisions have not been incorporated in the previous
studies. Although the polarization density characterized
by a Pauli-Lubanski pseudovector is independent of the
orbital contributions in terms of the Wigner-function
construction [48,52], the orbital part in fact encodes the
angular-momentum transfer between the fluid and internal
degrees of freedom such as the spin of quasiparticles.
In this paper, we employ the CKT in Wigner-function

formalism to analyze the interplay between spin and orbital
angular momentum near local equilibrium in chiral fluids,
which may shed some light upon the spacetime evolution of
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polarization for Weyl fermions and the role of inter-
actions therein. The paper is organized as the following:
In Sec. II, we first review the construction of angular-
momentum (AM) tensors through the canonical and
Belinfante energy-momentum (EM) tensors for spin-
1=2 fermions with background electric/magnetic fields
and further write down the corresponding phase-space
distributions via Wigner functions. In Sec. III, we then
implement the Wigner functions and CKT up to OðℏÞ to
evaluate the AM-tensor density and analyze the angular-
momentum conservation with the interplay between spin
and orbital components for chiral fluids in global and
(near-)local equilibrium. In Sec. IV, we finally make short
conclusions and outlook.

II. ANGULAR MOMENTA FROM
WIGNER FUNCTIONS

A. Angular-momentum tensors for fermions

For simplicity, we will focus on only the dynamics
of fermions under background electric/magnetic fields.
Considering the quantum electrodynamics (QED)
Lagrangian with background gauge fields,

L ¼ ψ̄

�
iℏ
2
γμD

↔

μ −m

�
ψ ; ð1Þ

where D
↔

μ ¼ D⃗μ − D⃖†
μ and Dμ ¼ ∂μ þ ieAμ=ℏ denotes

the covariant derivative. Based on the Noether’s theorem
and equations of motion, we obtain the canonical EM
tensor,

T̄μν¼TμνþTμν
A ; Tμν¼ iℏ

4
ψ̄γfμD

↔
νgψ ; Tμν

A ¼ iℏ
4
ψ̄γ½μD

↔
ν�ψ ;

and the canonical AM tensor or the so-called mass-energy-
momentum tensor or the generalized angular momentum
(see e.g., [62–64]),

Mλμν
C ¼ Mλμν

S þMλμν
O ;

Mλμν
S ¼ ℏ

2
ψ̄fγλ;Σμνgψ ¼ −

ℏ
2
ϵλμνρψ̄γ5γρψ ;

Mλμν
O ¼ iℏ

2
ψ̄γλðxμD↔ν − xνD

↔
μÞψ

¼ xμTλν − xνTλμ þ xμTλν
A − xνTλμ

A ; ð2Þ

where AfμBνg ¼ AμBν þ AνBμ, A½μBν� ¼ AμBν − AνBμ,

Σμν ¼ i
4
½γμ; γν�, and D

↔
ν only acts on ψ and ψ̄ . For the

canonical EM tensor T̄μν, we decompose it into a sym-
metric EM tensor Tμν and an anti-symmetric one Tμν

A ,
where Tμν is also known as the Belinfante EM tensor. For
the canonical AM tensor, we can also separate the con-
tributions from the spin and orbital angular momentum.

Here Mλμν
S=O represent the spin/orbital AM tensors. Such a

decomposition for the canonical AM tensor is widely
utilized in the study of nucleon spins in deep inelastic
scattering (DIS) [65,66] (see Ref. [64] for a comprehensive
review). The canonical AM tensor can be related to the
Belinfante AM tensor constructed by only the symmetric
EM tensor [62–64],

Mλμν
B ¼ xμTλν − xνTλμ ¼ i

4
ψ̄ðxμγfλD↔νg − xνγfλD

↔
μgÞψ ;

ð3Þ

through equations of motion and a total-derivative terms,

Mλμν
C ¼ Mλμν

B þ ∂βV ½βλ�½μν�; ð4Þ

where ∂βV ½βλ�½μν� corresponds to a superpotential antisym-
metric in λ, β and μ, ν.1 In the absence of background fields,
both Mλμν

C and Mλμν
B are conserved,

∂λM
λμν
C ¼ ∂λM

λμν
B ¼ 0; ð5Þ

based on the conservation of the symmetric EM tensor.
The conservation of Mλμν

C also implies ∂λM
λμν
spin ¼ −2Tμν

A .
Accordingly, the antisymmetric component of T̄μν serves
as a source or sink for spin currents. When having
background fields peculiarly an electric field or in the
case for local equilibrium of relativistic fluids, the
conservation laws turn out to be more involved due to
collisions. We will further discuss such a case in a later
section.
We may now construct the quantum expectation values

for Mλμν
C=Bðq; XÞ in phase space via the Wigner-function

formalism. Wigner functions are defined as the Wigner
transformation of lesser/greater propagators,

S
<ð>Þ

ðq; XÞ≡
Z

d4Ye
iq·Y
ℏ S<ð>Þðx; yÞ; ð6Þ

where S<ðx;yÞ¼hψ†ðyÞψðxÞi and S>ðx; yÞ ¼ hψðxÞψ†ðyÞi
as the expectation values of fermionic correlators with Y ¼
x − y and X ¼ ðxþ yÞ=2. Here the gauge link is implicitly
embedded to keep gauge invariance and hence qμ denotes
the kinetic momentum. For convenience, we will work in
the Weyl basis ψ† ¼ ðψ†

L;ψ
†
RÞ, which gives

1In Ref. [64], it is shown V ½βλ�½μν� ¼ XμGβλν − XνGβλμ, where
Gβλν ¼ 1

2
ðMβλν

S þMνβλ
S þMνλβ

S Þ. One can thus write down the
exact relation between canonical and Belifante AM tensors in
phase space in terms of Wigner functions. Furthermore, given
Eq. (14) as will be derived shortly, we find Mλμν

B ðXÞ ¼
Mλμν

C ðXÞ þ 1
4
ϵβλ½μα∂βðXν�J5βðXÞÞ. However, this relation will be

further modified when collisions are involved.
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Tμν ¼ iℏ
4
ðψ†

Rσ
fμD

↔
νgψR þ ψ†

Lσ̄
fμD

↔
νgψLÞ;

Tμν
A ¼ iℏ

4
ðψ†

Rσ
½μD
↔

ν�ψR þ ψ†
Lσ̄

½μD
↔

ν�ψLÞ;

Mλμν
S ¼ −

ℏ
2
ϵλμνρðψ†

RσρψR − ψ†
Lσ̄ρψLÞ;

Mλμν
O ¼ xμTλν − xνTλμ þ xμTλν

A − xνTλμ
A : ð7Þ

Based on (7), we can now construct the expectation values
of EM and AM tensors for Weyl fermions,2

hTμνi ¼ iℏ
4
trðσfμðDνg

x −D†νg
y ÞS<Rðx; yÞ

þ σ̄fμðDνg
x −D†νg

y ÞS<L ðx; yÞÞ;

hTμν
A i ¼ iℏ

4
trðσ½μðDν�

x −D†ν�
y ÞS<Rðx; yÞ

þ σ̄½μðDν�
x −D†ν�

y ÞS<L ðx; yÞÞ; ð8Þ

and

hMλμν
S i ¼ −

ℏ
2
ϵλμνρtrðσρS<Rðx; yÞ − σ̄ρS<Lðx; yÞÞÞ;

hMλμν
O i ¼ iℏ

2
trððxμDν

x − xνDμ
x − yμD†ν

y þ yνD†μ
y Þ

× ðS<Rðx; yÞσλ þ S<L ðx; yÞσ̄λÞÞ: ð9Þ

One can then perform the Wigner transformation to write
down the expectation values in terms of the Wigner
functions in phase space. It is useful to exploit the rule
of transformation found in [67] such that

DxμS
<
ðx; yÞ →

�∇μ

2
− iℏ−1Πμ

�
S
<
ðq; XÞ;

D†
yμS

<
ðx; yÞ →

�∇μ

2
þ iℏ−1Πμ

�
S
<
ðq; XÞ; ð10Þ

where

∇μ ¼ ∂μ þ j0ð□ÞFνμ∂ν
q; Πμ ¼ qμ þ

ℏ
2
j1ð□ÞFνμ∂ν

q;

□ ¼ ℏ
2
∂ρ∂ρ

q: ð11Þ

We will hereafter use ∂μ ≡ ∂=∂Xμ for convenience. Here
j0ð□Þ; j1ð□Þ are modified Bessel functions and ∂ρ in □

only act on the field strength Fνμ when having spacetime-
dependent background fields. Making the ℏ expansion,
which corresponds to the gradient expansion for ∂μ ≪ qμ,
one finds

∇μ ¼ ∂μ þ Fνμ∂ν
q −

ℏ2

24
ð∂ρ∂ρ

qÞ2Fνμ∂ν
q þOðℏ4Þ;

Πμ ¼ qμ þ
ℏ2

12
∂ρ∂ρ

qFνμ∂ν
q þOðℏ4Þ: ð12Þ

Using (10) and parametrizing S
<

R ¼ σ̄ρS
<

Rρ and S
<

L ¼ σρS
<

Lρ,
the Wigner transformation of (8) yields

Tμνðq;XÞ¼ΠfνS<μg
V ðq;XÞ; Tμν

A ðq;XÞ¼Π½νS<μ�
V ðq;XÞ;

Mλμν
S ðq;XÞ¼−ℏϵλμνρS

<

5ρðq;XÞ;
Mλμν

O ðq;XÞ¼XμT̄λνðq;XÞ−XνT̄λμðq;XÞ

þℏð∂μ
q∇ν−∂ν

q∇μÞS
<λ

V ðq;XÞ; ð13Þ

where S
<

Vμ ¼ S
<

Rμ þ S
<

Lμ, S
<

5μ ¼ S
<

Rμ − S
<

Lμ, and T̄μν ¼
Tμν þ Tμν

A . Combining Mλμν
S ðq; XÞ and Mλμν

O ðq; XÞ, one
thus obtain the canonical AM tensor in phase space
Mλμν

C ðq; XÞ. After integrating over momentum space, we
acquire the canonical AM-tensor density as

Mλμν
C ðXÞ¼

Z
d4q
ð2πÞ4ðM

λμν
S ðq;XÞþMλμν

O ðq;XÞÞ

¼−
ℏ
2
ϵλμνρJ5ρðXÞþðXμT̄λνðXÞ−XνT̄λμðXÞÞ; ð14Þ

in which the total-derivative terms in Mλμν
O ðq; XÞ do not

contribute and the expression is anticipated from its field-
theory definition. In addition, by carrying out the same
procedure, we also find the Belinfante AM tensor

Mλμν
B ðq; XÞ ¼ XμTλνðq; XÞ − XνTλμðq; XÞ

þ ℏ
2
ð∂μ

q∇fν − ∂ν
q∇fμÞS

<λg
V ðq; XÞ; ð15Þ

and its density

Mλμν
B ðXÞ ¼

Z
d4q
ð2πÞ4 M

λμν
B ðq; XÞ

¼ XμTλνðXÞ − XνTλμðXÞ; ð16Þ

which takes the expected form as well.

B. Angular-momentum density and polarization

In this subsection, we briefly discuss the particle
polarization constructed from AM tensors. The usual
relativistic angular momentum is defined by integrating
Mλμν

C=Bðq; XÞ over a spacelike hypersurface in position
space, which could be used to define the polarization.
We can thus define the AM density in phase space in terms

2For the computation of hMλμν
O i, we treat xμ in Mλμν

O as the
position-space operator, which then acts on both ψðxÞ and ψ†ðyÞ.
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of a temporal direction characterized by a local timelike
vector perpendicular to the hypersurface (In DIS, it is
instead taken along a light-cone direction.), n̄μðXÞ, nor-
malized as n̄2 ¼ 1. The AM densities in phase space are
then written as Mμν

C=Bðq; XÞ≡ n̄λM
λμν
C=Bðq; XÞ. On the other

hand, from Mμν
C=B, we can accordingly introduce the Pauli-

Lubanski pseudovectors,

Wμ
C=Bðq; XÞ≡ −

1

2
ϵμναβΠνðMC=BÞαβðq; XÞ; ð17Þ

in which we further promote qν toΠν here as opposed to the
usual definition. Inversely, we have

Mαβ
C=Bðq; XÞ ¼ ϵαβμνn̄μW̄C=Bνðq; XÞ þ n̄αn̄νM

βν
C=Bðq; XÞ

− n̄βn̄νMαν
C=Bðq; XÞ; ð18Þ

where W̄μ
C=Bðq; XÞ≡ ðΠ · n̄Þ−1Wμ

C=Bðq; XÞ. From (13),

since T̄μν ¼ ΠνS
μ

V , it is found

W̄μ
Cðq;XÞ¼ℏS

<μ

5 −
ℏ

2ðn̄ ·ΠÞϵ
μναβΠνn̄λ∂q½α∇β�S

<λ

V ; ð19Þ

where we use ðΠ · S
<

5 Þ ¼ 0 from the master equations of
Wigner functions [18,67]. We also find

W̄μ
Bðq; XÞ

¼ −ϵμναβΠνXαS
<

Vβ −
ℏ

4ðn̄ · ΠÞ ϵ
μναβΠνn̄λ∂q½α∇β�S

<λ

V :

ð20Þ

The canonical Pauli-Lubanski pseudovector is usually
proposed to define the polarization of particles in HIC
[48,52]. One may utilize W̄ðq; XÞ to define the polarization
vector.3 By integrating over momentum space in Eq. (19),
one may define the polarization density characterized by
just the axial-charge current [52],

Lμ
CðXÞ≡

Z
d4q
ð2πÞ4 W̄

μ
Cðq; XÞ ¼

ℏ
2
Jμ5ðXÞ: ð21Þ

In a particular case when the superindices α, β in
Mαβ

C=Bðq; XÞ are the spatial directions transverse to n̄μ,
one could have consistent definitions for polarization in
terms of either Mαβ

C=Bðq; XÞ or Wμ
C=Bðq; XÞ through the

relation,

Pα
ðn̄Þα0P

β
ðn̄Þβ0M

α0β0
C=Bðq; XÞ ¼ ϵαβμνn̄μW̄C=Bνðq; XÞ ð22Þ

where Pα
ðn̄Þα0 ¼ ηαα0 − n̄αn̄α0 with ημν being the Minkowski-

spacetime metric. As shown in Eq. (19), the last term
starting at OðℏÞ coming from the orbital angular
momentum could also contribute to the spectrum of
polarization for both massless and massive fermions, which
will be more practical for the phenomenology in HIC.
Nonetheless, we will investigate the spectrum of polariza-
tion elsewhere and only focus on the study of AM-tensor
density in this paper.

III. SPIN-ORBIT INTERACTION
OF CHIRAL FLUIDS

A. Global equilibrium

We may now implement the thermal-equilibriumWigner
functions perturbatively derived from Kadanoff-Baym-like
(KB-like) equations shown in Refs. [18–20] to compute the
AM-tensor density and analyze angular-momentum con-
servation of chiral fluids composed of Weyl fermions. For
simplicity, we first consider the global-equilibrium case
with constant temperature and chemical potentials in the
presence of only magnetic fields and fluid vorticity.
The Wigner function for right-handed fermions up to

OðℏÞ was derived in Ref. [18],

S
<μ

R ¼ 2πϵ̄ðq · nÞ
�
δðq2Þðqμ þ ℏSμνðnÞDνÞ

þ ℏϵμναβqνFαβ
∂δðq2Þ
2∂q2

�
fðnÞq ð23Þ

where

SμνðnÞ ¼
ϵμναβ

2ðq · nÞ qαnβ ð24Þ

corresponds to the spin tensor depending on a frame vector

nμ. Here we denote Dβf
ðnÞ
q ¼ Δβf

ðnÞ
q − Cβ, where Δμ ¼

∂μ þ Fνμ∂ν
q, Cβ ¼ Σ<

β f̄
ðnÞ
q − Σ>

β f
ðnÞ
q with Σ<ð>Þ

β being

lesser/greater self-energies and fðnÞq and f̄ðnÞq ¼ 1 − fðnÞq

being the distribution functions of incoming and outgoing
particles, respectively. Also, the frame vector nμ comes
from the choice of the spin basis, which is different from n̄μ

for fixing the temporal direction in local spacetime
although one can set nμ ¼ n̄μ for particular conditions.
In addition, ϵ̄ðq · nÞ represents the sign of q · n. The OðℏÞ
terms in (23) contributes to the leading-order quantum
corrections for the anomalous transport, in which the spin-
tensor-dependent term dubbed as the side-jump term
engenders the magnetization current and partial contribu-
tion of the CVE. On the other hand, the last term in (23)
leads to the CME in equilibrium and the modified

3For massive fermions, one may consider the normalization by
the mass of fermions instead of n̄ · q [48].
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dispersion relation from the magnetic-moment coupling in
CKT. It is found that the global-equilibrium distribution
function takes the form [17,19]

feqðnÞq ¼ ðeg þ 1Þ−1;

g ¼
�
βq · u − μ̄R þ

ℏSμνðnÞ
2

∂μðβuνÞ
�
; ð25Þ

where β ¼ 1=T is the inverse of temperature T, μ̄R ¼ μR=T
with μR being a charge chemical potential for right-handed
fermions, and uμ represents the fluid velocity. Now,
Eq. (23) and Eq. (25) result in the global-equilibrium
Wigner functions for right-handed fermions [19],

S
<μ

Rgeq

¼ 2πϵ̄ðq · uÞ
�
δðq2Þ

�
qμ þ ℏ

2
ðuμðq · ωÞ − ωμðq · uÞÞ∂q·u

�

þ ℏϵμναβFαβ

4
∂qνδðq2Þ

�
fð0Þq ; ð26Þ

where fð0Þq ¼ ðeβðq·u−μRÞ þ 1Þ−1 corresponds to the usual
Fermi-Dirac distribution function and ωμ denotes the fluid
vorticity defined as

ωμ ≡ 1

2
ϵμναβuνð∂αuβÞ: ð27Þ

Note that Eq. (26) is independent of the choice of nμ. For
left-handed fermions, the sign in front of each OðℏÞ term
should flip.
Given Eq. (26), we may evaluate the EM/AM tensor

densities, which are independent of the temporal direction
n̄μ. Carrying out the explicit computations of the symmetric
EM tensor and charge current in global equilibrium, for the
first-order inviscid hydrodynamics of right-handed fer-
mions up to OðℏÞ, it is found [19]

Tμν
Rgeq ¼ uμuνϵR − pRΘμν þ Πμν

Rnon

¼
Z

d4q
ð2πÞ4 ðq

μS
<ν

Rgeq þ qνS
<μ

RgeqÞ;

JμRgeq ¼ NRuμ þ vμRnon ¼ 2

Z
d4q
ð2πÞ4 S

<μ

Rgeq; ð28Þ

where Θμν ¼ ημν − uμuν and the nondissipative quantum
corrections in global equilibrium take the form

Πμν
Rnon ¼ ℏξωRðωμuν þ ωνuμÞ þ ℏξBRðBμuν þ BνuμÞ;

vμRnon ¼ ℏσBRBμ þ ℏσωRωμ; ð29Þ

and the transport coefficients read

ϵR ¼ 3pR ¼ T4

�
7π2

120
þ μ̄2R

4
þ μ̄4R
8π2

�
;

NR ¼ T3

6

�
μ̄R þ μ̄3R

π2

�
; σωR ¼ T2

12

�
1þ 3μ̄2R

π2

�
;

σBR ¼ μR
4π2

; ξωR ¼ T3

6

�
μ̄R þ μ̄3R

π2

�
¼ NR;

ξBR ¼ T2

24

�
1þ 3μ̄2R

π2

�
¼ σωR

2
: ð30Þ

Note that the electric/magnetic fields in this paper are
defined with respect to the fluid velocity,

uνFμν ¼ Eμ;
1

2
ϵμναβuνFαβ ¼ Bμ;

Fαβ ¼ −ϵμναβBμuν þ uβEα − uαEβ: ð31Þ

Nonetheless, unlike the case for massive fermions
[48,56], in which the quantum corrections only come from
distribution functions, the antisymmetric EM tensor is
nonzero for Weyl fermions. By using Eq. (26), we find4

Tμν
ARgeq ¼

Z
d4q
ð2πÞ4 ðq

νS
<μ

Rgeq − qμS
<ν

RgeqÞ

¼ −
ℏ
2
ξωRðuμων − uνωμÞ: ð32Þ

Note that such a nonvanishing Tμν
ARgeq originates from the

side-jump term. Our finding also agrees with what has been
recently found in Ref. [68] by the density operator
approach. Combining the symmetric and antisymmetric
parts, we thus obtain

T̄μν
Rgeq ¼ uμuνϵR − pRΘμν þ ℏξBRðBμuν þ BνuμÞ

þ ℏ
2
ξωRð3ωμuν þ ωνuμÞ ð33Þ

for right-handed fermions. Now, incorporating also the
contributions from left-handed fermions, for which the
OðℏÞ corrections should flip the signs, the vector/axial-
charge currents read

JμV=5geq ¼ JμRgeq � JμLgeq

¼ NV=5uμ þ ℏσBV=5Bμ þ ℏσωV=5ωμ; ð34Þ

where

4In fact, the side-jump term and the delta-function-derivative
term both lead to the ℏ corrections with magnetic fields on Tμν

Ageq,
whereas these contributions exactly cancel each other. See
Eq. (A15) for details.
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NV ¼
μV
6

�
T2þ3μ25þμ2V

4π2

�
; N5¼

μ5
6

�
T2þ3μ2V þμ25

4π2

�
;

σBV=5¼
μ5=V
4π2

; σωV ¼
μVμ5
4π2

; σω5¼
�
T2

6
þμ2V þμ25

8π2

�
;

ð35Þ

and μV=5 ¼ μR � μL. These charge currents are nothing but
the CME, CSE, and CVE. Note that the axial-charge
chemical potential μ5 can be regarded as a spin chemical
potential since the spin component of the angular
momentum is characterized by the axial-charge current.
Furthermore, we find

Tμν
Ageq ¼ T̄μν

ARgeq þ T̄μν
ALgeq ¼ −

ℏ
2
ξωVðωνuμ −ωμuνÞ; ð36Þ

and thus

T̄μν
geq ¼ T̄μν

Rgeq þ T̄μν
Lgeq

¼ uμuνϵV − pVΘμν þ ℏξBVðBμuν þ BνuμÞ

þ ℏ
2
ξωVð3ωμuν þ ωνuμÞ ð37Þ

where ϵV ¼ 3pV ¼ ϵR þ ϵL is parity even while

ξBV ¼ ξBR−ξBL¼
μVμ5
8π2

;

ξωV ¼ ξωR−ξωL¼
μ5
6

�
T2þ 1

4π2
ð3μ2Vþμ25Þ

�
¼N5 ð38Þ

are parity-odd. By inserting JμA and T̄μν
V into Eq. (14), one is

able to write down the spin/orbital AM-tensor density,
Mλμν

S=OðXÞ. Eventually, in global equilibrium, one finds

Mλμν
SgeqðXÞ ¼

ℏ
2
ϵλμνρðN5uρ þ ℏσB5Bρ þ ℏσω5ωρÞ;

Mλμν
OgeqðXÞ ¼ X½μ

�
ϵV

�
uλuν� −

Θλν�

3

�
þ ℏξBVðBλuν� þBν�uλÞ

þ ℏ
2
N5ð3ωλuν� þων�uλÞ

�
: ð39Þ

For Mλμν
SgeqðXÞ, the leading-order term simply comes from

nonzero axial- charge (spin) density, while the axial-charge
currents from CSE/CVE yield subleading effects. However,
when μ5 ¼ 0, the CSE/CVE contribution should dominate
over Mλμν

SgeqðXÞ and accordingly over Lμ
CgeqðXÞ in Eq. (21).

For Mλμν
OgeqðXÞ, the first term in (39) corresponds to just

classical rotation of fluids, while the ℏ corrections are
related to CME/CVE in Tμν

geq and the ω-dependent Tμν
Ageq,

which exist only when μ5 ≠ 0.

In global equilibrium, it is trivially to show the con-
servation of charge currents and symmetric EM tensor,
∂μJ

μ
V=5geq ¼ ∂μT

μν
geq ¼ 0. Nevertheless, it is now nontrivial

to show the conservation of the canonical angular momen-
tum. Using Eq. (36), we firstly check ∂μT

μν
Ageq ¼ 0 based on

∂ · ω ¼ 0 and u · ∂ωμ ¼ 0 in global equilibrium. One thus
obtain

∂λM
λμν
Cgeq ¼ −

ℏ
2
ϵλμνρ∂λðJ5geqÞρ þ 2Tμν

Ageq: ð40Þ

By taking Jρ5geq ¼ N5uρ and Eq. (36), one also derives

∂λM
λμν
Cgeq ¼ 0 up toOðℏÞ. It is found that the spin part is not

conserved by itself at the leading order, which has to be
compensated by the orbital angular momentum particularly
from the side-jump contribution. The nonvanishing Tμν

Ageq

here plays a role for the angular-momentum transfer.
Physically, it is understood that the collectively orbiting
Weyl fermions, which contribute to the rotation of fluids,
change the direction of a net spin for the fluid cell since the
spin directions are enslaved by the moving directions based
on the conservation of helicity. When μ5 ¼ 0, from
Eq. (34), one finds

∂λM
λμν
Sgeq ¼

ℏ2

2
ðϵκμνρΘλ

κðσB5∂λBρ þ σω5∂λωρÞ
þ σB5ðBμων − BνωμÞÞ; ð41Þ

where we employ u · ∂ωμ ¼ 0 and u · ∂Bμ ¼ ϵμναβuνBαωβ

in global equilibrium from Bianchi identities. However, to
derive the orbital angular momentum at the same order, we
have to apply the Wigner functions up to Oðℏ2Þ, which
have not been derived so far in literature. It is anticipated
that this unknown Tμν

Ageq at Oðℏ2Þ should cancel the spin
part and preserve the total angular momentum.

B. (Near-)local equilibrium

In local equilibrium with inhomogeneous temperature
and chemical potentials, the interaction between Weyl
fermions is involved and the conservation laws do not
trivially hold. Nevertheless, these conservation laws can be
determined by the kinetic theory given the details of
collisions. For Weyl fermions, it is again more convenient
to first work in the right/left-handed bases and later
combined the results from two sectors. For right-handed
fermions, it is shown in Ref. [19] that the local-equilibrium
distribution function fleqðuÞq takes the same form as Eq. (25)
in the comoving frame, nμ ¼ uμ. The nondissipative anoma-
lous transport for JμV=5 and Tμν also remains unchanged in
local equilibrium. However, there exist dissipative correc-
tions coming from interactions. To acquire a general feature
with manifest interpretation in physics, we may simplify
the collisional kernels by employing the relaxation-time
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approximation (RTA). Moreover, we also neglect the inter-
actions between right/left handed fermions for simplicity. In
such an approximation near local equilibrium, the CKT for
right-handed fermions can be simplified as [19,20]

□ðq; XÞfðuÞq ≈ −
q · u
τR

δfq; ð42Þ

where δfq ¼ fðuÞq − fleqðuÞq denotes the deviation of the
distribution function from local equilibrium and

□ðq; XÞ ¼
�
q · Δþ ℏ

SμνðuÞEμ

ðq · uÞΔν þ ℏSμνðuÞð∂μFρνÞ∂ρ
q

þ ℏð∂μS
μν
ðuÞÞΔν

�
: ð43Þ

The constant τR represents the relaxation time characterizing
the inverse strength of interactions between the Weyl
fermions with same chirality. We may write the near-
local-equilibrium deviations on the symmetric EM tensor
and charge four currents as δTμν ¼ Tμν − Tμν

leq and δJμV=5 ¼
JμV=5 − JμV=5leq. Here T

μν
leq and JμV=5leq have the same expres-

sions as global-equilibrium ones by simply replacing
constant thermodynamic parameters therein to the local-
equilibrium ones with spatial inhomogeneity. In the follow-
ing computations, we also apply the gradient expansion and
only preserve the 1st-order-derivative (Oð∂Þ) terms in the
nonequilibrium deviations.
Solving Eq. (42) for fðuÞq and plugging the solution into

Wigner functions, after combining with the contribution
from left-handed fermions, the nonequilibrium vector/
axial-charge currents take the form,

δJμV=5⊥ ¼ τR
3
ðσω5=VEμ

V⊥ þ σωV=5E
μ
5⊥Þ

þ NV=5τR

�
1

T
∂μ
⊥T − u · ∂uμ⊥

�
þOðℏÞ; ð44Þ

where Vμ
⊥ ¼ Θμ

νVν for an arbitrary (pesudo)vector Vμ and
EV=5μ ¼ Eμ þ T∂μμ̄V=5. Here we drop the higher-derivative
terms and quantum corrections since the classical part
has already led to the OðℏÞ contribution in the angular
momentum. The axial-charge current induced by electric
fields is also dubbed as the chiral electric separation
effect (CESE) [69], for which the corresponding conduc-
tivity has been computed in QED plasmas and weakly
coupled QGP and as well in holographic models [69–72].
In addition, the nonequilibrium deviation upon the sym-
metric EM tensor contains only viscous corrections up to
Oð∂Þ. More precisely, one finds Πμν ¼ ΘμαΘνβδTαβ ¼
ζð∂ · uÞΘμν þ ηsπ

μν, where πμν ≡ Θμ
ρΘν

σð∂ρuσ þ ∂σuρ −
2ηρσθ=3Þ=2 denotes the shear strength and ηs=ζ correspond
to shear/bulk viscosities [73]. Here ηs=ζ depend on τR,
while their explicit forms are not important in our study.

Although there exist no nonequilibrium OðℏÞ corrections
up to Oð∂Þ, the OðℏÞ corrections will set in at Oð∂2Þ
including anomalous Hall effects and viscous corrections
on CME/CVE [19,20]. Nonzero Πμν simply contributes to
part of the orbital angular momentum conserved independ-
ently and irrelevant to the spin component in hydrodynam-
ics. Note that we omit the computations of nonequilibrium
charge densities and energy-density current since they
should vanish according to the matching conditions as
discussed later.
On the other hand, by carrying out an explicit calculation

with the local-equilibrium Wigner functions, we obtain the
nonvanishing Tμν

A depending on also electric fields and
temperature/chemical-potential gradients,

Tμν
A ¼ −

ℏ
2
ξωVðuμων − uνωμÞ

−
ℏϵμναβuα

6

�
σωVT∂βμ̄V þ σω5T∂βμ̄5

þ 3N5

∂βT

T
− σωVEβ

�
; ð45Þ

where we utilize

Tμν
AR=L ¼ ∓ℏ

2
ξωR=Lðuμων − uνωμÞ

∓ ℏϵμναβuα
2

�
σωR=LT∂βμ̄R=L þ NR=L

∂βT

T

−
σωR=LER=Lβ

3

�
ð46Þ

as derived in Eq. (A16). It is clear to see that Tμν
A ≠

ℏ
4
ϵλμνρ∂λJ5ρ near local equilibrium and hence Tμν

A andMλμν
C

are no longer conserved. However, such nonconservation
has been foreseen by the KB-like equations as the master
equations for Wigner functions and CKT shown in
Eq. (A7), from which we derive

Tμν
A ¼ ℏ

4
ϵμναβ

�
∂αJ5β þ 2nα

Z
q
ððq · nÞC5⊥β − n · C5q⊥βÞ

�

¼ ℏ
4
ϵμναβ

�
∂αJ5β þ

uαδJ5⊥β

τR

�
; ð47Þ

where we take the RTA to acquire the second equality. It
turns out that the near-local-equilibrium corrections on Tμν

A
implicitly depend on collisions even though they can be
directly derived from local-equilibrium Wigner functions.
By using Eq. (44), one can check that Eq. (47) agrees with
Eq. (46) up to Oðℏ∂Þ.
Moreover, by utilizing the results in Refs. [19,20], in the

RTA, the CKTyields the following conservation laws or the
so-called matching conditions,
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∂μJ
μ
V ¼ −

uμδJ
μ
V

τR
; ∂μJ

μ
5 ¼ −

ℏE · B
2π2

−
uμδJ

μ
5

τR
;

∂μTμν ¼ FνρJVρ −
uμδTμν

τR
: ð48Þ

When a system respects the charge and energy-
momentum conservation, we should impose uμδJ

μ
V=5 ¼ 0

and uμδTμν ¼ 0, which allows us to define the local-
equilibrium temperature, chemical potentials, and fluid
velocity. Then, solving the six conservation equations in
Eq. (48) with constitutive equations in anomalous hydro-
dynamics yields the hydrodynamic equations of motion
(EOM), which give rise to the temporal derivatives with
respect to the fluid velocity on six thermodynamic param-
eters, u · ∂T, u · ∂μ̄V=5, and u · ∂uμ. Note that the temporal
component of uμ is fixed by the normalization condition,
u2 ¼ 1. One can in fact perform the explicit calculations for
uμδJ

μ
V=5 and uμδTμν from δfq and show that these terms

indeed vanish with hydrodynamic EOM. Also, the hydro-
dynamic EOM do not affect Tμν

A .
Finally, by implementing Eq. (48) and Eq. (47), we

may write down the conservation laws for canonical
EM/AM-tensor densities,

∂μT̄μν ¼ ∂μTμν þ ∂μT
μν
A

¼ FνρJVρ −
uρδTρν

τR
þ ℏ

4
ϵμναβ∂μ

�
uαδJ5⊥β

τR

�
; ð49Þ

and

∂λM
λμν
C ¼ X½μFν�ρJVρ −

uρ
τR

X½μδTρν�

−
ℏ
4
∂λ

�
X½μϵν�λαβ

uαδJ5⊥β

τR

�
: ð50Þ

By parametrizing δJ5⊥β ¼ τRJ̃5⊥β, where J̃5⊥β can be read
out from Eq. (44), the above equations can be further
written as

∂μT̄μν ¼ FνρJVρ −
uρδTρν

τR
þ ℏ

4
ϵμναβuαð∂μ − u · ∂uμÞJ̃5⊥β

þ ℏ
2
uνðω · J̃5⊥Þ; ð51Þ

and

∂λM
λμν
C ¼ X½μFν�ρJVρ −

uρ
τR

X½μδTρν�

þ ℏ
2

�
ϵμναβuα þ X½μuν�ωβ

þ uλ
2
X½μϵν�λαβð∂α − u · ∂uαÞ

�
J̃5⊥β: ð52Þ

As discussed previously, in relativistic hydrodynamics, the
symmetric EM tensor Tμν is required to be conserved
except for the coupling between the field strength and the
vector-charge currents such that uρδTμρ ¼ 0. According to
Eq. (52), it is expected that the electric field can break the
AM-momentum conservation. Nonetheless, even when
Fμν ¼ 0, the last term in Eq. (52) stemming from the
nonequilibrium axial-charge current triggered by temper-
ature/chemical-potential gradients still causes a nonzero
torque, which locally breaks conservation of the canonical
angular momentum. Because the spin current is charac-
terized by an axial-charge current, such a term could be also
regraded as a nontrivial spin-orbit interaction. Such an
effect also stems from side jumps. Since such a local torque
is internal, it should vanish globally when integrating over
the position space, which could be seen from Eq. (50).5 The
net torque should only comes from the external fields.
Furthermore, in a steady state such that the nonequilibrium
vector/axial-charge currents vanish, T̄μν and Tμν follow
the same conservation laws and so do Mλμν

C and Mλμν
B . As

opposed to Mλμν
C , Mλμν

B is locally conserved in the absence
of electric fields, which seems to be a better conserved
quantity for hydrodynamics, whereas the local angular-
momentum transfer through the spin-orbit interaction is not
manifested. From Eq. (50), one may alternatively define a
locally conserved AM tensor in the absence of background
fields,

M̃λμν
C ≡Mλμν

C þ ℏ
4

�
X½μϵν�λαβ

uαδJ5⊥β

τR

�
; ð53Þ

which can be decomposed into the canonical AM tensor
and the spin-orbit coupling. The M̃λμν

C and Mλμν
B are then

connected by the pseudo-gauge transformation.6

It is worthwhile to note that the side jumps in (local)
equilibrium do not yield entropy production, which man-
ifests the nondissipation of the CVE. By carrying out a
direct calculation of the entropy-density current from the
Wigner function in equilibrium, as shown in Appendix. B,
one finds

5It is clear that the last term of (50) will be a surface term when
λ ¼ i as one of spatial components, which vanishes when
integrating over position space. When λ ¼ 0 as the temporal
component, the situation is more subtle. Since ∂0ui as accel-
eration of the fluid velocity will be proportional to ∂iT or ∂iμ as
the gradients of either temperature or chemical potentials based
on the hydrodynamic EOM when Eμ ¼ 0, the last term in (50)
should be accordingly proportional to ϵijk∂iT∂jμ as the cross
product of the gradients of temperature and of chemical poten-
tials. Such a term should also vanish when integrating over
position space. The same argument could be applied to (49).

6From the field-theory construction,Mλμν
C andMλμν

B are related
by the pseudo-gauge transformation with the equations of
motion. However, in the Wigner-function approach, the equations
of motion are Kaddanof-Baym(KB)-like equations instead of the
simple Dirac equations in the presence of collisions.
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sμleq ¼
1

T
ðuμpþ Tμν

lequν − μVJ
μ
Vleq þ ℏDBBμ þ ℏDωω

μÞ;
ð54Þ

where DB=ω ¼ DB=ωR −DB=ωL and

DBR=L ¼ 1

8π2

�
μ2R=L þ π2T2

3

�
¼ ξBR=L

T
;

DωR=L ¼ 1

12

�
T2μR=L þ μ3R=L

π2

�
¼ ξωR=L

2T
: ð55Þ

The result takes the same form as what has been proposed
in anomalous hydrodynamics [22], in which only the
symmetric EM tensor contributes. One can explicitly show
that ∂μs

μ
leq ¼ 0. Near local equilibrium, the nonequilibrium

fluctuations such as viscous effects will modify sμ and
cause entropy production. It is not clear whether Tμν

A could
appear in sμ for nonequilibrium cases, while such correc-
tions should be at least at Oðℏ∂2Þ and pertinent to
collisions, which might be associated with e.g., the viscous
corrections upon CME/CVE [20].

IV. CONCLUDING REMARKS AND OUTLOOK

In this paper, we have investigated the interplay between
the spin and orbital components of the canonical angular
momentum for chiral fluids in the framework of Wigner
functions and CKT. It is found that the side jumps result in
non-vanishing antisymmetric component of the canonical
EM tensor in global equilibrium with nonzero vorticity and
an axial chemical potential, which is responsible for the
angular-momentum transfer between the spin and fluid.
Near local equilibrium, we further obtained the antisym-
metric component depending on temperature/chemical-
potentials gradients and electric fields. As indicated by
KB-like equations, such contributions are implicitly asso-
ciated with collisions stemming from the spin-orbit inter-
action, which further breaks local AM conservation. Also,
we have explicitly shown that the entropy-density current is
not affected by the spin-orbit interaction in equilibrium. It
thus takes the same form as proposed from anomalous
hydrodynamics and causes no entropy production in
equilibrium.
In general, we have shown that there exists nontrivial

angular-momentum transfer from the spin-orbit interaction
up to OðℏÞ in chiral fluids. However, in the zero axial-
charge chemical potential, it is crucial to investigate the
similar scenario up to Oðℏ2Þ, which incorporates the
polarization led by CSE and CVE. The study thus requires
future exploration upon the higher-order quantum correc-
tions on Wigner functions and CKT. On the other hand, it is
also intriguing to further investigate the polarization spec-
trum characterized by the Pauli-Lubanski pseudo vector

with the quantum corrections from the orbital angular
momentum.
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APPENDIX A: DERIVATION OF THE
ANTISYMMETRIC EM TENSOR

In this Appendix, we present some details of computa-
tions for the results shown in the context. Here we only
consider right-handed fermions, for which we will omit the
subindices R for convenience. Based on the Dyson-
Schwinger equations under the Wigner transformation up
to OðℏÞ, we shall obtain the following Kaddanof-Baym
(KB)-like equations for right-handed fermions [18],

σμ
�
qμ þ

iℏ
2
Δμ

�
S
<
¼ iℏ

2
ðΣ<S

>
− Σ>S

<
Þ; ðA1Þ

�
qμ −

iℏ
2
Δμ

�
S
<
σμ ¼ −

iℏ
2
ðS

>
Σ< − S

<
Σ>Þ; ðA2Þ

By parametrizing S
<
¼ σ̄μS

<

μ , the above equation yield the
difference equations,

ℏfσμ; σ̄νgDμS
<

ν ¼ 2i½σμ; σ̄ν�qμS
<

ν ;

ℏ½σμ; σ̄ν�DμS
<

ν ¼ 2ifσμ; σ̄νgqμS
<

ν : ðA3Þ

where ½A; B� ¼ AB − BA and fA;Bg ¼ ABþ BA and

DμS
<

ν ¼ ΔμS
<

ν − Σ<
μ S

>

ν þ Σ>
μ S

<

ν ðA4Þ

with Δμ ¼ ∂μ þ Fνμ
∂
∂qν. In Eq. (A3), the traceless part

linear to the Pauli matrices yields

ℏσμ⊥nνðDμS
<

ν −DνS
<

μ Þ¼−2σμ⊥ϵαμνβnαqνS
<β
;

ℏσμ⊥ϵαμνβnαDβS
<ν

¼2σμ⊥ðq ·nS
<

μ −qμn ·S
<
Þ; ðA5Þ

where Vμ
⊥ ¼ ðημν − nμnνÞVν for an arbitrary vector Vμ and

we set n · σ ¼ I. By integrating over momentum space,
Eq. (A5) becomes
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ℏ
2

�
nν∂⊥μJν − n · ∂J⊥μ − 2

Z
q
ððq · nÞC⊥μ − n · Cq⊥μÞ

�

¼ ϵαμβνnαT
βν
A ;

ℏ
2
ϵλμνρnν

�
∂λJρ − 2

Z
q
Cλqρ

�
¼ 2Tμν

A nν; ðA6Þ

which then results in

Tμν
A ¼ ℏ

4
ϵμναβ

�
∂αJβ þ 2nα

Z
q
ððq · nÞC⊥β − ðn · CÞq⊥βÞ

�
:

ðA7Þ

For left-handed fermions, the OðℏÞ terms should flip
the sign.
The perturbative solution for Wigner functions solved

from Eq. (A1) is shown in Eq. (23). Near local equilibrium,
it is found [19,20]

S
<μ

leq ¼ 2πϵ̄ðq · uÞ
�
δðq2Þ

�
qμ þ ℏ

2
ðuμðq · ωÞ

− ωμðq · uÞÞ∂q·u − ℏSμνðuÞẼν∂q·u

�
ðA8Þ

þℏ
2
ðBμuν−BνuμþϵμναβEαuβÞ∂qνδðq2Þ

�
fð0Þq ; ðA9Þ

where fð0Þq ¼ ðeβðq·u−μRÞ þ 1Þ−1 and we explicitly write
down the electric/magnetic-fields dependence via

1

2
ϵμναβFαβ ¼ Bμuν − Bνuμ þ ϵμναβEαuβ: ðA10Þ

Here we also introduce the following notations,

Ẽβ ¼ Eβ þ
ðq · uÞ
T

∂βT − qσðσβσ þ κβσÞ;
Eμ ¼ Eμ þ T∂μμ̄; ðA11Þ

where

σμν ¼ ð∂μuν þ ∂νuμÞ=2;

καβ ¼
1

2
ðuαu · ∂uβ − uβu · ∂uαÞ: ðA12Þ

In the local rest frame, uμ ≈ ð1; 0Þ, one finds

S
<0

leq ¼ 2πϵ̄ðq0Þ
�
δðq2Þ

�
q0 þℏ

2
ðq ·ωÞ∂q0

�
−
ℏ
2
Bj∂qjδðq2Þ

�

× fð0Þq ; ðA13Þ

and

S
<i

leq ¼ 2πϵ̄ðq0Þ
�
δðq2Þ

�
qi −

ℏ
2
ωiq0∂q0 − ℏSijðuÞẼj∂q0

�

þ ℏ
2
ðBi∂q0 − ϵijkEk∂qjÞδðq2Þ

�
fð0Þq : ðA14Þ

We subsequently employ the Wigner functions above to
calculate Tμν

A . It is found

T0i
Aleq ¼ −

Z
d4q
ð2πÞ4 ϵ̄ðq0ÞðS

<i

Rleqq0 − S
<0

RleqqiÞ

¼ −
ℏ
2

Z
d4q
ð2πÞ3 ϵ̄ðq0Þðδðq

2Þðqiðq · ωÞ − q20ω
iÞ∂q0f

ð0Þ
q

þ ðq0Bi∂q0δðq2Þ þ qiBj∂qjδðq2ÞÞfð0Þq Þ

¼ −
ℏωiT3

12

�
μ̄R þ μ̄3R

π2

�
ðA15Þ

and

δTij
Aleq¼

Z
d4q
ð2πÞ4 ϵ̄ðq0ÞðS

<i

Rleqqj−S
<j

RleqqiÞ

¼ℏ
Z

d4q
ð2πÞ3 ϵ̄ðq·uÞ

�
δðq2Þ
2q0

ðϵilnqj−ϵjlnqiÞqnẼl∂q0f
ð0Þ
q

−qlEkðϵilkqj−ϵjlkqiÞ
∂δðq2Þ
∂q2 fð0Þq

�

¼−δμiδνj
ℏϵμναβuα

2

�
σωT∂βμ̄þN0

∂βT

T
−
σωEβ

3

�
:

ðA16Þ

APPENDIX B: THE ENTROPY-DENSITY
CURRENT

We may perform the direct calculation of the entropy-
density current through the Wigner function. By introduc-
ing the Boltzmann’s H function for fermions (see e.g.,
Ref. [74]),

HðfÞ ¼ −f ln f − ð1 − fÞ lnð1 − fÞ; ðB1Þ

we may construct the entropy-density current via the
Wigner function by replacing f with H,

sμR ¼ 2

Z
d4q
ð2πÞ3 ϵ̄ðq · nÞ

�
δðq2Þðqμ þ ℏSμνðnÞDνÞ

þ ℏϵμναβqνFαβ
∂δðq2Þ
2∂q2

�
HðfðnÞq Þ; ðB2Þ

where we focus on right-handed fermions. Since we
are particularly interested in an equilibrium case, we

then take nμ ¼ uμ and fðnÞq ¼ fleqðuÞq ¼ ðeg þ 1Þ−1 with
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g ¼ βðq · u − μR þ ℏq · ω=ð2q · uÞÞ. The entropy current
in equilibrium hence becomes

sμRleq ¼ 2

Z
d4q
ð2πÞ3 ϵ̄ðq · uÞ

�
δðq2Þðqμ þ ℏSμνðuÞΔνÞ

þ ℏϵμναβqνFαβ
∂δðq2Þ
2∂q2

�
HðfleqðuÞq Þ: ðB3Þ

It is now more convenient to write the H function as

HðfleqðuÞq Þ ¼ gfleqðuÞq − lnð1 − fleqðuÞq Þ: ðB4Þ

We may first compute the contribution from the first
component up to OðℏÞ,

sμI ¼ 2

Z
d4q
ð2πÞ3 ϵ̄ðq · uÞ

�
δðq2Þðqμ þ ℏSμνðuÞΔνÞ

þ ℏϵμναβqνFαβ
∂δðq2Þ
2∂q2

�
gfleqðuÞq

¼ βT̄μν
Rlequν − μ̄RJ

μ
Rleq

þ ℏ
Z

d4q
ð2πÞ3 ϵ̄ðq · uÞδðq2Þ

×

�
βðq · ωÞ
q · u

qμ þ 2SμνðuÞðΔνgð0ÞÞ
�
fð0Þq ; ðB5Þ

where gð0Þ ¼ βðq · u − μRÞ. By using

2SμνðuÞΔνgð0Þ ¼
β

q ·u
ððuμðq ·uÞðq ·ωÞ−qμðq ·ωÞ−ωμðq ·uÞ2Þ

þ ϵμναβqαuβẼνÞ; ðB6Þ

we obtain7

sμI ¼ βT̄μν
Rlequν − μ̄RJ

μ
Rleq

− ℏβωμ

Z
d4q
ð2πÞ3 ϵ̄ðq · uÞδðq2Þðq · uÞfð0Þq

¼ βT̄μν
Rlequν − μ̄RJ

μ
Rleq −

ℏ
2
βNRω

μ: ðB7Þ

Here Ẽν is defined in (A11) and one can easily check its
contribution vanishes in the integral. However, as shown in
(46), it is found Tμν

ARlequν ¼ ℏNRω
μ=2. We thus find

sμI ¼ βTμν
Rlequν − μ̄RJ

μ
Rleq; ðB8Þ

which incorporates only the symmetric EM tensor.
Subsequently, we should evaluate the contribution from
the second term in (B4) up to OðℏÞ,

sμII ¼ −2
Z

d4q
ð2πÞ3 ϵ̄ðq · uÞ

�
δðq2Þðqμ þ ℏSμνðuÞΔνÞ

þ ℏϵμναβqνFαβ
∂δðq2Þ
2∂q2

�
lnð1− fleqðuÞq Þ

¼ −2
Z

d4q
ð2πÞ3 ϵ̄ðq · uÞ

��
δðq2Þqμ þ ℏ

4
ϵμναβFαβ

∂δðq2Þ
∂qν

�

× lnð1− fð0Þq Þ

−
ℏδðq2Þ

ð1− fð0Þq Þ

�
qμðq ·ωÞ
2q · u

∂q·u þ SμνðuÞΔν

�
fð0Þq

�
: ðB9Þ

Performing explicit calculations, we obtain

sμII ¼−2
Z

d4q
ð2πÞ3 δðq

2Þϵ̄ðq ·uÞ
�
qμ lnð1−fð0Þq Þ

−
ℏβ
2
ðBμþωμðq ·uÞ−uμðq ·ωÞþ 2SμνðuÞẼνÞfð0Þq

�

¼ βuμpRþ
ℏβ
8π2

�
μ2Rþ

π2T2

3

�
Bμþℏβ

12

�
T2μRþ

μ3R
π2

�
ωμ;

ðB10Þ

in which we employ the integration by part to acquire the
first term in the second equality from the logarithmic term
in the integrand. Similar to the case for sμI , the Ẽν term
does not contribute. Combining (B8) and (B10), we derive
the entropy-density current for right-handed fermions in
equilibrium,

sμRleq¼ sμI þ sμII

¼ 1

T
ðuμpRþTμν

Rlequν−μRJ
μ
RleqþℏDBRBμþℏDωRω

μÞ;
ðB11Þ

where

DBR ¼ 1

8π2

�
μ2R þ π2T2

3

�
¼ ξBR

T
;

DωR ¼ 1

12

�
T2μR þ μ3R

π2

�
¼ ξωR

2T
: ðB12Þ

One may further compute sμLleq for left-handed fermions,
where the OðℏÞ terms flip the signs, and obtain the total
entropy-density current sμleq ¼ sμRleq þ sμLleq.

7When including the contribution from antiparticles, one
should keep in mind that the normal ordering is implicitly taken
and the corresponding divergent term should be dropped.
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