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We study the KE decay mode of the newly observed Q(2012) assuming that the ©(2012) is a
dynamically generated state with spin parity J© = 3/2~ from the coupled channel S-wave interactions of
KZ=(1530) and Q. In addition, we calculate its three-body decay width into KzE. It is shown that the
so-obtained total decay width is in fair agreement with the experimental data. We compare our results with

those of other recent studies and highlight the differences among them.
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I. INTRODUCTION

Very recently, the Belle Collaboration observed an Q
excited state in the E°K~ and 2-K9 invariant mass
distributions [1]. Its mass and width are determined
to be M =2012440.7+0.6 MeV and T = 64737 +
1.6 MeV. The existence of such Q excited states with a
mass around 2000 MeV has already been predicted by
various models, such as quenched quark models [2-5], the
Skyrme model [6], and lattice gauge theory [7]. On the
other hand, the extended quark models [8-10], where
the instanton-induced quark-antiquark pair creation or
Nambu-Jona-Lasinio interaction was employed, pre-
dicted Q states with negative parity but lower masses,
the lowest Q state lying around 1800 MeV, about 200 MeV
lower than those predicted in Refs. [2-7]. One of the
reasons is that the Q states in Refs. [8—10] have large five-
quark components.

In Refs. [11-13], the interactions of the KZ(1530) and
nQ coupled channels were investigated in the chiral
unitary approach. An Q excited state with a mass around
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2012 MeV and J¥ = 3/2~ can be dynamically generated
by use of a reasonable subtraction constant.

After the observation of the €©(2012), its two-body
strong decays were studied within the chiral quark model
in Ref. [14], where it was shown that the newly observed
©Q(2012) could be assigned to the J¥ = 3/2~ three-quark
state. In Ref. [15], the mass and residue of the ©(2012)
were calculated by employing the QCD sum rule method
with the conclusion that the €(2012) could be a 1P
orbitally excited Q state with J¥ = 3/2~. The analysis of
Ref. [15] was extended in Ref. [16] to study the Q(2012) —
K~Z° decay. In Ref. [17], the authors performed a flavor
SU(3) analysis and concluded that the preferred J* for the
Q(2012) is also 3/27. In Refs. [18,19], its strong decay
modes were studied assuming that the Q(2012) is a
KZE(1530) hadronic molecule. We note that the hadronic
molecular picture plays an important role in understanding
the newly observed but unexpected states [20].

In this work, we take the chiral unitary approach and
assume that the ©(2012) is a dynamically generated state
from the K=(1530) and 5Q interactions. The coupling of
the ©(2012) to KZ(1530) is then obtained from the residue
at the pole position. We then calculate its decay into KE via
a triangle diagram. We also calculate the three-body partial
decay width of the ©(2012) into KZz. The total decay
width compares favorably with the experimental data [1]
and agrees with other theoretical approaches.

This work is organized as follows. In Sec. II, we briefly
explain the chiral unitary approach and calculate the two- and
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three-body decays of the ©(2012). The results and discus-
sion are presented in Sec. III, followed by a short summary
in Sec. IV.

II. FORMALISM

A. ©(2012) as a KE(1530) and 7Q molecule

The mass of the (2012) is slightly below the KZ(1530)
threshold. It is natural to treat it as a K=(1530) molecular
state, dynamically generated from the interaction of the
coupled channels KZ(1530) and 7€ in the isospin I = 0
sector. However, the possibility to be an / = 1 molecule
cannot be excluded [17]. Within the chiral unitary approach,
the interaction of the coupled channels KZ(1530) and 7Q
in the strangeness —3 and isospin 0 was first studied in
Ref. [12], where a pole at (2141 — i38) MeV was found
with a natural subtraction constant a, = —2 and a renorm-
alization scale y = 700 MeV. Later, it was explicitly shown
in Ref. [13] that the pole position of the 3/2~ Q state can
shift by varying a,. If we take a, =-2.5 and u=
700 MeV, we obtain a pole at zz = (2012.7,i0) MeV,
which can be associated to the newly observed Q(2012)
state [1]. In the cutoff regularization scheme, the correspond-
ing momentum cutoff is A = 726 MeV, which seems quite
natural as well.

The couplings of the bound state to the coupled channels
KZE(1530) (channel 1) and 7€ (channel 2) can be obtained
from the residue of the scattering amplitude at the pole
position zg, which reads

- Yudjj
YoVs—zg

where g;; is the coupling of the state to the ith channel. One
finds with @ = —2.5 and u = 700 MeV,

T (1)

g = 165, g = 2.80. (2)
By taking these coupling constants g7, and g5, that we
obtained above and the loop functions Ggz- and G,q,

we find that X, = —¢?, BGg@g@ | imsy = 0.48 and X, =

g5 2P| o= 0.29. Thus, about 50% of the sum

rule comes from the K=* channel, while the #Q channel is
also important. These results are different from those values
obtained in Ref. [12] where the cutoff method for the loop
functions is taken. However, if we used the cutoff method,
we get X;; = 0.59 and X,, = 0.15, which is similar with
those results obtained in Ref. [12]. In addition, the product
G11 Gy, can be evaluated from the pole position [12]. If we
take u = 700 MeV, and a, = —2.17 and a, = —2.65 for
the K=* and 7Q channels, respectively, we get a pole at
zg = (2012.3,i0) MeV and X;; = 0.61 and X,, = 0.19.
We can see that the KZ* channel is always dominant, but
the #€Q channel also gives a non-negligible contribution.

However, one should note that without the #€ channel,
there will be no dynamically generated state because the
interaction in the KE(1530) and 7€ coupled channels is off
diagonal in the chiral unitary approach.

Then, one can write down the effective interaction of
Q(2012)K=(1530) (=Q*KE*) and Q(2012)37Q (=Q*nQ),

gu

Vo —
QK= \/z

Vaa = 9, (4)

EMQu. (3)

It is worth to mention that the gg-(2912)g=(1530) Obtained
in Ref. [19] with the assumption that the Q*(2012) is a
pure S-wave KZ(1530) hadronic molecule with spin parity
3/27 is about 2.24, which is different from ours, since
we have also taken into account the 7€ channel. For
the Q*(2012) — KzZ= three-body decay, since only the
KZ=(1530) component contributes at tree level and the

partial decay width is proportional to ggz*(zmz)i(s(lsso)’

our three-body decay width is almost the same as that
of Ref. [19].

We note that based on the Weinberg-Salam composite-
ness condition [21-24], a fully consistent quantum-field
approach has been developed by the Tiibingen-Beijing
group for the study of the exotic meson [25-39] and
baryon states [40—43]. In our present work based on the
unitary chiral theory, the 7€ channel is important and
cannot be ignored. It will be interesting to see a future study
of the ©(2012) in the hadronic molecular approach of
Refs. [25-44].

B. The Q(2012) — KE and KEx decays

In the present work, we assume that the Q(2012) (=Q*7)
exists and has a mass as that reported by the Belle
Collaboration, and we study its strong decays to the
two-body final state K= assuming that it is a molecular
state of KZ(1530) and 5Q, as predicted by the chiral
unitary approach [12]. Then, the ©(2012) — KZ decay
can proceed through the triangular diagrams as shown in
Figs. 1(a)-1(e), where the 2, A, p, w, ¢, and K* exchanges
are considered. Note that by considering those diagrams of
Fig. 1, we can easily show that the partial decay widths of
Q > K 8% and Q*~ —» KE~ are the same, and we will
explicitly calculate the decay of Q*~ — K~E’ in the
following. Compared with the decays to the two final
states, the contribution to the three-body decay ©(2012) —
KZr only comes from the KZ(1530) component. The
decay width of the E(1530) listed in Ref. [45] is around
9 MeV, and the partial decay width E(1530) — Ex is the
largest and almost saturates its total decay width. Therefore,
we only compute the three-body decay through the decay
of the E(1530), and the simplest Feynman diagram is
shown in Fig. 1(f). Considering the quantum numbers and
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=(p)

=(p1)

FIG. 1. Feynman diagrams contributing to the decays of the
Q(2012) to K= and KZx.

phase space, in addition to the final state K~Z°2z° shown in
Fig. 1(f), the final states K°Z~7z%, K°Z%2~, and K" E~ 7"
should also be calculated.

In order to evaluate the decay amplitudes of the dia-
grams shown in Fig. 1, we need the following effective
Lagrangians to calculate the relevant vertices [46—48],

LUKK* = ignKK* [I_{a;ﬁ - aﬂl_{’ﬂK*M’ (12)
g/)_.:' ._.*” = —
['pEE* m 4 }/5[8 T pl/ 81/ ﬂ]:‘ + H'C'7 (13)
K~ (p2) r
gu):.: v—* —
K () Lome = i70— . EHyYys[0,0, — 0,0, )24+ He., (14)
@
2w, 0(q) . g PEE" =4 =
o ;1 / Eyvys[0,¢, — 0,0,)E + He.,  (15)
:()(p])
LIK'EQ Ay v .
) Lgizq =1 ;;KQ Qy¥ys0,K; — 0,K;]E+H.c., (16)
GrE5* = o= S
Lyzzr = =——Z20"7 - 78, + H.c. (17)

my

Within the SU(3) symmetry, we determine the coupling
constants to be g gk = V3gkgr =523 [49], gyz= =

Gp=r = Juzzr :\/Lég/)AN =-2.48 [50], and gg-mq = —7.01
[50]. The coupling constant g == = 2.24(g,z=- = 2.04) is
evaluated using Eq. (17), and the partial decay width
IN'zioz, =Tz =9.1 MeV(ziz, =T'=- =9.9 MeV) in
the Z* rest frame. The masses of the particles needed in
the present work are listed in Table I. The other coupling
constants are taken from Refs. [46-48] and are listed in
Table II.

With the above effective interaction Lagrangians and

ig=ak i R — the coupling constants, we obtain the following decay
Lank = =2 —O"KAprsE+He, () amplitudes for ©(2012) - K-2° and Q*(2012) — KZx
- corresponding to the diagrams shown in Fig. 1,
i9zsk -
Lesx = ————— 0K Z-1y,7s2 + H.c., 6
=2k my + mg Tul's (6) Moo — \/59119502-1(-95*02-1(-/ d'q W(p)ar
fe = mg-(ms- + mgo) (2r)* Hrls
Losk ==X KEyst- £+ He., (7) 1 ; 1
—— X ysP"ug,. (ko) ph ,
mg q—my 1 e Vs o ( o)l’zk%_m%_ﬂ-e
Long = LZ8 RE YA + He., 8) (18)
mg
Moo — 91192050k 9=+-50K - / d*q i(p)or
Lkk, = ig,xx[KO,K — 0,KK]7 - p*, 9) = V2mg-(mgo + me-) ) Qayt U
. = = 1 1
L » = 19, Ko, K — 0,KK]|w* 10 X ————— X y< P " (k 14 ,
KK kKO, KK] (10) g— i + ic rsPug- (ko) P 12— m2 e
LKK¢ = lg¢KK[I_{aMK - 3,41_(1(](]5”, (11) (19)
TABLE I. Masses of the particles needed in the present work (in units of MeV).
a* a° n P 0] ¢ K*
139.57 134.98 547.86 775.26 782.65 1019.46 493.68
K° K* 20 e 2°(1530) 2-(1530)
497.61 891.76 1314.86 1321.71 1531.80 1535.00
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TABLE II.  Values of the effective meson-baryon and meson-
meson coupling constants.

9=k 9=AK

-1326  3.37

9KKw J=r3K J=rAK

-3.02 322 5.58

9KK¢
-3.02

9KKp
-3.02

4
9119200k 9=~ AK- q _ 1
My = / 2 o
A \/me_ (mp+mz) (271)4 (p1)kars g—ma+ic
1
X ysPu. (ko) ph—5——s5—, 20
75 o ( O)pzk%—m%{_—i—ie (20)
_igl193*5/)/11}/(/)9/)/(0/(/)1_(1_{/ d4q/ _
M tosp = a(p1)7'rs
Plw/¢ \/Emp/a) (271_)4
x Pyl k)(’ o )kﬂ— ﬂ)
U (ko) (90 9ua — 4u9va) (K] = P
" 1 _g(lﬂ + qlaq/ﬂ/mg/w
K5 = mi- +ieq® —mp .+ imyngUss0)g
(21)
—iV29119= 5,9k k [ dq
M, = == / a(p1)r'ys
’ m, (2m)*
X Pmugz* (kO)(QLg/m - q;tgyoz)(kﬁlf - Pg)
1 _ ﬁ+ a1 mZ
2 2 . /ga Zq q- / . ’ (22)
k5 —myg- +ieq” —m; +im,l,
—ignguk-k-Jo k= [ d*q _
Mg = H
K Mo /(271_)4 M(Pl)}’ Vs

x Pl (ko) (4} Gpa = GGua) (K] = P5)
! —9% +q"q" /mi.
K —m2 +im, T, g% — my. + img-Tg-

(23)

I9nzs Yo k" - VDU
Mityzipnipy = J1= 0 0(p3) PP ity (Ko ),

(24)

where

1 2
_gun + ¥y + —klukln

N —
P 3 3m%*

K+ mz [

(ke - wkm] , (25)

+ 3mz:
with g =ky —p; =py—k; and ¢’ = ky — p = p; —k;.
We take ['z0 =9.1 MeV, I'g- =9.9MeV, T', =149.1 MeV,
r,=85MeV, F,? =1.3MeV, F¢ =42 MeV, and I'g: =
50.3 MeV. For the three-body final states K~=°2° and
K°Z~7°, the isospin factors are f; = 1 and —1, respec-
tively. The isospin factor is f; = /2 for all the other

three-body final states. To take into account the finite size
of hadrons, for each vertex, we multiply a form factor F (k%)
of the following form [19]

A4

F(k%) = <m2 _ k%)Z +A4 ’

(26)

where m is the mass of the exchanged particle and & is its
momentum, with the cutoff A varying from 0.8 to 2.0 GeV.

In order to avoid ultraviolet divergence in the triangle
diagrams, we take the three-momentum truncation method
to compute the amplitudes. In the rest frame of the Q*, the
relevant momenta are defined as follows:

kO = (M, 0,0, O)a P = (EEnOv 0, pcm)’ (27)

P2 = (EK7070’ _pcm)v q= (%v q1 Sil’le, 07 q1 COS@) = q,’

(28)

and we can rewrite the [d*q!) = [dqyqidq,dcos0dg
with gpe(—o0, ), g1€(0, A), cos fe(—1, 1), and ¢e(0, 27),
where A is a free parameter and is also taken to vary from
0.8 to 2.0 GeV. Here, we have introduced a cutoff A in the
three-momentum integration.1

The partial decay width of the Q* — KE and Q* — KEx
in its rest frame are given by

Il ——=p
drg*_)f(a — —327[2 |M‘2—M2 dQ, (29)
1  [—
dlo gmy = —— MP| 55
Q" —»KEn (27[)5 16M2 | | |p3
X |ky|dm = dQ, A€, (30)

where M is the mass of the Q(2012), while p is the module
of the 2 (or K) three-momentum in the rest frame of the
Q(2012). The (|p3].L;,) is the momentum and angle of
the particle Z in the rest frame of = and 7, and €, is the
angle of the K in the rest frame of the decaying particle.
The m,z is the invariant mass for z and E and m,+
mg < myz < M —mg. The averaged squared amplitude
is then

MP =133 IMP G1)

S Sz

where

'"We have checked that using the transition form factors such as
those of Refs. [25—44] to regulate the amplitudes yields quali-
tatively the same results as those presented in the present work.
We noticed that Ref. [19] adopted a three-dimensional version of
the transition factors.
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Mg kg = Msn + M, 04 + Mg, (32)

Mg

Q- KEx

= |M|?(—Eono + |M|2‘E‘7r+
+ [Mzogo,- + Mlzog- 0. (33)

III. NUMERICAL RESULTS AND DISCUSSION

As explained in the previous section, the triangle dia-
grams are regularized with a sharp momentum cutoff A,
which is taken to be the same as those appearing in the form
factor, F(k?). Because the triangle diagrams are ultraviolet
divergent, our two-body decay width will depend on the
value of the cutoff. Therefore, it is important to check
whether one can obtain a decay width consistent with the
experimental data using a reasonable value for the cutoff.

In Fig. 2, we show the total decay width of Q(2012) —
KE as a function of the cutoff parameter A. Note that the
Q(2012) —» K#E three-body decay does not depend on
the cutoff parameter A, but it depends weakly on the
parameter A as in Ref. [19]. We can see that the K=(1530)
component provides the dominant contribution to the
partial decay width of the KE two-body channel. The
nQ contribution to the KZ two-body channel is very small.
However, the interference between them is still sizable and
increases with the cutoff parameter A.

In Refs. [17,19], the three-body decay was emphasized,
while our result shows that two-body KE decay width can
become larger than the KzZ three-body decay width when
A is larger than 1.65 GeV. We note that the hyperon
exchange and #€Q component contribution are not con-
sidered in Ref. [19]. More specifically, our three-body
partial decay width, ~3.0 MeV, is close to the estimate of
Ref. [19] but smaller than that of Ref. [17], about 10 MeV.
We note that our total decay width and that of Ref. [18]
agree with the experimental data. The difference is that

18

Total Width

151 —-—- Rg(no+Ke) 1
----- K=(nQ component)
1261 - - = Kz(K=' component) 1

R

Width [MeV]

FIG. 2. Total decay width of the ©(2012) as a function of the
parameter A. The cyan error bands correspond to the exper-
imental decay width [1].

6 —

=Z(=,A exchange)
=(p,w,¢ exchange)

— K
---K

NS

Width [MeV]
N

FIG. 3. Decomposed contributions to the decay width of the
Q(2012) into KE as a function of the parameter A

Ref. [18] assumes that the Q*(2012) is a pure Z(1530)K
molecule and invokes some power counting arguments to
calculate its two-body decay width. Indeed, our study
shows that the contribution from the #€2 component is
small. Note that the molecule picture is different from the
qqq picture of the chiral quark model [14] and light cone
QCD sum rules [15,16].

The contribution of the KZ(1530) component includes
two parts: (i) £ and A exchanges [Figs. 1(a) and 1(b)] and
(ii) p, ¢, and @ meson exchanges [Figs. 1(c) and 1(d)].
The relative importance of these two mechanisms to the
Q* — KE decay is shown in Fig. 3. One can see that the
contribution from the £ and A exchanges is larger than
those from p, ¢, and ® meson exchanges for the cutoff
range studied.

IV. SUMMARY

In summary, we studied the K= decay of the newly
observed Q*(2012) assuming that the Q(2012) is a
dynamically generated state with spin parity 3/2~ from
the coupled channel interactions of KE(1530) and #Q in S
wave. Taking , = —2.5 and ¢ = 0.7 GeV, we obtained a
pole at M = 2012.7 MeV and associated it to the newly
observed Q*(2012). With the coupling constants between
the Q*(2012) and its components calculated from the
residue at the pole position go:gz- = 1.65 and gg-yq =
2.80, we obtained the partial decay widths of the K= final
state through triangle diagrams in an effective Lagrangian
approach. In such a picture, the decay Q*(2012) — KE
occurs by exchanging X, A hadrons and p, ¢, @, and K*
vector mesons. The contribution to the three-body decay
Q(2012) - K=Ez only comes from the KZ(1530)
component.

We showed that the calculated total decay width of the
Q*(2012) is in fair agreement with the experimental data,
thus, supporting the assignment of its spin parity as 3/2".
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In addition, we showed that the #Q channel plays a less
relevant role.

The present work should be viewed as a natural
extension of the works of Refs. [12,13], where the chiral
unitary approach was employed to dynamically generate
such an exited Q*. The present work showed indeed that the
chiral unitary approach can provide a satisfactory explan-
ation of not only the mass but also the decay width of the
Q(2012), consistent with the experimental data.
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