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This paper describes a method of numerically evaluating high-order QED contributions to the electron
anomalous magnetic moment. The method is based on the subtraction of infrared and ultraviolet
divergences in Feynman parametric space before integration and on nonadaptive Monte Carlo integration
that is founded on Hepp sectors. A realization of the method on the graphics accelerator NVidia Tesla K80
is described. A method of removing round-off errors that emerge due to numerical subtraction of
divergences without losing calculation speed is presented. The results of applying the method to all 2-loop,
3-loop, and 4-loop QED Feynman graphs without lepton loops are presented. A detailed comparison of the
2-loop and 3-loop results with known analytical ones is given in the paper. A comparison of the
contributions of six gauge-invariant 4-loop graph classes with known analytical values is presented.
Moreover, the contributions of 78 sets of 4-loop graphs for comparison with the direct subtraction on the
mass shell are presented. Also, the contributions of the 5-loop and 6-loop ladder graphs are given, as well as
a comparison of these results with known analytical ones. The behavior of the generated Monte Carlo
samples is described in detail, and a method of the error estimation is presented. Detailed information about
the graphics processor performance on these computations and about the Monte Carlo convergence is given
in the paper.
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I. INTRODUCTION

The electron anomalous magnetic moment (AMM) is
known with a very high accuracy. In Ref. [1], the value

ae ¼ 0.00115965218073ð28Þ
was obtained. So, an extremely high precision is required
also from theoretical predictions.
The most precise prediction of the electron’s AMM at the

present time uses the following representation:

ae ¼ aeðQEDÞ þ aeðhadronicÞ þ aeðelectroweakÞ;

aeðQEDÞ ¼
X
n≥1

�
α

π

�
n
a2ne ;

a2ne ¼ Að2nÞ
1 þ Að2nÞ

2 ðme=mμÞ þ Að2nÞ
2 ðme=mτÞ

þ Að2nÞ
3 ðme=mμ; me=mτÞ;

whereme,mμ, andmτ are the masses of the electron, muon,
and tau lepton, respectively. Different terms of this expres-
sion were calculated by different groups of researchers.
Some of them have independent calculations, but others
were calculated only by one scientific group. The best
theoretical value [2],

ae ¼ 0.001159652182032ð13Þð12Þð720Þ; ð1Þ
was obtained by using the fine-structure constant
α−1 ¼ 137.035998995ð85Þ that had been obtained by
using methods independent from ae (see Ref. [2]). Here,

the first, second, and third uncertainties come from Að10Þ
1 ,

aeðhadronicÞ þ aeðelectroweakÞ, and the fine-structure
constant,1 respectively. The values

Að2Þ
1 ¼ 0.5;

Að4Þ
1 ¼ −0.328478965579193…;

Að6Þ
1 ¼ 1.181241456…;

Að8Þ
1 ¼ −1.9122457649…
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1So, the calculated coefficients are used for improving the
accuracy of α.
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are known from the analytical and semianalytical results in
Refs. [3,4], Refs. [5,6], Ref. [7], and Ref. [8], respectively.2

The value

Að10Þ
1 ¼ 6.675ð192Þ

was presented in Ref. [2]. At the present time, there are no

independent calculations of Að10Þ
1 . However, Að8Þ

1 was
evaluated independently3 in Refs. [25,27,28] (and for the
graphs without lepton loops in Ref. [29]). We must take into
account the fact that the contributions of some individual
graphs turn out to be several times greater than the total
contribution in absolute value.4 Therefore, an error in one
graph evaluation can cause the final result to be entirely

wrong. So, the problem of evaluating Að2nÞ
1 is still relevant.

The QED contributions to ae that are the most uncertain
and difficult to evaluate correspond to Feynman graphs
without lepton loops. We consider an evaluation of these
contributions in this paper and denote the n-loop part of it

by Að2nÞ
1 ½no lepton loops�.

This paper is the continuation of a series of papers
[29,30] with increasing precision, number of independent
loops in graphs, and refinement of the consideration.
We use the subtraction procedure that was introduced in

Ref. [30] for removing both infrared and ultraviolet
divergences. It is briefly described in Sec. II of this paper.
This procedure eliminates IR and UV divergences in each
AMM Feynman graph point by point, before integration, in
the spirit of Refs. [2,31–41], etc. This property is sub-
stantial for many-loop calculations when reducing the
computer time is of critical importance. Let us note that

Að2nÞ
1 is free from infrared divergences, since they are

removed by the on-shell renormalization, as well as the
ultraviolet ones (see a more detailed explanation in
Ref. [30]). However, the subtractive on-shell renormaliza-
tion cannot eliminate IR divergences in Feynman para-
metric space before integration as well as it does for UV
divergences.5 The structure of IR and UV divergences in
individual Feynman graphs is quite complicated.6

Therefore, a special procedure is required for removing
both UV and IR divergences. Let us recapitulate the
advantages of the developed subtraction procedure:
(1) It is fully automated for any n.
(2) It is comparatively easy for realization on computers.

(3) It can be represented as a forestlike formula. This
formula differs from the classical forest formula
[38,39,42] only in the choice of linear operators and
in the way of combining them.

(4) The contribution of each Feynman graph to Að2nÞ
1 can

be represented as a single Feynman parametric

integral. The value of Að2nÞ
1 is the sum of these

contributions.
(5) Feynman parameters can be used directly, without

any additional tricks.
See a detailed description in Ref. [30]. The subtraction
procedure was checked independently by F. Rappl using
Monte Carlo integration based on Markov chains [27]. An
additional advantage of the procedure is described below
and in Sec. IV H.
After the subtraction is applied, the problem is reduced to

numerical integration of functions of many variables. The
number of variables can be quite large7; this fact compels us
to use Monte Carlo methods. In most cases the precision of
Monte Carlo integration behaves asymptotically as C=

ffiffiffiffi
N

p
,

where N is the number of samples. Thus, for reaching a
high precision in practical time, it is very important to
decrease the constantC as much as possible. Unfortunately,
the behavior of Feynman parametric integrands that appear

in Að2nÞ
1 computation often leads to slow Monte Carlo

convergence. An integration method with a relatively good
constant C was introduced in Ref. [29]. The method is
based on importance sampling with probability density
functions that are constructed for each Feynman graph
individually. The construction is based on Hepp sectors
[37] and uses functions of the form that was first used by E.
Speer [43] with some modifications. The modification is
based on the concept of I-closure that was introduced in
Ref. [29]. The method from Ref. [29] demonstrated better
convergence than the universal Monte Carlo routines. A
refined version of the construction is described in Sec. III
of this paper. This refinement reduces the uncertainty of

Að8Þ
1 ½no lepton loops� by about 15% when the number of

samples is fixed.
When we have to deal with unbounded functions or with

functions having sharp peaks, the standard Monte Carlo
error estimation approach has a tendency to underestimate
the inaccuracy. A method of preventing underestimation
was described in Ref. [29]. However, some tests show that
in many cases a more accurate consideration of peaks is
required. An improved method of error estimation that uses
a specificity of the considered integrands is presented in
Sec. IV F. Detailed information about sample behavior for
the 5-loop and 6-loop ladder graphs is provided. Also,
information about the dependence of the results on the

2The value for Að6Þ
1 was a product of the efforts of many

scientists. See, e.g., Refs. [9–24].
3However, by 2016, most parts of Að8Þ

1 had been calculated by
only one scientific group [25]. The first numerical estimations for
Að8Þ
1 were presented in Ref. [26].
4This turns out to be the case regardless of the divergence

subtraction method used.
5Moreover, it can generate additional IR divergences; see a

more detailed explanation in Ref. [30].
6See notes in Ref. [29].

7For example, for five loops we have 13 variables; see Ref. [29]
and Sec. IVA.
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number of samples is given for Að8Þ
1 ½no lepton loops� and

for the 5-loop and 6-loop ladder graph contributions.
The numerical subtraction of divergences leads to a

situation in which small numbers (in absolute value) are
obtained as the difference of astronomically big numbers.
This generates round-off errors that significantly affect the
result.8 To control these errors, we need to use additional
techniques that substantially slow down the computation
speed. In Ref. [30], all integrand evaluations were first
performed with two different precisions,9 and when a
difference in the results was noticeable, the calculation
was repeated with increased precision. This approach
requires twice as much computer time than the direct
calculation. Also, an emergence of bias is possible in this
case. All calculations that are described in Ref. [29] use
interval arithmetic.10 Interval arithmetic is reliable, but it
slows down the computation many times: e.g., the multi-
plication of two intervals requires eight number multi-
plications with correct rounding, three minimums, and
three maximums. To eliminate this slowdown, a special
modification of interval arithmetic was developed. This
technique gave a significant improvement in computation
speed without the loss of reliability. In many cases, this
method works faster than the approach with two preci-
sions.11 A specificity of the construction of the integrands is
used for reaching such performance. The description of this
technique is contained in Sec. IV C.
The rapid development of specialized computing devices

that solve some tasks many times faster than ordinary
computers makes it possible to use them for scientific
calculations. All Monte Carlo integrations that are
described in this paper were performed on one12 graphics
processor of the NVidia Tesla K80. Graphics processors
(GPUs) are very useful for Monte Carlo integration.
However, specific programming is required to use these
devices effectively. Sections IVA, IV D, and IV I contain
some information about the realization of the described
integration method on GPUs.
The developed method and realization were applied for

computing Að2nÞ
1 ½no lepton loops�, n ¼ 2, 3, 4. Also, the

contributions of the 5-loop and 6-loop ladders were
evaluated for testing purposes. The results are presented
in Sec. IVA. A comparison with known analytical results is
provided in Table XVII.
High-order calculations in quantum field theory require

performing some operations with enormous amounts of
information. For example, the total integrand code size13

for Að8Þ
1 ½no lepton loops� is 2.5 GB. There are too many

places where a mistake can emerge. However, the total
independent check requires a lot of resources. So, it is very
important to have the possibility of checking the results by
parts using another method. Section IV H demonstrates that
the developed method provides such a possibility. The total

number of 269 Feynman graphs for Að8Þ
1 ½no lepton loops� is

divided into 78 sets, and the contribution of each set must
coincide with the contribution that is obtained by direct
subtraction on the mass shell in Feynman gauge. The
contribution of each set is provided in Sec. IV H. Also,
analogous information is given for the 2-loop and 3-loop
cases; the comparison in this paper is as good as the one in
Ref. [30]. The contributions of six gauge-invariant classes
of 4-loop graphs without lepton loops are presented in
Sec. IV H and compared with the semianalytical ones from
Ref. [8]. Knowing the values of the contributions of gauge-
invariant classes gives us the ability to check some
hypotheses from quantum field theory.14 Section IVG
contains detailed information about the contributions of
individual Feynman graphs, including the influence of
round-off errors and information about Monte Carlo error
estimation. A summary of the results and technical infor-
mation about GPU performance and code sizes is presented
in Sec. IV I.

II. SUBTRACTION OF DIVERGENCES

We will work in the system of units in which ℏ ¼ c ¼ 1,
the factors of 4π appear in the fine-structure constant
α ¼ e2=ð4πÞ, the tensor gμν is defined by

gμν ¼ gμν ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA;

and the Dirac γ matrices satisfy the condition
γμγν þ γνγμ ¼ 2gμν.
We will use Feynman graphs with the propagators

iðp̂þmÞ
p2 −m2 þ iε

ð2Þ

for electron lines and

−gμν
p2 þ iε

ð3Þ

for photon lines. We restrict our attention to graphs without
lepton loops. However, the developed subtraction pro-
cedure works for graphs with lepton loops as well [30].

8Moreover, these errors can convert a finite result to an infinite
one.

9In 64-bit and 80-bit precisions that are supported on pro-
cessors that are compatible with the Intel x86 family.

10See Sec. IV B.
11See Table XVII.
12The NVidia Tesla K80 has two GPUs.
13See Table XVII. 14See Sec. V.
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The number ωðGÞ ¼ 4 − Nγ − 3
2
Ne is called the ultra-

violet degree of divergence of the graph G. Here, Nγ is the
number of external photon lines ofG, and Ne is the number
of external electron lines of G.
A subgraph15 G0 of the graph G is called UV divergent if

ωðG0Þ ≥ 0. There are the following types of UV-divergent
subgraphs in QED Feynman graphs without lepton loops:
electron self-energy subgraphs (Ne ¼ 2, Nγ ¼ 0) and
vertexlike subgraphs (Ne ¼ 2, Nγ ¼ 1).
Two subgraphs are said to overlap if they are not

contained one inside the other and their sets of lines have
a nonempty intersection.
A set of subgraphs of a graph is called a forest if any two

elements of the set do not overlap.
For a vertexlike graphG, byF½G�we denote the set of all

forests F consisting of UV-divergent subgraphs of G and
satisfying the condition G ∈ F. By I½G�, we denote the set
of all vertexlike subgraphsG0 ofG such thatG0 contains the
vertex that is incident16 to the external photon line of G.17

Wewill use the following linear operators that are applied
to the Feynman amplitudes of UV-divergent subgraphs:
(1) A is the projector of AMM. This operator is applied

to the Feynman amplitudes of vertexlike subgraphs.
See the definition in Refs. [29,30].

(2) The definition of the operator U depends on the type
of UV-divergent subgraph to which the operator is
applied:
a. If ΣðpÞ is the Feynman amplitude that corre-

sponds to an electron self-energy subgraph

ΣðpÞ ¼ uðp2Þ þ vðp2Þp̂; ð4Þ
then, by definition,18

UΣðpÞ ¼ uðm2Þ þ vðm2Þp̂: ð5Þ
b. If Γμðp; qÞ is the Feynman amplitude19 corre-

sponding to a vertexlike subgraph

Γμðp; 0Þ ¼ aðp2Þγμ þ bðp2Þpμ þ cðp2Þp̂pμ

þ dðp2Þðp̂γμ − γμp̂Þ; ð6Þ

then, by definition,

UΓμ ¼ aðm2Þγμ: ð7Þ

The operatorU can be used for extracting the UV-divergent
part of the amplitude without touching the IR-divergent
part. For example, for the 1-loop amplitude in Eq. (6), all
UV divergences are contained in aðp2Þγμ, but all IR
divergences are in bðp2Þpμ þ cðp2Þp̂pμ. For the 1-loop
amplitude in Eq. (4), IR divergences appear after on-shell
differentiating that is needed in the standard renormaliza-
tion, but not for defining U. See a detailed description in
terms of Feynman parameters in Ref. [30]. It is important
that U preserve the Ward identity. This fact is used for
proving that the subtraction procedure is equivalent to the
on-shell renormalization and for calculating the contribu-
tions of graph classes; see Ref. [30] and Sec. IV H. It is also
important for removing IR divergences that Eq. (5) extract
the self-mass completely; see Discussion in Ref. [30].
(3) L is the operator that is used in the standard

subtractive on-shell renormalization of vertexlike
subgraphs. If Γμðp; qÞ is the Feynman amplitude
that corresponds to a vertexlike subgraph, Eq. (6) is
satisfied, and then, by definition,

LΓμ ¼ ½aðm2Þ þmbðm2Þ þm2cðm2Þ�γμ: ð8Þ

Let fG be the unrenormalized Feynman amplitude that
corresponds to a vertexlike graph G. Let us write the
symbolic definition

f̃G ¼ Rnew
G fG; ð9Þ

where

Rnew
G ¼

X
F¼fG1 ;…;Gng∈F½G�

G0∈I½G�∩F

ð−1Þn−1MG0
G1
MG0

G2
…MG0

Gn
; ð10Þ

MG0
G00 ¼

8>>>><
>>>>:

AG0 ; if G0 ¼G00;

UG00 ; if G00 ∉I½G�;orG00 ⊊G0;

LG00 ; if G00 ∈I½G�;G0 ⊊G00;G00 ≠G;

ðLG00 −UG00 Þ; if G00 ¼G;G0 ≠G:

ð11Þ

In this notation, the subscript of an operator symbol denotes
the subgraph to which this operator is applied.
The coefficient before γμ in f̃G is the contribution ofG to

ae. See the examples of applying the procedure in
Refs. [29,30]. The operators LG00 and ðLG00 −UG00 Þ are
used for removing the IR divergences that are connected
with subgraphs in the sense of Ref. [44] and the corre-
sponding UV ones. Note that the operator ðLG00 − UG00 Þ is
required in Eq. (11) for removing UV divergences,20 and in

15In this paper, we take into account only subgraphs that are
strongly connected and contain all lines that join the vertices of the
given subgraph.

16We say that a line l and a vertex v are incident if v is one of
the end points of l.

17In particular, G ∈ I½G�.
18Note that it differs from the standard on-shell renormalization.
19These rules are applied for individual Feynman graphs and

even for fixed values of Feynman parameters. So we cannot
neglect …ðp̂γμ − γμp̂Þ terms, and we cannot use the Ward-
Takahashi identity or other simplifications. 20See Ref. [30], Appendix C.
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order to make this subtraction equivalent to the on-shell
renormalization,21 it cannot be replaced by LG00.

III. PROBABILITY DENSITY FUNCTIONS
FOR MONTE CARLO INTEGRATION

We use Feynman parameters for calculations. Thus, to
obtain the contribution of a graph G, we need to calculate
the integralZ

z1;…;zn>0
Iðz1;…; znÞδðz1 þ � � � þ zn − 1Þdz1…dzn;

where the function I is constructed by using the known
rules [30].
We use the Monte Carlo approach based on importance

sampling: we generate randomly N samples z1;…; zN ,
where zj ¼ ðzj;1;…; zj;nÞ, using some probability density
function gðzÞ and approximating the integral value by

1

N

XN
j¼1

IðzÞ
gðzÞ : ð12Þ

The density g is fixed for a fixed graph G. The speed of
Monte Carlo convergence depends on the selection of g. A
construction of G that gives a good convergence is
described below.
We will use Hepp sectors [37] and functions of the form

that was first used by E. Speer [43] with some modifica-
tions. All the space Rn is split22 into sectors. Each sector
corresponds to a permutation ðj1;…; jnÞ of f1; 2;…; ng
and is defined by

Sj1;…;jn ¼ fðz1;…; znÞ ∈ R∶zj1 ≥ zj2 ≥ … ≥ zjng:

We define the function g0ðz1;…; znÞ on Sj1;…;jn by the
following relation:

g0ðz1;…; znÞ ¼
Q

n
l¼2ðzjl=zjl−1ÞDegðfjl;jlþ1;…;jngÞ

z1z2…zn
; ð13Þ

where DegðsÞ > 0 is defined for each set s of internal
lines23 of G except the empty set and the set of all internal
lines of G. The probability density function is defined by

gðz1;…;znÞ

¼ g0ðz1;…;znÞR
z1;…;zn>0

g0ðz1;…;znÞδðz1þ�� �þ zn−1Þdz1…dzn
:

ð14Þ

A fast random samples generation algorithm for a given
DegðsÞ is described in Ref. [29].
Let us describe the procedure of obtaining DegðsÞ. The

following auxiliary definitions repeat the ones from
Ref. [29]. By definition, we set

ωðsÞ ¼ 2NLðsÞ þ jeðsÞj=2 − jsj;
where jxj is the cardinality of a set x, eðsÞ is the set of all
electron lines in s, and NLðsÞ is the number of independent
loops in s. If s is the set of all internal lines of a subgraph of
G, then ωðsÞ coincides with the ultraviolet degree of
divergence of this subgraph that is defined above.
The problem of constructing a good gðzÞ is very close to

the problem of obtaining a simple and close enough upper
bound for jIðzÞj and proving the integral finiteness; see
Ref. [29]. Feynman parametric expressions for the inte-
grands (without subtraction terms) can be represented as
fractions with denominators that vanish on the boundary of
the integration area, if we are on the mass shell [30]. If
we consider the numerators only, we can use the ultraviolet
degrees of divergence themselves; see Ref. [43]. If we
take into account the denominators too, the degrees
must be increased, which is performed by I-closures that
are defined below. In addition to vanishing denominators,
the divergence subtraction complicates the problem. The
construction described below is based on both theoretical
considerations24 and numerical experiments.
By IClosðsÞ we denote the set s ∪ s0, where s0 is the set

of all internal photon lines l in G such that s contains the
electron path inG connecting the ends of l. The set IClosðsÞ
is called the I-closure of the set s.
By definition, we set

ω0ðsÞ ¼ ωðIClosðsÞÞ:
A graph G00 belonging to a forest F ∈ F½G� is called a

child of a graph G0 ∈ F in F if G00 ⊊ G0 and there is no
G000 ∈ F such that G000 ⊊ G0, G00 ⊊ G000.
If F ∈ F½G� and G0 ∈ F, then by G0=F we denote the

graph that is obtained from G0 by shrinking all children of
G0 in F to points.
We will also use the symbols ω, ω0 for graphs G0 that are

constructed from G by some operations like those described
above,25 and for sets s that are subsets of the set of internal
lines of the whole graph G. We will denote these by ωG0 ðsÞ
and ω0

G0 ðsÞ, respectively. This means that we apply the
operations ω and ω0 in the graph G0 to the set s0 that is the
intersection of s and the set of all internal lines of G0.
Electron self-energy subgraphs and lines joining them

form chains l1G1l2G2…lrGrlrþ1, where lj’s are electron

21See Sec. IV H and Ref. [30], Appendix B.
22Let us remark that the components have intersections on their

boundaries. However, this is inessential for integration.
23Note that the sets can be not connected.

24Some of the ideas underlying the concept of I-closure and
this procedure of obtaining DegðsÞ will be described in future
papers. (These ideas are quite complicated and are not completely
substantiated mathematically at this moment.)

25See the corresponding examples in Ref. [29].
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lines ofG, andGj’s are electron self-energy subgraphs ofG.
Maximal (with respect to inclusion) subsets fl1; l2;…; lrþ1g
corresponding to such chains are called SE chains. The set of
all SE chains of G is denoted by SE½G�.
Suppose a graph G0 is constructed from G by operations

like those described above; by definition, we set

ω�
G0 ðsÞ ¼ ω0

G0 ðsÞ þ 1

2

X
s0∈SE½G�

s0⊆s; s0 inG0

ðjs0j − 1Þ:

(It is important that here we consider the SE chains of the
whole graph G.)
By Fmax½G�, we denote the set of all maximal forests

belonging to F½G� (with respect to inclusion).
Let CbigF > 0, CbigZ > 0, Cadd, CsubI, CsubSE, and CsubO

be constants. By definition, we set

DegðsÞ ¼

8>><
>>:

CbigZ þ ðCbigF−CbigZÞNLðsÞ
NLðGÞ ; if s contains all electron lines of G;

Cadd þminF∈Fmax½G�
P

G0∈F maxð0;−ω�
G0=FðsÞ − Sub½G0�Þ;

otherwise;

where

Sub½G0� ¼

8><
>:

CsubI; if G0 ∈ I½G�;
CsubSE; if G0is a self-energy subgraph;

CsubO in the other cases:

This formula for DegðsÞ differs from the one that was
defined in Ref. [29] and gives better Monte Carlo con-
vergence, if appropriate values for constants are taken. For
good Monte Carlo convergence, we can use the values

CbigZ ¼ 0.256; CbigF ¼ 0.839;

Cadd ¼ 0.786; CsubI ¼ 0.2;

CsubSE ¼ 0; CsubO ¼ 0.2: ð15Þ

These values were obtained by a series of numerical
experiments on 4-loop Feynman graphs. See the examples
for the considered combinatorial constructions in Ref. [29].

IV. REALIZATION AND NUMERICAL RESULTS

A. Overview

The computation on one GPU of an NVidia Tesla K80
that was leased from Google Cloud26 showed the following
results (1σ limits27):

Að4Þ
1 ½no lepton loops� ¼ −0.3441651ð34Þ;

Að6Þ
1 ½no lepton loops� ¼ 0.90485ð10Þ;

Að8Þ
1 ½no lepton loops� ¼ −2.181ð10Þ;

where the corresponding computation times are 21 h 37min,
5 d 8 h, and 7 d. The obtained contributions of the 5-loop
and 6-loop ladder graphs from Fig. 1 are 11.6530(58) and
34.31(20), respectively. The corresponding computation
times are 4 h 38 min and 8 h 24 min. All obtained results
are in good agreement with the known analytical and
semianalytical ones; see Table XVII. See also the detailed
results in Secs. IVG, IV H, and IV I.
We reduce the number of integration variables by one

using the fact that each integrand Iðz1;…; znÞ depends
linearly on za when za þ zb is fixed, where a and b are the
electron lines that are incident to the vertex that is incident
to the external photon line; see Ref. [29].28 In contrast to
Refs. [29,30], we use a nonadaptive29 Monte Carlo algo-
rithm. The absence of adaptivity simplifies a realization on
the GPU and allows us to undertake an analysis of the
Monte Carlo samples behavior; see Sec. IV F.
The D programming language [46] was used for the

generator of the integrands code. The integrands and the

FIG. 1. 5-loop and 6-loop ladder graphs.

26Using the free trial.
27See Sec. IV F.

28And also Ref. [45].
29Except for the selection of the parameters (15) and an

intergraph adaptivity: the numbers of Monte Carlo samples for
each Feynman graph are selected to make the convergence
maximally fast.
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MonteCarlo integratorwerewritten inC++withCUDA[47].
The integrand code sizes are presented in Table XVII. The
pseudorandom generator MRG32k3a from the CURAND
library [48] was used for the Monte Carlo integration.
The integrand values are evaluated first using double-

precision30 floating-point operations that are fully sup-
ported on the GPU. If the double-precision operations do
not give enough accuracy, the calculations are repeated
using arbitrary-precision floating-point operations with
increasing precision; see the details in Sec. IV D.
All the integrand code is divided into shared libraries that

are linked dynamically with the integrator. Each Feynman
graph and type of arithmetic corresponds to one or several
shared libraries. Each of these shared libraries contains
CUDA kernels31 and functions for calling them. To reduce
the compilation time32 without losing the computation
performance, the size of the integrand CUDA kernels is
set at approximately 5000 operations. Also, to reduce the
compilation time, each arbitrary-precision shared library
contains no more than 10 CUDA kernels.
The memory speed is a weak spot of GPU computing.

So, the integrand GPU code is organized in such a way that
the most of the operations are performed with the GPU
register memory: we are trying to minimize the number of
the used variables, often to the detriment of the arithmetic
optimization.
To use the GPU parallel computing effectively, we divide

the Monte Carlo samples for one Feynman graph into
portions. Each portion contains from 106 to 108 samples.
First, we generate the samples of a given portion and
calculate the corresponding integrand values in the fastest
precision. After that, the samples requiring an increased
precision are collected and calculated. Each CUDA kernel
is launched on a GPU in 19 968 parallel threads.33 To
reduce the impact of the latency of CUDA kernel calling,
each thread performs approximately 15 samples sequen-
tially in a loop.

B. Interval arithmetic

Interval arithmetic is an easy and reliable way for
controlling round-off errors. In this way all calculations
are performed with intervals, not with numbers. Arithmetic
operations on intervals are defined in such a way that each
exact intermediate value x is guaranteed to be in the
corresponding interval ½x−; xþ�. One can use the following
definitions:

½x−; xþ� þ ½y−; yþ� ¼ ½ðx− þ y−Þdown; ðxþ þ yþÞup�;
½x−; xþ� − ½y−; yþ� ¼ ½ðx− − yþÞdown; ðxþ − y−Þup�;
½x−; xþ� · ½y−; yþ� ¼ ½minððx−y−Þdown; ðx−yþÞdown;

ðxþy−Þdown; ðxþyþÞdownÞ;
maxððx−y−Þup; ðx−yþÞup;
ðxþy−Þup; ðxþyþÞupÞ�;

1=½x−; xþ� ¼ ½minðð1=x−Þdown; ð1=xþÞdownÞ;
maxðð1=x−Þup; ð1=xþÞupÞ�;

where ð�Þup and ð�Þdown mean the operation ð�Þ with
rounding up (to þ∞) or down (to −∞). Most modern
GPUs34 support specifying the rounding mode for arith-
metic operations and working with infinities for handling
overflows. Addition, subtraction, and multiplication can be
realized directly by using the formulas proposed above.35

However, for division, it is required to perform additional
operations for handling division by zero and overflows.
This does not slow down the computation, because the
number of divisions in the integrand constructions is
very small.

C. Elimination of interval arithmetic

Direct interval arithmetic is a very slow thing. However,
there are many ways of increasing speed by weakening the
distinctness of the intervals.
We will use the following specificity of the integrands

construction. It is known [30]36 how to construct the
integrand for a given graph G from the building blocks
VG0

, QG0
a;j, B

G0
ab, and SG

0
, where G0 is a graph that can be

obtained from a subgraph ofG by shrinking some subgraphs
to points; a, b are internal electron lines ofG0; j ¼ 1, 2; VG0

is defined through a sum over 1-trees of G0; QG0
a;j is defined

through a sum over 1-trees37 passing a; BG0
ab is defined

through a sum over trees with a cycle passing a, b; and SG
0
is

defined through a sumover 2-trees. See the full definitions in
Ref. [30]. The construction rules described inRef. [30] allow
us to observe that for a high number of independent loops in
G, the most part of the integrand computation is the
calculation of polynomials with the variables QG0

a;j=V
G0

and BG0
ab=V

G0
.

Suppose we want to calculate a polynomial of the
intervals ½x−1 ; xþ1 �;…; ½x−n ; xþn � that is constructed as a

30Double precision: 64 bit.
31A CUDA kernel is a function in a program that is executed

many times in parallel on GPU and is called from the CPU part;
see Ref. [47].

32GPU device code is compiled very slowly, and the compi-
lation time increases rapidly with the size of functions.

33104 blocks of 192 threads.

34As well as CPUs.
35Also, these formulas will work correctly with “not a number”

entries (NANs) despite the fact that the NVidia realization of min
and max ignores NANs in the lists of arguments.

36See also Refs. [40,41,45].
37More precisely, Ref. [30] has a definition of Q̂G0

a ; the values
QG0

a;j can be defined by Q̂G0
a ¼ QG0

a;1p̂1 þQG0
a;2p̂2 in terms of

Ref. [30].
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sequence of additions, subtractions, and multiplications.
The main ideas of the interval arithmetic elimination are as
follows:
(1) We can calculate the center of the resulting

interval in the direct double-precision arithmetic
using the same polynomial applied to the centers
of ½x−j ; xþj �.

(2) The radius of the resulting interval can be estimated
as a function of x−j , x

þ
j that is much more simple than

the source polynomial.
We will use the following inequality about the machine

double-precision arithmetic38:

jx − xrndj ≤ 2−52jxj þ 2−1022;

where xrnd corresponds to the machine representation of x
rounded in any direction.
Let xj be the exact values corresponding to the intervals

½x−j ; xþj �, j ¼ 1;…; n. By xnþ1;…; xl we denote the exact
intermediate values that are obtained sequentially when
we calculate the value of the needed polynomial. To each
j ¼ 1;…; n we assign a type tj: tj ¼ 0 if xj is QG0

a;k=V
G0
,

tj ¼ 1 if xj is BG0
ab=V

G0
. (We divide all source values into

two groups in such a way because jQG0
a;k=V

G0 j ≤ 1, but

BG0
ab=V

G0
are unbounded.39) Let us define the numbers xapprj ,

Mj, εj, j ¼ 1;…; l, satisfying the following conditions for
all j:
(1) jxapprj − xjj ≤ εj.
(2) jxapprj j ≤ Mj.

We define them by using the following rules:
(1) xapprj ¼ ððx−j þ xþj Þ=2Þrnd, j ¼ 1;…; n. (Thus, xapprj

are the centers of the corresponding intervals; the
machine double-precision arithmetic guarantees
that we always have x−j ≤ xapprj ≤ xþj if an over-
flow does not occur.)

(2) Mj’s are defined for j ¼ 1;…; n by

Mj ¼ max
tk¼tj

jxapprk j:

(3) εj’s are defined for j ¼ 1;…; n by

εj ¼ ε ¼ max
1≤k≤n

max ððxapprk − xþk Þup; ðxþk − xapprk ÞupÞ:

(4) If xj is obtained as xk � xr, where � is addition,
subtraction or multiplication, j ¼ nþ 1;…; l, then
xapprj ¼ ðxapprk � xapprr Þrnd. (Thus, xapprj are obtained by

the direct double-precision arithmetic without speci-
fying the rounding mode.40)

(5) Analogously, ðMj; εjÞ is defined by

ðMj; εjÞ ¼ ððMk þMrÞð1þ 2−52Þ þ 2−1022;

εk þ εr þ 2−52ðMk þMrÞ þ 2−1022Þ

for addition and subtraction, and by

ðMj;εjÞ¼ ðMkMrð1þ2−52Þþ2−1022;

εkεrþ εkMrþ εrMkþ2−52MkMrþ2−1022Þ

for multiplication.
It is easy to see that for the final l, the value εl can be

expressed as a polynomial PðMt¼0;Mt¼1; εÞ with positive
coefficients in only three variables, where

Mt¼a ¼ max
tk¼a

jxapprk j:

Thus, the value of εl can be obtained directly using the
coefficients of this polynomial without calculating the
intermediate values Mk, εk.
However, the polynomial

PðMt¼0;Mt¼1; εÞ ¼
X
u;v;w

Cu;v;wðMt¼0ÞuðMt¼1Þvεw

can still have many coefficients and therefore can require a
lot of arithmetic operations for computation. We estimate P
by another expression in the following way: Let us split P
into four parts P0, P1, P2, P3 by the following rules:

P0∶Cu;v;w < 2−100; P1∶2−100 ≤Cu;v;w < 0.5;

P2∶Cu;v;w ≥ 0.5; w≤ 1; P3∶Cu;v;w ≥ 0.5; w≥ 2:

Thus, P ¼ P0 þ P1 þ P2 þ P3. By definition, we set

u−j ¼ min
Cj
u;v;w>0

u; uþj ¼ max
Cj
u;v;w>0

u;

where

PjðMt¼0;Mt¼1; εÞ ¼
X
u;v;w

Cj
u;v;wðMt¼0ÞuðMt¼1Þvεw;

j ¼ 0; 1; 2; 3:

Let us define v−j , v
þ
j , w

−
j , w

þ
j in an analogous way. We set

38The last term corresponds to the case when a very small
number is converted into zero after rounding.

39Generally speaking, we can divide them in any way into any
number of pieces. This splitting is selected as a compromise
between precision and speed.

40In some tests, specifying a rounding mode for addition or
multiplication slows down the performance of these operations
on an NVidia Tesla K80 by a factor of 7. However, in the
considered calculations this was not experienced; see Table XVII.
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P0
jðMt¼0;Mt¼1; εÞ ¼

�X
u;v;w

Cj
u;v;w

�

· max ððMt¼0Þu
þ
j ; ðMt¼0Þu

−
j Þ

· max ððMt¼1Þv
þ
j ; ðMt¼1Þv

−
j Þ

· max ðεwþ
j ; εw

−
j Þ:

It is obvious that P0
j ≥ Pj. So, we can use P0 ¼ P0

0 þ P0
1 þ

P0
2 þ P0

3 as a radius of the final interval, if it is calculated by
machine arithmetic operations with rounding up.41 P0 is
much simpler for calculation than P. Thus, an interval for
the final value may be42

½ðxapprl − ðP0ÞupÞdown; ðxapprl þ ðP0ÞupÞup�:

We split P into four polynomials in a way guided by the
following considerations:
(1) P3 contains most of the coefficients’ sum; however,

its contribution in P0
3 will be compensated by the

multiplier ε2 (when ε is near zero).
(2) P2 has a large sum of coefficients too; however, it is

much less than P3 has; this sum will be compensated
by the multiplier ε in P0

2.
(3) P1 has a small sum of coefficients; however, in some

cases P0
1 can be noticeable; thus, we separate P1

from P0 to minimize the contribution of the
max ·max ·max part in the definition of P0

1.
(4) The contribution of the coefficients of P0 is al-

ways small.

D. Algorithm of obtaining accurate integrand values

We obtain the value43 IðzÞ=gðzÞ from Eq. (12) first by the
eliminated interval arithmetic from Sec. IV C. If the

obtained interval ½y−; yþ� does not satisfy the condition
yþ − y− ≤ σ=4, where σ is the current error estimation44 for
the obtained integral value, we repeat the calculation in the
direct double-precision interval arithmetic. If it is not
enough, we reiterate this calculation in the interval arith-
metic based on floating-point numbers with a 128-bit
mantissa and with a 256-bit mantissa (if needed). If the
256-bit-mantissa precision is not enough, we suppose that
the value equals 0.
The arithmetic with a 128-bit mantissa is realized on the

GPU in such a way that all operations are performed with
the GPU register memory. The arithmetic with a 256-bit
mantissa works with the global GPU memory. The usage of
the register memory improves the performance about
tenfold.45

We also use a routine for the prevention of the occasional
emerging of very large values that is analogous to the one
described in Ref. [29], but adapted for GPU parallel
computing.

E. Modified probability density functions

The situation in which gðzÞ from Eq. (12) is very small;
is theoretically possible, but the smallness if jIðzÞj does not
correspond to it. An emergence of such situations can make
the Monte Carlo convergence worse. For patching in these
situations, we use the probability density functions

gðzÞ ¼ C1g1ðzÞ þ C2g2ðzÞ þ C3g3ðzÞ þ C4g4ðzÞ

instead of Eqs. (13) and (14). Here g1 is defined by
Eqs. (13) and (14),

g2ðz1;…; znÞ ¼
Q

n
l¼2 ½Degðfjl; jlþ1;…; jngÞðzjl=zjl−1ÞDegðfjl;jlþ1;…;jngÞ�

n!z1z2…zn

when the definitions from Sec. III are used, and g3 is
defined by Eqs. (13) and (14), but with the same
DegðsÞ ¼ D, g4ðzÞ ¼ ðn − 1Þ! (the uniform distribution).

To generate a random sample with the distribution gðzÞ, we
should perform the following two steps:
(1) Generate randomly j ¼ 1, 2, 3, 4, where the prob-

ability of selecting j is Cj.
(2) Generate a sample with the distribution gjðzÞ.

The generation with the distribition g2ðzÞ is the same as for
distributions defined by Eqs. (13) and (14), but at the stage

41The coefficients Cu;v;w and their sum must be calculated
with rounding up too. However, this calculation is performed at
the stage of codegeneration.

42Overflows, infinities, and NANs do not require an additional
consideration at all stages of the calculation.

43We cannot use double precision directly for the probability
density gðzÞ, because its value sometimes goes beyond the range
of double-precision values. This situation often occurs in the
6-loop case. We use the representation x ·2j instead, where
double precision is used for 0.5≤ x< 1, and the number j is a
32-bit integer.

44In the beginning of the integral computation, we calculate
between 105 and 107 points in the direct double-precision interval
arithmetic, taking the nearest to zero points for each interval.

45However, Table XVII shows a gap that is much more than a
factor of 10. The reason is that there are very few points requiring
256-bit mantissas, so we cannot use GPU parallelism effectively.
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of sector generation we must take sectors with the same
probabilities; see Ref. [29]. All computations are performed
with the following values for the constants:

D¼ 0.75; C2¼ 0.03; C3¼ 0.035;

C4¼ 0.035; C1¼ 1−C2−C3−C4:

F. Monte Carlo error estimation

Let z1;…; zN be random samples; the formula (12) is
used for Monte Carlo integration. By definition, we set
yj ¼ IðzÞ=gðzÞ. The conventional error estimation approach
is based on the following formula for the standard deviation:

ðσ↓Þ2 ¼
P

N
j¼1 y

2
j

N2
−
ðPN

j¼1 yjÞ2
N3

:

However, this formula has a tendency to underestimate
the real standard deviation. Let us consider the 5-loop
and 6-loop ladder examples. By definition, we set

maxlog ¼ max
j
blog2 jyjj þ 0.5c:

Let nk be the quantity of samples j such that

2maxlog−k−0.5 ≤ jyjj < 2maxlog−kþ0.5; ð16Þ

maxlog and nj for the 5-loop and 6-loop ladders are
presented in Table I. nk is an approximation for Npk, where
pk is the probability that a sample is in the interval (16).

We can see that the real standard deviation is highly
dependent on the behavior of pj for j < 0. For example,
if pjþ1=pj < 4 for all j < j0, then the standard deviation is
infinite.46

We will use the improved estimation47

ðσ↑Þ2 ¼ ðσ↓Þ2 þ△uncert þ△peak;

where48

△uncert ¼ 4 · max
19

k¼0
4maxlog−k ffiffiffiffiffi

nk
p

is the contribution of the uncertainty of nk, and△peak is the
contribution of the predicted behavior of pj for j < 0 that
is described below.49

The idea is to approximate nj by a geometric progression,
taking into account that the nj’s are known with an
uncertainty of aboutC ffiffiffiffiffinjp and that pjþ1=pj changes with j.
We set

hj ¼
�
log2nj; if nj > 0;

−2; if nj ¼ 0;

h�j ¼ log2max

�
1

8
; nj þ

1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nj þ

1

4

r �
:

Here hj is an approximated value of log2ðNpjÞ, ½h−j ; hþj � is
an interval for this value that is obtained by taking into
account that nj is known with uncertainty.50

We will estimate the absolute value of a difference
between neighbors log2ðpjþ1=pjÞ by the value d, where

d ¼ max
0≤j<k≤18

djk
k − j

;

where djk is the distance from 0 to the interval ½d−jk; dþjk�,

TABLE I. Probability distributions for 5-loop and 6-loop
ladders.

Parameter 5-loop ladder 6-loop ladder

Maxlog 23 28
n0 11 2
n1 64 8
n2 393 45
n3 2 300 174
n4 11 891 785
n5 51 840 2 898
n6 204 817 9 374
n7 688 060 25759
n8 1 885 211 62 363
n9 4 300 121 135 343
n10 8 615 210 267 630
n11 15 701 395 490 720
n12 26 582 404 849 862
n13 42 456 874 1 394 740
n14 64 590 501 2 198 221
n15 94 011 212 3 331 999
n16 13 131 4678 4 892 615
n17 176 228 467 6 965 326
n18 228 021 742 9 626 392
n19 285 614 048 12 965 533

46Table I demonstrates that for the 6-loop ladder, such a
situation is quite possible.

47When we calculate deviation probabilities based on the
standard deviation, we use a presupposition based on the central
limit theorem that the distribution of

P
N
j¼1 yj=N is close to the

Gauss normal distribution. However, it is difficult to estimate the
difference between the real distribution and the normal one. For
example, the Berry-Esseen inequality uses the third central
moment of random variables that is infinite if pjþ1=pj < 8 for
all j < j0. (Table I shows that this situation is quite possible for
both 5-loop and 6-loop ladders.)

48The definitions of σ↓ and △uncert repeat the ones from
Ref. [29].

49This procedure is a result of tests on different graph
contributions to ae. It is developed for future calculations of
contributions to ae of higher orders. It should not be treated as a
universal procedure that works for all Monte Carlo integrations.
However, a large value of σ↑=σ↓ indicates that the obtained error
estimation is unreliable.

50x ¼ nþ C2

2
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ C2

4

q
is the solution of the equation

x ∓ C
ffiffiffi
x

p ¼ n.
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d−jk ¼ ðh−kþ1 − hþk Þ − ðhþjþ1 − h−j Þ;
dþjk ¼ ðhþkþ1 − h−k Þ − ðh−jþ1 − hþj Þ:

For the approximation of the sequence by a progression,
we will use other values for the log2ðNpjÞ uncertainty that
are obtained by taking into account that errors for lesser j
are more critical:

uj ¼

8>>>><
>>>>:

1
2

�
log2

�
nj þ C2

j

2
þ Cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj þ C2

j

4

q �
− log2

�
nj þ C2

j

2
− Cj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj þ C2

j

4

q ��
;

if nj > 0;

3; if nj ¼ 0;

where

Cj ¼
2

1þ 2ðjþ1Þ
20

:

For approximating the sequence of logarithms by a linear
function kjþ b, let us introduce the coefficients alj,
flj, 2≤ l≤ 20, 0 ≤ j < l, for the least squares method51:

�Xl−1
j¼0

aljxj;
Xl−1
j¼0

fljxj

�
¼ argminðk;bÞ

Xl−1
j¼0

ðkjþ b − xjÞ2

for all l and x0, …; xl−1.
We set

kl ¼
Xl−1
j¼0

aljhj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl−1
j¼0

ðaljÞ2u2j

vuut − d
Xl−1
j¼0

jðj − 1Þalj
2

;

k ¼ maxðk2;…; k20; h0 − 1 − u0Þ:
This formula takes into account both the uncertainty of nj
and the shift of pjþ1=pj with j. We take max to prevent
excessive overestimation.52 Also, we set

△b ¼ min
l

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl−1
j¼0

ðfljÞ2u2j

vuut þ d
Xl−1
j¼0

jðj − 1Þflj
2

1
CA;

b ¼ P
l−1
j¼0 f

l
jhj, where we take l for which the minimum is

achieved. Let us define △peak by

△peak ¼ 22·maxlogþbþ0.7△b

�
1

1 − 2−w
− 1

�
;

where

w ¼
k − 17

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − 17

8
Þ2 þ 1

16

q
2

þ 1

8
:

The meaning of this definition is that we use the formula for
the sum of a geometric progression, taking w instead of
k − 2. w is defined in such a way that w ∼ k − 2 as
k → þ∞, and w → 1=8 as k → −∞.
We use σ↑ for all numerical results that are presented in

this paper.

TABLE II. Dependence of the estimated error and the differ-
ence between the obtained value and the known semianalytical
one [8] on the number of Monte Carlo samples Ntotal:

Að8Þ
1 ½no lepton loops�; see a remark about σ↑, σ↓ calculation in

Sec. IV H.

Ntotal Value σ↑ σ↓ Difference σ↑=σ↓

40 × 109 −2.3937 0.2144 0.1168 −0.2168 1.84
1011 −2.2323 0.0710 0.0494 −0.0555 1.44
20 × 1010 −2.1820 0.0468 0.0345 −0.0051 1.36
50 × 1010 −2.1851 0.0282 0.0218 −0.0083 1.30
1012 −2.1757 0.0194 0.0154 0.0012 1.26
20 × 1011 −2.1702 0.0133 0.0109 0.0066 1.23
32 × 1011 −2.1807 0.0104 0.0086 −0.0038 1.21

TABLE III. Dependence of the estimated error and the differ-
ence between the obtained value and the known analytical one
[49] on the number of Monte Carlo samples Ntotal: 5-loop ladder.

Ntotal Value σ↑ σ↓ Difference σ↑=σ↓

59 × 105 12.0682 0.8202 0.3288 0.4090 2.49
12 × 107 11.6120 0.1349 0.0720 −0.0472 1.87
24 × 107 11.6934 0.0800 0.0525 0.0342 1.52
60 × 107 11.6798 0.0665 0.0379 0.0206 1.76
109 11.6678 0.0427 0.0270 0.0086 1.58
20 × 108 11.6474 0.0277 0.0192 −0.0118 1.44
50 × 108 11.6448 0.0150 0.0120 −0.0144 1.25
1010 11.6509 0.0111 0.0086 −0.0083 1.29
20 × 109 11.6541 0.0073 0.0061 −0.0051 1.19
29 × 109 11.6530 0.0058 0.0050 −0.0062 1.16

51The explicit formulas are alj ¼ 12j−6ðl−1Þ
lðl2−1Þ , flj ¼ 2ð2l−1Þ−6j

lðlþ1Þ .
52The last argument of max is needed to process the situation

when n0 is quite large: in this case, the absence of n−1 is very
informative.
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Tables II, III, and IV contain the dependence of the error
estimations and the real errors on the number of samples

Ntotal for A
ð8Þ
1 ½no lepton loops�, 5-loop, and 6-loop ladders,

respectively.

G. Contributions of individual Feynman graphs

The contributions of 2-loop and 3-loop Feynman graphs
to Að4Þ

1 and Að6Þ
1 are presented in Tables V and VI. The

corresponding Feynman graphs are given in Figs. 3 and 4.
Each individual contribution in this paper is given for a
Feynman graph without arrow directions on electron lines
and includes the contributions of the corresponding graphs
with all directions (that are the same). The 4-loop graphs

TABLE IV. Dependence of the estimated error and the differ-
ence between the obtained value and the known analytical one
[49] on the number of Monte Carlo samples Ntotal: 6-loop ladder.

Ntotal Value σ↑ σ↓ Difference σ↑=σ↓

15 × 106 34.3209 7.1538 2.0690 −0.0461 3.46
65 × 107 35.4566 1.1201 0.4659 1.0896 2.40
97 × 107 35.0500 0.7556 0.3566 0.6829 2.12
12 × 108 35.0187 0.6808 0.3201 0.6517 2.13
22 × 108 34.5855 0.4217 0.2276 0.2185 1.85
41 × 108 34.3967 0.3020 0.1675 0.0297 1.80
70 × 108 34.3651 0.2320 0.1337 −0.0019 1.74
1010 34.3062 0.1974 0.1137 −0.0608 1.74

TABLE V. Contributions of individual Feynman graphs from Fig. 3 to Að4Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

1 2; 1–4, 3–5 −0.0640193ð19Þ 94 × 1010 26 × 108 32 × 104 0 0.003 2 × 10−6 0 1.04
2 2; 1–5, 3–4 −0.5899758ð14Þ 58 × 1010 61 × 107 50 × 106 2 −0.0005 −2 × 10−6 −2 × 10−19 1.00
3 3; 1–4, 2–5 −0.4676475ð17Þ 90 × 1010 44 × 107 57479 0 −0.008 −10−5 0 1.05
4 3; 1–5, 2–4 0.7774774(18) 92 × 1010 34 × 108 17 × 106 0 0.007 0.0002 0 1.00

TABLE VI. Contributions of individual Feynman graphs from Fig. 4 to Að6Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

1 2; 1–4, 3–6, 5–7 −1.679616ð20Þ 29 × 1010 57 × 108 33 × 104 0 −0.1 −5 × 10−5 0 1.08
2 2; 1–4, 3–7, 5–6 0.832792(20) 28 × 1010 40 × 108 26 × 106 0 0.1 0.0009 0 1.10
3 2; 1–5, 3–6, 4–7 0.214875(14) 19 × 1010 22 × 108 88 × 104 1 0.01 7 × 10−5 −4 × 10−24 1.05
4 2; 1–5, 3–7, 4–6 −0.028928ð11Þ 11 × 1010 30 × 108 106 2 −0.004 −3 × 10−5 −10−11 1.03
5 2; 1–6, 3–4, 5–7 −0.097163ð26Þ 47 × 1010 16 × 109 13 × 107 10 −0.002 10−5 3 × 10−16 1.16
6 2; 1–6, 3–5, 4–7 0.144471(12) 14 × 1010 31 × 108 23 × 104 3 0.06 9 × 10−6 −2 × 10−36 1.02
7 2; 1–6, 3–7, 4–5 0.804106(17) 22 × 1010 26 × 108 18 × 106 1 0.02 −0.0001 −10−61 1.08
8 2; 1–7, 3–4, 5–6 −2.123267ð16Þ 17 × 1010 34 × 108 48 × 107 4496 −0.02 −0.0002 −10−12 1.00
9 2; 1–7, 3–5, 4–6 2.524749(18) 19 × 1010 89 × 108 18 × 106 0 0.07 2 × 10−5 0 1.00
10 2; 1–7, 3–6, 4–5 −0.058729ð11Þ 11 × 1010 51 × 108 53 × 106 6 0.009 −2 × 10−5 −10−15 1.00
11 3; 1–4, 2–6, 5–7 5.042278(27) 57 × 1010 91 × 108 38 × 105 5 0.5 0.0004 8 × 10−23 1.09
12 3; 1–4, 2–7, 5–6 −3.500634ð25Þ 50 × 1010 65 × 108 52 × 106 2 −0.4 −0.02 −3 × 10−22 1.06
13 3; 1–5, 2–6, 4–7 −1.757945ð15Þ 27 × 1010 97 × 107 34 × 105 10 −0.05 −0.0002 8 × 10−13 1.10
14 3; 1–5, 2–7, 4–6 0.140129(14) 18 × 1010 35 × 108 40 × 105 10 0.003 9 × 10−7 5 × 10−21 1.06
15 3; 1–6, 2–4, 5–7 −3.257290ð27Þ 48 × 1010 16 × 109 28 × 106 5 −0.3 −0.004 −10−8 1.00
16 3; 1–6, 2–5, 4–7 −0.334691ð14Þ 23 × 1010 13 × 108 30 × 105 7 −0.07 −0.0005 10−12 1.13
17 3; 1–6, 2–7, 4–5 0.315388(22) 43 × 1010 20 × 108 16 × 106 0 −0.003 −5 × 10−8 0 1.03
18 3; 1–7, 2–4, 5–6 4.513076(27) 43 × 1010 22 × 109 46 × 107 2909 0.4 0.04 2 × 10−6 1.00
19 3; 1–7, 2–5, 4–6 0.611112(21) 28 × 1010 67 × 108 37 × 105 1 0.1 0.0006 −10−24 1.15
20 3; 1–7, 2–6, 4–5 −2.269647ð16Þ 19 × 1010 27 × 108 39 × 106 0 −0.09 −0.001 0 1.00
21 4; 1–3, 2–6, 5–7 −2.908437ð22Þ 34 × 1010 81 × 108 50 × 104 0 −0.4 −0.0005 0 1.01
22 4; 1–3, 2–7, 5–6 6.533883(31) 60 × 1010 20 × 109 16 × 107 9 0.9 0.03 2 × 10−8 1.01
23 4; 1–7, 2–3, 5–6 −3.204367ð20Þ 24 × 1010 35 × 108 56 × 107 5040 −0.2 −0.05 −3 × 10−6 1.00
24 4; 1–5, 2–6, 3–7 −0.0267956ð78Þ 1011 37 × 107 35 × 105 5 −0.02 −0.0007 −6 × 10−12 1.07
25 4; 1–5, 2–7, 3–6 1.861914(17) 31 × 1010 19 × 108 14 × 106 43 0.1 −0.0004 −2 × 10−12 1.08
26 4; 1–6, 2–7, 3–5 −0.945906ð11Þ 14 × 1010 36 × 108 13 × 105 0 −0.07 −0.0005 0 1.01
27 4; 1–7, 2–5, 3–6 −2.230794ð19Þ 31 × 1010 36 × 108 11 × 106 24 −0.2 −0.0009 −5 × 10−21 1.10
28 4; 1–7, 2–6, 3–5 1.790285(19) 28 × 1010 83 × 108 22 × 106 1 0.1 0.003 −5 × 10−9 1.01
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are split into gauge-invariant classes ðk;m;m0Þ, where m
andm0 are the numbers of internal photon lines to the left and
to the right from the external photon line (or vice versa), and
k is the number of photonswith the ends on the opposite sides
of the line. We do not provide a picture for 4-loop graphs,
but they are encoded in the tables as expressions of the form

p; s1−f1; s2−f−2; s3−f3; s4−f4;

wherep is the number of vertex that is incident to the external
photon line, sj and fj are the ends of the jth internal photon
line, and the vertices are enumerated from 1 to 9 along the
electron path, sj < fj, s1 < … < s4. The graphs are ordered
lexicographically, and we guarantee that the code of a graph
is the lexicographically minimal one. For example, the code
of the graph from Fig. 2 is

3; 1–8; 2–7; 4–5; 6–9:

The contributions of the 4-loop graphs are presented in
Tables VII, VIII, IX, X, XI, and XII. The numbers of the
graphs for which the contribution must coincide with the
contribution obtained by direct subtraction on the mass shell
in Feynman gauge are marked by a star *; see Sec. IVH.
The fields of the tables have the following meaning:
(1) Value is the obtained value for the contribution with

the uncertainty σ↑; see Sec. IV F.
(2) σ↑=σ↓ is the relation between the improved standard

deviation and the conventional one; see Sec. IV F.
(3) Ntotal is the total quantity of Monte Carlo samples.
(4) Nfail

EIA is the quantity of samples for which the
eliminated interval arithmetic from Sec. IV C failed.

(5) △fail
EIA is the contribution of those samples.53

(6) Nfail
IA is the quantity of samples for which the direct

double-precision interval arithmetic from Sec. IV B
failed.

(7) △fail
IA is the contribution of those samples.

(8) Nfail
128 is the quantity of samples for which the interval

arithmetic based on numbers with 128-bit mantissas
failed.

(9) △fail
128 is the contribution of those samples.54

H. Classes of Feynman graphs

The contributions and Ntotal for all classes in this paper
are obtained as sums of the corresponding individual
values. The values σ↑, σ↓ for the classes are obtained by

σ↑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðσ↑;jÞ2
s

; σ↓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðσ↓;jÞ2
s

;

where σ↑;j and σ↓;j are the corresponding individual values.
The contributions of graph sets to Að4Þ

1 , Að6Þ
1 , Að8Þ

1 for
comparison with the direct subtraction on the mass shell in
the Feynman gauge are presented in Tables XIII, XIV, and
XV. The 2-loop and 3-loop tables include a comparison
with the known analytical results55 and with the old results
from [30]56 Table XV does not include one-element sets;
these sets (individual graphs) are marked by a star in the
tables containing individual contributions.

FIG. 2. 4-loop Feynman graph: Example.

FIG. 3. 2-loop Feynman graphs without lepton loops.

FIG. 4. 3-loop Feynman graphs without lepton loops.

53Sometimes this contribution can be many times more than
the total 4-loop contribution. See, e.g., graph 157 from Table IX.
However, the eliminated interval arithmetic significantly im-
proves the computation performance; see Table XVII.

54Even these contributions can be noticeable. See, e.g., graph
134 from Table VIII.

55The big discrepancy for the sets 14,17 in Table XIV is
probably caused by an unstable behavior of the pseudorandom
generator MRG32k3a. The generator Philox_4x32_10 [48]
seems to work better on this set.

56The uncertainties in Ref. [30] correspond to 90% confiden-
tial limits (under the assumption that the probability distribution
is Gauss normal).
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TABLE VII. Contributions of graphs from the gauge-invariant class (1,3,0) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

1 2; 1–4, 3–6, 5–8, 7–9 2.19701(73) 15 × 109 92 × 107 27780 0 0.6 0.0001 0 1.56
2 2; 1–4, 3–6, 5–9, 7–8 −3.81327ð91Þ 23 × 109 95 × 107 11 × 105 1 −1 −0.01 2 × 10−45 1.65
3 2; 1–4, 3–7, 5–8, 6–9 0.55330(31) 49 × 108 23 × 107 31677 1 0.2 0.0001 9 × 10−29 1.52
4 2; 1–4, 3–7, 5–9, 6–8 1.82177(56) 1010 57 × 107 47919 2 0.5 0.0002 10−36 1.51
5 2; 1–4, 3–8, 5–6, 7–9 −2.43257ð93Þ 23 × 109 13 × 108 29 × 105 1 −0.8 −0.008 10−35 1.72
6 2; 1–4, 3–8, 5–7, 6–9 0.95204(51) 89 × 108 50 × 107 26741 1 0.3 8 × 10−5 −4 × 10−55 1.41
7 2; 1–4, 3–8, 5–9, 6–7 −2.19745ð69Þ 15 × 109 57 × 107 54 × 104 0 −0.4 −0.003 0 1.89
8 2; 1–4, 3–9, 5–6, 7–8 2.1481(10) 20 × 109 75 × 107 27 × 106 161 0.8 0.03 −6 × 10−7 1.65
9 2; 1–4, 3–9, 5–7, 6–8 −2.48196ð92Þ 26 × 109 19 × 108 98 × 104 6 −0.7 −0.004 −9 × 10−40 1.54
10 2; 1–4, 3–9, 5–8, 6–7 0.98718(84) 19 × 109 12 × 108 33 × 105 3 0.5 0.008 2 × 10−41 1.61
11 2; 1–5, 3–6, 4–8, 7–9 −1.38009ð58Þ 12 × 109 54 × 107 90636 4 −0.3 −0.0002 −2 × 10−31 1.63
12 2; 1–5, 3–6, 4–9, 7–8 1.16697(56) 12 × 109 37 × 107 55 × 104 5 0.2 0.002 4 × 10−52 1.48
13 2; 1–5, 3–7, 4–8, 6–9 0.66741(35) 58 × 108 15 × 107 31 × 104 22 −0.03 −0.001 −3 × 10−14 1.29
14 2; 1–5, 3–7, 4–9, 6–8 −0.26457ð35Þ 48 × 108 22 × 107 38 × 104 61 −0.06 −10−5 5 × 10−11 1.25
15 2; 1–5, 3–8, 4–6, 7–9 1.05969(43) 63 × 108 42 × 107 44335 3 0.2 7 × 10−5 9 × 10−41 1.31
16 2; 1–5, 3–8, 4–7, 6–9 0.47610(29) 49 × 108 15 × 107 39328 3 0.06 −0.0004 −5 × 10−30 1.51
17 2; 1–5, 3–8, 4–9, 6–7 0.47497(36) 62 × 108 12 × 107 20 × 104 4 0.2 0.0003 6 × 10−36 1.21
18 2; 1–5, 3–9, 4–6, 7–8 −1.10746ð43Þ 63 × 108 40 × 107 90 × 104 1 −0.1 −0.0004 7 × 10−35 1.35
19 2; 1–5, 3–9, 4–7, 6–8 −0.23411ð34Þ 47 × 108 26 × 107 33298 2 −0.09 5 × 10−5 −3 × 10−35 1.53
20 2; 1–5, 3–9, 4–8, 6–7 0.13458(26) 37 × 108 12 × 107 16 × 104 0 0.03 0.0001 0 1.08
21 2; 1–6, 3–4, 5–8, 7–9 1.35348(94) 23 × 109 17 × 108 57 × 105 2 0.2 10−5 −10−17 1.45
22 2; 1–6, 3–4, 5–9, 7–8 0.2807(11) 25 × 109 11 × 108 30 × 106 143 −0.1 0.0005 10−11 1.58
23 2; 1–6, 3–5, 4–8, 7–9 3.18477(49) 77 × 108 50 × 107 36801 1 0.5 0.0001 5 × 10−43 1.14
24 2; 1–6, 3–5, 4–9, 7–8 −2.12704ð44Þ 65 × 108 38 × 107 78 × 104 1 −0.2 −0.003 −5 × 10−42 1.20
25 2; 1–6, 3–7, 4–8, 5–9 −0.11489ð33Þ 65 × 108 14 × 107 13 × 104 3 0.09 3 × 10−5 5 × 10−35 1.38
26 2; 1–6, 3–7, 4–9, 5–8 −0.54446ð25Þ 43 × 108 108 83223 4 −0.09 0.0006 −2 × 10−41 1.34
27 2; 1–6, 3–8, 4–5, 7–9 −4.78772ð64Þ 11 × 109 61 × 107 11 × 105 3 −0.7 −0.002 −2 × 10−36 1.18
28 2; 1–6, 3–8, 4–7, 5–9 −0.53692ð20Þ 33 × 108 108 56191 2 −0.2 −0.0007 4 × 10−12 1.06
29 2; 1–6, 3–8, 4–9, 5–7 −0.05767ð33Þ 51 × 108 24 × 107 87180 6 −0.04 0.0002 2 × 10−23 1.33
30 2; 1–6, 3–9, 4–5, 7–8 2.90445(80) 12 × 109 42 × 107 14 × 106 110 0.5 0.004 10−11 1.50
31 2; 1–6, 3–9, 4–7, 5–8 0.57805(26) 41 × 108 18 × 107 50314 1 0.2 0.0003 −2 × 10−62 1.31
32 2; 1–6, 3–9, 4–8, 5–7 −0.20433ð25Þ 35 × 108 19 × 107 68993 2 −0.05 −0.0002 2 × 10−25 1.03
33 2; 1–7, 3–4, 5–8, 6–9 −1.38855ð31Þ 47 × 108 34 × 107 106 1 −0.2 −0.0001 −2 × 10−65 1.13
34 2; 1–7, 3–4, 5–9, 6–8 1.11200(60) 1010 85 × 107 27 × 105 3 0.06 −4 × 10−5 7 × 10−36 1.27
35 2; 1–7, 3–5, 4–8, 6–9 −1.52611ð33Þ 52 × 108 24 × 107 68690 0 −0.3 −0.0002 0 1.14
36 2; 1–7, 3–5, 4–9, 6–8 −0.12123ð28Þ 38 × 108 25 × 107 38674 0 −0.04 5 × 10−5 0 1.10
37 2; 1–7, 3–6, 4–8, 5–9 1.10916(23) 39 × 108 108 66387 2 0.2 0.0003 −7 × 10−42 1.29
38 2; 1–7, 3–6, 4–9, 5–8 0.41843(17) 30 × 108 86 × 106 33866 3 −0.02 0.0002 2 × 10−38 1.04
39 2; 1–7, 3–8, 4–5, 6–9 1.92228(36) 61 × 108 14 × 107 25 × 104 3 0.2 0.002 −3 × 10−54 1.23
40 2; 1–7, 3–8, 4–6, 5–9 −0.30635ð32Þ 49 × 108 23 × 107 13 × 104 10 −0.04 0.0003 5 × 10−23 1.30
41 2; 1–7, 3–8, 4–9, 5–6 −0.33355ð38Þ 63 × 108 14 × 107 35 × 104 4 −0.1 −0.0008 −4 × 10−27 1.22
42 2; 1–7, 3–9, 4–5, 6–8 −1.25068ð37Þ 52 × 108 30 × 107 50 × 104 1 −0.1 −5 × 10−5 −2 × 10−37 1.20
43 2; 1–7, 3–9, 4–6, 5–8 −0.24926ð28Þ 37 × 108 19 × 107 44540 4 −0.08 −7 × 10−6 3 × 10−42 1.13
44 2; 1–7, 3–9, 4–8, 5–6 0.06345(24) 34 × 108 11 × 107 14 × 104 2 −0.02 −0.0002 10−36 1.11
45 2; 1–8, 3–4, 5–6, 7–9 −0.15958ð87Þ 11 × 109 11 × 108 38 × 106 773 0.07 0.001 2 × 10−11 1.30
46 2; 1–8, 3–4, 5–7, 6–9 1.53603(54) 88 × 108 70 × 107 25 × 105 0 0.1 −9 × 10−5 0 1.11
47 2; 1–8, 3–4, 5–9, 6–7 0.95386(50) 67 × 108 33 × 107 82 × 105 31 0.1 0.0008 5 × 10−12 1.33
48 2; 1–8, 3–5, 4–6, 7–9 −0.08923ð76Þ 13 × 109 14 × 108 19 × 105 1 −0.1 −0.0001 −2 × 10−49 1.24
49 2; 1–8, 3–5, 4–7, 6–9 −0.25943ð28Þ 38 × 108 22 × 107 19584 1 0.03 −6 × 10−6 −4 × 10−43 1.07
50 2; 1–8, 3–5, 4–9, 6–7 0.55223(44) 61 × 108 37 × 107 68 × 104 2 0.3 0.002 10−34 1.12
51 2; 1–8, 3–6, 4–5, 7–9 0.48462(67) 11 × 109 11 × 108 70 × 105 6 0.1 0.0003 3 × 10−20 1.47
52 2; 1–8, 3–6, 4–7, 5–9 −0.04645ð25Þ 38 × 108 16 × 107 38772 1 −0.03 0.0001 5 × 10−40 1.42

(Table continued)
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TABLE VII. (Continued)

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

53 2; 1–8, 3–6, 4–9, 5–7 −0.96878ð35Þ 44 × 108 26 × 107 27 × 104 22 −0.3 −0.002 2 × 10−15 1.41
54 2; 1–8, 3–7, 4–5, 6–9 −1.28667ð34Þ 51 × 108 15 × 107 20 × 104 3 −0.1 −0.002 2 × 10−48 1.06
55 2; 1–8, 3–7, 4–6, 5–9 −0.15820ð28Þ 40 × 108 20 × 107 42500 2 −0.06 6 × 10−6 9 × 10−18 1.04
56 2; 1–8, 3–7, 4–9, 5–6 −0.47655ð29Þ 39 × 108 13 × 107 23 × 104 1 −0.02 −0.001 8 × 10−48 1.07
57 2; 1–8, 3–9, 4–5, 6–7 1.52806(52) 69 × 108 21 × 107 72 × 105 45 0.08 −0.01 −4 × 10−7 1.35
58 2; 1–8, 3–9, 4–6, 5–7 −1.45583ð49Þ 71 × 108 51 × 107 35 × 104 9 −0.07 0.0007 −6 × 10−26 1.12
59 2; 1–8, 3–9, 4–7, 5–6 −0.08533ð42Þ 61 × 108 47 × 107 106 5 −0.02 −0.002 8 × 10−34 1.25
60 2; 1–9, 3–4, 5–6, 7–8 −3.83273ð45Þ 32 × 108 21 × 107 40 × 106 10177 −0.2 −0.006 −3 × 10−9 1.00
61 2; 1–9, 3–4, 5–7, 6–8 4.36705(42) 46 × 108 58 × 107 80 × 105 90 0.5 0.001 10−12 1.00
62 2; 1–9, 3–4, 5–8, 6–7 −2.66788ð42Þ 43 × 108 49 × 107 18 × 106 376 −0.2 −0.003 −10−11 1.00
63 2; 1–9, 3–5, 4–6, 7–8 4.36685(43) 46 × 108 58 × 107 76 × 105 87 0.5 0.001 5 × 10−13 1.01
64 2; 1–9, 3–5, 4–7, 6–8 −3.89486ð56Þ 74 × 108 66 × 107 36 × 104 1 −0.4 −9 × 10−5 2 × 10−41 1.04
65 2; 1–9, 3–5, 4–8, 6–7 3.73069(57) 80 × 108 55 × 107 19 × 105 3 0.4 0.006 2 × 10−16 1.02
66 2; 1–9, 3–6, 4–5, 7–8 −2.66773ð43Þ 43 × 108 48 × 107 17 × 106 402 −0.2 −0.003 −2 × 10−11 1.00
67 2; 1–9, 3–6, 4–7, 5–8 −1.30095ð21Þ 31 × 108 21 × 107 24 × 104 2 −0.1 −0.002 −2 × 10−51 1.02
68 2; 1–9, 3–6, 4–8, 5–7 −1.77247ð38Þ 53 × 108 39 × 107 31 × 104 4 −0.2 0.0002 −10−45 1.06
69 2; 1–9, 3–7, 4–5, 6–8 3.73275(57) 82 × 108 56 × 107 17 × 105 7 0.4 0.006 −6 × 10−25 1.03
70 2; 1–9, 3–7, 4–6, 5–8 −1.77353ð38Þ 51 × 108 38 × 107 28 × 104 4 −0.2 0.0002 −2 × 10−33 1.05
71 2; 1–9, 3–7, 4–8, 5–6 2.20445(42) 59 × 108 31 × 107 11 × 105 2 0.03 0.002 4 × 10−70 1.03
72 2; 1–9, 3–8, 4–5, 6–7 0.48560(40) 45 × 108 30 × 107 84 × 105 66 0.06 0.001 4 × 10−7 1.02
73 2; 1–9, 3–8, 4–6, 5–7 −0.54790ð43Þ 55 × 108 50 × 107 79 × 104 6 −0.1 −10−5 −9 × 10−40 1.01
74 2; 1–9, 3–8, 4–7, 5–6 −0.57472ð34Þ 45 × 108 48 × 107 26 × 105 5 −0.07 −4 × 10−5 10−15 1.02

TABLE VIII. Contributions of graphs from the gauge-invariant class (2,2,0) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

75 3; 1–4, 2–6, 5–8, 7–9 −10.44260ð93Þ 25 × 109 13 × 108 11 × 104 5 −3 −0.003 −3 × 10−32 1.29
76 3; 1–4, 2–6, 5–9, 7–8 10.0730(12) 43 × 109 17 × 108 23 × 105 3 3 0.08 2 × 10−6 1.72
77 3; 1–4, 2–7, 5–8, 6–9 −1.67666ð34Þ 56 × 108 27 × 107 55710 2 −0.6 −0.0003 −10−12 1.32
78 3; 1–4, 2–7, 5–9, 6–8 −5.75797ð76Þ 18 × 109 99 × 107 12 × 104 3 −2 −0.003 −6 × 10−24 1.31
79 3; 1–4, 2–8, 5–6, 7–9 11.5103(11) 31 × 109 20 × 108 42 × 105 1 5 0.2 4 × 10−24 1.32
80 3; 1–4, 2–8, 5–7, 6–9 −5.15144ð69Þ 15 × 109 77 × 107 79826 0 −2 −0.003 0 1.12
81 3; 1–4, 2–8, 5–9, 6–7 6.80288(85) 23 × 109 85 × 107 84 × 104 3 2 0.04 −4 × 10−38 1.63
82 3; 1–4, 2–9, 5–6, 7–8 −10.3320ð13Þ 31 × 109 15 × 108 47 × 106 207 −4 −0.6 −8 × 10−5 1.45
83 3; 1–4, 2–9, 5–7, 6–8 12.7423(12) 38 × 109 29 × 108 15 × 105 12 5 0.08 3 × 10−22 1.25
84 3; 1–4, 2–9, 5–8, 6–7 −8.7252ð10Þ 31 × 109 21 × 108 57 × 105 9 −3 −0.2 −10−36 1.36
85 3; 1–5, 2–6, 4–8, 7–9 4.29301(57) 14 × 109 48 × 107 13 × 104 5 0.8 0.001 4 × 10−39 1.43
86 3; 1–5, 2–6, 4–9, 7–8 −3.37792ð58Þ 15 × 109 29 × 107 46 × 104 6 −0.8 −0.005 −3 × 10−46 1.38
87� 3; 1–5, 2–7, 4–8, 6–9 0.04665(19) 31 × 108 50 × 106 12 × 104 11 0.08 −0.0002 −4 × 10−15 1.22
88 3; 1–5, 2–7, 4–9, 6–8 1.37913(29) 49 × 108 16 × 107 81590 3 0.1 0.0004 −5 × 10−20 1.09
89 3; 1–5, 2–8, 4–6, 7–9 −1.90541ð57Þ 1010 68 × 107 16 × 104 4 −0.08 −2 × 10−5 −3 × 10−24 1.42
90� 3; 1–5, 2–8, 4–7, 6–9 0.01638(17) 28 × 108 78 × 106 60829 2 −0.04 −2 × 10−6 −2 × 10−49 1.37
91 3; 1–5, 2–8, 4–9, 6–7 −1.82097ð33Þ 55 × 108 94 × 106 39 × 104 41 −0.2 −0.001 8 × 10−8 1.25
92 3; 1–5, 2–9, 4–6, 7–8 0.81820(59) 11 × 109 71 × 107 14 × 105 1 −0.1 −0.001 −3 × 10−38 1.44
93 3; 1–5, 2–9, 4–7, 6–8 0.99984(33) 48 × 108 24 × 107 98029 1 0.4 9 × 10−5 4 × 10−54 1.24
94 3; 1–5, 2–9, 4–8, 6–7 0.21323(34) 55 × 108 14 × 107 21 × 104 1 0.04 2 × 10−5 7 × 10−61 1.39
95 3; 1–6, 2–4, 5–8, 7–9 7.24388(90) 22 × 109 20 × 108 74 × 104 2 2 0.03 9 × 10−41 1.10
96 3; 1–6, 2–4, 5–9, 7–8 −6.5173ð10Þ 25 × 109 21 × 108 79 × 105 22 −2 −0.2 −2 × 10−6 1.32
97 3; 1–6, 2–5, 4–8, 7–9 −0.76878ð48Þ 1010 42 × 107 78801 3 0.1 0.001 4 × 10−33 1.38
98 3; 1–6, 2–5, 4–9, 7–8 0.84511(69) 19 × 109 68 × 107 87 × 104 3 −0.2 −0.006 2 × 10−47 2.14

(Table continued)
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TABLE VIII. (Continued)

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

99* 3; 1–6, 2–7, 4–8, 5–9 −0.54587ð32Þ 70 × 108 98 × 106 25 × 104 6 −0.2 0.001 10−17 1.30
100* 3; 1–6, 2–7, 4–9, 5–8 0.21216(20) 36 × 108 83 × 106 81834 2 −0.03 −0.001 −3 × 10−48 1.32
101 3; 1–6, 2–8, 4–5, 7–9 1.56673(63) 13 × 109 60 × 107 81 × 104 0 −0.02 −8 × 10−5 0 1.32
102* 3; 1–6, 2–8, 4–7, 5–9 0.80327(22) 34 × 108 108 17 × 104 22 0.2 0.0003 7 × 10−16 1.50
103 3; 1–6, 2–8, 4–9, 5–7 0.57570(31) 58 × 108 19 × 107 91547 5 0.005 0.0004 5 × 10−32 1.28
104 3; 1–6, 2–9, 4–5, 7–8 −0.26580ð66Þ 12 × 109 37 × 107 107 41 0.3 0.003 7 × 10−13 1.37
105 3; 1–6, 2–9, 4–7, 5–8 −0.52269ð26Þ 40 × 108 18 × 107 105 4 −0.1 −0.0003 −2 × 10−28 1.40
106 3; 1–6, 2–9, 4–8, 5–7 0.25704(41) 68 × 108 36 × 107 17 × 104 5 0.06 −2 × 10−5 −6 × 10−17 1.63
107 3; 1–7, 2–4, 5–8, 6–9 2.14029(37) 65 × 108 57 × 107 18 × 104 3 0.6 0.002 4 × 10−44 1.17
108 3; 1–7, 2–4, 5–9, 6–8 3.31673(81) 20 × 109 17 × 108 67 × 104 5 1 0.02 10−34 1.15
109* 3; 1–7, 2–5, 4–8, 6–9 1.36063(23) 43 × 108 80 × 106 50857 2 0.2 8 × 10−6 3 × 10−21 1.33
110 3; 1–7, 2–5, 4–9, 6–8 0.23770(36) 67 × 108 28 × 107 57875 1 0.2 0.0009 −10−53 1.52
111* 3; 1–7, 2–6, 4–8, 5–9 −0.22297ð25Þ 47 × 108 59 × 106 105 1 0.02 −0.0003 2 × 10−34 1.28
112* 3; 1–7, 2–6, 4–9, 5–8 0.44982(20) 37 × 108 70 × 106 61087 4 0.02 −0.0008 5 × 10−40 1.42
113 3; 1–7, 2–8, 4–5, 6–9 −1.41855ð35Þ 68 × 108 13 × 107 26 × 104 3 −0.03 0.001 10−48 1.39
114 3; 1–7, 2–8, 4–6, 5–9 0.60572(33) 51 × 108 22 × 107 32 × 104 58 −0.02 −0.003 −4 × 10−9 1.31
115 3; 1–7, 2–8, 4–9, 5–6 −0.79421ð38Þ 73 × 108 12 × 107 36 × 104 9 −0.07 0.0002 −3 × 10−29 1.73
116 3; 1–7, 2–9, 4–5, 6–8 −0.05379ð51Þ 93 × 108 42 × 107 54 × 104 3 −0.06 −3 × 10−5 2 × 10−43 1.26
117 3; 1–7, 2–9, 4–6, 5–8 0.05536(30) 47 × 108 21 × 107 84948 4 −0.1 −6 × 10−6 −5 × 10−23 1.24
118 3; 1–7, 2–9, 4–8, 5–6 −0.35767ð28Þ 44 × 108 96 × 106 105 2 −0.07 7 × 10−6 −2 × 10−62 1.20
119 3; 1–8, 2–4, 5–6, 7–9 −9.3447ð11Þ 24 × 109 29 × 108 20 × 106 316 −4 −0.3 −2 × 10−5 1.02
120 3; 1–8, 2–4, 5–7, 6–9 3.24250(79) 18 × 109 15 × 108 59 × 104 3 2 0.03 −10−34 1.02
121 3; 1–8, 2–4, 5–9, 6–7 −5.52110ð73Þ 14 × 109 11 × 108 39 × 105 18 −1 −0.1 −9 × 10−6 1.02
122 3; 1–8, 2–5, 4–6, 7–9 −1.34858ð74Þ 15 × 109 12 × 108 24 × 104 0 −0.8 −0.005 0 1.59
123* 3; 1–8, 2–5, 4–7, 6–9 0.17083(32) 56 × 108 19 × 107 91465 0 0.1 0.0001 0 1.52
124 3; 1–8, 2–5, 4–9, 6–7 −1.91613ð37Þ 65 × 108 19 × 107 21 × 104 2 −0.4 −0.002 −5 × 10−57 1.23
125 3; 1–8, 2–6, 4–5, 7–9 1.72927(38) 57 × 108 37 × 107 106 1 0.5 0.006 6 × 10−20 1.07
126* 3; 1–8, 2–6, 4–7, 5–9 −0.21815ð30Þ 60 × 108 13 × 107 44124 1 −0.1 −10−6 4 × 10−48 1.64
127 3; 1–8, 2–6, 4–9, 5–7 −0.10348ð33Þ 50 × 108 21 × 107 25 × 104 25 0.03 0.0009 10−15 1.30
128 3; 1–8, 2–7, 4–5, 6–9 −1.99695ð75Þ 24 × 109 35 × 107 66 × 104 7 −0.4 −0.004 −8 × 10−17 1.35
129 3; 1–8, 2–7, 4–6, 5–9 0.01814(26) 43 × 108 17 × 107 72758 7 0.03 0.0004 2 × 10−22 1.19
130 3; 1–8, 2–7, 4–9, 5–6 1.15462(54) 12 × 109 20 × 107 48 × 104 6 0.2 0.003 −9 × 10−28 1.38
131 3; 1–8, 2–9, 4–5, 6–7 1.26086(63) 13 × 109 29 × 107 71 × 105 29 0.07 0.0005 2 × 10−12 1.26
132 3; 1–8, 2–9, 4–6, 5–7 −1.83728ð67Þ 14 × 109 89 × 107 47 × 104 8 −0.3 −7 × 10−5 5 × 10−15 1.31
133 3; 1–8, 2–9, 4–7, 5–6 0.52838(50) 96 × 108 61 × 107 95 × 104 7 0.002 2 × 10−5 −3 × 10−38 1.28
134 3; 1–9, 2–4, 5–6, 7–8 11.8155(12) 18 × 109 22 × 108 85 × 106 12313 4 0.9 0.0005 1.01
135 3; 1–9, 2–4, 5–7, 6–8 −14.1724ð13Þ 34 × 109 40 × 108 12 × 106 107 −5 −0.3 10−6 1.02
136 3; 1–9, 2–4, 5–8, 6–7 9.4205(10) 21 × 109 24 × 108 22 × 106 328 3 0.3 2 × 10−5 1.05
137 3; 1–9, 2–5, 4–6, 7–8 1.46361(79) 16 × 109 14 × 108 70 × 105 36 0.9 0.03 9 × 10−7 1.48
138 3; 1–9, 2–5, 4–7, 6–8 −5.30357ð87Þ 21 × 109 109 16 × 104 4 −1 −0.002 2 × 10−40 1.43
139 3; 1–9, 2–5, 4–8, 6–7 1.51767(94) 24 × 109 85 × 107 22 × 105 6 0.6 0.006 −10−37 1.63
140 3; 1–9, 2–6, 4–5, 7–8 −1.68650ð46Þ 57 × 108 36 × 107 11 × 106 66 −0.8 −0.04 −6 × 10−7 1.01
141 3; 1–9, 2–6, 4–7, 5–8 0.28680(59) 14 × 109 48 × 107 19 × 104 9 0.03 0.001 5 × 10−21 1.66
142 3; 1–9, 2–6, 4–8, 5–7 −0.44365ð44Þ 69 × 108 38 × 107 14 × 104 2 −0.09 −0.0005 −9 × 10−49 1.18
143 3; 1–9, 2–7, 4–5, 6–8 1.7563(10) 22 × 109 12 × 108 63 × 105 3 0.08 0.003 −3 × 10−24 1.48
144 3; 1–9, 2–7, 4–6, 5–8 −0.23678ð48Þ 77 × 108 41 × 107 13 × 104 4 0.2 0.0004 9 × 10−35 1.28
145 3; 1–9, 2–7, 4–8, 5–6 2.58457(63) 12 × 109 42 × 107 17 × 105 9 0.7 −0.0002 5 × 10−40 1.28
146 3; 1–9, 2–8, 4–5, 6–7 −6.34999ð51Þ 60 × 108 19 × 107 14 × 106 290 −0.5 −0.03 −2 × 10−6 1.00
147 3; 1–9, 2–8, 4–6, 5–7 7.46261(54) 82 × 108 60 × 107 78 × 104 12 1 0.004 4 × 10−25 1.02
148 3; 1–9, 2–8, 4–7, 5–6 −1.98177ð39Þ 55 × 108 43 × 107 21 × 105 7 −0.1 −0.007 −4 × 10−11 1.01
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TABLE IX. Contributions of graphs from the gauge-invariant class (1,2,1) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

149 4; 1–3, 2–6, 5–8, 7–9 13.6554(10) 27 × 109 18 × 108 75542 4 5 0.01 −2 × 10−45 1.08
150 4; 1–3, 2–6, 5–9, 7–8 −12.6376ð13Þ 41 × 109 22 × 108 43 × 105 3 −5 −0.2 −10−56 1.32
151 4; 1–3, 2–7, 5–8, 6–9 2.72526(52) 99 × 108 64 × 107 105 4 1 0.0008 5 × 10−48 1.50
152 4; 1–3, 2–7, 5–9, 6–8 6.70242(77) 17 × 109 11 × 108 11 × 104 3 3 0.01 10−26 1.04
153 4; 1–3, 2–8, 5–6, 7–9 −15.7206ð11Þ 26 × 109 23 × 108 11 × 106 4 −7 −0.4 2 × 10−8 1.02
154 4; 1–3, 2–8, 5–7, 6–9 5.17997(78) 17 × 109 11 × 108 93380 2 3 0.01 10−43 1.02
155 4; 1–3, 2–8, 5–9, 6–7 −9.33944ð81Þ 18 × 109 97 × 107 14 × 105 4 −3 −0.1 −10−49 1.05
156 4; 1–3, 2–9, 5–6, 7–8 18.6188(12) 20 × 109 18 × 108 60 × 106 1162 7 0.9 0.0001 1.04
157 4; 1–3, 2–9, 5–7, 6–8 −22.2947ð12Þ 33 × 109 32 × 108 34 × 105 7 −8 −0.1 5 × 10−34 1.01
158 4; 1–3, 2–9, 5–8, 6–7 12.1677(10) 24 × 109 22 × 108 11 × 106 8 5 0.3 2 × 10−6 1.06
159 4; 1–6, 2–3, 5–8, 7–9 −14.2179ð11Þ 28 × 109 19 × 108 64 × 105 0 −5 −0.2 0 1.15
160 4; 1–6, 2–3, 5–9, 7–8 13.6681(13) 32 × 109 14 × 108 35 × 106 145 4 0.5 8 × 10−5 1.27
161 4; 1–7, 2–3, 5–8, 6–9 −2.87192ð46Þ 83 × 108 56 × 107 17 × 105 1 −1 −0.02 8 × 10−44 1.38
162 4; 1–7, 2–3, 5–9, 6–8 −7.13177ð83Þ 18 × 109 13 × 108 42 × 105 3 −3 −0.1 6 × 10−28 1.12
163 4; 1–8, 2–3, 5–6, 7–9 15.4192(12) 20 × 109 18 × 108 60 × 106 1189 7 0.9 0.0001 1.01
164 4; 1–8, 2–3, 5–7, 6–9 −5.66590ð79Þ 16 × 109 12 × 108 41 × 105 3 −3 −0.1 2 × 10−12 1.03
165 4; 1–8, 2–3, 5–9, 6–7 10.43578(83) 15 × 109 65 × 107 16 × 106 67 3 0.4 3 × 10−5 1.05
166 4; 1–9, 2–3, 5–6, 7–8 −17.4838ð13Þ 15 × 109 75 × 107 15 × 107 35968 −5 −2 −0.001 1.03
167 4; 1–9, 2–3, 5–7, 6–8 21.0812(13) 30 × 109 31 × 108 35 × 106 388 7 0.6 4 × 10−5 1.01
168 4; 1–9, 2–3, 5–8, 6–7 −12.9121ð11Þ 18 × 109 17 × 108 60 × 106 1231 −4 −0.7 −0.0001 1.03

TABLE X. Contributions of graphs from the gauge-invariant class (3,1,0) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

169 4; 1–5, 2–6, 3–8, 7–9 −1.02160ð39Þ 67 × 108 28 × 107 29 × 104 26 −0.3 0.002 10−8 1.23
170 4; 1–5, 2–6, 3–9, 7–8 0.82043(44) 83 × 108 26 × 107 83 × 104 64 0.3 0.004 −2 × 10−7 1.54
171* 4; 1–5, 2–7, 3–8, 6–9 −1.35615ð40Þ 88 × 108 89 × 106 14 × 104 6 −0.3 −0.004 10−10 1.39
172 4; 1–5, 2–7, 3–9, 6–8 −0.88139ð29Þ 42 × 108 14 × 107 56 × 104 115 −0.2 0.009 2 × 10−7 1.18
173 4; 1–5, 2–8, 3–6, 7–9 −4.37354ð62Þ 14 × 109 61 × 107 31 × 104 3 −2 −0.0004 7 × 10−24 1.26
174* 4; 1–5, 2–8, 3–7, 6–9 0.16235(32) 59 × 108 87 × 106 21 × 104 3 0.1 0.0009 6 × 10−15 1.81
175 4; 1–5, 2–8, 3–9, 6–7 0.91185(27) 44 × 108 79 × 106 46 × 104 40 0.1 −0.002 −6 × 10−8 1.27
176 4; 1–5, 2–9, 3–6, 7–8 4.01347(73) 19 × 109 72 × 107 14 × 105 2 2 0.05 2 × 10−29 1.41
177 4; 1–5, 2–9, 3–7, 6–8 −2.46028ð48Þ 91 × 108 31 × 107 25 × 104 3 −0.7 0.0002 −10−19 1.27
178 4; 1–5, 2–9, 3–8, 6–7 3.40092(52) 11 × 109 16 × 107 50 × 104 6 0.7 0.008 −2 × 10−12 1.30
179 4; 1–6, 2–5, 3–8, 7–9 −3.77024ð58Þ 13 × 109 58 × 107 29 × 104 5 −1 0.0003 5 × 10−44 1.25
180 4; 1–6, 2–5, 3–9, 7–8 3.86148(80) 23 × 109 94 × 107 17 × 105 3 1 0.04 10−23 1.81
181* 4; 1–6, 2–7, 3–8, 5–9 1.19458(39) 93 × 108 108 51 × 104 10 0.3 0.006 −9 × 10−11 1.41
182* 4; 1–6, 2–7, 3–9, 5–8 0.80341(31) 54 × 108 94 × 106 37 × 104 24 0.2 0.0009 10−14 1.46
183 4; 1–6, 2–8, 3–5, 7–9 3.47691(61) 12 × 109 93 × 107 17 × 104 1 1 0.01 −9 × 10−15 1.07
184� 4; 1–6, 2–8, 3–7, 5–9 −0.41899ð25Þ 39 × 108 55 × 106 40 × 104 53 −0.1 −0.0003 −3 × 10−11 1.37
185 4; 1–6, 2–8, 3–9, 5–7 0.09060(28) 43 × 108 15 × 107 30 × 104 59 0.06 0.002 6 × 10−8 1.33
186 4; 1–6, 2–9, 3–5, 7–8 −4.54867ð60Þ 12 × 109 109 34 × 105 17 −2 −0.1 −10−5 1.04
187* 4; 1–6, 2–9, 3–7, 5–8 0.14183(24) 39 × 108 12 × 107 23 × 104 0 0.07 0.0001 0 1.46
188 4; 1–6, 2–9, 3–8, 5–7 −1.30271ð29Þ 48 × 108 19 × 107 23 × 104 3 −0.2 0.0001 2 × 10−22 1.14
189* 4; 1–7, 2–5, 3–8, 6–9 0.24264(22) 34 × 108 65 × 106 24 × 104 30 −0.008 0.0002 4 × 10−15 1.25
190 4; 1–7, 2–5, 3–9, 6–8 −2.56229ð52Þ 11 × 109 46 × 107 28 × 104 3 −0.9 −0.0005 −2 × 10−24 1.44
191* 4; 1–7, 2–6, 3–8, 5–9 −1.56685ð32Þ 55 × 108 50 × 106 49 × 104 61 −0.3 −0.0007 5 × 10−8 1.35
192* 4; 1–7, 2–6, 3–9, 5–8 −0.42860ð29Þ 54 × 108 83 × 106 20 × 104 8 −0.08 0.0006 10−18 1.59
193 4; 1–7, 2–8, 3–5, 6–9 0.11285(31) 58 × 108 36 × 107 11 × 104 4 −0.01 0.0003 −6 × 10−43 1.10
194* 4; 1–7, 2–8, 3–6, 5–9 0.75665(18) 31 × 108 77 × 106 14 × 104 6 0.1 0.001 3 × 10−18 1.31
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TABLE X. (Continued)

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

195 4; 1–7, 2–8, 3–9, 5–6 −0.61298ð33Þ 65 × 108 96 × 106 42 × 104 5 −0.1 −0.001 4 × 10−37 1.38
196 4; 1–7, 2–9, 3–5, 6–8 2.62642(55) 11 × 109 73 × 107 17 × 104 1 0.9 0.009 −8 × 10−81 1.11
197* 4; 1–7, 2–9, 3–6, 5–8 1.02944(34) 55 × 108 15 × 107 40 × 104 49 0.3 0.0003 −3 × 10−14 1.71
198 4; 1–7, 2–9, 3–8, 5–6 −0.05084ð72Þ 23 × 109 25 × 107 67 × 104 13 −0.1 −0.002 −2 × 10−25 1.34
199 4; 1–8, 2–5, 3–6, 7–9 11.5072(10) 34 × 109 22 × 108 12 × 105 12 4 0.02 4 × 10−20 1.34
200* 4; 1–8, 2–5, 3–7, 6–9 −2.26508ð42Þ 89 × 108 18 × 107 18 × 104 1 −0.6 −0.0003 4 × 10−21 1.34
201 4; 1–8, 2–5, 3–9, 6–7 2.45160(46) 1010 20 × 107 26 × 104 4 0.8 0.02 10−10 1.19
202 4; 1–8, 2–6, 3–5, 7–9 −6.43899ð92Þ 25 × 109 20 × 108 19 × 105 7 −2 −0.05 2 × 10−37 1.02
203* 4; 1–8, 2–6, 3–7, 5–9 2.17129(39) 84 × 108 11 × 107 13 × 104 1 0.6 0.002 −7 × 10−45 1.35
204 4; 1–8, 2–6, 3–9, 5–7 −0.69905ð42Þ 79 × 108 25 × 107 21 × 104 5 0.07 0.0008 2 × 10−31 1.47
205 4; 1–8, 2–7, 3–5, 6–9 0.84604(33) 63 × 108 40 × 107 12 × 104 3 0.2 0.001 10−34 1.27
206* 4; 1–8, 2–7, 3–6, 5–9 −0.21952ð37Þ 84 × 108 17 × 107 18 × 104 9 −0.05 −0.005 −3 × 10−25 1.42
207 4; 1–8, 2–7, 3–9, 5–6 2.13842(53) 13 × 109 16 × 107 43 × 104 6 0.2 0.001 −5 × 10−36 1.28
208 4; 1–8, 2–9, 3–5, 6–7 −3.03246ð61Þ 12 × 109 109 24 × 105 13 −0.9 −0.06 −6 × 10−7 1.30
209 4; 1–8, 2–9, 3–6, 5–7 −0.90616ð40Þ 69 × 108 40 × 107 22 × 104 7 −0.5 −0.002 −9 × 10−19 1.17
210 4; 1–8, 2–9, 3–7, 5–6 0.81006(30) 51 × 108 16 × 107 42 × 104 4 0.3 0.002 −4 × 10−12 1.09
211 4; 1–9, 2–5, 3–6, 7–8 −12.5566ð11Þ 31 × 109 22 × 108 15 × 106 128 −4 −0.2 −5 × 10−6 1.27
212 4; 1–9, 2–5, 3–7, 6–8 18.0227(11) 38 × 109 16 × 108 106 16 5 0.01 7 × 10−25 1.26
213 4; 1–9, 2–5, 3–8, 6–7 −12.9501ð11Þ 37 × 109 97 × 107 45 × 105 12 −3 −0.2 −3 × 10−21 1.27
214 4; 1–9, 2–6, 3–5, 7–8 7.41689(93) 20 × 109 21 × 108 20 × 106 326 2 0.3 3 × 10−5 1.02
215 4; 1–9, 2–6, 3–7, 5–8 −3.84552ð63Þ 19 × 109 43 × 107 37 × 104 10 −0.8 −0.003 −3 × 10−11 1.65
216 4; 1–9, 2–6, 3–8, 5–7 1.17277(59) 11 × 109 52 × 107 57 × 104 10 0.2 0.0003 3 × 10−20 1.50
217 4; 1–9, 2–7, 3–5, 6–8 −13.3320ð11Þ 32 × 109 24 × 108 21 × 105 3 −3 −0.06 3 × 10−44 1.02
218 4; 1–9, 2–7, 3–6, 5–8 −0.83706ð55Þ 13 × 109 37 × 107 18 × 104 6 −0.4 −0.003 −2 × 10−23 1.41
219 4; 1–9, 2–7, 3–8, 5–6 −0.25085ð86Þ 25 × 109 55 × 107 17 × 105 24 −0.2 0.0004 −7 × 10−24 1.49
220 4; 1–9, 2–8, 3–5, 6–7 13.1985(12) 29 × 109 24 × 108 24 × 106 347 3 0.4 4 × 10−5 1.03
221 4; 1–9, 2–8, 3–6, 5–7 2.13571(75) 17 × 109 109 89 × 104 20 0.9 0.008 −7 × 10−19 1.35
222 4; 1–9, 2–8, 3–7, 5–6 −3.87084ð43Þ 68 × 108 28 × 107 18 × 105 6 −0.7 −0.01 7 × 10−42 1.00

TABLE XI. Contributions of graphs from the gauge-invariant class (2,1,1) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

223 5; 1–3, 2–6, 4–8, 7–9 −6.61670ð58Þ 11 × 109 61 × 107 58456 0 −2 −0.002 0 1.08
224 5; 1–3, 2–6, 4–9, 7–8 10.3187(10) 30 × 109 18 × 108 37 × 105 1 4 0.1 4 × 10−66 1.53
225 5; 1–3, 2–7, 4–8, 6–9 0.70044(49) 95 × 108 46 × 107 32 × 104 26 0.06 0.0007 −10−7 1.52
226 5; 1–3, 2–7, 4–9, 6–8 −2.37520ð44Þ 73 × 108 50 × 107 105 1 −0.5 −2 × 10−5 −7 × 10−44 1.16
227 5; 1–3, 2–8, 4–6, 7–9 4.07903(69) 13 × 109 13 × 108 52 × 104 1 1 0.02 −10−46 1.03
228 5; 1–3, 2–8, 4–7, 6–9 2.09761(43) 87 × 108 38 × 107 69528 2 0.7 0.001 10−40 1.30
229 5; 1–3, 2–8, 4–9, 6–7 3.36347(78) 19 × 109 83 × 107 106 3 0.5 5 × 10−5 −2 × 10−17 1.38
230 5; 1–3, 2–9, 4–6, 7–8 −9.9012ð11Þ 24 × 109 29 × 108 20 × 106 309 −3 −0.3 −2 × 10−5 1.04
231 5; 1–3, 2–9, 4–7, 6–8 −3.37250ð75Þ 15 × 109 13 × 108 32 × 104 6 −2 −0.008 −2 × 10−23 1.38
232 5; 1–3, 2–9, 4–8, 6–7 1.69133(37) 55 × 108 36 × 107 106 2 0.5 0.006 −6 × 10−32 1.03
233 5; 1–4, 2–6, 3–9, 7–8 −0.79932ð49Þ 92 × 108 38 × 107 78 × 104 66 −0.2 −0.001 −5 × 10−9 1.61
234� 5; 1–4, 2–7, 3–8, 6–9 1.03920(23) 41 × 108 61 × 106 63265 1 0.2 0.001 5 × 10−53 1.44
235 5; 1–4, 2–7, 3–9, 6–8 1.91364(42) 65 × 108 26 × 107 73 × 104 166 0.4 0.003 −4 × 10−8 1.56
236� 5; 1–4, 2–8, 3–7, 6–9 0.00390(12) 23 × 108 38 × 106 29155 1 −0.04 −0.0006 5 × 10−48 1.31
237 5; 1–4, 2–8, 3–9, 6–7 −3.32287ð43Þ 91 × 108 16 × 107 31 × 104 6 −0.3 −0.003 −10−25 1.47
238 5; 1–4, 2–9, 3–6, 7–8 −2.51836ð53Þ 12 × 109 47 × 107 63 × 104 1 −0.8 −0.007 3 × 10−54 1.47
239 5; 1–4, 2–9, 3–7, 6–8 2.33158(48) 96 × 108 34 × 107 74058 4 0.9 0.001 8 × 10−44 1.23
240 5; 1–4, 2–9, 3–8, 6–7 −1.31498ð59Þ 15 × 109 25 × 107 48 × 104 5 −0.3 −0.004 4 × 10−20 1.27

(Table continued)
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The contributions of the gauge-invariant classes
ðk;m;m0Þ (see the definition in Sec. IVG) and their
comparison with the semianalytical results from Ref. [8]
are presented in Table XVI.
The equivalence of the subtraction procedure from Sec. II

and the direct subtraction on the mass shell for all presented

sets can be proved in a combinatorial way.57 Let us consider
an example: the sets 26,27 fromTableXIV. The contribution
of these sets can be schematically written as

TABLE XII. Contributions of graphs from the gauge-invariant class (4,0,0) to Að8Þ
1 .

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

253* 5; 1–6, 2–7, 3–8, 4–9 0.29657(24) 49 × 108 57 × 106 22 × 104 8 0.2 0.01 3 × 10−10 1.36
254* 5; 1–6, 2–7, 3–9, 4–8 −0.47196ð32Þ 55 × 108 70 × 106 64 × 104 97 −0.1 −0.003 −6 × 10−9 1.65
255* 5; 1–6, 2–8, 3–7, 4–9 −0.57757ð12Þ 21 × 108 31 × 106 23 × 104 31 −0.1 −0.001 −2 × 10−7 1.42
256* 5; 1–6, 2–8, 3–9, 4–7 0.21265(21) 39 × 108 77 × 106 105 0 −0.01 −5 × 10−5 0 1.62
257* 5; 1–6, 2–9, 3–7, 4–8 −1.01853ð40Þ 79 × 108 16 × 107 40 × 104 6 −0.4 −0.002 −7 × 10−17 1.48
258* 5; 1–6, 2–9, 3–8, 4–7 −0.01236ð43Þ 95 × 108 27 × 107 46 × 104 12 −0.1 −0.006 10−18 1.54
259* 5; 1–7, 2–6, 3–9, 4–8 0.49710(18) 32 × 108 29 × 106 16 × 104 3 0.09 0.0005 8 × 10−22 1.40
260 5; 1–7, 2–8, 3–9, 4–6 0.60670(24) 43 × 108 21 × 107 17 × 104 6 0.1 0.0008 −2 × 10−27 1.23
261* 5; 1–7, 2–9, 3–6, 4–8 −1.03019ð37Þ 63 × 108 12 × 107 44 × 104 51 −0.4 −0.0001 −10−13 1.36
262 5; 1–7, 2–9, 3–8, 4–6 −0.19243ð34Þ 66 × 108 34 × 107 21 × 104 4 0.1 0.001 10−22 1.22
263* 5; 1–8, 2–9, 3–6, 4–7 2.32056(35) 70 × 108 23 × 107 28 × 104 3 0.6 0.002 −3 × 10−39 1.26
264 5; 1–8, 2–9, 3–7, 4–6 −1.30603ð29Þ 50 × 108 28 × 107 24 × 104 5 −0.3 −0.004 −3 × 10−29 1.09
265 5; 1–9, 2–6, 3–7, 4–8 0.64498(32) 59 × 108 14 × 107 56 × 104 31 0.2 0.005 −9 × 10−9 1.38
266 5; 1–9, 2–6, 3–8, 4–7 5.46569(76) 22 × 109 62 × 107 97 × 104 15 1 0.001 −3 × 10−12 1.48
267 5; 1–9, 2–7, 3–8, 4–6 −2.43882ð45Þ 89 × 108 49 × 107 38 × 104 10 −0.4 −0.007 3 × 10−21 1.15
268 5; 1–9, 2–8, 3–6, 4–7 −6.78187ð74Þ 20 × 109 69 × 107 11 × 105 20 −1 −0.01 −2 × 10−19 1.27
269* 5; 1–9, 2–8, 3–7, 4–6 4.29748(67) 14 × 109 89 × 107 19 × 105 18 0.7 0.03 10−35 1.03

TABLE XI. (Continued)

Number Graph Value Ntotal Nfail
EIA Nfail

IA Nfail
128 △fail

EIA △fail
IA △fail

128
σ↑=σ↓

241 5; 1–6, 2–3, 4–9, 7–8 −4.16476ð65Þ 11 × 109 37 × 107 11 × 106 49 −1 −0.2 −2 × 10−5 1.31
242 5; 1–6, 2–4, 3–9, 7–8 0.69243(44) 71 × 108 49 × 107 106 5 0.3 0.001 5 × 10−36 1.30
243 5; 1–6, 2–9, 3–4, 7–8 −1.10140ð94Þ 23 × 109 62 × 107 18 × 106 77 −0.4 −0.002 3 × 10−13 1.49
244 5; 1–7, 2–4, 3–9, 6–8 1.17746(35) 53 × 108 28 × 107 105 4 0.7 0.001 7 × 10−37 1.05
245 5; 1–7, 2–9, 3–4, 6–8 −2.69013ð59Þ 11 × 109 51 × 107 60 × 104 1 −2 −0.04 −4 × 10−26 1.07
246 5; 1–8, 2–9, 3–4, 6–7 1.81548(42) 69 × 108 13 × 107 34 × 105 13 0.6 0.07 7 × 10−7 1.21
247 5; 1–9, 2–3, 4–6, 7–8 5.84579(86) 11 × 109 14 × 108 51 × 106 7424 2 0.4 0.0002 1.19
248 5; 1–9, 2–3, 4–7, 6–8 2.98166(85) 17 × 109 17 × 108 72 × 105 41 2 0.04 2 × 10−7 1.42
249 5; 1–9, 2–3, 4–8, 6–7 −1.68619ð46Þ 56 × 108 35 × 107 11 × 106 67 −0.8 −0.04 −4 × 10−7 1.00
250 5; 1–9, 2–4, 3–7, 6–8 −10.38002ð90Þ 19 × 109 11 × 108 36 × 104 7 −3 −0.01 4 × 10−30 1.05
251 5; 1–9, 2–4, 3–8, 6–7 21.6246(13) 37 × 109 19 × 108 87 × 105 7 6 0.2 −10−6 1.15
252 5; 1–9, 2–8, 3–4, 6–7 −10.34846ð83Þ 14 × 109 31 × 107 25 × 106 478 −2 −0.3 −4 × 10−5 1.02

TABLE XIII. Contributions to Að4Þ
1 (see Fig. 3) that must coincide with the values that are obtained by direct subtraction on the mass

shell in the Feynman gauge, and a comparison of these results with the values from Ref. [5] and with the old values from Ref. [30].

Set of graphs Value Analytical value Value from Ref. [30]

1–2 −0.6539950ð23Þ −0.653998963627 −0.654032ð54Þ
3 −0.4676475ð17Þ −0.467645446094 −0.467626ð44Þ
4 0.7774774(18) 0.777478022283 0.777455(52)

57if we do not consider the matter of divergence regulariza-
tions.
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Here, A0, L0, U0 are operators that are applied to Feynman
amplitudes and return numbers:

AΓμ¼eγμðA0ΓμÞ; LΓμ¼eγμðL0ΓμÞ; UΓμ¼eγμðU0ΓμÞ;

where the definitions from Sec. II are used, and a constant
multiplier is omitted. Analogously, the corresponding con-
tribution that is obtained by the direct subtraction on the
mass shell is

TABLE XIV. Contributions to Að6Þ
1 (see Fig. 4) that must coincide with the values that are obtained by direct subtraction on the mass

shell in the Feynman gauge, and a comparison of these results with the known analytical values and with the old values from Ref. [30].

Set of graphs Value Analytical value Referencea Value from Ref. [30]

1–10 0.533289(54) 0.533355 [7,14–17,19,21] 0.5340(18)
11–12 1.541644(37) 1.541649 [15,17] 1.5436(34)
13 −1.757945ð15Þ −1.757936 [7] −1.7579ð10Þ
14, 17 0.455517(26) 0.455452 [19,21] 0.4549(14)
15, 18–20 −0.402749ð46Þ −0.402717 [14,15] −0.4030ð41Þ
16 −0.334691ð14Þ −0.334695 [19] −0.33468ð95Þ
21–23 0.421080(43) 0.421171 [14,15,17] 0.4207(22)
24 −0.0267956ð78Þ −0.026799 [7] −0.02688ð47Þ
25 1.861914(17) 1.861908 [19] 1.8629(14)
26–27 −3.176700ð22Þ −3.176685 [16,21] −3.1764ð22Þ
28 1.790285(19) 1.790278 [16] 1.7888(19)

aMore precisely, the expressions from Ref. [17] are semianalytical. The corresponding analytical expressions are given in Ref. [24].

TABLE XV. Contributions to Að8Þ
1 that must coincide with the

values that are obtained by direct subtraction on the mass shell in
the Feynman gauge.

Set of graphs Value Ntotal σ↑=σ↓

1–74 −1.9710ð44Þ 59 × 1010 1.32
75–78, 82–83, 93–94,
101, 133

−2.0858ð26Þ 19 × 1010 1.39

79, 89, 104, 116 9.2853(15) 64 × 109 1.34
80–81, 84, 92, 105–106,
117–118, 131–132

−7.3999ð19Þ 12 × 1010 1.35

85–86 0.91509(81) 29 × 109 1.40
88, 113 −0.03943ð45Þ 11 × 109 1.24
91, 114 −1.21525ð47Þ 1010 1.28
95–96, 107–108, 120–121,
125, 134–139, 141–142,
144–148

11.6975(35) 30 × 1010 1.14

97–98 0.07633(84) 30 × 109 1.77
103, 115 −0.21851ð49Þ 13 × 109 1.50
110, 124 −1.67843ð52Þ 13 × 109 1.35
119, 122, 140, 143 −10.6235ð17Þ 69 × 109 1.20
127–128 −2.10043ð82Þ 29 × 109 1.34
129–130 1.17276(61) 17 × 109 1.34
149–168 −0.6220ð46Þ 44 × 1010 1.08
169–170 −0.20117ð59Þ 15 × 109 1.38
172, 175 0.03046(39) 87 × 108 1.22
173, 180 −0.5121ð10Þ 38 × 109 1.53
176, 179 0.24323(93) 33 × 109 1.34
177–178 0.94064(71) 20 × 109 1.29
183, 208, 212, 219 18.2163(17) 89 × 109 1.28
185, 195 −0.52238ð43Þ 1010 1.36
186, 199, 209, 213 −6.8978ð17Þ 91 × 109 1.25
188, 198 −1.35354ð78Þ 28 × 109 1.30
190, 201 −0.11069ð69Þ 21 × 109 1.31
193, 215 −3.73267ð70Þ 25 × 109 1.48
196, 210–211, 216 −7.9473ð14Þ 59 × 109 1.26
202, 214, 217, 220–222 −0.8907ð22Þ 13 × 1010 1.05
204, 207 1.43937(67) 21 × 109 1.35

(Table continued)

TABLE XV. (Continued)

Set of graphs Value Ntotal σ↑=σ↓

205, 218 0.00898(64) 19 × 109 1.36
223–224, 241 −0.4627ð14Þ 53 × 109 1.36
225, 233 −0.09888ð69Þ 18 × 109 1.56
226, 229, 242–243 0.5793(14) 57 × 109 1.38
227, 230, 247, 250–252 0.9197(24) 12 × 1010 1.08
228, 238 −0.42075ð69Þ 21 × 109 1.40
231–232, 248–249 −0.3857ð13Þ 44 × 109 1.28
235, 237 −1.40923ð60Þ 15 × 109 1.52
239–240 1.01660(76) 25 × 109 1.25
244–246 0.30280(80) 24 × 109 1.10
260, 265 1.25169(40) 1010 1.32
262, 266 5.27326(83) 28 × 109 1.42
264, 267–268 −10.52672ð91Þ 34 × 109 1.21
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It is easy to see that these expressions are equivalent. Let us
consider another example: the sets 11,17 from Table XIV.
The contribution of these sets is

Here, the operators U0 and M0 that are applied to Feynman
amplitudes of self-energy subgraphs are defined by

UΣðpÞ ¼ e½M0Σþ ðU0ΣÞðp̂ −mÞ�:
The terms containing U0 are canceled, because U preserves
the Ward identity; see Ref. [30]. An analogous cancellation
works for the direct subtraction expression and leads to the
same result.

TABLE XVI. Contributions of the gauge-invariant classes ðk;m;m0Þ to Að8Þ
1 , and a comparison of these results with the semianalytical

values from Ref. [8].

Class Value Semianalytical value Ntotal σ↑=σ↓

(1,3,0) −1.9710ð44Þ −1.9710756168358 59 × 1010 1.32
(2,2,0) −0.1415ð56Þ −0.1424873797999 96 × 1010 1.26
(1,2,1) −0.6220ð46Þ −0.6219210635351 44 × 1010 1.08
(3,1,0) −1.0424ð44Þ −1.0405424100126 70 × 1010 1.23
(2,1,1) 1.0842(37) 1.0866983944758 38 × 1010 1.21
(4,0,0) 0.5120(17) 0.512462047968 13 × 1010 1.28

TABLE XVII. Summary of the results, comparison with the known (semi)analytical results, technical information.

2 loops 3 loops 4 loops 5-loop ladder 6-loop ladder

Value −0.3441651ð34Þ 0.90485(10) −2.181ð10Þ 11.6530(58) 34.31(20)
(Semi)analytical value for comparison −0.344166387 0.904979 −2.1769 11.6592 34.367
References for the (semi)analytical value [5] [7,14–17,19] [8] [49] [49]
σ↑=σ↓ 1.02 1.05 1.21 1.16 1.74

Ntotal 33 × 1011 81 × 1011 32 × 1011 29 × 109 1010

Nfail
EIA 71 × 108 17 × 1010 18 × 1010 32 × 108 12 × 108

Nfail
IA 68 × 106 21 × 108 13 × 108 90 × 105 72 × 105

Nfail
128

2 12590 77775 934 4504

△fail
EIA 0.002 0.4 2 5 20

△fail
IA 0.0001 0.002 0.2 0.4 3

△fail
128 −2 × 10−19 −10−6 −0.0006 4 × 10−10 −5 × 10−5

Total calculation time 21 h 37 min 5 d 8 h 7 d 4 h 38 min 8 h 24 min
Share in the time: double-precision EIA 19.1% 41.7% 54.5% 56.4% 42.0%
Share in the time: double-precision IA 0.1% 1.6% 9.1% 15.4% 24.4%
Share in the time: 128-bit mantissa IA 0.2% 2.7% 9.2% 6.7% 24.3%
Share in the time: 256-bit mantissa IA 0.0% 0.3% 2.1% 8.1% 5.2%
Share in the time: sample generation 63.7% 45.9% 21.7% 12.0% 3.7%
Share in the time: other operations 16.9% 7.7% 3.4% 1.3% 0.3%
GPU speed: double-precision EIA, GFlop/s 334.24 222.72 234.26 187.93 292.67
GPU speed: double-precision EIA, GInterval/s 53.76 63.51 142.27 103.04 240.91
GPU speed: double-precision IA, GFlop/s 254.11 221.41 255.85 249.00 287.94
GPU speed: double-precision IA, GInterval/s 36.23 35.80 47.22 45.60 55.81
GPU speed: 128-bit mantissa IA, GFlop/s 0.81 1.59 1.58 1.63 1.66
GPU speed: 128-bit mantissa IA, GInterval/s 0.11 0.23 0.26 0.30 0.32
GPU speed: 256-bit mantissa IA, MFlop/s 0.0204 0.0881 0.3503 0.1378 4.8504
GPU speed: 256-bit mantissa IA, MInterval/s 0.0028 0.0124 0.0537 0.0252 0.9401
Integrand code size: not compiled 887 KB 31 MB 2.5 GB 23 MB 186 MB
Integrand code size: compiled 12 MB 115 MB 4 GB 34 MB 252 MB
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Sometimes for proving the equivalence it is necessary to
use the Ward identity for individual Feynman graphs; see
Ref. [50]. For example, for the operator U0 we can use the
following equality:

The right part of this equality contains all possible insertions
of an external photon line to the graph from the left part.

I. Technical information

Table XVII contains a summary of results and technical
information. The meanings of the fields Ntotal, Nfail

EIA, N
fail
IA ,

Nfail
128, △

fail
EIA, △

fail
IA , and △fail

128 are defined in Sec. IVG. The
GPU performance58 for these computations is measured in
floating point operations per second (flop/s) and interval
operations per second (interval/s) in the sense of Sec. IV B.

V. CONCLUSION

The method for the numerical evaluation of Að2nÞ
1

½no lepton loops� described in Refs. [29,30] was signifi-
cantly improved. The main improvements are
(1) Probability density functions for Monte Carlo in-

tegration giving a better convergence.
(2) A method of Monte Carlo error estimation.
(3) A method of high-speed arithmetic calculations with

round-off error control.
(4) A realization on high-speed graphics processors.

The values for n ¼ 2, 3, 4 were obtained and compared
with the known analytical and semianalytical ones, as well
as the contributions of the 5-loop and 6-loop ladder graphs.
The results were presented in a form allowing us to check
them by parts using other methods. The 2-loop and 3-loop
contributions were compared with the known values in
detail, and the 4-loop ones were compared for six gauge-
invariant classes. All obtained results are in good agree-
ment with the known ones. The results showed that the
developed method and its realization allow us to obtain
high-precision values for high-order QED contributions to
ae even without appealing to supercomputers.
The ability to use nonadaptive Monte Carlo algorithms

for obtaining high-precision results was verified. The

behavior of the Monte Carlo samples was analyzed in
detail. The necessity of probability distribution extrapola-
tion for obtaining correct error estimations was explained,
and the method was presented. The impact of possible
round-off errors was investigated in detail, the necessity of
controlling them and applying high-precision arithmetic
was justified. The developed high-speed method of con-
trolling round-off errors can be used for other calculations
in quantum field theory that are based on the numerical
subtraction of divergences under the integral sign.
The performed 6-loop calculation showed a big impact

of high-precision arithmetic to the calculation speed and the
necessity of accurate error estimation, but the 3-loop
calculation discovered a sensitivity to a selection of a
pseudorandom generator.
The realization on GPUs showed very good perfor-

mance. For example, the speed of obtaining integrand
values was improved by 3000 times in comparison with
Ref. [29] for the 5-loop ladder graph.
In closing, let us recapitulate some theoretical problems

that still remain open:
(1) To prove mathematically (or disprove) that the

developed subtraction procedure leads to finite
integrals for any Feynman graph for any order of
the perturbation series.

(2) To create a mathematical foundation for the prob-
ability density functions that were used for the
Monte Carlo integration.

(3) To generalize the concept of I-closure and to develop a
method of obtaining DegðsÞ for graphs with lep-
ton loops.

(4) To explain why the contributions of gauge-invariant
classes are relatively small, but the contributions of
individual graphs or even sets from Sec. IV H are
relatively large; is this true for the higher orders of
the perturbation series?
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