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This paper describes a method of numerically evaluating high-order QED contributions to the electron
anomalous magnetic moment. The method is based on the subtraction of infrared and ultraviolet
divergences in Feynman parametric space before integration and on nonadaptive Monte Carlo integration
that is founded on Hepp sectors. A realization of the method on the graphics accelerator NVidia Tesla K80
is described. A method of removing round-off errors that emerge due to numerical subtraction of
divergences without losing calculation speed is presented. The results of applying the method to all 2-loop,
3-loop, and 4-loop QED Feynman graphs without lepton loops are presented. A detailed comparison of the
2-loop and 3-loop results with known analytical ones is given in the paper. A comparison of the
contributions of six gauge-invariant 4-loop graph classes with known analytical values is presented.
Moreover, the contributions of 78 sets of 4-loop graphs for comparison with the direct subtraction on the
mass shell are presented. Also, the contributions of the 5-loop and 6-loop ladder graphs are given, as well as
a comparison of these results with known analytical ones. The behavior of the generated Monte Carlo
samples is described in detail, and a method of the error estimation is presented. Detailed information about
the graphics processor performance on these computations and about the Monte Carlo convergence is given

in the paper.
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I. INTRODUCTION

The electron anomalous magnetic moment (AMM) is
known with a very high accuracy. In Ref. [1], the value

a, = 0.00115965218073(28)

was obtained. So, an extremely high precision is required
also from theoretical predictions.

The most precise prediction of the electron’s AMM at the
present time uses the following representation:

a, = a,(QED) + a,(hadronic) + a,(electroweak),

a n
ae(QED) = <—) a%”’
a2 = AP + A% (m/m,) + A5 (m/m.)

(2n)

+Ay (m/my,,m,/m,),
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where m,, m,, and m, are the masses of the electron, muon,
and tau lepton, respectively. Different terms of this expres-
sion were calculated by different groups of researchers.
Some of them have independent calculations, but others
were calculated only by one scientific group. The best
theoretical value [2],

a, = 0.001159652182032(13)(12)(720), (1)

was obtained by using the fine-structure constant
a~! = 137.035998995(85) that had been obtained by

using methods independent from a, (see Ref. [2]). Here,

the first, second, and third uncertainties come from Aﬁlo),

a,(hadronic) + a,(electroweak), and the fine-structure
constant,’ respectively. The values

A% =035,

A = 0.328478965579193...,
AlY = 1.181241456....,

AY = 1.9122457649. .

'So, the calculated coefficients are used for improving the
accuracy of a.
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are known from the analytical and semianalytical results in
Refs. [3,4], Refs. [5,6], Ref. [7], and Ref. [8], respectively.2
The value

Al = 6.675(192)

was presented in Ref. [2]. At the present time, there are no

independent calculations of A(ll()). However, A(ls) was

evaluated independently’ in Refs. [25,27,28] (and for the
graphs without lepton loops in Ref. [29]). We must take into
account the fact that the contributions of some individual
graphs turn out to be several times greater than the total
contribution in absolute value.* Therefore, an error in one

graph evaluation can cause the final result to be entirely

wrong. So, the problem of evaluating A<12") is still relevant.

The QED contributions to a, that are the most uncertain
and difficult to evaluate correspond to Feynman graphs
without lepton loops. We consider an evaluation of these

contributions in this paper and denote the n-loop part of it

by A(lzn) [no lepton loops].

This paper is the continuation of a series of papers
[29,30] with increasing precision, number of independent
loops in graphs, and refinement of the consideration.

We use the subtraction procedure that was introduced in
Ref. [30] for removing both infrared and ultraviolet
divergences. It is briefly described in Sec. II of this paper.
This procedure eliminates IR and UV divergences in each
AMM Feynman graph point by point, before integration, in
the spirit of Refs. [2,31-41], etc. This property is sub-
stantial for many-loop calculations when reducing the
computer time is of critical importance. Let us note that

A(IZ") is free from infrared divergences, since they are
removed by the on-shell renormalization, as well as the
ultraviolet ones (see a more detailed explanation in
Ref. [30]). However, the subtractive on-shell renormaliza-
tion cannot eliminate IR divergences in Feynman para-
metric space before integration as well as it does for UV
divergences.5 The structure of IR and UV divergences in
individual Feynman graphs 1is quite complicated.6
Therefore, a special procedure is required for removing
both UV and IR divergences. Let us recapitulate the
advantages of the developed subtraction procedure:

(1) It is fully automated for any n.

(2) Itis comparatively easy for realization on computers.

The value for AEQ was a product of the efforts of many
scientists. See, e.g., Refs. [9-24].

*However, by 2016, most parts of AES) had been calculated by
only one scientific group [25]. The first numerical estimations for

A§8> were presented in Ref. [26].

“This turns out to be the case regardless of the divergence
subtraction method used.

Moreover, it can generate additional IR divergences; see a
more detailed explanation in Ref. [30].

%See notes in Ref. [29].

(3) It can be represented as a forestlike formula. This
formula differs from the classical forest formula
[38,39,42] only in the choice of linear operators and
in the way of combining them.

(4) The contribution of each Feynman graph to A'*") can
be represented as a single Feynman parametric
integral. The value of A(lzn) is the sum of these
contributions.

(5) Feynman parameters can be used directly, without
any additional tricks.

See a detailed description in Ref. [30]. The subtraction
procedure was checked independently by F. Rappl using
Monte Carlo integration based on Markov chains [27]. An
additional advantage of the procedure is described below
and in Sec. IV H.

After the subtraction is applied, the problem is reduced to
numerical integration of functions of many variables. The
number of variables can be quite large7; this fact compels us
to use Monte Carlo methods. In most cases the precision of
Monte Carlo integration behaves asymptotically as C/+/N,
where N is the number of samples. Thus, for reaching a
high precision in practical time, it is very important to
decrease the constant C as much as possible. Unfortunately,

the behavior of Feynman parametric integrands that appear

in A?”) computation often leads to slow Monte Carlo

convergence. An integration method with a relatively good
constant C was introduced in Ref. [29]. The method is
based on importance sampling with probability density
functions that are constructed for each Feynman graph
individually. The construction is based on Hepp sectors
[37] and uses functions of the form that was first used by E.
Speer [43] with some modifications. The modification is
based on the concept of I-closure that was introduced in
Ref. [29]. The method from Ref. [29] demonstrated better
convergence than the universal Monte Carlo routines. A
refined version of the construction is described in Sec. I1I
of this paper. This refinement reduces the uncertainty of

A<18) [no lepton loops] by about 15% when the number of
samples is fixed.

When we have to deal with unbounded functions or with
functions having sharp peaks, the standard Monte Carlo
error estimation approach has a tendency to underestimate
the inaccuracy. A method of preventing underestimation
was described in Ref. [29]. However, some tests show that
in many cases a more accurate consideration of peaks is
required. An improved method of error estimation that uses
a specificity of the considered integrands is presented in
Sec. IV F. Detailed information about sample behavior for
the 5-loop and 6-loop ladder graphs is provided. Also,
information about the dependence of the results on the

"For example, for five loops we have 13 variables; see Ref. [29]
and Sec. IVA.
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number of samples is given for A(lg)[no lepton loops| and

for the 5-loop and 6-loop ladder graph contributions.

The numerical subtraction of divergences leads to a
situation in which small numbers (in absolute value) are
obtained as the difference of astronomically big numbers.
This generates round-off errors that significantly affect the
result.® To control these errors, we need to use additional
techniques that substantially slow down the computation
speed. In Ref. [30], all integrand evaluations were first
performed with two different precisions,9 and when a
difference in the results was noticeable, the calculation
was repeated with increased precision. This approach
requires twice as much computer time than the direct
calculation. Also, an emergence of bias is possible in this
case. All calculations that are described in Ref. [29] use
interval arithmetic.'® Interval arithmetic is reliable, but it
slows down the computation many times: e.g., the multi-
plication of two intervals requires eight number multi-
plications with correct rounding, three minimums, and
three maximums. To eliminate this slowdown, a special
modification of interval arithmetic was developed. This
technique gave a significant improvement in computation
speed without the loss of reliability. In many cases, this
method works faster than the approach with two preci-
sions.'" A specificity of the construction of the integrands is
used for reaching such performance. The description of this
technique is contained in Sec. IV C.

The rapid development of specialized computing devices
that solve some tasks many times faster than ordinary
computers makes it possible to use them for scientific
calculations. All Monte Carlo integrations that are
described in this paper were performed on one'? graphics
processor of the NVidia Tesla K80. Graphics processors
(GPUs) are very useful for Monte Carlo integration.
However, specific programming is required to use these
devices effectively. Sections IVA, IV D, and IV I contain
some information about the realization of the described
integration method on GPUs.

The developed method and realization were applied for

computing A§2n) [no lepton loops|, n =2, 3, 4. Also, the

contributions of the 5-loop and 6-loop ladders were
evaluated for testing purposes. The results are presented
in Sec. IVA. A comparison with known analytical results is
provided in Table XVIIL.

High-order calculations in quantum field theory require
performing some operations with enormous amounts of
information. For example, the total integrand code size'

8Moreover, these errors can convert a finite result to an infinite
one.

°In 64-bit and 80-bit precisions that are supported on pro-
cessors that are compatible with the Intel x86 family.

See Sec. IV B.

"'See Table XVIL.

"’The NVidia Tesla K80 has two GPUs.

PSee Table XVII.

for AES) [no lepton loops| is 2.5 GB. There are too many
places where a mistake can emerge. However, the total
independent check requires a lot of resources. So, it is very
important to have the possibility of checking the results by
parts using another method. Section IV H demonstrates that
the developed method provides such a possibility. The total
number of 269 Feynman graphs for A§8> [no lepton loops] is
divided into 78 sets, and the contribution of each set must
coincide with the contribution that is obtained by direct
subtraction on the mass shell in Feynman gauge. The
contribution of each set is provided in Sec. IV H. Also,
analogous information is given for the 2-loop and 3-loop
cases; the comparison in this paper is as good as the one in
Ref. [30]. The contributions of six gauge-invariant classes
of 4-loop graphs without lepton loops are presented in
Sec. IV H and compared with the semianalytical ones from
Ref. [8]. Knowing the values of the contributions of gauge-
invariant classes gives us the ability to check some
hypotheses from quantum field theory.'* Section IV G
contains detailed information about the contributions of
individual Feynman graphs, including the influence of
round-off errors and information about Monte Carlo error
estimation. A summary of the results and technical infor-
mation about GPU performance and code sizes is presented
in Sec. IV L.

II. SUBTRACTION OF DIVERGENCES

We will work in the system of units in which 4 = ¢ =1,
the factors of 4z appear in the fine-structure constant
a = ¢*/(4x), the tensor g, is defined by

10 0 0
o =1 0 o0

w=9"=1o o -1 0|
00 0 -1

and the Dirac y matrices condition

vt =29
We will use Feynman graphs with the propagators

satisfy  the

i(p+m)
P R (2)
p-—m” + i€
for electron lines and
—Yu
= 3
p>+ie (3)

for photon lines. We restrict our attention to graphs without
lepton loops. However, the developed subtraction pro-
cedure works for graphs with lepton loops as well [30].

See Sec. V.
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The number w(G) =4 - N, —3N, is called the ultra-
violet degree of divergence of the graph G. Here, N, is the
number of external photon lines of G, and N,, is the number
of external electron lines of G.

A subgraph15 G’ of the graph G is called UV divergent if
®(G’) > 0. There are the following types of UV-divergent
subgraphs in QED Feynman graphs without lepton loops:
electron self-energy subgraphs (N, =2, N,=0) and
vertexlike subgraphs (N, =2, N, = 1).

Two subgraphs are said to overlap if they are not
contained one inside the other and their sets of lines have
a nonempty intersection.

A set of subgraphs of a graph is called a forest if any two
elements of the set do not overlap.

For a vertexlike graph G, by §[G] we denote the set of all
forests F consisting of UV-divergent subgraphs of G and
satisfying the condition G € F. By J[G], we denote the set
of all vertexlike subgraphs G’ of G such that G’ contains the
vertex that is incident'® to the external photon line of G."

We will use the following linear operators that are applied
to the Feynman amplitudes of UV-divergent subgraphs:

(1) A is the projector of AMM. This operator is applied
to the Feynman amplitudes of vertexlike subgraphs.
See the definition in Refs. [29,30].

(2) The definition of the operator U depends on the type
of UV-divergent subgraph to which the operator is
applied:

a. If £(p) is the Feynman amplitude that corre-
sponds to an electron self-energy subgraph

2(p) = u(p?) + v(p*)p. (4)

then, by definition,'®
UX(p) = u(m?) + v(m*)p. (5)

b. If T',(p.q) is the Feynman amplitude corre-
sponding to a vertexlike subgraph

L,(p.0) = a(p*)y, + b(p*)p, + c(p?) pp,
+ d(Pz)(f?Vy - }/;ti))’ (6)

then, by definition,

Ur, = a(m?)y,. (7)

In this paper, we take into account only subgraphs that are
strongly connected and contain all lines that join the vertices of the
given subgraph.

"*We say that a line / and a vertex v are incident if v is one of
the end points of [.

"In particular, G € J[G].

Note that it differs from the standard on-shell renormalization.

These rules are applied for individual Feynman graphs and
even for fixed values of Feynman parameters. So we cannot
neglect ...(py, —7,p) terms, and we cannot use the Ward-
Takahashi identity or other simplifications.

The operator U can be used for extracting the UV-divergent
part of the amplitude without touching the IR-divergent
part. For example, for the 1-loop amplitude in Eq. (6), all
UV divergences are contained in a(p?)y,, but all IR
divergences are in b(p*)p, + c(p*)pp,. For the 1-loop
amplitude in Eq. (4), IR divergences appear after on-shell
differentiating that is needed in the standard renormaliza-
tion, but not for defining U. See a detailed description in
terms of Feynman parameters in Ref. [30]. It is important
that U preserve the Ward identity. This fact is used for
proving that the subtraction procedure is equivalent to the
on-shell renormalization and for calculating the contribu-
tions of graph classes; see Ref. [30] and Sec. IV H. Itis also
important for removing IR divergences that Eq. (5) extract
the self-mass completely; see Discussion in Ref. [30].
(3) L is the operator that is used in the standard
subtractive on-shell renormalization of vertexlike
subgraphs. If T',(p,q) is the Feynman amplitude
that corresponds to a vertexlike subgraph, Eq. (6) is
satisfied, and then, by definition,

LT, = [a(mz) + mb(m?) + mzc(mz)]yﬂ. (8)

Let f; be the unrenormalized Feynman amplitude that
corresponds to a vertexlike graph G. Let us write the
symbolic definition

.fG = Rr(‘}veG’ (9)
where

RI(I;eW — (—1)”—1MgllMg;Mg;, (10)

F={G|....Gn}eB(G]
G'eS[G)nF
AG/, lf G/:G//,
- UG”’ if G” ¢ S[G],Or G// E Gl,

MG// =

Lg. if G’ € 3[G].G' € G".G" +G.,
(LG// —_ UGH), lf GU = G,G/ # G

(11)

In this notation, the subscript of an operator symbol denotes
the subgraph to which this operator is applied.

The coefficient before y, in f is the contribution of G to
a,. See the examples of applying the procedure in
Refs. [29,30]. The operators L and (Lgr — Ugr) are
used for removing the IR divergences that are connected
with subgraphs in the sense of Ref. [44] and the corre-
sponding UV ones. Note that the operator (Lg — Ugr) is
required in Eq. (11) for removing UV divergences, % and in

»See Ref. [30], Appendix C.
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order to make this subtraction equivalent to the on-shell
renormalization,”' it cannot be replaced by L.

II1. PROBABILITY DENSITY FUNCTIONS
FOR MONTE CARLO INTEGRATION

We use Feynman parameters for calculations. Thus, to
obtain the contribution of a graph G, we need to calculate
the integral

/ Iz, .., 20)0(z1 + -+ + 2, — 1)dz,...dz,,
21

where the function [/ is constructed by using the known
rules [30].

We use the Monte Carlo approach based on importance
sampling: we generate randomly N samples z,, ..., 2y,
where z; = (2j1++--+2j), using some probability density
function g(z) and approximating the integral value by

(z)
Z?. (12)

=

~

2| =
Q

The density g is fixed for a fixed graph G. The speed of
Monte Carlo convergence depends on the selection of g. A
construction of G that gives a good convergence is
described below.

We will use Hepp sectors [37] and functions of the form
that was first used by E. Speer [43] with some modifica-
tions. All the space R” is split™ into sectors. Each sector
corresponds to a permutation (ji,...,j,) of {1,2,...,n}
and is defined by

Sjlv--s./-n = {(Zl, ...,Zn) S R:Zj] > ij > ... 2 Zjn}'

We define the function g(z;,...,z,) on S; . by the
following relation:
n /7. \Peg(jrjirten}t)
' o(z5,/z
g()(Zl,---,Zn) _ H172( /1/ ]l—l) , (13)

2122.--2p

where Deg(s) > 0 is defined for each set s of internal
lines™ of G except the empty set and the set of all internal
lines of G. The probability density function is defined by

g(zl’ ""Zn)

90(21-++:2n)
Lo a2090(21s 0 20)8(21 + - 2, = 1)dz, ... dz,

..... "

*'See Sec. IV H and Ref. [30], Appendix B.
Let us remark that the components have intersections on their
boundaries. However, this is inessential for integration.
“Note that the sets can be not connected.

A fast random samples generation algorithm for a given
Deg(s) is described in Ref. [29].

Let us describe the procedure of obtaining Deg(s). The
following auxiliary definitions repeat the ones from
Ref. [29]. By definition, we set

@(s) = 2Ny (s) + le(s)|/2 = Is],

where |x| is the cardinality of a set x, e(s) is the set of all
electron lines in s, and N () is the number of independent
loops in s. If s is the set of all internal lines of a subgraph of
G, then w(s) coincides with the ultraviolet degree of
divergence of this subgraph that is defined above.

The problem of constructing a good ¢(z) is very close to
the problem of obtaining a simple and close enough upper
bound for |I(z)| and proving the integral finiteness; see
Ref. [29]. Feynman parametric expressions for the inte-
grands (without subtraction terms) can be represented as
fractions with denominators that vanish on the boundary of
the integration area, if we are on the mass shell [30]. If
we consider the numerators only, we can use the ultraviolet
degrees of divergence themselves; see Ref. [43]. If we
take into account the denominators too, the degrees
must be increased, which is performed by I-closures that
are defined below. In addition to vanishing denominators,
the divergence subtraction complicates the problem. The
construction described below is based on both theoretical
considerations®* and numerical experiments.

By IClos(s) we denote the set s U s', where s’ is the set
of all internal photon lines / in G such that s contains the
electron path in G connecting the ends of /. The set IClos(s)
is called the I-closure of the set s.

By definition, we set

@'(s) = w(IClos(s)).

A graph G” belonging to a forest F € F[G] is called a
child of a graph G’ € F in F if G” C G’ and there is no
G" € F such that G” ¢ G/, G" € G".

If F € §[G] and G’ € F, then by G’/F we denote the
graph that is obtained from G’ by shrinking all children of
G’ in F to points.

We will also use the symbols w, @' for graphs G’ that are
constructed from G by some operations like those described
above,25 and for sets s that are subsets of the set of internal
lines of the whole graph G. We will denote these by w¢ ()
and o[, (s), respectively. This means that we apply the
operations @ and @' in the graph G’ to the set s’ that is the
intersection of s and the set of all internal lines of G'.

Electron self-energy subgraphs and lines joining them
form chains /,G,,G,...l,G,l,,, where [;’s are electron

*Some of the ideas underlying the concept of I-closure and
this procedure of obtaining Deg(s) will be described in future
papers. (These ideas are quite complicated and are not completely
substantiated mathematically at this moment.)

»See the corresponding examples in Ref. [29].

076018-5



SERGEY VOLKOV

PHYS. REV. D 98, 076018 (2018)

lines of G, and G;’s are electron self-energy subgraphs of G.
Maximal (with respect to inclusion) subsets {/;, 5, ..., [, }
corresponding to such chains are called SE chains. The set of
all SE chains of G is denoted by SE[G].

Suppose a graph G’ is constructed from G by operations
like those described above; by definition, we set

W’ (5) :a)’G,(s)—I—% > (s -1).

s/ €SE[G)
s'Cs,s'inG'

(It is important that here we consider the SE chains of the
whole graph G.)
By &max|GJ, we denote the set of all maximal forests
belonging to F[G] (with respect to inclusion).
Let Cyigr > 0, Cpigz > 0, Caga, Csubts Csubsks and Cauno
be constants. By definition, we set
|

Chigz +

N.(G)
Deg(s) =
otherwise,
where
Cap, if G' € S[G],
Sub[G'] = ¢ Cypse, if G'is a self-energy subgraph,

C.uo 1n the other cases.

This formula for Deg(s) differs from the one that was
defined in Ref. [29] and gives better Monte Carlo con-
vergence, if appropriate values for constants are taken. For
good Monte Carlo convergence, we can use the values

CbigZ - 0256, CbigF = 0839,
Cadd - 0786, CsubI - 02,
Cupse = 0, Capo = 0.2. (15)

These values were obtained by a series of numerical
experiments on 4-loop Feynman graphs. See the examples
for the considered combinatorial constructions in Ref. [29].

IV. REALIZATION AND NUMERICAL RESULTS

A. Overview

The computation on one GPU of an NVidia Tesla K80
that was leased from Google Cloud*® showed the following
results (1o 1imits27):

26Using the free trial.
*'See Sec. IVF.

(Crigr=Chigz)N1(5)

5 loops 6 loops

FIG. 1. 5-loop and 6-loop ladder graphs.

, if s contains all electron lines of G,

Caaq + mingeg, 6] Y cer Max(0, —a)z,/F(s) — Sub[G)),

A§4) [no lepton loops| = —0.3441651(34),
A§6) [no lepton loops| = 0.90485(10),
A§8> [no lepton loops| = —2.181(10),

where the corresponding computation times are 21 h 37 min,
5d 8 h, and 7 d. The obtained contributions of the 5-loop
and 6-loop ladder graphs from Fig. 1 are 11.6530(58) and
34.31(20), respectively. The corresponding computation
times are 4 h 38 min and 8 h 24 min. All obtained results
are in good agreement with the known analytical and
semianalytical ones; see Table XVII. See also the detailed
results in Secs. IVG, IVH, and IV 1.

We reduce the number of integration variables by one
using the fact that each integrand I(z,,...,z,) depends
linearly on z, when z, + z,, is fixed, where a and b are the
electron lines that are incident to the vertex that is incident
to the external photon line; see Ref. [29].28 In contrast to
Refs. [29,30], we use a nonadaptive29 Monte Carlo algo-
rithm. The absence of adaptivity simplifies a realization on
the GPU and allows us to undertake an analysis of the
Monte Carlo samples behavior; see Sec. IV F.

The D programming language [46] was used for the
generator of the integrands code. The integrands and the

*And also Ref. [45].

Except for the selection of the parameters (15) and an
intergraph adaptivity: the numbers of Monte Carlo samples for
each Feynman graph are selected to make the convergence
maximally fast.
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Monte Carlo integrator were written in C++ with CUDA [47].
The integrand code sizes are presented in Table XVII. The
pseudorandom generator MRG32k3a from the CURAND
library [48] was used for the Monte Carlo integration.

The integrand values are evaluated first using double-
precision”™ floating-point operations that are fully sup-
ported on the GPU. If the double-precision operations do
not give enough accuracy, the calculations are repeated
using arbitrary-precision floating-point operations with
increasing precision; see the details in Sec. IV D.

All the integrand code is divided into shared libraries that
are linked dynamically with the integrator. Each Feynman
graph and type of arithmetic corresponds to one or several
shared libraries. Each of these shared libraries contains
CUDA kernels™ and functions for calling them. To reduce
the compilation time* without losing the computation
performance, the size of the integrand CUDA kernels is
set at approximately 5000 operations. Also, to reduce the
compilation time, each arbitrary-precision shared library
contains no more than 10 CUDA kernels.

The memory speed is a weak spot of GPU computing.
So, the integrand GPU code is organized in such a way that
the most of the operations are performed with the GPU
register memory: we are trying to minimize the number of
the used variables, often to the detriment of the arithmetic
optimization.

To use the GPU parallel computing effectively, we divide
the Monte Carlo samples for one Feynman graph into
portions. Each portion contains from 10° to 10% samples.
First, we generate the samples of a given portion and
calculate the corresponding integrand values in the fastest
precision. After that, the samples requiring an increased
precision are collected and calculated. Each CUDA kernel
is launched on a GPU in 19968 parallel threads.™ To
reduce the impact of the latency of CUDA kernel calling,
each thread performs approximately 15 samples sequen-
tially in a loop.

B. Interval arithmetic

Interval arithmetic is an easy and reliable way for
controlling round-off errors. In this way all calculations
are performed with intervals, not with numbers. Arithmetic
operations on intervals are defined in such a way that each
exact intermediate value x is guaranteed to be in the
corresponding interval [x~; x™]. One can use the following
definitions:

**Double precision: 64 bit.

*'A CUDA kernel is a function in a program that is executed
many times in parallel on GPU and is called from the CPU part;
see Ref. [47].

#GPU device code is compiled very slowly, and the compi-
lati?n time increases rapidly with the size of functions.

104 blocks of 192 threads.

[(x™ 4 y7)dowm; (x4 y )],
[(x7 = yF)domms (xt — y7)ee],
[min((x~y™) oM, (x”y*)dom,
(ery—)down’ (erer)dOwn);

max ((x~y™)"P, (x7y")",
(xFy7)™, (xFy ™)),

/s xt] = [min((1/x7)%", (1/xF)%mn);
max((1/x7)", (1/x)*)],

X75x ]+ sy

x75x ] = sy

x75x ] - vy

where (%) and (*)9"" mean the operation (*) with
rounding up (to 4+o0) or down (to —oo). Most modern
GPUs™ support specifying the rounding mode for arith-
metic operations and working with infinities for handling
overflows. Addition, subtraction, and multiplication can be
realized directly by using the formulas proposed above.”
However, for division, it is required to perform additional
operations for handling division by zero and overflows.
This does not slow down the computation, because the
number of divisions in the integrand constructions is
very small.

C. Elimination of interval arithmetic

Direct interval arithmetic is a very slow thing. However,
there are many ways of increasing speed by weakening the
distinctness of the intervals.

We will use the following specificity of the integrands
construction. It is known [30]3 ® how to construct the
integrand for a given graph G from the building blocks
Ve, Qg/j B, and S¢, where G’ is a graph that can be
obtained from a subgraph of G by shrinking some subgraphs
to points; a, b are internal electron lines of G'; j = 1, 2; %%

is defined through a sum over 1-trees of G; aG/j is defined

through a sum over 1-trees®’ passing a; BaG,; is defined
through a sum over trees with a cycle passing a, b; and S is
defined through a sum over 2-trees. See the full definitions in
Ref. [30]. The construction rules described in Ref. [30] allow
us to observe that for a high number of independent loops in
G, the most part of the integrand computation is the
calculation of polynomials with the variables Qg/] JA'SE

and BY /v
Suppose we want to calculate a polynomial of the
intervals [x7;x[], ..., [xy;x}] that is constructed as a

**As well as CPUs.

35Als0, these formulas will work correctly with “not a number”
entries (NANs) despite the fact that the NVidia realization of min
and max ignores NANs in the lists of arguments.

See also Refs. [40,41,45].

"More precisely, Ref. [30] has a definition of QaG’; the values
QaG/] can be defined by QHG’ = ijl P+ Qf/z P, in terms of
Ref. [30].
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sequence of additions, subtractions, and multiplications.

The main ideas of the interval arithmetic elimination are as

follows:

(1) We can calculate the center of the resulting
interval in the direct double-precision arithmetic
using the same polynomial applied to the centers
of [x7;x/].

(2) The radius of the resulting interval can be estimated
as a function of X7, x;-r that is much more simple than
the source polynomial.

We will use the followin§8inequality about the machine

double-precision arithmetic™:
|)C _ xrnd| < 2—52|x| + 2—1022’

where x™ corresponds to the machine representation of x
rounded in any direction.

Let x; be the exact values corresponding to the intervals
[x;;xf], j=1,....,n. By x,41, ..., x; we denote the exact
intermediate values that are obtained sequentially when
we calculate the value of the needed polynomial. To each
j=1,....n we assign a type t;: 1; = 0 if x; is ngk/VG',
t; = 1if x; is BS /VY. (We divide all source values into
two groups in such a way because |Q9,/VY| <1, but
BY, /VY are unbounded.”®) Let us define the numbers x5
M;, e;, j=1,...,1, satisfying the following conditions for
all j:

appr

(1) |x!- - x| <e;.

2) |x;ppr| <M.

We define them by using the following rules:

(1) xj-ppr = ((x7 +x}’)/2)md, j=1,....n. (Thus, xj-ppr
are the centers of the corresponding intervals; the
machine double-precision arithmetic guarantees
that we always have xj <xj* <x7 if an over-
flow does not occur.)

2) Mj’s are defined for j =1,...,n by

M; 213§|xk B

(3) ¢&;’s are defined for j =1,...,n by

€j = € = max max (0P = x0 )W, (xf = xPP)ee).

(4) If x; is obtained as x; * x,, where x is addition,
subtraction or multiplication, j = n + 1, ..., [, then

KPP = (PP XGPPT)™. (Thus, x5 are obtained by

*The last term corresponds to the case when a very small
number is converted into zero after rounding.
39 . . - .
Generally speaking, we can divide them in any way into any
number of pieces. This splitting is selected as a compromise
between precision and speed.

the direct double-precision arithmetic without speci-
fying the rounding mode.*’)
(5) Analogously, (M}, ;) is defined by

(Mj.e5) = (M + M,)(14+272) 4 27102,
et e+ 27 (M + M,) +2712)

for addition and subtraction, and by

(M;,€;) = (MM, (1+2752) 4271022,
ELEy +€kMr +€,.Mk +2_52MkMr —|—2_1022)

for multiplication.
It is easy to see that for the final /, the value ¢; can be
expressed as a polynomial P(M,_y, M,_,, €) with positive
coefficients in only three variables, where

M,_, = max|x;?™].
ty=a

Thus, the value of & can be obtained directly using the
coefficients of this polynomial without calculating the
intermediate values My, &;.

However, the polynomial

P(Mt:O’ Mt:lﬂg) = ZCu,v.w(Mt:O)u(Mtzl)Ugw

u,v,w

can still have many coefficients and therefore can require a
lot of arithmetic operations for computation. We estimate P
by another expression in the following way: Let us split P
into four parts Py, P, P,, P by the following rules:

. —100
PO . Cu,v,w <2 )

Py:C, . >0.5,

P 2710 <C, <05,

w<l, P3:C,,,205 w>2.

Thus, P = Py + P| + P, + P3. By definition, we set

min u, ul

u. =
Ch>0 !

7 = max u,

"
Cu,1,‘.w>0

where

Pi(Mi—o.M_y.¢) = ZC{;.v,w(Mt:o)u(Mzzl)yfw,

u,v,w

j=0,1,2.3.

Let us define v, v}“, wy, w;“

in an analogous way. We set

“In some tests, specifying a rounding mode for addition or
multiplication slows down the performance of these operations
on an NVidia Tesla K80 by a factor of 7. However, in the
considered calculations this was not experienced; see Table X VII.
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P;'(Mt:O’ Mt:l , 8) = <ZC{4,0,W)

u,v,w

-max ((M,_g)" . (M,_0)"7)

cmax (M,_)" . (M,_;)"7)

- max (", &").

Itis obvious that P; > P;. So, we can use P’ = P + P} +
P, + Piasa radlus of the final interval, if it is calculated by
machlne arithmetic operations with rounding up P s
much simpler for calculation than P. Thus, an interval for
the final value may be*
[(X?PPT _ (P/)up)down; (X?PPT + (P/)up)up]‘

We split P into four polynomials in a way guided by the
following considerations:

(1) P5 contains most of the coefficients’ sum; however,
its contribution in P’ will be compensated by the
multiplier &> (when ¢ is near zero).

(2) P, has a large sum of coefficients too; however, it is
much less than P5 has; this sum will be compensated
by the multiplier ¢ in PY.

(3) P, has a small sum of coefficients; however, in some
cases P’1 can be noticeable; thus, we separate P,
from P, to minimize the contribution of the
max - max - max part in the definition of P}.

(4) The contribution of the coefficients of P, is al-
ways small.

D. Algorithm of obtaining accurate integrand values

We obtain the value® 1(z)/g(z) from Eq. (12) first by the
eliminated interval arithmetic from Sec. IV C. If the
|

i [Deg({jis jisis ---

obtained interval [y~;y"| does not satisfy the condition
y© —y~ < 6/4, where o is the current error estimation® for
the obtained integral value, we repeat the calculation in the
direct double-precision interval arithmetic. If it is not
enough, we reiterate this calculation in the interval arith-
metic based on floating-point numbers with a 128-bit
mantissa and with a 256-bit mantissa (if needed). If the
256-bit-mantissa precision is not enough, we suppose that
the value equals 0.

The arithmetic with a 128-bit mantissa is realized on the
GPU in such a way that all operations are performed with
the GPU register memory. The arithmetic with a 256-bit
mantissa works with the global GPU memory. The usage of
the register memory improves the performance about
tenfold.”

We also use a routine for the prevention of the occasional
emerging of very large values that is analogous to the one
described in Ref. [29], but adapted for GPU parallel
computing.

E. Modified probability density functions

The situation in which g(z) from Eq. (12) is very small;
is theoretically possible, but the smallness if |/(z)| does not
correspond to it. An emergence of such situations can make
the Monte Carlo convergence worse. For patching in these
situations, we use the probability density functions

9(z) = C191(2) + C292(2) + C393(2) + C494(2)

instead of Egs. (13) and (14). Here g, is defined by
Eqgs. (13) and (14),

D (2150 2y) =

when the definitions from Sec. III are used, and g3 is
defined by Egs. (13) and (14), but with the same
Deg(s) = D, g4(z) = (n—1)! (the uniform distribution).

“The coefficients C,,,, and their sum must be calculated
with rounding up too. However, this calculation is performed at
the stage of codegeneration.

“Overflows, infinities, and NANs do not require an additional
con51derat10n at all stages of the calculation.

“We cannot use double precision directly for the probability
density g(z), because its value sometimes goes beyond the range
of double-precision values. This situation often occurs in the
6-loop case. We use the representation x-2/ instead, where
double precision is used for 0.5 <x <1, and the number j is a
32-bit integer.

n!ZlZz...Zn

I
To generate a random sample with the distribution ¢(z), we
should perform the following two steps:

(1) Generate randomly j = 1, 2, 3, 4, where the prob-

ability of selecting j is C;.

(2) Generate a sample with the distribution g;(z).
The generation with the distribition ¢,(z) is the same as for
distributions defined by Eqgs. (13) and (14), but at the stage

“In the beginning of the integral computation, we calculate
between 10° and 107 points in the direct double-precision interval
arithmetic, taking the nearest to zero points for each interval.

However, Table XVII shows a gap that is much more than a
factor of 10. The reason is that there are very few points requiring
256-bit mantissas, so we cannot use GPU parallelism effectively.
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TABLE 1. Probability distributions for 5-loop and 6-loop
ladders.

Parameter 5-loop ladder 6-loop ladder
Maxlog 23 28

ngy 11 2

ny 64 8

n, 393 45

n3 2300 174

ny 11891 785

ns 51840 2898
e 204 817 9374
ny 688 060 25759
ng 1885211 62363
ngy 4300 121 135343
ni 8615210 267 630
n 15701395 490720
nis 26 582 404 849 862
ni3 42456 874 1394740
nig 64 590 501 2198221
nis 94011212 3331999
nig 131314678 4892615
ny; 176 228 467 6965 326
ng 228 021742 9626392
nig 285614 048 12965 533

of sector generation we must take sectors with the same
probabilities; see Ref. [29]. All computations are performed
with the following values for the constants:

D=0.75,
C,=0.035,

C,=0.03, (C3=0.035,
Cl :l—Cz—C3—C4.

F. Monte Carlo error estimation

Let z,,...,zy be random samples; the formula (12) is
used for Monte Carlo integration. By definition, we set
y; = 1(z)/ g(z). The conventional error estimation approach
is based on the following formula for the standard deviation:

9]=1Y% (ij=1yj)2
N2 NP

(0))? =

However, this formula has a tendency to underestimate
the real standard deviation. Let us consider the 5-loop
and 6-loop ladder examples. By definition, we set

maxlog = max|log, [y, + 0.5].
j

Let n; be the quantity of samples j such that

omaxlog—k—0.5 |y | < pmaxlog—k+0.5. (16)
—_— ] b

maxlog and n; for the 5-loop and 6-loop ladders are

presented in Table I. n;, is an approximation for N p;, where

Py 1s the probability that a sample is in the interval (16).

We can see that the real standard deviation is highly
dependent on the behavior of p; for j < 0. For example,
if pjy1/p; <4forall j < jo, then the standard deviation is
infinite.

We will use the improved estimation”

(04)? = (

7

Gi)z + Auncert + Apeakv

4
where*®

19
— maxlog—k
Auncert =4 r]?:aé(“' ¢ VAL

is the contribution of the uncertainty of n;, and Apeak is the
contribution of the predlcted behavior of p; for j < 0 that
is described below.”

The idea is to approximate 7; by a geometric progression,
taking into account that the n;’s are known with an
uncertainty of about C, /i and that Pj+1/p; changes with j.

We set

N logyn;, if n; >0,
7T l=2,  ifn =0,

1 1 1
h = log, max (g’nj—i_ij:”nj—'_é_l)'

Here h; is an approximated value of log, (Np;), [h7; hj*] is
an interval for this value that is obtained by taking into
account that n; is known with un(:ertainty.5

We will estimate the absolute value of a difference
between neighbors log,(p;.1/p;) by the value d, where

di
d= max —,
0<j<k<18k — j

where dj; is the distance from 0 to the interval [djfk; d;{]

*Table T demonstrates that for the 6-loop ladder, such a
situation is quite possible.

When we calculate deviation probabilities based on the
standard deviation, we use a presupp0s1t10n based on the central
limit theorem that the distribution of Z 1 ¥;/N is close to the
Gauss normal distribution. However, it is dlfflcult to estimate the
difference between the real distribution and the normal one. For
example, the Berry-Esseen inequality uses the third central
moment of random variables that is infinite if p;.,/p; < 8 for
all j < jo. (Table I shows that this situation is quite possible for
both 5-loop and 6-loop ladders.)

The definitions of o, and Ay repeat the ones from
Ref. [29].

This procedure is a result of tests on different graph
contributions to a,. It is developed for future calculations of
contributions to a, of higher orders. It should not be treated as a
universal procedure that works for all Monte Carlo integrations.
However, a large value of 64 /6 indicates that the obtained error
estimation is unreliable.

So)c:n—l—%z:I:Cg/n—t—%2

xF Cyx=n.

is the solution of the equation
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d]k_<h;+l i ) (h;rl h;)’
d;'?c = (hk+1 — h ) (h/_+1 hf)

For the approximation of the sequence by a progression,
we will use other values for the log, (N p;) uncertainty that
are obtained by taking into account that errors for lesser j
are more critical:

c? / c? c? c?

Y=Y it >0,
3,if n; =0,
where
2
C, = .
J 1+2(j240rl)

For approximating the sequence of logarithms by a linear
function kj + b, let us introduce the coefficients a;,

5, 2<1<20, 0 < j <, for the least squares method™':

(S

for all [ and x, ...
We set

I-1
= argmin;,p) Z kj+b—x;)
j=0

, X1

k = max(k,, ...,

koo, hg — 1 — ”0)~

This formula takes into account both the uncertainty of n;
and the shift of p;.,/p; with j. We take max to prevent
excessive overestimation.>” Also, we set

+¢Z

b=3"4f

éh ;» where we take [ for which the minimum is
achieved. Let us define A, by

A = 22~maxlog+b+0.7Ab (ﬁ _ 1) ,

pe
where

1 12j=6(-1) o _ 2(21 1)-6/
I(P-1) f I(I+1)
*’The last argument of max is needed to process the situation
when ng is quite large: in this case, the absence of n_; is very
informative.

'The explicit formulas are a}

The meaning of this definition is that we use the formula for
the sum of a geometric progression, taking w instead of
k—2. w is defined in such a way that w~k—2 as
k — 400, and w - 1/8 as k - —oco.

We use o, for all numerical results that are presented in
this paper.

TABLE II. Dependence of the estimated error and the differ-
ence between the obtained value and the known semianalytical
one [8] on the number of Monte Carlo samples N
A§8> [no lepton loops]; see a remark about o4, o calculation in
Sec. IVH.

Nootal Value o4 o, Difference o4/0)
40 x 10° —=2.3937 0.2144 0.1168 —0.2168 1.84
10" —2.2323  0.0710 0.0494  —0.0555 1.44
20x 1010 —=2.1820 0.0468 0.0345 —0.0051 1.36
50 x 1010 —2.1851 0.0282 0.0218  —0.0083 1.30
1012 -2.1757 0.0194 0.0154 0.0012 1.26
20 x 1011 =2.1702 0.0133 0.0109 0.0066 1.23
32 x 101 —=2.1807 0.0104 0.0086  —0.0038 1.21
TABLE III. Dependence of the estimated error and the differ-

ence between the obtained value and the known analytical one
[49] on the number of Monte Carlo samples Ny : 5-loop ladder.

Nl Value o4 o) Difference  o4/0,
59 x 10°  12.0682 0.8202 0.3288 0.4090 2.49
12x 107 11.6120 0.1349 0.0720 -0.0472 1.87
24 x 107 11.6934 0.0800 0.0525 0.0342 1.52
60 x 107  11.6798 0.0665 0.0379 0.0206 1.76
10° 11.6678  0.0427  0.0270 0.0086 1.58
20x 108 11.6474 0.0277 0.0192 -0.0118 1.44
50 x 108 11.6448 0.0150 0.0120 —0.0144 1.25
100 11.6509 0.0111 0.0086  —0.0083 1.29
20 x 10° 11.6541 0.0073 0.0061  —0.0051 1.19
29 x 102 11.6530 0.0058 0.0050  —0.0062 1.16
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TABLE IV. Dependence of the estimated error and the differ-
ence between the obtained value and the known analytical one
[49] on the number of Monte Carlo samples N, : 6-loop ladder.

Niotal Value oy o, Difference  o4/0)
15x10° 34.3209 7.1538 2.0690 —0.0461 3.46
65 x 107 354566 1.1201  0.4659 1.0896 2.40
97 x 107  35.0500 0.7556 0.3566 0.6829 2.12
12x 108 35.0187 0.6808 0.3201 0.6517 2.13
22 x 108 34.5855 04217 0.2276 0.2185 1.85
41 x 108 34.3967 0.3020 0.1675 0.0297 1.80
70 x 108 34.3651 0.2320 0.1337 -0.0019 1.74
1010 343062 0.1974 0.1137  —0.0608 1.74

Tables II, II1, and IV contain the dependence of the error

estimations and the real errors on the number of samples

Niotal Tor A<18) [no lepton loops], 5-loop, and 6-loop ladders,
respectively.

G. Contributions of individual Feynman graphs

The contributions of 2-loop and 3-loop Feynman graphs

to A§4) and A§6> are presented in Tables V and VI. The
corresponding Feynman graphs are given in Figs. 3 and 4.
Each individual contribution in this paper is given for a
Feynman graph without arrow directions on electron lines
and includes the contributions of the corresponding graphs

with all directions (that are the same). The 4-loop graphs

)

TABLE V. Contributions of individual Feynman graphs from Fig. 3 to A}".

Number Graph Value Niowl Nl Nl N Al Al AT or+/o)
1 2;1-4,3-5 —0.0640193(19) 94 x 10" 26x10% 32x10* O 0.003  2x10°° 0 1.04
2 2;1-5,3-4 —-0.5899758(14) 58 x 100 61 x 107 50x10° 2  —-0.0005 -2x10° -2x10"' 1.00
3 3; 14, 2-5 —0.4676475(17) 90 x 10'0 44 x 107 57479 0 -0.008 —-107° 0 1.05
4 3;1-5,2-4  0.7774774(18) 92 x 100 34 x 108 17x10° O 0.007 0.0002 0 1.00
TABLE VI. Contributions of individual Feynman graphs from Fig. 4 to A$6).

Number _ Graph Value Nea Mg ONRON@ AEL AR B o/
1 2;1-4,3-6,5-7 -1.679616(20) 29 x 10 57x10% 33x10* O —0.1 —5x 1075 0 1.08
2 2;1-4,3-7,5-6  0.832792(20) 28 x 10! 40x 108 26x10°® O 0.1 0.0009 0 1.10
3 2:1-5,3-6,4=7  0.214875(14) 19x 100 22 x 108 88x 10* 1 001  7x10° —4x10"* 1.05
4 2;1-5,3-7,4-6 —0.028928(11) 11 x 10'° 30 x 108 10° 2 —-0.004 -3x105 -107H1 1.03
5 2;1-6,3-4,5-7 -0.097163(26) 47 x 10 16x10° 13x 10”7 10 —0.002 1073 3x 1071 1.16
6 2;1-6,3-5,4-7  0.144471(12) 14 x 10 31x10® 23x10* 3 0.06 9x10° —2x1073% 1.02
7 2;1-6,3-7,4-5  0.804106(17) 22x 109 26x 108 18 x10°® 1 0.02  —0.0001 —107°! 1.08
8 2;1-7,3-4,5-6  -2.123267(16) 17 x 109 34 x 108 48 x 107 4496 —0.02  —0.0002 —10712 1.00
9 2,1-7,3-5,4-6  2.524749(18) 19x 10° 89 x 108 18x10° O 0.07 2x1075 0 1.00
10 2;1-7,3-6,4-5 —0.058729(11) 11x 10" 51 x10® 53x10® 6 0.009 —-2x1075 —10715 1.00
11 3;1-4,2-6,5-7  5.042278(27) 57 x 10 91 x10® 38x 105 5 0.5 0.0004 8x 1072  1.09
12 3;1-4,2-7,5-6  —3.500634(25) 50x 100 65x10® 52x10° 2 —04 -0.02 -3x102 1.06
13 3;1-5,2-6,4-7 —1.757945(15) 27 x 100 97x 107 34x10° 10 -0.05 —-0.0002 8x10~3 1.10
14 3;1-5,2-7,4-6  0.140129(14) 18 x 10'© 35x 10® 40x 105 10 0.003 9x1077 5x107? 1.06
15 3;1-6,2-4,5-7 -3.257290(27) 48 x10° 16x10° 28x10° 5 —0.3 —0.004 —-107% 1.00
16 3;1-6,2-5,4-7 —0.334691(14) 23 x10° 13x10® 30x10° 7 —0.07  —0.0005 10-12 1.13
17 3;1-6,2-7,4-5  0.315388(22) 43 x 10" 20x10% 16x10°® O —-0.003 —-5x1078 0 1.03
18 3;1-7,2-4,5-6  4.513076(27) 43 x 100 22x10° 46x 107 2909 0.4 0.04 2x107° 1.00
19 3;1-7,2-5,4-6  0.61111221) 28 x 100 67x10®8 37x10° 1 0.1 0.0006 -107% 1.15
20 3;1-7,2-6,4-5 -2.269647(16) 19x 100 27x10® 39x10°®° O —0.09 —0.001 0 1.00
21 4;1-3,2-6,5-7 —2.908437(22) 34x 10 81x10® 50x10* O —04 —0.0005 0 1.01
22 4;1-3,2-7,5-6  6.533883(31) 60 x 10" 20x 10° 16x 10" 9 0.9 0.03 2x 1078 1.01
23 4;1-7,2-3,5-6  —3.204367(20) 24 x 100 35x10% 56 x 107 5040 —0.2 —-0.05 —3x107% 1.00
24 4;1-5,2-6,3-7 —0.0267956(78) 10! 37x107 35x105 5 =002  —0.0007 —6x10"12 1.07
25 4;1-5,2-7,3-6  1.861914(17) 31 x 10" 19x 108 14 x 105 43 0.1 -0.0004 -2x10712 1.08
26 4;1-6,2-7,3-5 —0.945906(11) 14 x 10" 36x10% 13x105 O —-0.07  —0.0005 0 1.01
27 4;1-7,2-5,3-6  =2.230794(19) 31x10'0 36x10® 11x10°® 24 0.2 -0.0009 —-5x1072" 1.10
28 4;1-7,2-6,3-5  1.790285(19) 28 x 10" 83 x 10% 22x10° 1 0.1 0.003 -5x 107 1.01
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FIG. 2. 4-loop Feynman graph: Example.
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2-loop Feynman graphs without lepton loops.
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FIG. 4.

3-loop Feynman graphs without lepton loops.

are split into gauge-invariant classes (k,m,m’), where m
and m’ are the numbers of internal photon lines to the left and
to the right from the external photon line (or vice versa), and
k is the number of photons with the ends on the opposite sides
of the line. We do not provide a picture for 4-loop graphs,
but they are encoded in the tables as expressions of the form

Py Ssi—f1. sa—f-=2, s3—f3,

where p is the number of vertex that is incident to the external
photon line, 5; and f; are the ends of the jth internal photon
line, and the vertices are enumerated from 1 to 9 along the
electronpath, s; < f;,s; < ... < s4.The graphs are ordered
lexicographically, and we guarantee that the code of a graph
is the lexicographically minimal one. For example, the code
of the graph from Fig. 2 is

sq—fa,

3; 1-8, 2-7, 4-5, 6-9.

The contributions of the 4-loop graphs are presented in
Tables VII, VIII, IX, X, XI, and XII. The numbers of the
graphs for which the contribution must coincide with the
contribution obtained by direct subtraction on the mass shell
in Feynman gauge are marked by a star *; see Sec. IV H.

The fields of the tables have the following meaning:

(1) Value is the obtained value for the contribution with
the uncertainty o4; see Sec. IVE

(2) 04/0 is the relation between the improved standard
deviation and the conventional one; see Sec. IV E.

(3) Ny 1s the total quantity of Monte Carlo samples.

(4) Nl is the quantity of samples for which the
eliminated interval arithmetic from Sec. IV C failed.

(5) ARl s the contribution of those samples.”

(6) Nialis the quantity of samples for which the direct
double-precision interval arithmetic from Sec. IV B
failed.

(7) Al is the contribution of those samples.

(8) N1l is the quantity of samples for which the interval
arithmetic based on numbers with 128-bit mantissas
failed.

(9) Al is the contribution of those samples.”*

H. Classes of Feynman graphs

The contributions and N, for all classes in this paper
are obtained as sums of the corresponding individual
values. The values o4, 0| for the classes are obtained by

oy = Z(Gwﬂ o, = Z(%)zv

J J

where 6 ; and 6| ; are the corresponding individual values.

The contributions of graph sets to A<1 ), AEG), (8) for
comparison with the direct subtraction on the mass shell in
the Feynman gauge are presented in Tables XIII, XTIV, and
XV. The 2-loop and 3-loop tables include a comparison
with the known analytical results™ and with the old results
from [30]56 Table XV does not include one-element sets;
these sets (individual graphs) are marked by a star in the
tables containing individual contributions.

*Sometimes this contribution can be many times more than
the total 4-loop contribution. See, e.g., graph 157 from Table IX.
However, the eliminated interval arithmetic significantly im-
proyes the computation performance; see Table X VII.

**Even these contributions can be noticeable. See, e.g., graph
134 from Table VIII.

>The big discrepancy for the sets 14,17 in Table XIV is
probably caused by an unstable behavior of the pseudorandom
generator MRG32k3a. The generator Philox_4x32_10 [48]
seems to work better on this set.

The uncertainties in Ref. [30] correspond to 90% confiden-
tial limits (under the assumption that the probability distribution
is Gauss normal).
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TABLE VII. Contributions of graphs from the gauge-invariant class (1,3,0) to A(lg).

Number Graph Value Niotal Nl Nl Niail - Afail Al AN or/o,
1 2;1-4,3-6,5-8,7-9  2.19701(73) 15x10° 92x 107 27780 0 0.6 0.0001 0 1.56
2 2;1-4,3-6,5-9,7-8 —3.81327(91) 23x10° 95x107 11x10° 1 -1 -0.01 2x 107 1.65
3 2;1-4,3-7,5-8,6-9  0.55330(31) 49 x 108 23 x 107 31677 1 0.2 0.0001  9x10%® 152
4 2;1-4,3-7,5-9,6-8  1.82177(56)  10'© 57 x 107 47919 2 0.5 0.0002 1073 1.51
5 2;1-4,3-8,5-6,7-9 —2.43257(93) 23x10° 13x10% 29x10° 1 —-08  —0.008 1073 1.72
6 2;1-4,3-8,5-7,6-9  0.95204(51) 89 x 10% 50 x 107 26741 1 03  8x107° —4x107° 141
7 2;1-4,3-8,5-9,6-7 —2.19745(69) 15x10° 57x107 54x10* O -04  -0.003 0 1.89
8 2;1-4,3-9,5-6,7-8  2.1481(10)  20x10° 75x107 27x10° 161 0.8 0.03 —6x 107  1.65
9 2;1-4,3-9,5-7,6-8 —2.48196(92) 26 x10° 19x10® 98x10* 6 —07  —-0.004 -9x1074 1.54
10 2;1-4,3-9,5-8,6-7  0.98718(84) 19x10° 12x10% 33x10° 3 0.5 0.008 2x 107 1.61
11 2;1-5,3-6,4-8,7-9 —1.38009(58) 12x 10° 54 x 107 90636 4 -03 -0.0002 -2x10"3" 1.63
12 2;1-5,3-6,4-9,7-8  1.16697(56) 12x10° 37 x 107 55x10* 5 0.2 0.002  4x1072 148
13 2;1-5,3-7,4-8,6-9  0.66741(35) 58 x 10® 15x107 31x10* 22 -0.03 -0.001 -3x107"* 1.29
14 2;1-5,3-7,4-9,6-8 —0.26457(35) 48 x 10 22x 107 38x10* 61 -0.06 —105 5x107'" 1.25
15 2;1-5,3-8,4-6,7-9  1.05969(43) 63 x 108 42 x 107 44335 3 02  7x10° 9x10™* 131
16 2;1-5,3-8,4-7,6-9  0.47610(29) 49 x 108 15x 107 39328 3 0.06 —0.0004 —5x1073° 1.51
17 2;1-5,3-8,4-9,6-7  0.47497(36) 62x 108 12x 107 20x10* 4 0.2 0.0003  6x1073% 121
18 2;1-5,3-9,4-6,7-8 —1.10746(43) 63 x 10 40x 107 90x10* 1 -0.1  —=0.0004 7x 1073  1.35
19 2;1-5,3-9,4-7,6-8 —0.23411(34) 47 x10® 26 x 107 33298 2 =009 5x10° -3x107 1.53
20 2;1-5,3-9,4-8,6-7  0.13458(26) 37 x 108 12x 107 16 x 10* 0 0.03  0.0001 0 1.08
21 2;1-6,3-4,5-8,7-9  1.35348(94) 23 x10° 17x 108 57x 105 2 0.2 1075 10717 1.45
22 2;1-6,3-4,5-9,7-8  0.2807(11)  25x10° 11x10® 30x10° 143 —0.1 0.0005 10-1 1.58
23 2;1-6,3-5,4-8,7-9  3.18477(49) 77 x 108 50 x 107 36801 1 0.5 0.0001  5x10% 1.14
24 2;1-6,3-5,4-9,7-8 —2.12704(44) 65x10% 38x 107 78x10* 1 —02  —0.003 -5x10"2 1.20
25 2;1-6,3-7,4-8,5-9 —0.11489(33) 65x 10® 14 x 107 13x10* 3 009 3x10°5 5x10735 138
26 2;1-6,3-7,4-9,5-8 —0.54446(25) 43 x 108 108 83223 4 -0.09 0.0006 —2x10"4 1.34
27 2;1-6,3-8,4-5,7-9 —4.78772(64) 11x10° 61x107 11x10° 3 =07  -0.002 -2x107¢ 118
28 2;1-6,3-8,4-7,5-9 —0.53692(20) 33 x 108 108 56191 2 —02 -0.0007 4x1072 1.06
29 2;1-6,3-8,4-9,5-7 —0.05767(33) 51 x 108 24 x 107 87180 6 =004 00002 2x1023 133
30 2;1-6,3-9,4-5,7-8  2.90445(80) 12x10° 42x107 14x10° 110 0.5 0.004 10-11 1.50
31 2,1-6,3-9,4-7,5-8  0.57805(26) 41 x 10® 18x 107 50314 1 0.2 0.0003  —2x107%> 1.31
32 2;1-6,3-9,4-8,5-7 —0.20433(25) 35x 10 19x 107 68993 2 =005 -0.0002 2x1072 1.03
33 2;1-7,3-4,5-8,6-9 —1.38855(31) 47 x 10® 34 x 107  10° 1 -02 -0.0001 -2x10"% 1.13
34 2;1-7,3-4,5-9,6-8  1.11200(60)  10'©  85x 107 27x10° 3 0.06 —4x1075 7x107¢ 127
35 2;1-7,3-5,4-8,6-9 —1.52611(33) 52x 108 24 x 107 68690 0 -03  —0.0002 0 1.14
36 2;1-7,3-5,4-9,6-8 —0.12123(28) 38 x 10% 25x 107 38674 0 -004 5x107 0 1.10
37 2;1-7,3-6,4-8,5-9  1.10916(23) 39 x 108 108 66387 2 0.2 0.0003 -7x107% 129
38 2;1-7,3-6,4-9,5-8  0.41843(17) 30 x 10® 86 x 10° 33866 3 -0.02 00002 2x1073% 1.04
39 2;1-7,3-8,4-5,6-9  1.92228(36) 61 x 108 14x 107 25x10* 3 0.2 0.002  -3x107* 1.23
40 2;1-7,3-8,4-6,5-9 —0.30635(32) 49 x 10% 23x107 13x10* 10 —0.04 0.0003 5x1072 130
41 2;1-7,3-8,4-9,5-6 —0.33355(38) 63 x 10®8 14x107 35x10* 4 —0.1  —0.0008 —4x 1072 1.22
42 2;1-7,3-9,4-5,6-8 —1.25068(37) 52x10% 30x 107 50x10* 1 =01 -5x107 -2x107% 1.20
43 2;1-7,3-9,4-6,5-8 —0.24926(28) 37 x 108 19 x 107 44540 4 -0.08 —-7x10° 3x10% 113
44 2;1-7,3-9,4-8,5-6  0.06345(24) 34 x10® 11x107 14x10* 2  =0.02 —0.0002 1073 1.11
45 2;1-8,3-4,5-6,7-9 —0.15958(87) 11x10° 11x10%® 38x10° 773  0.07  0.001 2x 107" 1.30
46 2;1-8,3-4,5-7,6-9  1.53603(54) 88 x10% 70x 107 25x10° 0 0.1 -9x107° 0 1.11
47 2;1-8,3-4,5-9,6-7  0.95386(50) 67 x 108 33 x 107 82x10° 31 0.1 0.0008  5x107'2 133
48 2;1-8,3-5,4-6,7-9 —0.08923(76) 13x10° 14x10® 19x10° 1 —0.1  —0.0001 -2x10"%* 1.24
49 2;1-8,3-5,4-7,6-9 —0.25943(28) 38 x 108 22x 107 19584 1 003 —6x1070 —4x10™% 107
50 2;1-8,3-5,4-9,6-7  0.55223(44) 61 x 10 37 x 107 68 x 10* 2 0.3 0.002 1073 1.12
51 2;1-8,3-6,4-5,7-9  0.48462(67) 11x10° 11x10® 70x10° 6 0.1 0.0003  3x10720 147
52 2;1-8,3-6,4-7,5-9 —0.04645(25) 38 x 10° 16 x 107 38772 1 =003 00001 5x107% 142

(Table continued)
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TABLE VII. (Continued)

Number Graph Value Noowl Nl Nl N Al Afail Al or/o,
53 2;1-8,3-6,4-9,5-7 —0.96878(35) 44 x 10% 26x 107 27x10* 22 =03  —=0.002 2x107'5 141
54 2;1-8,3-7,4-5,6-9 —1.28667(34) 51x10% 15x107 20x10* 3  -0.1  —0.002 2x10*  1.06
55 2;1-8,3-7,4-6,5-9 —0.15820(28) 40 x 108 20 x 107 42500 2 =006 6x10° 9x10°18 1.04
56 2;1-8,3-7,4-9,5-6 —0.47655(29) 39x10% 13x 107 23x10* 1 =002 —0.001 8x107*  1.07
57 2;1-8,3-9,4-5,6-7  1.52806(52) 69 x 10®8 21 x 107 72x10° 45 0.08  —0.01 —-4x1077 135
58 2;1-8,3-9,4-6,5-7 —145583(49) 71x10% 51x107 35x10* 9  —=0.07 00007 -6x107% 1.12
59 2;1-8,3-9,4-7,5-6 —0.08533(42) 61 x 108 47 x 107  10° 5  -002 -0.002 8x1073* 1.25
60 2;1-9,3-4,5-6,7-8 —3.83273(45) 32x10% 21 x 107 40x10° 10177 -02  —0.006 -3 x10™° 1.00
61 2;1-9,3-4,5-7,6-8  4.36705(42) 46 x 108 58 x 107 80x 10° 90 0.5 0.001 10712 1.00
62 2;1-9,3-4,5-8,6-7 —2.66788(42) 43 x 10% 49x 107 18x10° 376 -0.2  —0.003 —1071 1.00
63 2;1-9,3-5,4-6,7-8  4.36685(43) 46 x 108 58 x 107 76 x 105 87 0.5 0.001 5x10713 101
64 2;1-9,3-5,4-7,6-8 —3.89486(56) 74 x 10% 66 x 107 36x10* 1  —04 —9x107° 2x10* 1.04
65 2;1-9,3-5,4-8,6-7  3.73069(57) 80 x 10 55x107 19x105 3 0.4 0.006  2x107'  1.02
66 2;1-9,3-6,4-5,7-8 —2.66773(43) 43 x 10% 48 x 107 17x10° 402 -02  -0.003 -2x10"'"" 1.00
67 2;1-9,3-6,4-7,5-8 —1.30095(21) 31x10% 21x107 24x10* 2 -01  —=0.002 -2x1075" 1.02
68 2;1-9,3-6,4-8,5-7 —1.77247(38) 53 x10% 39x 107 31x10* 4 —02  0.0002 —10% 1.06
69 2:1-9,3-7,4-5,6-8  3.73275(57) 82x 108 56x 107 17x10° 7 0.4 0.006 —6x10" 1.03
70 2;1-9,3-7,4-6,5-8 —1.77353(38) 51 x 10® 38x 107 28 x10* 4  —0.2 0.0002 -2x107* 1.05
71 2;1-9,3-7,4-8,5-6  2.20445(42) 59 x 108 31x 107 11x10° 2 003 0002  4x1077° 1.03
72 2;1-9,3-8,4-5,6-7  0.48560(40) 45x 108 30x 107 84x 10° 66 0.06  0.001 4x107 102
73 2;1-9,3-8,4-6,5-7 —0.54790(43) 55x10% 50x 107 79x10* 6 0.1 —1075  —9x 1074 101
74 2;1-9,3-8,4-7,5-6 —0.57472(34) 45x10% 48x 107 26x10° 5 —0.07 —-4x107° 10715 1.02
TABLE VIII. Contributions of graphs from the gauge-invariant class (2,2,0) to A( )

Number Graph Value Now  NEA N ONEL AEL AR AW oo
75 3;1-4,2-6,5-8,7-9 —10.44260(93) 25x10° 13x 108 11x10* 5 -3 -0.003 -3x10732 1.29
76 3;1-4,2-6,5-9,7-8  10.0730(12) 43 x 10° 17x10® 23x105 3 3 0.08 2x10°%  1.72
77 3;1-4,2-7,5-8,6-9  —1.67666(34) 56 x 108 27 x 107 55710 2 =06 —0.0003 -10"12 132
78 3;1-4,2-7,5-9,6-8  =5.75797(76) 18 x 10° 99x 107 12x10* 3 =2 -0.003 -6x10"# 131
79 3;1-4,2-8,5-6,7-9  11.5103(11) 31 x10° 20x 108 42x 105 1 5 0.2 4x107% 132
80 3;1-4,2-8,5-7,6-9  —5.15144(69) 15x10° 77 x 107 79826 0o -2 -0.003 0 1.12
81 3;1-4,2-8,5-9,6-7  6.80288(85) 23 x10° 85x 107 84x10* 3 2 004  —4x1073% 1.63
82 3;1-4,2-9,5-6,7-8 —10.3320(13) 31 x10° 15x10% 47x10° 207 —4 -06  —8x 1075 145
83 3;1-4,2-9,5-7,6-8  12.7423(12) 38 x 10° 29x 10% 15x 105 12 5 0.08 3x1072 1.25
84 3;1-4,2-9,5-8,6-7 —8.7252(10) 31 x10° 21x10% 57x105 9 =3 -0.2 -107%  1.36
85 3;1-5,2-6,4-8,7-9  4.29301(57) 14x10° 48x 107 13x10* 5 0.8 0.001 4x107 143
86 3;1-5,2-6,4-9,7-8  —=3.37792(58) 15x10° 29x 107 46x10* 6 —08  —0.005 —3x107% 1.38
87" 3;1-5,2-7,4-8,6-9  0.04665(19) 31 x 108 50x 10° 12x10* 11 0.08 —0.0002 —4x10715 1.22
88 3;1-5,2-7,4-9,6-8  1.37913(29) 49 x 108 16 x 107 81590 3 0.1 0.0004 —5x10720 1.09
89 3;1-5,2-8,4-6,7-9  —1.90541(57) 10" 68x107 16x10* 4 —0.08 —2x10° -3x1072* 142
90* 3;1-5,2-8,4-7,6-9  0.01638(17) 28 x 108 78 x 10° 60829 2 004 —2x10° -2x10™% 1.37
91 3;1-5,2-8,4-9,6-7 —1.82097(33) 55x 10® 94 x10° 39x10* 41 -02  -0.001  8x10% 1.25
92 3;1-5,2-9,4-6,7-8  0.81820(59) 11 x10° 71x107 14x10° 1 -0  —0.001 —3x1073% 144
93 3;1-5,2-9,4-7,6-8  0.99984(33) 48 x 108 24 x 107 98029 1 04  9x107° 4x107* 124
94 3;1-5,2-9,4-8,6-7  0.21323(34) 55x 108 14 x107 21x10* 1 004 2x107° 7x107° 1.39
95 3;1-6,2-4,5-8,7-9  7.24388(90) 22x10° 20x 103 74x10* 2 2 0.03 9x 1074 1.10
96 3;1-6,24,5-9,7-8  —6.5173(10) 25x10° 21x 108 79x105 22 -2 -02  —2x10° 1.32
97 3;1-6,2-5,4-8,7-9  —0.76878(48)  10© 42 x 107 78801 3 0.1 0.001 4x1073 138
98 3;1-6,2-5,4-9,7-8  0.84511(69) 19x 10° 68 x 10" 87x10* 3 =02  —0.006 2x107% 2.14
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TABLE VIII. (Continued)

Number Graph Value Niotal Nl Nl Nl Al Al AN or/o,
99% 3;1-6,2-7,4-8,5-9 —0.54587(32) 70x 10® 98 x10° 25x10* 6 -0.2  0.001 10717 1.30
100%* 3;1-6,2-7,4-9,5-8  0.21216(20) 36 x 10° 83 x 10° 81834 2 -003 -0.001 —3x10" 1.32
101 3;1-6,2-8,4-5,7-9  1.56673(63) 13x10° 60x 107 81x10* 0  -0.02 -8x107° 0 1.32
102 3;1-6,2-8,4-7,5-9  0.80327(22) 34x10% 108  17x10* 22 0.2 0.0003  7x107'¢ 150
103 3;1-6,2-8,4-9,5-7  0.57570(31) 58 x 108 19 x 107 91547 5 0.005 00004 5x10732 1.28
104 3;1-6,2-9,4-5,7-8 —0.26580(66) 12 x 10° 37x 107 107 41 0.3 0.003 7x 10713 137
105 3;1-6,2-9,4-7,5-8  —0.52269(26) 40 x 108 18x 107 109 4 -0.1  -0.0003 -2x10"28 140
106 3;1-6,2-9,4-8,5-7  0.25704(41) 68 x 103 36x 107 17x10* 5 0.06 —2x107 —-6x10"7 1.63
107 3;1-7,2-4,5-8,6-9  2.14029(37) 65x10% 57 x 107 18x10* 3 0.6 0.002 4x107%  1.17
108 3;1-7,24,5-9,6-8  3.31673(81) 20x 10° 17 x10% 67 x10* 5 1 0.02 10734 1.15
109% 3;1-7,2-5,4-8,6-9  1.36063(23) 43 x 10® 80x 10° 50857 2 02 8x10° 3x1072 133
110 3;1-7,2-5,4-9,6-8  0.23770(36) 67 x 103 28 x 107 57875 1 0.2 0.0009 -10-33 1.52
111* 3;1-7,2-6,4-8,5-9  —0.22297(25) 47 x 108 59 x 10°  10° 1 0.02 —-0.0003 2x1073 1.28
112% 3;1-7,2-6,4-9,5-8  0.44982(20) 37 x 10® 70 x 10° 61087 4 0.02 —0.0008 5x1074 1.42
113 3;1-7,2-8,4-5,6-9 —1.41855(35) 68 x10% 13x 107 26x10* 3  -0.03  0.001 10~ 1.39
114 3;1-7,2-8,4-6,5-9  0.60572(33) 51 x10% 22x 107 32x10* 58 —0.02 —0.003 —-4x10"° 1.31
115 3;1-7,2-8,4-9,5-6  —0.79421(38) 73 x10® 12x 10" 36x10* 9  —0.07 0.0002 -3x107% 1.73
116 3;1-7,2-9,4-5,6-8 —0.05379(51) 93 x10% 42x 107 54x10* 3  —-0.06 —3x10 2x107% 1.26
117 3;1-7,2-9,4-6,5-8  0.05536(30) 47 x 108 21 x 107 84948 4 -0.1 —-6x10° -5x107%3 1.24
118 3;1-7,2-9,4-8,5-6  —0.35767(28) 44 x 108 96 x 10¢ 10 2 =007 7x107% —2x107 1.20
119 3;1-8,2-4,5-6,7-9  —9.3447(11) 24 x10° 29x10® 20x 10°® 316  —4 -0.3 -2x107°  1.02
120 3;1-8,24,5-7,6-9  3.24250(79) 18 x 10° 15x 108 59x10* 3 2 0.03 —10-34 1.02
121 3;1-8,2-4,5-9,6-7 —5.52110(73) 14x10° 11x10% 39x 105 18 -1 -0.1 —9x10° 1.02
122 3;1-8,2-5,4-6,7-9 —1.34858(74) 15x10° 12x10® 24 x10* 0O -0.8  —0.005 0 1.59
123* 3;1-8,2-5,4-7,6-9  0.17083(32) 56 x 10% 19 x 107 91465 0 0.1 0.0001 0 1.52
124 3;1-8,2-5,4-9,6-7 —191613(37) 65x10%8 19x 10" 21x10* 2 -04  -0.002 -5x1057 1.23
125 3;1-8,2-6,4-5,7-9  1.72927(38) 57 x 10® 37x 107  10° 1 0.5 0.006 6x10720 107
126% 3;1-8,2-6,4-7,5-9 —0.21815(30) 60 x 108 13 x 107 44124 1 -0.1  —10° 4x10™ 1.64
127 3;1-8,2-6,4-9,5-7 —0.10348(33) 50x 10® 21x 10" 25x10* 25  0.03  0.0009 10-1 1.30
128 3;1-8,2-7,4-5,6-9 —1.99695(75) 24 x10° 35x 107 66 x 10+ 7 -0.4  —-0.004 —8x107!7 1.35
129 3;1-8,2-7,4-6,5-9  0.01814(26) 43 x10® 17 x 107 72758 7 0.03  0.0004 2x1072 1.19
130 3;1-8,2-7,4-9,5-6  1.15462(54) 12x10° 20x 107 48x10* 6 0.2 0.003  —-9x102 1.38
131 3;1-8,2-9,4-5,6-7  1.26086(63) 13 x10° 29x 10" 71x10° 29  0.07  0.0005 2x107'2 1.26
132 3;1-8,2-9,4-6,5-7 —1.83728(67) 14 x10° 89 x 107 47 x10* 8 -03 -7x107° 5x10°% 131
133 3;1-8,2-9,4-7,5-6  0.52838(50) 96 x 10® 61 x 10" 95x10* 7 0002 2x10 -3x107% 1.28
134 3;1-9,24,5-6,7-8  11.8155(12) 18 x 10° 22x10% 85x10° 12313 4 0.9 0.0005 1.01
135 3;1-9,2-4,5-7,6-8 —14.1724(13) 34 x10° 40x10% 12x10° 107 -5 -0.3 10-6 1.02
136 3;1-9,2-4,5-8,6-7  9.4205(10) 21 x 10° 24 x 108 22x 10° 328 3 0.3 2x107%  1.05
137 3;1-9,2-5,4-6,7-8  1.46361(79) 16x10° 14x10% 70x 105 36 0.9 0.03 9x 1077 148
138 3;1-9,2-5,4-7,6-8 —5.30357(87) 21x10° 10° 16x10* 4 -1 —0.002  2x107% 143
139 3;1-9,2-5,4-8,6-7  1.51767(94) 24 x10° 85x 107 22x10° 6 0.6 0.006 -107%7 1.63
140 3;1-9,2-6,4-5,7-8 —1.68650(46) 57 x10% 36x 107 11x10® 66 —-0.8  —-0.04 -6x10"7 1.01
141 3;1-9,2-6,4-7,5-8  0.28680(59) 14 x 10° 48 x 107 19x 10* 9 0.03 0.001 5% 1072 1.66
142 3;1-9,2-6,4-8,5-7 —0.44365(44) 69 x 103 38 x 107 14x10* 2  —0.09 -0.0005 -9x10~% 1.18
143 3;1-9,2-7,4-5,6-8  1.7563(10)  22x10° 12x10% 63x 105 3 0.08 0.003  —3x10"* 148
144 3;1-9,2-7,4-6,5-8 —0.23678(48) 77 x 108 41x 107 13 x10* 4 02  0.0004 9x1073% 128
145 3;1-9,2-7,4-8,5-6  2.58457(63) 12x10° 42x107 17x10° 9 0.7 —=0.0002 5x10™* 128
146 3;1-9,2-8,4-5,6-7 —6.34999(51) 60 x 10® 19x 10" 14 x10° 290 -05  —-0.03 -—2x10° 1.00
147 3;1-9,2-8,4-6,5-7  7.46261(54) 82x10% 60x 107 78 x 10* 12 1 0.004 4x107%  1.02
148 3;1-9,2-8,4-7,5-6  —1.98177(39) 55x10% 43 x 107 21 x 105 7 -0.1  -0.007 —4x10"'' 1.0l
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TABLE IX. Contributions of graphs from the gauge-invariant class (1,2,1) to A(lg).

Number Graph Value Niotal Nl Nl Nial o ARl Afal AN or/o,
149 4;1-3,2-6,5-8,7-9  13.6554(10) 27 x10° 18 x 108 75542 4 5 0.01 -2x10™% 1.08
150 4;1-3,2-6,5-9,7-8 —12.6376(13) 41 x 10° 22 x 10® 43 x 10° 3 -5 =02 —107% 1.32
151 4;1-3,2-7,5-8,6-9  2.72526(52) 99 x 108 64 x 107 10° 4 1 00008 5x10™  1.50
152 4;1-3,2-7,5-9,6-8  6.70242(77) 17x10° 11x10% 11 x 10* 3 3 0.01 10726 1.04
153 4,1-3,2-8,5-6,7-9 —15.7206(11) 26 x 10° 23 x 108 11 x 10° 4 -7 —0.4 2% 1078 1.02
154 4;1-3,2-8,5-7,6-9  5.17997(78) 17 x 10° 11x 108 93380 2 3 0.01 10-% 1.02
155 4;1-3,2-8,5-9,6-7 —9.33944(81) 18 x10° 97 x 107 14x 10° 4 -3 -0.1 —107% 1.05
156 4;1-3,2-9,5-6,7-8  18.6188(12) 20x 10° 18x10® 60 x 10® 1162 7 0.9 0.0001 1.04
157 4;1-3,2-9,5-7,6-8  —22.2947(12) 33 x10° 32x10% 34x 10’ 7 -8 -0.1  5x103* 101
158 4;1-3,2-9,5-8,6-7  12.1677(10) 24 x 10° 22x 108 11 x 10° 8 5 0.3 2x 107 1.06
159 4,1-6,2-3,5-8,7-9 —14.2179(11) 28 x10° 19x 108 64 x 10° 0 -5 -0.2 0 1.15
160 4;1-6,2-3,5-9,7-8  13.6681(13) 32x10° 14x10® 35x10° 145 4 0.5 8 x107° 1.27
161 4;1-7,2-3,5-8,6-9 —2.87192(46) 83 x 108 56x 107 17 x 10° 1 -1 =002 8x10™% 138
162 4;1-7,2-3,5-9,6-8 —7.13177(83) 18 x 10° 13 x 108 42 x 10° 3 -3 -0.1  6x1078 112
163 4;1-8,2-3,5-6,7-9  15.4192(12) 20x10° 18 x10® 60 x 10° 1189 7 0.9 0.0001 1.01
164 4;1-8,2-3,5-7,6-9 —5.66590(79) 16 x 10° 12x 108 41 x 105 3 -3 -0.1 2x10712 1.03
165 4;1-8,2-3,5-9,6-7 10.43578(83) 15x10° 65x107 16x10® 67 3 0.4 3x107° 1.05
166 4;1-9,2-3,5-6,7-8 —17.4838(13) 15x10° 75x107 15x107 35968 -5 -2 —0.001 1.03
167 4;1-9,2-3,5-7,6-8  21.0812(13) 30x 10° 31x10® 35x10° 388 7 0.6 4%x1073 1.01
168 4;1-9,2-3,5-8,6-7 —12.9121(11) 18x10° 17x10% 60x10° 1231 -4  -0.7 —0.0001 1.03

TABLE X. Contributions of graphs from the gauge-invariant class (3,1,0) to A<18>.

Ay or/oy

Number Graph Value Niotal Nl Nl Nl Afail Al
169 4,1-5,2-6,3-8,7-9 —1.02160(39) 67 x 108 28 x 107 29x10* 26 —0.3 0.002
170 4,1-5,2-6,3-9,7-8  0.82043(44) 83 x 108 26x 107 83x10* 64 0.3 0.004
171% 4,1-5,2-7,3-8,6-9 —1.35615(40) 88 x 10% 89 x 10° 14 x 10* 6 -03 -0.004
172 4;1-5,2-7,3-9,6-8 —0.88139(29) 42 x10® 14x 10" 56x10* 115 —-0.2 0.009
173 4;1-5,2-8,3-6,7-9 —4.37354(62) 14 x10° 61 x 107 31 x 104 3 -2 —0.0004
174% 4,1-5,2-8,3-7,6-9  0.16235(32) 59 x 108 87 x 10° 21 x 10* 301 0.0009
175 4;1-5,2-8,3-9,6-7  091185(27) 44 x10% 79x 10° 46x10* 40 0.1  —0.002
176 4;1-5,2-9,3-6,7-8  4.01347(73) 19x10° 72x 107 14 x 10° 2 2 0.05
177 4;1-5,2-9,3-7,6-8 —2.46028(48) 91 x 10®8 31 x 107 25x10* 3 -07 0.0002
178 4;1-5,2-9,3-8,6-7  3.40092(52) 11x10° 16x 107 50 x 104 6 07 0.008
179 4;1-6,2-5,3-8,7-9 —3.77024(58) 13 x10° 58 x 107 29 x 10* 5 -1 0.0003
180 4;1-6,2-5,3-9,7-8  3.86148(80) 23 x10° 94 x 107 17 x 10° 3 1 0.04
181%* 4;1-6,2-7,3-8,5-9  1.19458(39) 93 x 10® 108 51x10* 10 03 0.006
182% 4,1-6,2-7,3-9,5-8  0.80341(31) 54 x10% 94 x10° 37x10* 24 02 0.0009
183 4;1-6,2-8,3-5,7-9  3.47691(61) 12x10° 93 x 107 17 x 10* 1 1 0.01
184+ 4,1-6,2-8,3-7,5-9 —0.41899(25) 39x 10 55x10° 40x10* 53 0.1  —0.0003
185 4,1-6,2-8,3-9,5-7  0.09060(28) 43 x 10% 15x 107 30x10* 59  0.06 0.002
186 4;1-6,2-9,3-5,7-8 —4.54867(60) 12 x 10° 10° 34x10° 17 -2 -0.1
187 4,1-6,2-9,3-7,5-8  0.14183(24) 39 x 108 12x 107 23 x 10* 0 007 0.0001
188 4;1-6,2-9,3-8,5-7 —1.30271(29) 48x 10® 19x 107 23 x 10* 3 -02 0.0001
189% 4;1-7,2-5,3-8,6-9  0.24264(22) 34 x10® 65x10° 24x10* 30 -0.008  0.0002
190 4;1-7,2-5,3-9,6-8 —2.56229(52) 11x10° 46x 107 28 x 10* 3 -09 -0.0005
191% 4;1-7,2-6,3-8,5-9  —1.56685(32) 55x 10® 50x10° 49x10* 61  -03  —0.0007
192 4;1-7,2-6,3-9,5-8 —0.42860(29) 54 x 108 83 x 10° 20 x 10* 8 —0.08  0.0006
193 4,1-7,2-8,3-5,6-9  0.11285(31) 58 x 108 36x 107 11 x 10* 4 -0.01  0.0003
194 4;1-7,2-8,3-6,5-9  0.75665(18) 31 x 10% 77 x 10° 14 x 10* 6 0.1 0.001

1078 1.23
-2x 1077  1.54
10-10 1.39

2x 1077 1.18
7x 107 1.26
6x 1071 1.81

—-6x10"%  1.27
2x107% 1.41
-1071 1.27

-2x10712 130
5% 107+ 1.25

10~ 1.81
—-9x 10711 141
10~ 1.46
-9x 1071 1.07
-3x 10711 1.37
6 x 1078 1.33
—-1073 1.04

0 1.46

2x1072 1.14
4x1075  1.25
—2x 107 1.44
5% 1078 1.35
10718 1.59
-6x 107 1.10
3x 10718 1.31
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TABLE X. (Continued)

Number Graph Value Niotal WS Nl N Al Al Al o4/o,
195 4;1-7,2-8,3-9,5-6  —0.61298(33) 65 x 108 96 x 10° 42 x 10* 5 -01 -0001 4x1073 138
196 4;1-7,2-9,3-5,6-8  2.62642(55) 11x10° 73 x 107 17 x 10* 1 0.9 0.009 —8x1078" 1.1l
197% 4;1-7,2-9,3-6,5-8  1.02944(34) 55 x10% 15x 107 40x10* 49 0.3 0.0003 —-3x 1074 1.71
198 4;1-7,2-9,3-8,5-6  —0.05084(72) 23 x10° 25x107 67x10* 13 =01 -0.002 -2x10"2 134
199 4;1-8,2-5,3-6,7-9  11.5072(10) 34 x10° 22x10® 12x10° 12 4 0.02 4%x10720  1.34
200% 4;1-8,2-5,3-7,6-9 —2.26508(42) 89 x 108 18 x 107 18 x 104 1 —-0.6 -0.0003 4x102 1.34
201 4;1-8,2-5,3-9,6-7  2.45160(46) 1010 20x 107 26 x 10* 4 0.8 0.02 10710 1.19
202 4;1-8,2-6,3-5,7-9 —6.43899(92) 25x10° 20x10% 19 x 10° 7 -2 —-0.05 2x 10737 1.02
203%* 4;1-8,2-6,3-7,5-9  2.17129(39) 84 x 10 11 x 107 13 x 10* 1 0.6 0.002 -7x10% 135
204 4;1-8,2-6,3-9,5-7 —0.69905(42) 79 x 108 25x 107 21 x 10* 5 0.07 0.0008 2 x 103" 147
205 4;1-8,2-7,3-5,6-9  0.84604(33) 63 x 10%8 40x 10" 12 x 10* 3 0.2 0.001 10734 1.27
206%* 4;1-8,2-7,3-6,5-9 —0.21952(37) 84 x 108 17 x 107 18 x 104 9 —0.05 -0005 -3x10> 142
207 4;1-8,2-7,3-9,5-6  2.13842(53) 13 x10° 16x 107 43 x 10* 6 0.2 0.001 —5x1073%¢ 128
208 4;1-8,2-9,3-5,6-7 —3.03246(61) 12 x 10° 10° 24 %105 13 =09 -0.06 —-6x1077 130
209 4;1-8,2-9,3-6,5-7 —0.90616(40) 69 x 108 40 x 107 22 x 10* 7 =05 —0.002 -9x107'° 1.17
210 4;1-8,2-9,3-7,5-6  0.81006(30) 51 x 10® 16 x 107 42 x 10* 4 0.3 0.002 —-4x10"'2 1.09
211 4;1-9,2-5,3-6,7-8 —12.5566(11) 31 x10° 22x 108 15x10° 128 —4 -0.2 —-5x107% 1.27
212 4;1-9,2-5,3-7,6-8  18.0227(11) 38 x10° 16 x 108 100 16 5 0.01 7x10°%  1.26
213 4;1-9,2-5,3-8,6-7 —12.9501(11) 37x10° 97x 107 45x10° 12 -3 -0.2 -3x 1072t 1.27
214 4;1-9,2-6,3-5,7-8  7.41689(93) 20x 10° 21 x10® 20x 10° 326 2 0.3 3x 1073 1.02
215 4;1-9,2-6,3-7,5-8 —3.84552(63) 19x10° 43x107 37x10* 10 —-0.8 —0.003 —3x10"'" 1.65
216 4;1-9,2-6,3-8,5-7  1.17277(59) 11 x10° 52x 107 57x10* 10 0.2 0.0003 3 %1072  1.50
217 4;1-9,2-7,3-5,6-8 —13.3320(11) 32x10° 24 x10® 21 x 10° 3 -3 —-0.06 3x107%  1.02
218 4;1-9,2-7,3-6,5-8 —0.83706(55) 13 x 10° 37 x 107 18 x 10* 6 —04 —0.003 -—2x10"23 141
219 4;1-9,2-7,3-8,5-6  —0.25085(86) 25x10° 55x 107 17x10° 24 —0.2 0.0004 —-7x10"2 149
220 4;1-9,2-8,3-5,6-7  13.1985(12) 29 x 10° 24 x 108 24 x 10° 347 3 0.4 4 %107 1.03
221 4;1-9,2-8,3-6,5-7  2.13571(75) 17 x 10° 10° 89 x 10* 20 0.9 0.008 -7x107" 135
222 4;1-9,2-8,3-7,5-6 —3.87084(43) 68 x 108 28 x 107 18 x 10° 6 -07 =001 7x107*%  1.00

TABLE XI. Contributions of graphs from the gauge-invariant class (2,1,1) to Agg).

Number Graph Value Niotl Nl Nl Nl Al ARl Al oy/o|
223 5,1-3,2-6,4-8,7-9 —6.61670(58) 11 x10° 61 x 107 58456 0 -2 —0.002 0 1.08
224 5,1-3,2-6,4-9,7-8  10.3187(10) 30 x 10° 18 x10% 37 x 10° 1 4 0.1 4x107% 153
225 5,1-3,2-7,4-8,6-9  0.70044(49) 95 x 10® 46x 107 32x10* 26 0.06  0.0007 —1077 1.52
226 5;1-3,2-7,4-9,6-8 —2.37520(44) 73 x 10® 50 x 107 10° 1 -05 —2x107° -7x107% 1.16
227 5,1-3,2-8,4-6,7-9  4.07903(69) 13 x 10° 13 x 108 52 x 10 1 1 0.02 —107% 1.03
228 5;1-3,2-8,4-7,6-9  2.09761(43) 87 x 108 38x 107 69528 2 07 0.001 10740 1.30
229 5;1-3,2-8,4-9,6-7  3.36347(78) 19 x 10° 83 x 107 10° 3 05 5x107° —2x107"7 138
230 5;1-3,2-9,4-6,7-8  —=9.9012(11) 24 x10° 29x 108 20x 10® 309 -3 -0.3 —2x1075 104
231 5;1-3,2-9,4-7,6-8 —3.37250(75) 15x10° 13 x10% 32 x 10* 6 2 -0.008 -2x10"2 1.38
232 5;1-3,2-9,4-8,6-7  1.69133(37) 55x 108 36 x 107 10° 2 05 0.006 —6x10732 1.03
233 5,1-4,2-6,3-9,7-8  —0.79932(49) 92 x 108 38 x 10”7 78 x10* 66 —02  -0.001 -5x10"° 1.6l
234 5;1-4,2-7,3-8,6-9  1.03920(23) 41 x 108 61 x 105 63265 1 02 0.001 5x107%% 1.44
235 5,1-4,2-7,3-9,6-8  1.91364(42) 65x10% 26x 107 73 x10* 166 04 0.003 —4x10% 156

1

237 5;1-4,2-8,3-9,6-7 —3.32287(43) 91 x10% 16 x 107 31 x 10* 6 -03 —-0.003 -107% 1.47

238 5;1-4,2-9,3-6,7-8 —2.51836(53) 12x10° 47 x 107 63 x 10* 1 =038 —-0.007 3x 107 1.47

239 5;1-4,2-9,3-7,6-8  2.33158(48) 96 x 10 34 x 10" 74058 4 09 0.001 §x 107  1.23
5

6
9,7
8,6
9,6
236" 5;1-4,2-8,3-7,6-9  0.00390(12) 23 x 10% 38 x 10° 29155 -0.04 -0.0006 5x10™ 1.31
9,6
6,7
7,6
240 5;1-4,2-9,3-8,6-7 —1.31498(59) 15x10° 25x 107 48 x 10* -0.3 —-0.004 4x107% 1.27

(Table continued)
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TABLE XI. (Continued)

Number Graph Value Nt Nl Nt il Al Afail Al or/o,
241 5;1-6,2-3,4-9,7-8 —4.16476(65) 11 x 10° 37 x 107 11 x 10° 49 -1 -0.2 -2x107 131
242 5;1-6,2-4,3-9,7-8  0.69243(44) 71 x 108 49 x 107 10° 5 03 0.001 5x107%  1.30
243 5;1-6,2-9,3-4,7-8 —1.10140(94) 23 x10° 62 x 107 18 x 10° 77 —-04 —-0.002 3x 10713 1.49
244 5;1-7,2-4,3-9,6-8 1.17746(35) 53 x 108 28 x 107 10 4 07 0.001 7 x107%7 1.05
245 5,1-7,2-9,3-4,6-8  —2.69013(59) 11x10° 51x 107 60 x 10* 1 =2 —-0.04 —4x 1072 1.07
246 5;1-8,2-9,3-4,6-7 1.81548(42) 69 x 108 13 x 107 34 x 10° 13 0.6 0.07 7 x 1077 1.21
247 5;1-9,2-3,4-6,7-8 5.84579(86) 11 x10° 14 x 108 51 x 10° 7424 2 0.4 0.0002 1.19
248 5;1-9,2-3,4-7,6-8  2.98166(85) 17x10° 17x10% 72x10° 41 2 0.04 2x107 142
249 5,1-9,2-3,4-8,6-7 —1.68619(46) 56 x 103 35x 107 11 x 10° 67 —0.8 —0.04 -4 %1077 1.00
250 5,1-9,2-4,3-7,6-8 —10.38002(90) 19 x 10° 11 x10® 36 x 10* 7 =3 —-0.01 4x10730  1.05
251 5;1-9,2-4,3-8,6-7  21.6246(13) 37 x10° 19x10% 87 x 10° 7 6 0.2 -1076 1.15
252 5,1-9,2-8,3-4,6-7 —10.34846(83) 14 x10° 31 x 107 25x10° 478 -2 -0.3 -4 %107  1.02
TABLE XII. Contributions of graphs from the gauge-invariant class (4,0,0) to A(lg).

Number Graph Value Notal Nl Nl Nial o Al ARl Al or/o,
253% 5,1-6,2-7,3-8,4-9  0.29657(24) 49 x 10® 57 x 10° 22 x 10* 8 0.2 0.01 3x 10710 1.36
254% 5;1-6,2-7,3-9,4-8 -0.47196(32) 55x10% 70x10° 64x10* 97 -0.1 ~ -0.003 —6x10" 165
255% 5,1-6,2-8,3-7,4-9 —0.57757(12) 21 x10® 31x10° 23x10* 31 —0.1 —0.001 -2x1077 142
256% 5;1-6,2-8,3-9,4-7  0.21265(21) 39 x 10® 77 x 10° 10° 0 -001 -5x107 0 1.62
257* 5;1-6,2-9,3-7,4-8 —1.01853(40) 79 x 10% 16 x 107 40 x 10* 6 —04 —0.002 -7x10""7 148
258% 5,1-6,2-9,3-8,4-7 —0.01236(43) 95x 10® 27x 10" 46x10* 12 —0.1 —0.006 1013 1.54
259% 5;1-7,2-6,3-9,4-8  0.49710(18) 32 x10% 29x10° 16 x 10* 3 0.09 0.0005 8 x 10722 1.40
260 5,1-7,2-8,3-9,4-6  0.60670(24) 43 x 10® 21 x 107 17 x 10* 6 0.1 0.0008 -2x107% 1.23
261* 5;1-7,2-9,3-6,4-8 —1.03019(37) 63 x10% 12x 107 44x10* 51 —-04  —0.0001 —10713 1.36
262 5;1-7,2-9,3-8,4-6 —0.19243(34) 66 x 108 34 x 107 21 x 10* 4 0.1 0.001 10722 1.22
263* 5;1-8,2-9,3-6,4-7  2.32056(35) 70 x 108 23 x 107 28 x 10* 3 0.6 0.002 -3x107% 1.26
264 5;1-8,2-9,3-7,4-6  —1.30603(29) 50 x 108 28 x 107 24 x 10* 5 -03 -0.004 -3x10"* 1.09
265 5,1-9,2-6,3-7,4-8  0.64498(32) 59 x10® 14x107 56x10* 31 0.2 0.005 -9x107° 138
266 5,1-9,2-6,3-8,4-7  5.46569(76) 22 x10° 62x 107 97 x10* 15 1 0.001 -3x 10712 148
267 5;1-9,2-7,3-8,4-6 —2.43882(45) 89 x 108 49 x 107 38x10* 10 -04 —-0.007 3x 1072 1.15
268 5,1-9,2-8,3-6,4-7 —6.78187(74) 20x 10° 69 x 107 11x10° 20 -1 —-0.01 -2x 1071 127
269% 5,1-9,2-8,3-7,4-6  4.29748(67) 14x10° 89x 107 19x10° 18 0.7 0.03 107% 1.03

TABLE XIII. Contributions to A(14) (see Fig. 3) that must coincide with the values that are obtained by direct subtraction on the mass
shell in the Feynman gauge, and a comparison of these results with the values from Ref. [5] and with the old values from Ref. [30].

Set of graphs Value Analytical value Value from Ref. [30]
1-2 —0.6539950(23) —0.653998963627 —0.654032(54)
3 —0.4676475(17) —0.467645446094 —0.467626(44)
4 0.7774774(18) 0.777478022283 0.777455(52)

The contributions

are presented in Table XVIL.

The equivalence of the subtraction procedure from Sec. I
and the direct subtraction on the mass shell for all presented

of the gauge-invariant
(k,m,m’) (see the definition in Sec. IVG) and their
comparison with the semianalytical results from Ref. [8]

classes
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sets can be proved in a combinatorial way.”’ Let us consider
an example: the sets 26,27 from Table XIV. The contribution
of these sets can be schematically written as

>Tif we do not consider the matter of divergence regulariza-
tions.
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TABLE XIV. Contributions to A(16) (see Fig. 4) that must coincide with the values that are obtained by direct subtraction on the mass
shell in the Feynman gauge, and a comparison of these results with the known analytical values and with the old values from Ref. [30].

Set of graphs Value Analytical value Reference” Value from Ref. [30]
1-10 0.533289(54) 0.533355 [7,14-17,19,21] 0.5340(18)
11-12 1.541644(37) 1.541649 [15,17] 1.5436(34)
13 —1.757945(15) —1.757936 [7] —1.7579(10)
14, 17 0.455517(26) 0.455452 [19,21] 0.4549(14)
15, 18-20 —0.402749(46) —0.402717 [14,15] —0.4030(41)
16 —0.334691(14) —0.334695 [19] —0.33468(95)
21-23 0.421080(43) 0.421171 [14,15,17] 0.4207(22)
24 —0.0267956(78) —0.026799 [7] —0.02688(47)
25 1.861914(17) 1.861908 [19] 1.8629(14)
26-27 —3.176700(22) —3.176685 [16,21] —3.1764(22)
28 1.790285(19) 1.790278 [16] 1.7888(19)

*More precisely, the expressions from Ref. [17] are semianalytical. The corresponding analytical expressions are given in Ref. [24].

TABLE XV. Contributions to A§8> that must coincide with the
values that are obtained by direct subtraction on the mass shell in

TABLE XV. (Continued)

the Feynman gauge. Set of graphs Value Niw — 04/0)
Set of graphs Value New orfo, 205218 0.00898(64) 19 x 10° 1.36
223-224, 241 -0.4627(14)  53x 10° 1.36
1-74 —1.9710(44)  59x 10" 132 225 233 —0.09888(69) 18 x 10° 1.56
75-78, 82-83, 93-94, —2.0858(26)  19x 10" 1.39 226, 229, 242-243 0.5793(14) 57 x10° 1.38
101, 133 . 227, 230, 247, 250-252 0.9197(24) 12 x 10 1.08
79, 89, 104, 116 9.2853(15) 64 x 1010 134 58 738 ~0.42075(69) 21 x 10°  1.40
85%‘“8’ 131-132 05150081 o ia 235237 ~1.40923(60) 15x 10° 1.52
e 0'03943(45) 29> 10 1 239-240 1.01660(76) 25 x 10°  1.25
o _1'21525(47) 0T 12 2446 0.30280(80) 24 x 10° 1.10
95-96, 107-108, 120121 11.6975 3(5 . o g4 200265 1.25169¢40) = 10 - 1.32
e 1% i (35 30x107 1. 262, 266 5.27326(83) 28 x 10° 142
> - > - > _ _ (]
L4148 264, 267-268 10.52672(91) 34 x10° 1.21
97-98 0.07633(84) 30 x 10° 1.77
103, 115 -0.21851(49) 13x10° 1.50
110, 124 -1.67843(52) 13x10° 1.35 <
119, 122, 140, 143 -10.6235(17) 69 x 10° 1.20 , e A P
127-128 ~2.10043(82) 29 x 10° 1.34 A'[Gy]-A [A]U'[ I-(L -U)[A]A [/\]
129-130 1.17276(61) 17 x10° 1.34 ' A /\ T AL A A
149-168 ~0.6220(46) 44 x 1010 1.08 +A'[Gz] [,v,] Ul ~\] (L-UII/N] [ ]
169-170 -0.20117(59) 15x10° 1.38
172, 175 0.03046(39) 87 x 108 1.22 .
173. 180 ~0.5121(10) 38 x 10° 1.53 Here, A’, L', U’ are operators that are applied to Feynman
176, 179 0.24323(93) 33 x10° 1.34 amplitudes and return numbers:
177-178 0.94064(71) 20 x 10°  1.29
183, 208, 212, 219 18.2163(17) 89 x 10° 1.28 AT, =ey,(AT,), LT,=ey,(L'T,), UTl,=ey,(UT,),
185, 195 —0.52238(43) 10 136 e e e
186, 199, 209, 213 —6.8978(17)  91x10° 1.25 "
188. 198 _1.35352(72;) 28 i 10° 130 where the definitions from Sec. II are used, and a constant
190’ 201 ~0.11069(69) 21 x 10° 1.31 multiplier is omitted. Analogously, the corresponding con-
193, 215 —3.73267(70) 25 x 10° 148 tribution that is obtained by the direct subtraction on the
196, 210-211, 216 —7.9473(14)  59x10° 126  mass shellis
202, 214, 217, 220-222 —0.8907(22) 13 x 10" 1.05
204, 207 1.43937(67) 21 x10° 1.35

(Table continued)

A'TGo FA AL/ \FATGA-AT/ LT
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TABLE XVI. Contributions of the gauge-invariant classes (k, m, m’) to A(lg), and a comparison of these results with the semianalytical

values from Ref. [8].

Class Value Semianalytical value Niotal oy/o|
(1,3,0) —1.9710(44) —1.9710756168358 59 x 10'0 1.32
(2,2,0) —0.1415(56) —0.1424873797999 96 x 1010 1.26
(1,2,1) —0.6220(46) —0.6219210635351 44 x 10" 1.08
(3,1,0) —1.0424(44) —1.0405424100126 70 x 1010 1.23
(2,1,1) 1.0842(37) 1.0866983944758 38 x 1010 1.21
(4,0,0) 0.5120(17) 0.512462047968 13 x 1010 1.28

TABLE XVII. Summary of the results, comparison with the known (semi)analytical results, technical information.

2 loops 3 loops 4 loops 5-loop ladder  6-loop ladder
Value —0.3441651(34)  0.90485(10)  —2.181(10) 11.6530(58) 34.31(20)
(Semi)analytical value for comparison —0.344166387 0.904979 —2.1769 11.6592 34.367
References for the (semi)analytical value [5] [7,14-17,19] [8] [49] [49]
or/ol 1.02 1.05 1.21 1.16 1.74
Nioal 33 x 10" 81 x 10! 32 x 10! 29 x 10° 100
NEL 71 x 108 17 x 10'° 18 x 10'° 32 x 108 12 x 108
Nl 68 x 10° 21 x 108 13 x 108 90 x 10° 72 x 10°
NS 2 12590 77775 934 4504
Al 0.002 0.4 2 5 20
Afail 0.0001 0.002 0.2 0.4 3
Al -2x 1071 -10-¢ —0.0006 4x 10710 —5x107°
Total calculation time 21 h 37 min 5d8h 7d 4 h 38 min 8 h 24 min
Share in the time: double-precision EIA 19.1% 41.7% 54.5% 56.4% 42.0%
Share in the time: double-precision IA 0.1% 1.6% 9.1% 15.4% 24.4%
Share in the time: 128-bit mantissa IA 0.2% 2.7% 9.2% 6.7% 24.3%
Share in the time: 256-bit mantissa IA 0.0% 0.3% 2.1% 8.1% 5.2%
Share in the time: sample generation 63.7% 45.9% 21.7% 12.0% 3.7%
Share in the time: other operations 16.9% 7.7% 3.4% 1.3% 0.3%
GPU speed: double-precision EIA, GFlop/s 334.24 222.72 234.26 187.93 292.67
GPU speed: double-precision EIA, Glnterval/s 53.76 63.51 142.27 103.04 24091
GPU speed: double-precision IA, GFlop/s 254.11 221.41 255.85 249.00 287.94
GPU speed: double-precision 1A, Glnterval/s 36.23 35.80 47.22 45.60 55.81
GPU speed: 128-bit mantissa IA, GFlop/s 0.81 1.59 1.58 1.63 1.66
GPU speed: 128-bit mantissa IA, Glnterval/s 0.11 0.23 0.26 0.30 0.32
GPU speed: 256-bit mantissa IA, MFlop/s 0.0204 0.0881 0.3503 0.1378 4.8504
GPU speed: 256-bit mantissa IA, Mlnterval/s 0.0028 0.0124 0.0537 0.0252 0.9401
Integrand code size: not compiled 887 KB 31 MB 2.5 GB 23 MB 186 MB
Integrand code size: compiled 12 MB 115 MB 4 GB 34 MB 252 MB

It is easy to see that these expressions are equivalent. Let us
consider another example: the sets 11,17 from Table XIV.

The contribution of these sets is

2G24T JUTN]

247G 2e AT\ UL 1-2A 2 M)

Here, the operators U’ and M’ that are applied to Feynman
amplitudes of self-energy subgraphs are defined by

UX(p) = elM'Z+ (U'Z)(p — m)].

The terms containing U’ are canceled, because U preserves
the Ward identity; see Ref. [30]. An analogous cancellation
works for the direct subtraction expression and leads to the

same result.
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Sometimes for proving the equivalence it is necessary to
use the Ward identity for individual Feynman graphs; see
Ref. [50]. For example, for the operator U’ we can use the
following equality:

U [ ]=U[ =]+ U o+ U [

The right part of this equality contains all possible insertions
of an external photon line to the graph from the left part.

I. Technical information

Table XVII contains a summary of results and technical
information. The meanings of the fields Ny, N, Nl
Nial o Afail D AT and AL are defined in Sec. IV G. The
GPU performance™ for these computations is measured in
floating point operations per second (flop/s) and interval
operations per second (interval/s) in the sense of Sec. IV B.

V. CONCLUSION

The method for the numerical evaluation of A(f”)

[no lepton loops] described in Refs. [29,30] was signifi-
cantly improved. The main improvements are

(1) Probability density functions for Monte Carlo in-

tegration giving a better convergence.

(2) A method of Monte Carlo error estimation.

(3) A method of high-speed arithmetic calculations with

round-off error control.

(4) A realization on high-speed graphics processors.
The values for n =2, 3, 4 were obtained and compared
with the known analytical and semianalytical ones, as well
as the contributions of the 5-loop and 6-loop ladder graphs.
The results were presented in a form allowing us to check
them by parts using other methods. The 2-loop and 3-loop
contributions were compared with the known values in
detail, and the 4-loop ones were compared for six gauge-
invariant classes. All obtained results are in good agree-
ment with the known ones. The results showed that the
developed method and its realization allow us to obtain
high-precision values for high-order QED contributions to
a, even without appealing to supercomputers.

The ability to use nonadaptive Monte Carlo algorithms
for obtaining high-precision results was verified. The

*The announced by NVidia peak performance of one GPU of
the NVidia Tesla K80 for double precision is 1.45 Tflops.

behavior of the Monte Carlo samples was analyzed in
detail. The necessity of probability distribution extrapola-
tion for obtaining correct error estimations was explained,
and the method was presented. The impact of possible
round-off errors was investigated in detail, the necessity of
controlling them and applying high-precision arithmetic
was justified. The developed high-speed method of con-
trolling round-off errors can be used for other calculations
in quantum field theory that are based on the numerical
subtraction of divergences under the integral sign.

The performed 6-loop calculation showed a big impact
of high-precision arithmetic to the calculation speed and the
necessity of accurate error estimation, but the 3-loop
calculation discovered a sensitivity to a selection of a
pseudorandom generator.

The realization on GPUs showed very good perfor-
mance. For example, the speed of obtaining integrand
values was improved by 3000 times in comparison with
Ref. [29] for the 5-loop ladder graph.

In closing, let us recapitulate some theoretical problems
that still remain open:

(1) To prove mathematically (or disprove) that the
developed subtraction procedure leads to finite
integrals for any Feynman graph for any order of
the perturbation series.

(2) To create a mathematical foundation for the prob-
ability density functions that were used for the
Monte Carlo integration.

(3) To generalize the concept of I-closure and to develop a
method of obtaining Deg(s) for graphs with lep-
ton loops.

(4) To explain why the contributions of gauge-invariant
classes are relatively small, but the contributions of
individual graphs or even sets from Sec. IV H are
relatively large; is this true for the higher orders of
the perturbation series?

ACKNOWLEDGMENTS

The author thanks Andrey Kataev for interesting dis-
cussions and helpful recommendations, Andrey Arbuzov
for his help in organizational issues, Predrag Cvitanovi¢ for
fruitful discussion and inspiring ideas, Ivan Krasin for his
help in understanding NVidia graphics accelerators and
Google services, and Denis Shelomovskij for his help in D
programming issues. Also, the author thanks Google for
use of their computing services. Special thanks are due to
the reviewers for careful reading of the article and valuable
advices.

076018-22



NUMERICAL CALCULATION OF HIGH-ORDER QED ...

PHYS. REV. D 98, 076018 (2018)

[1] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse,
Phys. Rev. A 83, 052122 (2011).
[2] T. Aoyama, T. Kinoshita, and M. Nio, Phys. Rev. D 97,
036001 (2018).
[3] J. Schwinger, Phys. Rev. 73, 416 (1948).
[4] J. Schwinger, Phys. Rev. 76, 790 (1949).
[5] A. Petermann, Helv. Phys. Acta 30, 407 (1957).
[6] C. Sommerfield, Phys. Rev. 107, 328 (1957).
[7]1 S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).
[8] S. Laporta, Phys. Lett. B 772, 232 (2017).
[9] J. A. Mignaco and E. Remiddi, Nuovo Cimento A 60, 519
(1969).
[10] R. Barbieri, M. Caffo, and E. Remiddi, Lett. Nuovo
Cimento 5, 769 (1972).
[11] D. Billi, M. Caffo, and E. Remiddi, Lett. Nuovo Cimento 4,
657 (1972).
[12] R. Barbieri and E. Remiddi, Phys. Lett. B 49, 468 (1974).
[13] R. Barbieri, M. Caffo, and E. Remiddi, Lett. Nuovo
Cimento 9, 690 (1974).
[14] M.J. Levine and R. Roskies, Phys. Rev. D 9, 421 (1974).
[15] M.J. Levine, R. C. Perisho, and R. Roskies, Phys. Rev. D
13, 997 (1976).
[16] R. Barbieri, M. Caffo, E. Remiddi, S.Turrini, and D.Oury,
Nucl. Phys. B144, 329 (1978).
[17] M.J. Levine, E. Remiddi, and R. Roskies, Phys. Rev. D 20,
2068 (1979).
[18] S. Laporta and E. Remiddi, Phys. Lett. B 265, 182 (1991).
[19] S. Laporta, Phys. Lett. B 343, 421 (1995).
[20] R. Barbieri, M. Caffo, and E. Remiddi, Phys. Lett. B 57, 460
(1975).
[21] M. J. Levine and R. Roskies, Phys. Rev. D 14, 2191 (1976).
[22] K. A. Milton, W. Tsai, and L. L. DeRaad, Jr, Phys. Rev. D 9,
1809 (1974).
[23] L. L. DeRaad, Jr., K. A. Milton, and W. Tsai, Phys. Rev. D
9, 1814 (1974).
[24] S. Laporta, Phys. Rev. D 47, 4793 (1993).
[25] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys.
Rev. D 91, 033006 (2015).
[26] T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 47, 1573
(1981).
[27] F. Rappl, Ph.D. thesis, Universitdt Regensburg, 2016.

[28] P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser,
and D. Wellmann, arXiv:1708.07138.

[29] S. Volkov, Phys. Rev. D 96, 096018 (2017).

[30] S. Volkov, Zh. Eksp. Teor. Fiz. 149, 6 (2015) [JETP 122, 6
(2016)].

[31] M.J. Levine and J. Wright, Phys. Rev. D 8, 3171 (1973).

[32] R. Carroll and Y. Yao, Phys. Lett. B 48, 125 (1974).

[33] R. Carroll, Phys. Rev. D 12, 2344 (1975).

[34] P. Cvitanovi¢ and T. Kinoshita, Phys. Rev. D 10, 4007
(1974).

[35] L. Ts. Adzhemyan and M. V. Kompaniets, J. Phys. Conf.
Ser. 523, 012049 (2014).

[36] N.N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227
(1957).

[37] K. Hepp, Commun. Math. Phys. 2, 301 (1966).

[38] O.1. Zavialov and B. M. Stepanov, Sov. J. Nucl. Phys. 1,
922 (1965).

[39] V. A. Scherbina, Catalogue of Deposited Papers (VINITI,
Moscow, 1964), Vol. 38.

[40] O.1. Zavialov, Renormalized Quantum Field Theory
(Springer-Verlag, Berlin, 2012).

[41] V. A. Smirnov, Progress in Mathematical Physics, in
Renormalization and Asymptotic Expansions: PPH’14
(Birkhéuser, Basel, Switzerland, 2000).

[42] W. Zimmermann, Commun. Math. Phys. 15, 208 (1969).

[43] E. Speer, J. Math. Phys. (N.Y.) 9, 1404 (1968).

[44] P.Cvitanovi¢ and T. Kinoshita, Phys. Rev. D 10,3991 (1974).

[45] P. Cvitanovi¢ and T. Kinoshita, Phys. Rev. D 10, 3978
(1974).

[46] A. Alexandrescu, The D Programming Language (Addison-
Wesley, Reading, MA, 2010).

[47] CUDA C Programming Guide, NVIDIA Developer Documen-
tation, https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

[48] CURAND Library, Programming Guide, NVIDIA Devel-
oper Documentation, https://docs.nvidia.com/cuda/curand/
index.html.

[49] M. Caffo, S. Turrini, and E. Remiddi, Nucl. Phys. B141, 302
(1978).

[50] M.E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Perseus Books, New York, 1995).

076018-23


https://doi.org/10.1103/PhysRevA.83.052122
https://doi.org/10.1103/PhysRevD.97.036001
https://doi.org/10.1103/PhysRevD.97.036001
https://doi.org/10.1103/PhysRev.73.416
https://doi.org/10.1103/PhysRev.76.790
https://doi.org/10.1103/PhysRev.107.328
https://doi.org/10.1016/0370-2693(96)00439-X
https://doi.org/10.1016/j.physletb.2017.06.056
https://doi.org/10.1007/BF02757285
https://doi.org/10.1007/BF02757285
https://doi.org/10.1007/BF02753227
https://doi.org/10.1007/BF02753227
https://doi.org/10.1007/BF02757596
https://doi.org/10.1007/BF02757596
https://doi.org/10.1016/0370-2693(74)90638-8
https://doi.org/10.1007/BF02763393
https://doi.org/10.1007/BF02763393
https://doi.org/10.1103/PhysRevD.9.421
https://doi.org/10.1103/PhysRevD.13.997
https://doi.org/10.1103/PhysRevD.13.997
https://doi.org/10.1016/0550-3213(78)90374-7
https://doi.org/10.1103/PhysRevD.20.2068
https://doi.org/10.1103/PhysRevD.20.2068
https://doi.org/10.1016/0370-2693(91)90036-P
https://doi.org/10.1016/0370-2693(94)01401-W
https://doi.org/10.1016/0370-2693(75)90268-3
https://doi.org/10.1016/0370-2693(75)90268-3
https://doi.org/10.1103/PhysRevD.14.2191
https://doi.org/10.1103/PhysRevD.9.1809
https://doi.org/10.1103/PhysRevD.9.1809
https://doi.org/10.1103/PhysRevD.9.1814
https://doi.org/10.1103/PhysRevD.9.1814
https://doi.org/10.1103/PhysRevD.47.4793
https://doi.org/10.1103/PhysRevD.91.033006
https://doi.org/10.1103/PhysRevD.91.033006
https://doi.org/10.1103/PhysRevLett.47.1573
https://doi.org/10.1103/PhysRevLett.47.1573
http://arXiv.org/abs/1708.07138
https://doi.org/10.1103/PhysRevD.96.096018
https://doi.org/10.1134/S1063776116050113
https://doi.org/10.1134/S1063776116050113
https://doi.org/10.1103/PhysRevD.8.3171
https://doi.org/10.1016/0370-2693(74)90659-5
https://doi.org/10.1103/PhysRevD.12.2344
https://doi.org/10.1103/PhysRevD.10.4007
https://doi.org/10.1103/PhysRevD.10.4007
https://doi.org/10.1088/1742-6596/523/1/012049
https://doi.org/10.1088/1742-6596/523/1/012049
https://doi.org/10.1007/BF02392399
https://doi.org/10.1007/BF02392399
https://doi.org/10.1007/BF01773358
https://doi.org/10.1007/BF01645676
https://doi.org/10.1063/1.1664729
https://doi.org/10.1103/PhysRevD.10.3991
https://doi.org/10.1103/PhysRevD.10.3978
https://doi.org/10.1103/PhysRevD.10.3978
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://doi.org/10.1016/0550-3213(78)90512-6
https://doi.org/10.1016/0550-3213(78)90512-6

