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Supersymmetry with hadronic R-parity violation in which the lightest neutralino decays into three
quarks is still weakly constrained. This work aims to further improve the current search for this scenario by
the boosted decision tree method with additional information from jet substructure. In particular, we find a
deep neural network turns out to perform well in characterizing the neutralino jet substructure. We first
construct a convolutional neutral network (CNN) which is capable of tagging the neutralino jet in any
signal process by using the idea of jet image. When applied to pure jet samples, such a CNN outperforms
the N-subjettiness variable by a factor of a few in tagging efficiency. Moreover, we find the method, which
combines the CNN output and jet invariant mass, can perform better and is applicable to a wider range of
neutralino mass than the CNN alone. Finally, the ATLAS search for the signal of gluino pair production
with subsequent decay g̃ → qqχ̃01ð→ qqqÞ is recast as an application. In contrast to the pure sample, the
heavy contamination among jets in this complex final state renders the discriminating powers of the CNN
andN subjettiness similar. By analyzing the jets substructure in events which pass the ATLAS cuts with our
CNN method, the exclusion limit on gluino mass can be pushed up by ∼200 GeV for neutralino mass
∼100 GeV.
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I. INTRODUCTION

As one of the most promising new physics beyond the
Standard Model (SM), supersymmetry (SUSY) [1,2] has
been copiously searched for at the LHC [3,4]. With the Z2

R-parity [5], the lightest supersymmetric particle (LSP) can
be a weakly-interacting-massive-particle dark matter can-
didate with correct relic density [6]. Moreover, the R-parity
conserving (RPC) SUSY at the hadron collider can be
probed by looking for the particles with high transverse
momenta and large missing energies in the final state.

The gluino/squark masses have been excluded up to a
couple of TeV [7,8] at the current stage of the LHC.
However, the R parity is not mandatory in SUSYmodels.

In contrast to the RPC scenario where the yields of colored
sparticles are constrained down to Oð10Þ at the LHC run II
with integrated luminosity of 36 fb−1, some of the R-parity
violating (RPV) scenarios are still weakly constrained.
Thus, some improvements on the RPV searches are desired.
In particular, the bounds on the RPV operators UcDcDc,
where Uc and Dc denote the right-handed up-type and
down-type quark superfields, respectively, are quite weak
due to the large hadronic activities expected at the LHC
[9–14]. In our recent work [15], the status of LHC reaches
on stop and sbottom masses with this kind of UcDcDc

operators are studied. We found the stop and sbottom with
mass ∼500 GeV are still not fully excluded. One of the
important reasons is that the RPV scenarios were studied in
the simplified model framework, such that the information
of a specific signal was not fully explored.
In the hadronic RPV case, the decay products of the

boosted heavy sparticle will be collimated, forming a single
fat jet at the detector. The information from the fat jet
substructure (see Refs. [16–21] for reviews) was found
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to be useful in improving the search sensitivities, e.g.,
neutralino jet substructure [22] or stop jet substructure
[23,24]. To characterize the jet substructure, traditionally,
some high-level kinematic variables such as mass drop [25]
and N subjettiness [26] are defined on the jet. On the other
hand, all information of a jet can be inferred from the
electromagnetic and hadronic calorimeters, with the basic
observables being the position in the η − ϕ plane and
energy deposit of each calorimeter cell. By identifying each
cell as a pixel and the energy deposit in the cell as the
intensity (or gray scale color) of that pixel, the jet can be
naturally viewed as a digital image. The recent develop-
ments of computer vision can be applied as helpful tools for
us to tag the jet nature with low-level inputs. There are a
number of works that use the jet image to discriminate the
hadronic W=Z jet [27–30] and top quark jet [31–33] from
the QCD jet, and discriminate the quark jet from the gluon
jet [34,35]. These studies show that the jet taggers based on
computer vision perform comparably or even slightly better
than those based on the high-level kinematic variables.
Some improved algorithms have been proposed in
Refs. [36–38]. It has been realized recently that the idea
of jet image suffers from the disadvantage of low efficiency
attributed to sparsity [28]. Machine learning techniques
other than image recognition have been considered, such as
using recursive neural networks [39,40], taking ordered
sequence of jet constituents as inputs [41], and working on
Lorentz vectors of jet constituents [42].
In this work, we will try to improve a realistic RPV

SUSY search at the LHC by using the boosted decision
tree (BDT) method [43] that takes into account the jet
substructure information. In particular, a convolutional
neutral network (CNN) (for pedagogical introductions,
see Refs. [44,45]) is found to be efficient in tagging the
substructure of the neutralino jet. The signal process under

consideration is the gluino pair production, which decays
into two quarks and a neutralino. The neutralino will
subsequently decay into three quarks through the hadronic
RPV operator UcDcDc. The main task of the CNN is to
discriminate the boosted neutralino jet in this signal process
from the QCD jet in SM background processes. First, there
is no prototype in the SM that is producing the same three-
prong structure from three body decay as a neutralino jet.
Also, the mass of the neutralino is an unknown parameter.
We will show that the change of the CNN tagging
efficiency when it is applied to the neutralino mass is
different from the one that the CNN is trained on. In order
to tag the neutralino jet irrespective of its production
mechanism, our CNN is first trained on events of a
simplified process with only a visible neutralino jet in
the final state. Then it will be applied to each jet in both the
signal and background events that pass all selections in
the ATLAS search. Combining the discriminating power of
the CNN scores and the jet invariant masses of the leading
three jets with the BDT method, the signal and background
can be separated further, leading to better search sensitivity.
The paper is organized as follows. In Sec. II, the

architecture of the CNN that is adopted in this paper will
be given. Section III discusses the training process and
performance of the CNN on a simplified signal process. Its
application to a realistic RPV gluino search is studied in
Sec. IV. Our conclusion is provided in Sec. V.

II. THE CNN ARCHITECTURE

There exist many CNN architectures, such as the
VGGNet [46] and ResNet [47]. They have been proved
to be very successful in classifying images of either large
size (in the PASCAL visual object classes data set [48]) or
small size (in the CIFAR-10 [49] data set). As for our

FIG. 1. The architecture of our CNN for one of the parameter choices.
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case, due to the limited angular resolution of the detectors
at the hadron collider, the jet image is usually smaller than
30 × 30 pixels. It has similar size as the images in the
CIFAR-10 [49] data set. Inspired by the VGGNet archi-
tectures that were optimized for the CIFAR-10 data set,
the sketch of our CNN architecture is shown in Fig. 1.
The input consists of three layers defined as the energy

distribution of all particles, the energy distribution of
charged particles, and the number of charged particles in
calorimeter cells. The more detailed jet image preprocess-
ing will be introduced later. These data are then passed
through two iterations of two convolutional layers with
rectified linear unit (ReLU) activation and a max-pooling
layer. The size and the total number of convolution kernels
(also called “filter”) in each convolutional layer are free
parameters. In practice, we need trial and error to figure out
the best choice. In the figure, at the first step of iteration, the
input is convoluted twice by 64 filters with same size of
6 × 6, followed by max pooling with a filter of size 2 × 2
and with stride of one. The second step of iteration has the
same parameters except the size of the convolutional filters
is reduced to 3 × 3. The total number of filters in each
convolutional layer and the filter in the pooling layer
remain the same as the first iteration. The feature map is
flattened and read by the fully connected neural network
(FCNN). There are 512 neural nodes defined in the hidden
layer of the FCNN where the ReLU activation function has
been adopted. The final output layer contains two nodes
with a sigmoid activation function. With the output value of
each node between [0,1], it can be used to characterize the
probability of being either signal or background.

III. TRAINING AND TESTING OF THE CNN

Our goal is to employ a CNN that can recognize the jet
image of a neutralino from jet images of a quark and gluon,
so that the signal processes with a neutralino in the final
state can be separated further from the backgrounds. To
make our CNN a general neutralino jet recognizer which
is not specific to any detailed production process, the
training of theCNN is based on the signal event sampleswith
only one visible neutralino in the final state, which sub-
sequently decays into three quarks. Throughout the work,
the hard-scattering signal and background events as well as
the neutralino decay are simulated by the MADGRAPH5_

AMC@NLO program [50]. The PYTHIA8 package [51] is used
to perform the parton shower and hadronization. The detector
effects are simulated by DELPHES3 [52] with the ATLAS
configuration card, in which the jet reclustering algorithm
is implemented via FASTJET [53] software. Our CNN is
implemented in PYTHON using the deep learning library
Keras [54].
The training and testing samples are generated and

processed as follows. First, the signal events with a single
visible neutralino jet are generated by the pp → χ̃01χ̃

0
2

process in the SUSY model, with χ̃02 → bcs through the

Uc
2D

c
2D

c
3 operator [15]. The χ̃

0
1 is assumed to be stable here,

which leaves nothing inside the detector.1 As a benchmark,
we choose the mass of χ̃02 to be 100 GeV. Its transverse
momentum is required to be pTðχ̃02Þ > 200 GeV, so its
decay products are collimated and behave as a jet at the
detector. Furthermore, it is obvious that the neutralino jet
image will be varying if the polar angle (or pseudorapidity)
of the neutralino is changed. To consider this effect, two
classes of signal events sample are generated: one with the
requirement of jηðχ̃02Þj < 0.1 (central sample) and the other
allows a much larger pseudorapidity jηðχ̃02Þj < 2.5 (wide
sample). Second, the background events in training and
testing are generated by pp → jχ̃01χ̃

0
1 in the SUSY model,

where j can be either a quark or gluon and χ̃01 is stable at the
detector. As in signal event generation, the transverse
momentum of j is required to be pTðjÞ > 200 GeV, and
two classes of background samples with cuts of jηðχ̃02Þj <
0.1 and jηðχ̃02Þj < 2.5 are defined. It should be noted that
during the training and testing stage, the initial state
radiation and multiparticle interaction have been turned
off in PYTHIA8 for both signal and background event
generation.2 Thus, their contaminations to the target jet
image are suppressed, and the CNN can grab the important
features of the target jets more efficiently. Third, in both
signal and background events, jets are reconstructed by the
anti-kt algorithm [55] with cone size R ¼ 1.0. The minimal
transverse momentum of the target jet should be 100 GeV.3

An event will be dropped if there is no jet with
pTðjÞ > 100 GeV. In the case of more than one jet with
pTðjÞ > 100 GeV in an event, the jet with the highest pT is
chosen. For signal events, we also require that the selected
jet lie within a cone size of R < 1.0 of the parton level χ̃02.
At this stage, each event has been associated with a

single jet, which is expected to be a neutralino jet (QCD jet)
for the signal (background) event. Next, we need to convert
the jet information into a grid image. Given a jet, its hardest
constituent is located on the η − ϕ plane. Afterwards, a grid
with a step of 0.1 × 0.1 and size of 30 × 30, which is
centralized at the hardest constituent, is defined. Based on
the grid and jet constituent information, we can define three
different layers for the jet image: (1) The layer that shows
the energy grid of all jet constituents, where the energies of
the jet constituents belong to the same cell are added up;
(2) as in the first layer, but only the energy of the charged jet
constituents is taken into account; (3) the layer counts the

1This is a trick in generating process-independent neutralino
jets for training and testing. In the next section, considering a
complete model, χ̃01 is the LSP that decays into three quarks, i.e.,
bcs.

2These effects will be included when considering a realistic
gluino search in the next section.

3This requirement is looser than that at parton level because we
find the reconstructed jet can be softer than the parton level jet
sometimes due to large angle splitting.
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number of charged jet constituents in each cell. Since the
CNN is found to be most efficient in dealing with numbers
between [0,1], all numbers in each layer are divided by the
maximum value in that layer, e.g., the maximum energy of
the cell in the first layer. We will not apply anymore image
preprocessing procedures, such as rotation and flipping,
because they were found to decrease the performance of
our CNN (same finding as in Ref. [32]).
Finally, to use our data set in a more efficient way (we

have generated 106 signal and background events for train-
ing), 30 epochs are required during the training process, and
to avoid the overtraining problem, an independent data set of
106 signal and background events is used for testing.
There are a number of free parameters in the CNN that

can only be optimized through trial and error, including the
sizes and numbers of the convolutional kernels in the
convolutional layers, the dropout rates after two iterations
and FCNN, the number of nodes in the hidden layer of the
FCNN, and the learning rate in the NAdam algorithm [56].
We find the performance of the CNN only mildly depends
on these parameters. In the left panel of Fig. 2, the
performances of the CNNs with the number of convolu-
tional filters in the convolutional layers being 8, 16, 32, and
64 are shown (the same number is adopted in all convolu-
tional layers). The CNN with more than 16 convolutional
kernels performs equally well—slightly better than the one
with eight convolutional kernels. To obtain the results, we
have taken the size of the convolutional kernel to be 6 × 6,4

the dropout rate in two iterations as 0.25, while it is 0.5 for
the FCNN. The number of nodes in the hidden layer is 512,
and the learning rate is taken to be 0.001. This parameter
choice will be used throughout this work. Even though the
number of trainable parameters here (∼6.5 × 106) is larger

than the size of the training sample, our CNN is still
working fine because of the following two reasons. First,
we have tried the CNN with a much smaller parameter set
(with eight filters in the convolutional layers and 64 nodes
in the hidden layer of the FCNN, the parameter number is
∼0.1 × 106), and its performance is slightly worse than the
one shown in Fig. 1. Second, the trained CNN has been
tested on an independent event sample, which gives similar
accuracy. So, the CNN is not overtrained on the training
sample. Note that we have defined two CNNs that are
trained and tested on a central sample and a wide sample of
signal and background events, respectively. The results
presented in the left panel correspond to the wide-sample-
trained CNN applied to another independent wide sample.
In the right panel, to characterize the dependence of the jet
image feature on the jet pseudorapidity, we show the
performance of these two sets of CNNs (both with 64
filters in all convolutional layers) on different samples.
There is no doubt that the central jet (jηj < 0.1) is easier to
tag than the jet within the wide pseudorapidity range
(jηj < 2.5). The CNN trained and tested on the central
sample is not working for tagging neutralino jets in the
wide sample, mainly because the features captured by the
CNN in the central sample are not useful for the wide
sample. On the other hand, the CNN trained and tested on
the wide sample performs well in tagging neutralino jets in
the central sample, even though it is slightly worse than the
CNN that is trained and tested directly on the central
sample. This means we do not have to limit our analysis to
the phase space with the target jet in the central region. It is
especially useful in a realistic signal search at the LHC, so
more signal events can be saved. In the following, we will
keep using the CNN that is trained and tested on the wide
sample with the filter number in each convolutional layer
being 64.
We should compare the performance of our CNN with

these high-level jet substructure variables. Among these,

FIG. 2. Left panel: Performances of the CNNs with different number of convolutional filters in convolutional layers. Right panel:
Performances of the CNNs that have been trained on the central sample (wide sample) and applied to either the central sample or wide
sample. Details of other parameter choices are discussed in the text.

4We find the CNNs with filter sizes of 2 × 2 and 4 × 4 perform
worse.
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the N subjettiness is a general and effective discriminating
variable that can characterize the multiprong structure of a
jet. It is defined as [26]

τN ¼
P

k minfΔR1;k;ΔR2;k;…;ΔRN;kgP
kpT;kR0

; ð3:1Þ

where k runs over all constituent particles in a given jet,
pT;k is the transverse momentum of the kth constituent, RJ;k

is the distance between a candidate subjet J and the kth
constituent in the η − ϕ plane, and R0 is the characteristic
jet radius that is used in the original jet clustering algorithm.
A jet with an N prong will have τN ∼ 0 when all of its
constituents are aligned with candidate subjets, while τI≫0
for I < N because there are constituents distributed away
from the candidate subjet directions. As a result, the
variable τN=τN−1 is found to be efficient in tagging jets
with N-prong structure. In our case, the neutralino jet
substructure can be tagged by τ3=τ2. The performance of
the N-subjettiness technique is shown by the red solid line
in Fig. 3. We find that the performance of our CNN
(represented by blue dots) is a few times better than that of
the N subjettiness. Moreover, the jet invariant mass is a
powerful discriminating variable that is independent of N
subjettiness. To combine the discriminating power of both
variables, the BDT method is adopted. Because the BDT
only needs to learn two-dimensional information here, a
relatively small size of forest should be enough. It uses a
100 tree ensemble that requires minimum training events in
each leaf node of 2.5% and a maximum tree depth of three.
The rest of the parameters are set to the default ones in the

TMVA package [57]. It is trained on half of the reconstructed
neutralino and QCD jets and is tested on the rest of the jets
(∼0.5 × 106 each). To avoid overtraining, the Kolmogorov-
Smirnov test [58] in the BDT training and testing is
required to be greater than 0.01.5 The performance of
the combination of N subjettiness and jet invariant mass is
given by the blue solid line, which shows the similar
tagging efficiency as the CNN alone.
Meanwhile, it is worth finding out whether our CNN is

clever enough to learn both the N-prong structure and the
jet invariant mass [30,59]. This can be seen through
the tagging efficiencies of their combinations. In Fig. 3,
the performances of the CNNþ N subjettiness (SJ) and the
CNNþ jet invariant mass (M) are shown by cyan and green
solid lines, respectively. The combination of their sensi-
tivities is managed by the BDT method, with the same
parameters as introduced above. The CNNþ SJ does not
show much more improvement than the CNN alone. while
the tagging efficiency can be improved by a factor of a few
after including the jet invariant mass. Thus, we can conclude
that the full information of the prong structure in a jet can be
learned by the CNN, but the jet invariant mass cannot be
directly extracted from the jet image by the current method.
One reason is that the image preprocessing procedures do not
respect the Lorentz symmetry, so the jet invariant mass is
broken down in the preprocessing [21,28,32].
In the above study, the neutralino mass has been taken to

be 100 GeV in all event samples. In practice, for the
purpose of signal discovery, the neutralino mass is an
unknown parameter. It will be unrealistic to have the CNNs
with the same neutralino mass as the signals that we want to
probe. One way6 in discovery is to train several CNNs, each
at a chosen neutralino mass, and apply those CNNs to a
wide range of neutralino mass. Then, for any given
neutralino mass, the CNN, which was trained on the closest
neutralino mass, is able to tag the signal efficiently. The
generality of the CNN, which is trained on a fixed
neutralino mass, can be seen in Fig. 4. In the left panel,
we show the performances of the CNN on event samples
with neutralino mass in the range of [70,150] GeV, where
the CNN is trained with an mχ̃0

2
¼ 100 GeV event sample

only. We find that the neutralino mass varying in the range
of [90,125] GeV does not reduce the sensitivity much, and
the CNN is more vulnerable to lower neutralino mass. On
the other hand, the CNN can be more useful if it is used in
combination with jet invariant mass (CNNþM). In the
right panel, the performances of the combinational CNNþ
M on different neutralino masses are shown. The informa-
tion from the jet invariant mass helps improve the tagging
efficiency a lot, especially in the light neutralino mass

FIG. 3. Comparison among the performances of different
methods of discriminating the neutralino jet from the QCD jet;
SJ denotes theN-subjettiness variable, M is the jet invariant mass,
and the combination of different variables is managed by the
BDT method.

5In practice, we find the Kolmogorov-Smirnov tests are always
greater than 0.1 for both neutralino and QCD jets.

6One can also train a neural network on the event sample that
contains events of all neutralino masses as in Ref. [60].
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region and compensating for the weakness of the CNN. The
efficiency of the CNNþMmethod only mildly depends on
the neutralino mass. To conclude, including jet invariant
mass can not only improve the tagging efficiency but also
extend the application of our CNN. They should be used
together in realistic signal searches.

IV. APPLICATION TO THE LHC
GLUINO SEARCH

Having shown the power and generality of our CNN
method, we are ready to show its explicit application in a
RPV gluino search.7 The signal process is the gluino pair
production, in which each gluino decays into two quarks
and a neutralino. The neutralino decays through the
hadronic RPV operator into three quarks. This signal has
been searched for by the ATLAS Collaboration in Ref. [62].
For neutralino with mass ∼100 GeV, a gluino lighter than
∼1.1 TeV has been excluded. The dominant background
process in the search is the QCD multijet background.
In this section, we will show how the CNN helps improve
the ATLAS gluino search. Before that, we need to recast the
experimental analysis on both signal and background.
TheQCDmultijet process is simulated by theMADGRAPH5

framework at leadingorder.8According to the cuts adopted in
the ATLAS analysis, we only consider the multijet processes

with four or five jets at parton level, and each jet should have
pT > 200 GeV and jηj < 2.0. The matching of these proc-
esses is handled by the MLM method [63] in MADGRAPH5.
Events with higher jet multiplicity are obtained after per-
forming the initial state radiation and final state radiation in
PYTHIA8. The signal events are generated at leading order as
well, based on the benchmark points that have neutralino
mass in the range of [50,200] GeV and gluino mass in the
range of [1,2] TeV with step size 50 GeV.
We recast the ATLAS analysis [62] as follows. (1) For

each event, large-R jets are reconstructed by the anti-kT
algorithm with radius parameter R ¼ 1.0. A “trimming”
process [64] with a subjet radius parameter of Rsubjet ¼ 0.2
and the minimal transverse momentum fraction of 5% is
applied on each large-R jet. The resulting trimmed large-R
jets are required to have pT > 200 GeV and jηj < 2.0. The
analysis only selects the events with at least four trimmed
large-R jets (Njet ≥ 4) in which the leading one should have
pT > 440 GeV. (2) Meanwhile, the small-R jets of each
event are reconstructed by the anti-kT algorithm with radius
parameter R ¼ 0.4. They are required to have pT >
50 GeV and jηj < 2.5. These jets are used to count the
number of b-tagged jets (Nb) in the final state. The b-
tagging efficiency is taken to be 70% [65] with mistagging
rates for the charm- and light-flavor jets of 0.15 and 0.008,
respectively. (3) Two discriminative variables are defined
for each event: the total jet mass variable (MΣ

J ) [66–69]
which is the scalar sum of invariant masses of four leading
trimmed large-R jets and the pseudorapidity difference
between the two leading trimmed large-R jets (jΔη12j).
(4) Four signal regions are defined in Table I.
Because we are interested in the low neutralino mass

region, the 4jSRb1 signal region provides the most sensi-
tive probe. Only the signal and background events, which
can pass all of the selections of the 4jSRb1 signal region,
are kept for later analysis. In the simulation, the selected
signal and background event numbers are guaranteed to be

FIG. 4. Left panel: Performances of the CNN when applied to the samples with different neutralino masses. Right panel: Performances
of the method that combines the information of the CNN and jet invariant mass. In both panels, the CNN is trained with the mχ̃0

2
¼

100 GeV event sample only. The numbers in the legend indicate the neutralino masses of the event samples.

7An attempt to improve the same search using the whole event
image with the CNN was studied in Ref. [61].

8The higher order QCD corrections, which change the dis-
tributions of jet multiplicity, jet pseudorapidity, and jet transverse
momentum, can only have indirect influences on the jet sub-
structure, such as more contaminations between jets due to higher
jet multiplicity, spread jet profile for larger pseudorapidity, and/or
smaller transverse momentum. Our results are insensitive to these
effects because the parton showing with PYTHIA8 includes all the
leading logarithmic contributions, and our CNN is capable of
tagging jets in a wide range of pseudorapidity and transverse
momentum.
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around 10 000 to suppress the statistical uncertainty. The
cross section for the signal at this stage can be calculated as
σ13ðg̃ g̃Þ × ϵ4jSRb1, where σ13ðg̃ g̃Þ is the gluino pair pro-
duction cross section at the 13 TeV LHC, which can be
calculated at next-to-leading order by PROSPINO2 [70], and
ϵ4jSRb1 is the selection efficiency of the 4jSRb1 signal
region that is obtained from our recasted analysis. The
background cross section (σBG) at this stage is simply
estimated by the numbers in the “SM predicted” column of
Table I divided by the integrated luminosity of the
analysis L ¼ 14.8 fb−1.
Now, we can apply the CNN tag on the jets in the

selected signal and background events. First, in each of the
selected events, jets are reconstructed in the same way as
the training sample, i.e., anti-kt with radius parameter
R ¼ 1.0 and transverse momentum pT > 100GeV. Since
two neutralino jets can be either energetic or relatively soft
in the signal process, all reconstructed jets are passed to our
CNN for neutralino tagging. Each of them will be assigned
a signal possibility (there are two outputs of the CNN:
signal and background possibilities; the background pos-
sibility is correlated with the signal possibility). Then, the
jets are ranked by the signal possibility. The distributions of
the signal possibilities for the leading three jets are shown
in Fig. 5, where the gluino mass and neutralino mass are set
to 1.5 TeV and 100 GeV, respectively. We can see that the
jets in the signal events obtain larger signal possibility than
those in the background events. This information can help

separate the signal and background further. On the other
hand, it can be readily seen from the figure that even the
background jets can obtain relatively high CNN scores of
signal possibility. This indicates that the neutralino jet and
QCD jet in the full signal and background events after the
selections are much more difficult to discriminate than
those in the training sample. The difficulty is mainly
attributed to the severe contaminations among jets in the
selected events. As will be demonstrated later, these
contaminations tend to make a multiprong QCD jet, which
also reduces the discriminating power of the N-subjettiness
variable. The dashed lines in the same figure correspond to
the CNN tagging efficiencies on jets after preforming
the jet trimming, with trimming parameters the same as
in the ATLAS analysis [62]. Because of the hardness of the
contamination, the trimming fails to resolve the jets.
Because the CNN scores (signal possibility) for the

leading three jets of the signal and background are
correlated to some extent, we employ again the BDT
method to study the discriminating power of the combi-
nation of this information (including jet invariant mass and
N subjettiness). Compared to the BDT analysis in the
previous section, we now have fewer available events
(∼10 000) and more input variables (CNN scores and
invariant masses of the three leading jets). However, the
same BDT parameters turn out to perform quite well here.
At each mass point, this BDT is trained on 5000 signal and
5000 background events, and it is tested on the rest of the

TABLE I. The definitions, the expected numbers of background events, and the observed event numbers of four
signal regions in the ATLAS analysis [62]. Three components of background prediction uncertainty in the seventh
column are statistical uncertainty, residual pT-dependence uncertainty, and the Monte Carlo–based nonclosure
uncertainty, respectively.

Signal region Njet Nb MΣ
J jΔη12j Observed SM predicted

4jSR ≥4 � � � >0.8 TeV <1.4 122 151� 15� 17� 20
4jSRb1 ≥4 >0 >0.8 TeV <1.4 46 61� 10� 6� 12
5jSR ≥5 � � � >0.6 TeV <1.4 64 51.4� 7.7� 7.2� 6.5
5jSRb1 ≥5 >0 >0.6 TeV <1.4 30 18.2� 4.2� 2.5� 3.0
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FIG. 5. The signal possibility of the leading three jets with (dashed line) and without (solid line) the trimming procedure in the selected
signal (red line) and background (black line) events. The gluino mass and neutralino mass for the signal process are taken to be 1.5 TeV
and 100 GeV for illustration.
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independent events. The Kolmogorov-Smirnov tests are
found to be always greater than ∼0.1 for both the signal and
background, which indicates that the BDT is free from the
overtraining problem. For each BDT trained and validated
on the given gluino and neutralino masses, applying a cut
on its BDT response will reduce the signal and background
cross section further down to σ13ðg̃ g̃Þ × ϵ4jSRb1 × ϵBDTS and
σBG × ϵBDTB , respectively. The ϵBDTS=B corresponds to the
selection efficiency of a BDT cut on signal/background
events. We assume the observed event number is reduced by
the same factor of ϵBDTB . As for the background uncertainties,
the statistical component is rescaled by a factor of

ffiffiffiffiffiffiffiffiffi
ϵBDTB

p
,

while others are rescaled by a factor of ϵBDTB . We will adopt
the p value [71] to characterize the probability of the signal
exclusion, which is defined as

p ¼ 1 −
PðHSþBÞ
PðHBÞ

; ð4:1Þ

where PðHSþBÞ and PðHBÞ are the probabilities of signal
plus background hypothesis and background only hypoth-
esis, respectively. So, the HSþB hypothesis is excluded at
95%C.L. if thepvalue is greater than 0.95. TheBDT cut that
maximizes thepvaluewill be taken at each gluino-neutralino
mass point in each analysis.9 The p values for the original
ATLAS analysis and our BDTanalyses with either the CNN
output alone or with combined information are shown in the
left panel of Fig. 6, where we have fixed mχ̃0

1
¼ 100 GeV.

Our recasting of the ATLAS analysis shows that the bench-
mark points with gluino mass below ∼1.18 TeV can be

excluded at 95%C.L.,which coincideswith the experimental
result. Including the information of the CNN output alone
will push the lower bound of the gluino mass to ∼1.3 TeV.
By adding the jet invariant mass into the BDT, the non-
observation of any excess will exclude the gluino mass
lighter than∼1.4 TeV. For comparison, we have also shown
the p values for the analysis with the information of N
subjettiness and jet invariant mass, which does not perform
better than the CNNþM analysis. Furthermore, the dashed
lines correspond to the p values of the analyses in which the
jets are trimmed before performing the tagging. It turns out
the trimming procedure does not help improve the signal and
background discrimination.
We have demonstrated that the CNNþM method

(without trimming) provides one of the most sensitive
probes for the RPV gluino search. Finally, we show the
application of the method (with the CNN trained on the
mχ̃0

1
¼ 100 GeV events sample) to the two-dimensional

mg̃ −mχ̃0
1
plane. In the right panel of Fig. 6, the 95% C.L.

exclusion limits for the original ATLAS analysis, the CNN
alone analysis, and CNNþM analysis are given. Here, the
CNN is trained on the event sample with mχ̃0

1
¼ 100 GeV.

We can observe that such a CNN is vulnerable to lower
neutralino mass; i.e., the improvement is dramatically
decreased for the neutralino mass less than 100 GeV, while
it is much less sensitive to the higher neutralino mass. This
is mainly because the neutralino with massmχ̃0

1
≲ 200 GeV

from heavy gluino decay has transverse momentum larger
than ∼400 GeV. All its decay products are captured by the
jet reconstruction. So, the jet substructure is detectable
except when the neutralino is so light that its subjets
become overlapping. Including the jet invariant mass
information can help push the gluino bounds by
∼100 GeV higher. In particular, the jet invariant mass
has better discriminating power for heavier neutralino

FIG. 6. Left: The p values for the original ATLAS analysis (red solid line) and BDTanalyses with either CNN alone (dark solid line) or
with various additional information as indicated in the legend. Right: The 95% C.L. exclusion limits for the original ATLAS analysis
(blue dotted line), CNN alone analysis (red dashed line), and CNNþM analysis (green solid line).

9The optimized BDT cut efficiencies are found to be ∼50% for
the signal and 10%–20% for the background. So, the signal and
background event numbers in our simulation after the BDT cut
are around 5000 and 1000–2000, respectively.
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mass, compensating for the slight decrement of neutralino
jet tagging efficiency, which can also be seen in Fig. 4.

V. CONCLUSION

In the paper, we study the possible improvement of the
current hadronic RPV search by the BDT method with
information from the jet substructure. In particular, the
convolutional neutral network is adopted to tag the neu-
tralino jet which decays into three quarks. The application
of the CNN to an existing RPV gluino search by the
ATLAS Collaboration in the final state with multiple
energetic jets is investigated.
The information of a jet can be formatted into a jet image

by identifying each calorimeter cell as a pixel. The energy
distribution of all particles, the energy distribution of
charged particles, and the number of charged particles in
calorimeter cells are regarded as the RGB color of those
pixels. The CNN is trained on events of a simplified process
with only a visible neutralino jet in the final state. So, it is
able to tag a neutralino jet by using the jet image,
irrespective of its production mechanism. According to
the small size and sparsity of the jet image, the VGGNet
CNN architecture, which is optimized for the CIFAR-10
data set, is adopted. It is able to tag the neutralino jet with
efficiency of 50% while only accepting ∼1% of the QCD
jet. These efficiencies are found to be insensitive to the
CNN parameters in a wide range. Moreover, due to the
cylinder shape of the detector, the jet image has strong
dependence on the pseudorapidity of the jet. The CNN
performs well for the jet either in the central region
(jηj → 0) or with relatively large pseudorapidity
(jηj≲ 2.5). Our CNN can outperform the high-level jet
substructure variable N subjettiness by a factor of a few in
the neutralino jet and QCD jet discrimination. However, the
jet invariant mass information is not fully learned by the
CNN, partly because the image preprocessing does not
respect the Lorentz symmetry. Combining the CNN output
with the jet invariant mass can improve the signal efficiency
further. More importantly, for the CNN being trained on a

given neutralino mass, the CNNþM tagging method
performs much better than the method with the CNN alone
when applied to the neighbor of that neutralino mass.
To study the realistic application of the CNN, the

ATLAS analysis is recast. Only the events (for both signal
and background) which can pass all selection cuts of the
4jSRb1 signal region in the ATLAS analysis are kept. The
CNN assigns “neutralino jet possibilities” to all jets in these
events. The jets in the signal events are likely to obtain
higher neutralino jet possibilities than those in the back-
ground events. Compared to the simplified processes (for
generating a training sample) with a single target jet in the
final state, the heavy contaminations due to multiple
energetic jets in the final state greatly reduce the discrimi-
nating power of both the CNN and N subjettiness, but the
BDT analysis with information from the CNN scores of
three leading jets is still able to push the lower bound of the
gluino mass by ∼100 GeV. The combined analyses of
either CNNþM or N subjettinessþM have similar
sensitivities, i.e., excluding the gluino mass lighter than
∼1.4 TeV for mχ̃0

1
¼ 100 GeV. By applying the CNN and

CNNþM analyses to the two-dimensional mg̃ −mχ̃0
1

plane, we find the CNN tagging efficiency is vulnerable
to a lighter neutralino while it is insensitive to a heavier
neutralino up to ∼200 GeV. The CNNþM method can
help push the gluino bounds by 100–250 GeV higher
depending on the neutralino mass.
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