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In order to gain deeper insight into the physics of the novel rotating solution of nonideal transverse
magnetohydrodynamics (MHD), presented in one of our recent works, we replace the previously
considered Maxwell theory with the CP violating Maxwell-Chern-Simons (MCS) theory. In this way,
dissipationless chiral magnetic (CM) and anomalous Hall (AH) currents appear in the MCS equation of
motion, that, together with equations of relativistic hydrodynamics, builds the set of constitutive equations
of the nonideal transverse Chern-Simons magnetohydrodynamics (CSMHD). We are, in particular,
interested in the effect of these currents on the evolution of electromagnetic fields in a uniformly and
longitudinally expanding quark-gluon plasma with chirality imbalance. Combining the constitutive
equations of CSMHD under these assumptions, we arrive, as expected, at two distinct rotating and
nonrotating solutions for electromagnetic fields. The rotation occurs with increasing rapidity and a constant
angular velocity ω0. Remarkably, the relative angle between the electric and magnetic fields, δ, turns out to
be given by the coefficient of AH current κE and the electric conductivity of the medium σ, as
δ ¼ tan−1ðκE=σÞ. Whereas the nonrotating solution implies the AH coefficient to be vanishing, and thus
nonrotating electric and magnetic fields to be either parallel or antiparallel, the relative orientation of
rotating electric and magnetic fields and the evolution of the CM conductivity κB are strongly affected by
nonvanishing κE. We explore the effect of positive and negative ω0 on the evolution of the CM current, and
show, in particular, that a rotation of electromagnetic fields with negative ω0 implies a sign flip of the CM
current in a chiral fluid with nonvanishing AH current.
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I. INTRODUCTION

Because of the formation of a plasma of deconfined
quarks and gluons, modern heavy ion collision (HIC)
experiments open up a unique possibility to study the
topological sector of quantum chromodynamics (QCD).
One of the most striking effects in this sector is the quantum
chiral anomaly, arising, in particular, by an imbalance in the
number of right-handed and left-handed quarks. The latter
is produced through a transition between vacua of different
Chern-Simons (CS) numbers, and leads to a local P and CP
violation in chiral media. At high temperatures and energy
densities, these transitions are mediated by unstable,
spatially localized classical gauge field configurations of
finite energy, called sphalerons [1]. Sphaleron transitions
generate significant amount of axial charge by the mecha-
nism of axial anomaly [2]. The induced axial charge
asymmetry is then converted into an electric current along
strong Uð1Þ magnetic fields, which are believed to be
created in off-central HICs [3]. This is known as the chiral
magnetic effect (CME) [3,4]. Other effects associated with

the presence of chiral fermions in a hot and dense quark
matter include, among others, chiral vortical effect [5],
chiral separation effect [6] and chiral vortical separation
effect [7]. Over the past few years, a growing number of
theoretical studies have concentrated on various transport
phenomena arisen from these effects, not only in the quark-
gluon plasma (QGP) created in HICs (for a review, see
[7,8]), but also in relation to Weyl and Dirac semimetals
(for a review see [9]). Experimental evidences of CME are
reported in [10] from HIC experiments at the Relativistic
Heavy Ion Collider (RHIC) and Large Hadron collider
(LHC) aswell as in [11] from condensedmatter experiments.
Chiral kinetic theory [12] and anomalous (chiral) mag-

netohydrodynamics (MHD) [13–16] are two main tools to
describe the anomaly-induced transport phenomena in a
chiral medium. In the present paper, we focus on chiral
MHD, however, in a slightly different approach from
[14,15], where, in particular, the MHD constitutive equa-
tions consist of homogeneous and inhomogeneous
Maxwell equations, energy-momentum and vector current
conservation laws as well as the axial anomaly equation. In
the Chern-Simons MHD (CSMHD) setup, used in this
paper, we start, in contrast, with a Lagrangian density of
Maxwell-Chern-Simons (MCS) theory, also known as
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axion electrodynamics, which includes apart from the
Maxwell FμνFμν term, a CP violating Chern-Simons
(CS) ϑFμνF̃μν term. Here, ϑ is an axionlike field and
F̃μν ≡ 1

2
ϵμνρσFρσ. In this way, the CM and another anoma-

lous currents, the AH current, appear automatically in the
MCS equation of motion. As it is shown in [17], in the non-
relativistic limit, while the CM current is proportional to the
magnetic field, and includes the time derivative of ϑ, the
AH current is perpendicular to the electric and magnetic
fields, and includes the spatial gradient of ϑ. The combi-
nation of relativistic MCS equations of motion with the
equation of relativistic hydrodynamics leads eventually to
relativistic CSMHD. We are, in particular, interested in the
effects of these currents on the evolution of the electric
and magnetic fields in a chiral fluid with finite electric
conductivity, that expands uniformly [18] in the direction
transverse to electromagnetic fields (hereafter nonideal
transverse CSMHD).
Same assumptions were also made in our previous work

[19], where we extended the method of self-similar
solutions of relativistic hydrodynamics [20] to the case
of nonconserved currents of a nonideal fluid, and presented
two novel sets of solution to the transverse MHD [21,22].
To do this, we used, as in the Bjorken solution to 1þ 1
dimensional relativistic hydrodynamics [18], the Milne
coordinates τ and η, with the proper time τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

and the rapidity η≡ 1
2
lnðtþz

t−zÞ. We also parametrized the
corresponding differential equations with two parameters ζ
and ϕ, that correspond to the angles of electric and
magnetic fields with respect to a certain x-axis in the local
rest frame (LRF) of the fluid. The solutions are shown to be
characterized by parallel or antiparallel electric and mag-
netic fields, whose magnitudes were assumed to be boost-
invariant. However, whereas electric and magnetic vectors
in the first set of solutions are shown to be fixed in a τ–η
plane, they rotate in the second set of solutions. The
rotation occurs in the same τ–η plane with a constant
angular velocity ω0 ≡ ∂ζ

∂η ¼ ∂ϕ
∂η. These two sets of solutions

were referred to as nonrotating and rotating solutions of the
nonideal transverse MHD. We showed that for both
solutions, the relative angle between the electric and
magnetic fields does not evolve with τ, and is boost
invariant (η-independent). In both cases the evolution of
the magnitude of the magnetic field B is given by
B ∝ τ−1 expðMÞ. For the nonrotating solution, M arises
from the solution of dM

du ¼ 0, with u≡ ln ðτ=τ0Þ. For the
rotating solution, however, M satisfies a second order
nonlinear differential equation, that arises by combining the
constitutive equations of the transverse MHD. We set,
without loss of generality, M ¼ 0 for the nonrotating
solution, and concluded that the frozen flux theorem is
also valid in the nonideal transverse MHD, as in the ideal
case. Solving the aforementioned nonlinear differential
equation, we numerically determined the corresponding

M to the rotating solution. Once M was determined, the
evolution of the magnitude of the electric field E and the
temperature T could also be separately determined in
nonrotating and rotating cases. We defined a parameter
Ω0 ≡ lω0, where l≡�1 corresponds to parallel (l ¼ þ1)
and antiparallel (l ¼ −1) electric and magnetic fields, and
explored, in particular, the effect of Ω0 on the evolution of
B, E and T. We showed that the lifetime of the magnetic
field increases with increasing negative values of Ω0. In
[19], Ω0 remained as a free parameter, among other free
parameters such as the finite electric conductivity of the
medium.
The main purpose of the present paper is to gain deeper

insight into the physics of nonrotating and rotating sol-
utions of the nonideal transverse MHD. To do this, we
replace, the previously considered Maxwell theory with the
CP violating MCS theory, and explore the effect of
aforementioned currents on the evolution of electromag-
netic and hydrodynamic fields. We essentially make the
same assumptions as in [19], and arrive at a number of
novel results concerning the solutions of nonideal trans-
verse CSMHD, where, in particular, anomalous CM and
AH currents are created by nonvanishing temporal and
spatial gradients of the axionlike ϑ field.
One of the most remarkable results is that the relative

angle between E and B fields, δ, is given by the coefficient
of the AH current κE and the electric conductivity of the
medium σ, as δ ¼ tan−1αE with αE ≡ κE=σ. For vanishing
αE, we arrive at parallel or antiparallel electric and magnetic
fields, as expected from [19]. For nonvanishing tan δ, we
show that κE ∝ τ−1, and, in this way, δ evolves with the
proper time τ. This is in contrast to our findings in [19],
where δ was a constant in τ and η. We also determine the
(τ, η)-dependence of the ϑ-field, and show that it depends
on the coefficients of CM and AH currents, κB and κE. We
also show that for nonvanishing αE, in contrast to [19],
where the angular velocity ω0 was a free parameter, it is
possible to determine ω0 as a function of α0 ≡ αEðτ0Þ and a
number of other free parameters, among others, the electric
conductivity of the medium, σ0, and the ratio of the electric
and magnetic field magnitudes at a certain initial proper
time τ0, β0 ≡ E0=B0. As concerns the evolution of E and B
fields, it is shown, that for αE ≠ 0, the function M in B ∝
τ−1 expðMÞ can be analytically determined as a function of
the same free parameters σ0, β0, ω0 and α0. In the case of
vanishing αE, however, M is shown to arise, from the
solution of either dMdu ¼ 0 (nonrotating solution) or a second
order nonlinear differential equation (rotating solution), as
in [19]. OnceM is determined, the evolution of E can also
be analytically determined in the αE ≠ 0 case. For non-
vanishing αE, the evolution of the CM conductivity κB can
also be analytically determined in terms of the aforemen-
tioned set of free parameters. Being proportional to the
axial chemical potential μ5, the evolution of κB leads
automatically to the τ-dependence of μ5. The latter turns
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out to be important in relation to the production of axial
charge in a hot QGP [2].
All the above results show the significant role played by

nonvanishing AH current in the QGP produced at the RHIC
and LHC. Let us notice that the relation of this anomalous
and dissipationless current to nonlocal chiral condensates is
recently demonstrated in [23,24]. Here, it is shown that in
the presence of a magnetic field, the axion electrodynamics,
or equivalently the MCS theory, is realized within the dual
chiral density wave phase of dense quark matter, charac-
terized by nonlocal condensates, and that it exhibits an
anomalous Hall current perpendicular to the magnetic field
and an anomalous electric charge density. A large number
of papers discuss the effect of this dissipationless current on
the properties of Weyl and Dirac semimetals (see e.g., [25],
for one of the most recent ones).
The organization of this paper is as follows: In Sec. II,

we formulate the nonideal transverse CSMHD by present-
ing a number of definitions and useful relations as well as
important properties of the additional anomalous currents
induced by the CP violating CS term ϑFμνF̃μν. In Sec. III,
we present the constitutive equations of the transverse
CSMHD, and present formal results for the evolution of
electromagnetic and hydrodynamic fields. In Sec. IV, we
summarize the above mentioned analytical results, and
prove them. In Sec. V, we focus on nonrotating solution of
the electromagnetic fields, and show that for the electric
and CM conductivities, σ and κB, to be constant, the initial
value of αE at τ0 vanishes identically, and the evolution of
the electric and magnetic fields are explicitly determined
inter alia in terms of σ and κB. In Sec. VI, we first focus on
the relation between ω0 and α0. The latter is related to the
initial value of the angle between electric andmagnetic fields,
δ0. Choosing a number of consistent ω0, and determining
their corresponding α0, we then plot the τ-dependence of the
electric, magnetic fields and the temperature as well as axial
chemical potential μ5. The latter is known to be related to κB,
whose τ-dependence can be determined once αE is non-
vanishing. We show that for positive ω0, μ5 increases during
the evolution of the fluid and for negative ω0, μ5 changes its
sign from positive to negative. The latter indicates a sign flip
in the current induced by theCME.We also explore the effect
of the initial electric conductivity of the medium on these
properties. A number of concluding remarks is then pre-
sented in Sec. VII.

II. MAXWELL-CHERN-SIMONS THEORY
AND RELATIVISTIC TRANSVERSE

MAGNETOHYDRODYNAMICS

A. Definitions and useful relations

Let us start with the Lagrangian density of the MCS
theory

L ¼ −
1

4
FμνFμν − AμJμ −

c
4
ϑFμνF̃μν; ð2:1Þ

with c≡P
f q

2
f

e2

2π2
and F̃μν ¼ 1

2
ϵμνρσFρσ [17]. Here, we

assume f ¼ u, d quarks with ðqu; ddÞ ¼ ð2
3
;− 1

3
Þ. In this

model, ϑ ¼ ϑðt; xÞ plays the role of an axionlike field.
Homogeneous and inhomogeneous MCS equations of
motion are given by

∂μF̃μν ¼ 0; and ∂μFμν ¼ J ν: ð2:2Þ

Here, the modified current J μ is defined by
J μ ≡ Jμ − cPνF̃νμ, with Jμ being the electric current
and Pμ ≡ ∂μϑ. The MCS energy-momentum tensor reads

Tμν
MCS ¼ F μρFν

ρ þ
1

4
F ρσFρσgμν; ð2:3Þ

with F μν ≡ Fμν þ cϑF̃μν. It satisfies

∂μT
μν
MCS ¼ JλFλν þ c

4
PνFμλF̃μλ; ð2:4Þ

[see Appendix A for the proof of (2.3) and (2.4)]. In what
follows, we study the effect of the additional CP violating
term c

4
ϑFμνF̃μν in (2.1) on the evolution of electromagnetic

and hydrodynamic fields in a 1þ 1-dimensional relativistic
fluid dynamical framework. This is characterized by a
translational symmetry in a transverse x–y plane. To do
this, we use, in particular, the Bjorken flow [18], charac-
terized by the fluid four-velocity uμ ¼ γð1; 0; 0; vzÞ with
vz ¼ z

t.
1 We combine the MCS equations of motion (2.2)

with the corresponding conservation equations

∂μTμν ¼ 0; ∂μJ μ ¼ 0; ð2:5Þ

where Tμν ¼ Tμν
MCS þ Tμν

F is the total energy-momentum
tensor, including the fluid energy momentum tensor Tμν

F
and the MCS tensor Tμν

MCS from (2.3). The fluid tensor Tμν
F ,

expressed in terms of the energy density ϵ, pressure p and
magnetization tensor Mμν is given by

Tμν
F ¼ ðϵþ pÞuμuν − pgμν −

1

2
ðMμλFν

λ þMνλFμ
λÞ: ð2:6Þ

Here, gμν ¼ diagð1;−1;−1;−1Þ and

Mμν ¼ −χeðEμuν − EνuμÞ − χmBμν; ð2:7Þ

with constant χe and χm the electric and magnetic suscep-
tibilities, and Bμν ≡ ϵμναβBαuβ. The electric and magnetic
fields are defined by Eμ ¼ Fμνuν, Bμ ¼ 1

2
ϵμναβFναuβ.

1Here, uμ ¼ dxμ
dτ satisfies u · u ¼ 1, where, in general,

a · b ¼ aμbμ.
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They satisfy E · E ¼ −E2 and B · B ¼ −B2. In the local
rest frame (LRF) of the fluid, with uμ ¼ ð1; 0Þ, we have
Eμ ¼ ð0;EÞ and Bμ ¼ ð0;BÞ. In terms of Eμ, Bμ and uμ, the
antisymmetric field strength tensor Fμν and its dual are
given by

Fμν ¼ Eμuν − Eνuμ − Bμν;

F̃μν ¼ Bμuν − Bνuμ þ Eμν: ð2:8Þ

Here, in analogy to Bμν, the antisymmetric tensor Eμν is
defined by Eμν ≡ ϵμναβEαuβ. In a dissipative fluid with
electric charge density ρe and electric conductivity σ, we
have

Jμ ≡ ρeuμ þ σEμ þ ∂ρMρμ: ð2:9Þ

The modified current J μ appearing on the right-hand side
(rhs) of (2.2) is thus given by

J μ ¼ Jμ − cPνF̃νμ;

¼ ρeuμ þ σEμ þ χe∂νðEμuνÞ − χm∂νBνμ

− cðP · BÞuμ þ cðP · uÞBμ þ cϵμνρσPνEρuσ: ð2:10Þ

Here, the definitions of F̃μν from (2.8) and Mμν from (2.7)
are used.

B. Properties of the transverse MHD

As aforementioned, the transverse MHD is mainly char-
acterized by a translational symmetry in the transverse x–y
plane. The evolution of the fluid occurs in the longitudinal
z-direction. Moreover, v · E ¼ 0 and v · B ¼ 0 are assumed.
Together with u · E ¼ 0 and u · B ¼ 0, that arise from the
above definitions of Eμ and Bμ, they lead to2

Eμ ¼ ð0; Ex; Ey; 0Þ; and Bμ ¼ ð0; Bx; By; 0Þ: ð2:11Þ

Because of the assumed translational invariance in the x–y
plane, the transverse components ofEμ andBμ fields turn out
to be independent of x and y variables. Moreover, using the
homogeneous and inhomogeneous Maxwell equations, and
following the method also used in [19] (for details, see
Appendix B), it is easy to show that the longitudinal
components of Eμ and Bμ do not evolve with τ and η,

∂Ei

∂τ ¼ ∂Ei

∂η ¼ 0; i ¼ 0; z;

∂Bi

∂τ ¼ ∂Bi

∂η ¼ 0; i ¼ 0; z: ð2:12Þ

Here, τ ¼ ðt2 − z2Þ1=2 and η ¼ 1
2
ln tþz

t−z are the proper time
and the rapidity in the 1þ 1-dimensional Milne parametri-
zation, where in particular, xμ is given by xμ ¼ ðt; 0; 0; zÞ ¼
ðτ cosh η; 0; 0; τ sinh ηÞ. Choosing the Bjorken ansatz for uμ,
we arrive at

uμ ¼ ðcosh η; 0; 0; sinh ηÞ: ð2:13Þ

In terms of the above τ and η parameters, the derivative
∂μ ¼ ð∂t; 0; 0; ∂zÞ is defined by

∂
∂t ¼ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η ;

∂
∂z ¼ − sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η : ð2:14Þ

Using these relations, apart from ∂ · E ¼ 0 and ∂ · B ¼ 0, we
have E · ∂ ¼ 0 and B · ∂ ¼ 0.
In addition to the above properties, which are also

discussed in [19], the transverse CSMHD is characterized
by ∂xϑ ¼ ∂yϑ ¼ 0. This is because of the assumed trans-
lational invariance in the transverse plane. We thus have

Pμ ¼ ð∂0ϑ; 0; 0; ∂zϑÞ: ð2:15Þ

C. Properties of anomalous terms in J μ

Let us first consider the inhomogeneous MCS equation
of motion from (2.2). Multiplying it with uν, and using the
definitions of Fμν from (2.8), Mμν from (2.7) and J μ from
(2.10), we arrive at

2B · ω ¼ ρe − cP · B; ð2:16Þ

where ωμ ≡ 1
2
ϵμναβuν∂αuβ is the vorticity of the fluid.

Bearing in mind that in transverse MHD only the longi-
tudinal components of uμ and ∂μ are nonvanishing, the
vorticity of the fluid vanishes identically. We thus arrive at

ρe ¼ cP · B: ð2:17Þ

In transverse CSMHD, this result is also consistent with the
continuity equation ∂μJ μ ¼ 0 from (2.5) with J μ from
(2.10). Plugging Bμ and Pμ from (2.11) and (2.15) into
(2.17), it turns out that the electric charge density arising
from the gradient of the axionlike field ϑ vanishes. As
described in [17], (2.17) is a manifestation of the Witten
effect, according to which, dyons are created in a system
with nonvanishing spatial gradient of ϑ [17,26]. However,
the fact that in the transverse MHD, P · B and hence ρe
vanish means that in a system with a translational invari-
ance in two spatial x and y directions, even for non-
vanishing ∂3ϑ, no dyons can be built.

2For a generic four-vector aμ, the notation aμ ¼
ða0; a1; a2; a3Þ ¼ ða0; ax; ay; azÞ is used.
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Let us now consider the second term proportional to c in
(2.10), cðP · uÞBμ. In the LRF of the fluid, the correspond-
ing coefficient is given by

cðP · uÞ ¼LRFκB; ð2:18Þ

where κB ≡ c∂0ϑ ¼ cμ5 is the coefficient of chiral mag-
netic effect (CME), and μ5 is the axial chemical potential.
Plugging, at this stage, uμ from (2.13) and Pμ from (2.15)
into (2.18), and bearing in mind that P · u is a Lorentz
scalar, we obtain

κB ≡ cP0 cosh ηþ cP3 sinh η: ð2:19Þ

The appearance of the CME current in J μ from (2.10) was
previously indicated in [17].
Let us finally consider the third term cϵμνρσPνEρuσ

appearing on the rhs of J μ from (2.10). Plugging uμ from
(2.13) and Pμ from (2.15) into this expression, we obtain

cϵμνρσPνEρuσ ¼ κEϵ
0μν3Eν; ð2:20Þ

where κEðτ; ηÞ is defined by3

κE ≡ cP0 sinh ηþ cP3 cosh η: ð2:21Þ

Let us notice that in [17], this term appears in the form
P × E in the modified inhomogeneous MCS equation

∇ × B −
∂E
∂t ¼ J þ cðP0B − P × EÞ;

where Pμ ¼ ð∂0ϑ;∇ϑÞ≡ ðP0;PÞ is introduced. This dis-
sipationless anomalous Hall (AH) current is also known
from [23,24], where its connection to topological insulators
and its implications to heavy ion physics as well as neutron
stars are outlined.
Parametrizing, as in [19], the electric and magnetic four

vectors from (2.11) in terms of the relative angles of E and
Bwith respect to the x-axis in the LRF of the fluid, ζ and ϕ,
we arrive at

Eμ ¼ ð0; E cos ζ; E sin ζ; 0Þ;
Bμ ¼ ð0; B cosϕ; B sinϕ; 0Þ: ð2:22Þ

In Sec. IV, we show that κE from (2.21) is related to tan δ,
with δ≡ ϕ − ζ. Using the boost invariance (η-independ-
ence) of δ, which is explicitly shown in Sec. IV, κE turns out
to be solely a function of τ.
Combining the above results, the modified current (2.10)

thus reads

J μ ¼ σEμ þ χe∂νðEμuνÞ − χm∂νBνμ þ κBBμ

þ κEϵ
0μν3Eν: ð2:23Þ

Let us notice, at this stage, that, according to definitions
(2.19) and (2.21), κB and κE turn out to be the Lorentz boost
transformed of cP0 and cP3 from the LRF of the fluid. In
Sec. IV, we use the inverse transformation

cP0 ¼ þκB cosh η − κE sinh η;

cP3 ¼ −κB sinh ηþ κE cosh η; ð2:24Þ

and determine the evolution of the axionlike field ϑ as a
function of τ and η.

III. CONSTITUTIVE EQUATIONS
OF THE CSMHD IN 1+ 1 DIMENSIONS

The constitutive equations of CSMHD include the homo-
geneous and inhomogeneous Maxwell equations from (2.2),
the Euler equation arising from Δμν∂ρTρν ¼ 0 with Tμν the
total energy-momentum tensor, and the equation arising
from Δμν∂ρT

ρν
F ¼ −ΔμνðJλFλν þ c

4
PνFρσFρσÞ. Here, Δμν≡

gμν − uμuν. These equations and a number of other useful
relations are presented in this section.
Plugging the definitions of F̃μν from (2.8) into the

homogeneous Maxwell equation (2.2), and combining
the resulting expressions for ν ¼ 1 and ν ¼ 2 components
of ∂μF̃μν ¼ 0, we arrive after some algebra at

∂μðBuμÞ −
E
τ
cos δ

∂ζ
∂η ¼ 0; ð3:1Þ

and

B
∂ϕ
∂τ þ E

τ
sin δ

∂ζ
∂η ¼ 0: ð3:2Þ

Here, the derivatives defined in (2.14) and the parametri-
zation of Eμ and Bμ in terms of ζ and ϕ from (2.22) are
used. Following same steps, the equations arising from
the combination of ν ¼ 1 and ν ¼ 2 components of the
inhomogeneous Maxwell equation ∂μFμν ¼ J ν with Fμν

from (2.8) and J ν from (2.23) reads

ð1þ χeÞE
∂ζ
∂τ þ ð1 − χmÞ sin δ

B
τ

∂ϕ
∂η þ κEE

þ κBB sin δ ¼ 0; ð3:3Þ

ð1þ χeÞ∂μðEuμÞ þ ð1 − χmÞ cos δ
B
τ

∂ϕ
∂η þ σE

þ κBB cos δ ¼ 0; ð3:4Þ

where κB and κE are defined in (2.19) and (2.21). Let us
notice that the additional terms including these two

3Later, for the sake of simplicity, we introduce a function
αE ¼ κE=σ, where σ is the electric conductivity of the medium.
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coefficients in (3.3) and (3.4), arise from additional terms of
the modified MCS current J μ proportional to c, and are
absent in a fluid with no chirality imbalance.
In contrast to the above inhomogeneous MCS equations,

the Euler equation arising from Δμν∂ρTρν ¼ 0 does not
receive any additional term proportional to c. It reads

Duμ ¼
∇μptot − χCμ

ϵþ pþ ð1 − χmÞB2 þ ð1 − χeÞE2
: ð3:5Þ

Here, D≡ uμ∂μ and ∇μ ≡ Δμν∂ν. Moreover, the total
pressure ptot and Cμ are defined by

ptot ≡ p − χmB2 þ 1

2
ðE2 þ B2Þ; ð3:6Þ

and

Cμ ≡ EλBλρ∂ρuμ þ θEλBλμ þ ΔμνDðEλBλνÞ; ð3:7Þ

with θ ¼ ∂μuμ. The coefficient χ, appearing in (3.5), is
defined by χ ≡ 1

2
½ð1þ χeÞ þ ð1 − χmÞ�. For a uniformly

expanding fluid withDuμ ¼ 0, (3.5) leads to∇μptot ¼ χCμ.
Bearing in mind that in the Milne coordinates, we have
θ ¼ 1

τ,D ¼ ∂
∂τ,∇μ ¼ − 1

τ ðsinh η; 0; 0;− cosh ηÞ ∂
∂η, the Euler

equation (3.5) is given by

1

τ

∂ptot

∂η ¼ −χ
� ∂
∂τ þ

2

τ

�
ðEB sin δÞ: ð3:8Þ

Assuming, as in [19], p, E and B to be η-independent, we
arrive for χ ≠ 0 at Cμ ¼ 0. This leads to

� ∂
∂τ þ

2

τ

�
ðEB sin δÞ ¼ 0: ð3:9Þ

In contrast to [19], where the combination of constituent
equations of MHD led to sin δ ¼ 0, for nonvanishing κE,
sin δ ≠ 0 turns out to be also possible. In this case (3.9)
leads to an additional equation apart from (3.1)–(3.4) and
(3.10), that determines the evolution of electromagnetic and
thermodynamic fields as well as κB and κE [see Sec. IV].
Using Duμ ¼ 0 and Cμ ¼ 0, and combining the expres-

sions arising from μ ¼ 0 and μ ¼ 3 components of
Δμν∂ρT

ρν
F ¼ −ΔμνðJλFλν þ c

4
PνFρσFρσÞ with Tμν

F given
in (2.6), we arrive at

½σEþ χe∂μðEuμÞ� tan δ − Eχe
∂ζ
∂τ ¼ αEσE: ð3:10Þ

Here, cos δ ≠ 0 is used.4 For the evolution of the
temperature, we shall also evaluate uν∂μT

μν
F ¼

−uνðJμFμν þ c
4
PνFρσFρσÞ, which, upon using (2.18), yields

Dϵþ χeEDEþ θðϵþ p − χmB2Þ þ 1

2
ðχe − χmÞ

×
EB
τ

cos δ
∂δ
∂η ¼ σE2 − χm

�
EB
τ

cos δ
∂ϕ
∂η

�

þ κBEB cos δ: ð3:11Þ

Similar to the case of nonideal transverse MHD with no
chirality imbalance, previously discussed in [19], the dynam-
ics of nonideal CSMHD in 1þ 1 dimensions is governed by
a number of inhomogeneous differential equations

∂μðTκuμÞ ¼ TκDL; ∂μðBuμÞ ¼ BDM;

∂μðEuμÞ ¼ EDN ; ð3:12Þ

whose formal solutions are given by

T ¼ T0

�
τ0
τ

�1
κ

e
L
κ ; B ¼ B0

�
τ0
τ

�
eM;

E ¼ E0

�
τ0
τ

�
eN ; ð3:13Þ

respectively. The aim is to use the constitutive equations,
presented above, to determine the unknown functions L,M
andN . Another useful relation, which plays an essential role
in determining the evolution of electromagnetic and thermo-
dynamical fields in the case of nonvanishing AH coefficient,
κE, arises by combining (3.9) with the formal solutions forE
and B from (3.13),

∂δ
∂τ cos δþ

�
dM
dτ

þ dN
dτ

�
sin δ ¼ 0: ð3:14Þ

For cos δ ≠ 0, (3.14) turns out to be

∂δ
∂τ ¼ −

�
dM
dτ

þ dN
dτ

�
tan δ: ð3:15Þ

In the next section, we combine the constitutive equa-
tions (3.1)–(3.4), (3.10) and (3.15), and determine the
(τ, η)-dependence of ϕ and ζ, as well as the τ-dependence
ofE,B and T. To do this, we assume, as in [19], the equation
of state ϵ ¼ κp, where κ is related to the sound velocity cs in
the fluid as κ−1 ¼ c2s ¼ 1=3. Moreover, we set p ¼ nT,
where n is the baryon number density, whose evolution is
described by the conservation law

∂μðnuμÞ ¼ 0: ð3:16Þ

This leads to a simple Bjorken scaling solution for n in
transverse MHD

nðτÞ ¼ n0

�
τ0
τ

�
: ð3:17Þ4In the next section, we show that for σE ≠ 0, cos δ is

nonvanishing.
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These kinds of assumptions are also made originally by
Bjorken in order to present the most simple analytical
solution for transverse hydrodynamics [18]. Taking the
equation of state of an ultrarelativistic ideal gas ϵ ¼ κp with
κ ¼ 3 is motivated by the fact that at high temperature
T ≫ Tc, the trace anomaly ϵ − 3p approximately vanishes
(see e.g., the results arising from lattice QCD in [27]).5 In the
present work, we neglect, for simplicity, the effect of electric
and magnetic susceptibilities on the pressure p and energy
density ϵ, and use the same ideal gas equation of state ϵ ¼ 3p
as in [19,20], where extensions of Bjorken’s solutions are
presented. To make an analytical treatment possible, it is
enough to have κ ¼ constant [19].
Assuming, apart from ϵ ¼ 3p, the following empirical

τ-dependence for the electric conductivity σ,

σ ¼ σ0

�
τ0
τ

�
1=κ

; ð3:18Þ

and combining the definitions of κB and κE from (2.19) and
(2.21), we also determine the evolution of the axionlike
field ϑ. For the case of nonvanishing sin δ, we also arrive at
the τ-dependence of κB and κE. Let us notice that in order to
write (3.18), we were inspired by the temperature depend-
ence of the electric conductivity σ, which is computed in
lattice QCD [28] (see also [29]),6

σ ¼ σc
T
Tc

; with σc ¼ 5.8� 2.9 MeVc; ð3:19Þ

where Tc is the critical temperature of the QCD phase
transition. Plugging the evolution of the temperature T
from (3.13) into (3.19), and neglecting e

L
κ , we arrive at

(3.18), with σ0 defined by

σ0 ≡ σc
T0

Tc
: ð3:20Þ

Here, T0 ¼ Tðτ0Þ is the initial temperature at τ ¼ τ0. Here,
as in the assumption concerning κ, we neglect, in the first
approximation, the effect of electric and magnetic suscep-
tibilities on the electric conductivity σ.

IV. THE EVOLUTION IN A UNIFORMLY
EXPANDING MAGNETIZED FLUID
WITH CHIRALITY IMBALANCE

Before presenting the (τ, η) dependence of ζ, ϕ, E, B and
T as well as ϑ, κE and κB, let us emphasize that in the

present paper, as in our previous work [19], our arguments
are based on three main assumptions:
(1) The system is translational invariant in the transverse

x–y plane, i.e., no quantity depends on x and y
coordinates.

(2) The system evolves uniformly, i.e., Duμ ¼ 0, ∀ t.
(3) The pressure p and the magnitude of the electric and

magnetic fields E ¼ jEj and B ¼ jBj are boost
invariant, i.e., ∂p

∂η ¼ 0, ∂E
∂η ¼ 0 and ∂B

∂η ¼ 0.

A. Summary of results

(i) Relative angle between E and B
(i.a) Using the aforementioned constitutive equations,

we show that in nonideal transverse MHD with nonvanish-
ing σE, the electric and magnetic fields cannot be
perpendicular to each other, i.e., cos δ ≠ 0.
(i.b) The combination of constitutive equations leads to

tan δ ¼ αE; ð4:1Þ

where αE ¼ κE=σ. According to (2.21), κE is given as a
linear combination of temporal and spatial gradients of the
ϑ-vacuum, P0 and P3, and vanishes in a fluid with no
chirality imbalance. Hence, in a chiral fluid, within the
aforementioned Bjorkenian framework, the relative angle
between the electric and magnetic fields, δ, is solely
determined by αE, and is thus related to the AH coefficient
κE and the electric conductivity of the chiral fluid σ. This
generalizes the results from our previous work [19], where it
was shown that in a nonchiral magnetized fluid, the electric
and magnetic fields are either parallel or antiparallel.
(i.c) It turns out that the relative angle between E and B

fields is boost invariant, i.e., ∂δ∂η ¼ 0. This leads immediately
to the boost invariance of αE through (4.1). We show that in
a chiral fluid, the case of αE ¼ 0 is not generally excluded.
In what follows, two cases of αE ≠ 0 and αE ¼ 0 are

separately considered.
(ii) Evolution of κE and δ
(ii.a) In the case of tan δ ≠ 0, we use (2.24) and the

definitions of cP0 and cP3 in terms of the temporal and
spatial derivatives of ϑ in the Milne parametrization (2.14),
and arrive at the evolution of κE,

κEðτÞ ¼ κð0ÞE

�
τ0
τ

�
; ð4:2Þ

where κð0ÞE ≡ κEðτ0Þ. Using (3.18), the evolution of αE ¼
κE=σ is thus given by

αE ¼ α0

�
τ0
τ

�
1−1

κ

: ð4:3Þ

This fixes the evolution of the relative angle between the
electric and magnetic fields as

5Equivalently, c2s ¼ dp
dϵ ≈ 1=3 is found in lattice QCD for

T ≫ Tc (see e.g., Table 1 in [27]).
6The determination of the T dependence of the electric

conductivity σ is beyond the scope of the present paper. The
most recent results for σðTÞ is presented in [30].
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δðτÞ ¼ tan−1
�
α0

�
τ0
τ

�
1−1

κ

�
: ð4:4Þ

(ii.b) For tan δ ¼ 0, the electric and magnetic fields turn
out to be either parallel or antiparallel.
(iii) Evolution of the ϑ-vacuum
(iii.a) For tan δ ≠ 0, the evolution of the axionlike field ϑ

is given by

ϑðτ; ηÞ ¼ τ0κ
ð0Þ
E

c
ηþ 1

c

Z
τ

τ0

κBðτ0Þdτ0 þ ϑ0: ð4:5Þ

Here, κð0ÞE ¼ σ0α0 and ϑ0 ≡ ϑðτ0Þ.
(iii.b) For tan δ ¼ 0, the axionlike field ϑ is η-

independent. For κB ¼ const, its evolution is simply
given by

ϑðτÞ ¼ κB
c
ðτ − τ0Þ þ ϑ0; ð4:6Þ

with ϑ0 ¼ const.
(iv) Evolution of the angles ζ and ϕ
(iv.a) The evolution of the angles ζ and ϕ, appearing in

(2.22) is given by

ζðτ; ηÞ ¼ ω0ηþ ϕ0 − α0τ
1−1

κ
0

Z
τ

τ0

dτ0

τ01−1
κ

dM
dτ0

− tan−1ðαEðτÞÞ;

ϕðτ; ηÞ ¼ ω0ηþ ϕ0 − α0τ
1−1

κ
0

Z
τ

τ0

dτ0

τ01−
1
κ

dM
dτ0

: ð4:7Þ

Here, for τ-dependent σ, αE is given in (4.3), and M,
appearing in (3.12) and (3.13), describes the deviation from
the frozen flux theorem in a nonideal fluid.
(iv.b) For tan δ ¼ 0, the evolution of the angles ζ and ϕ is

given by

ζðτ; ηÞ ¼ ω0ηþ ζ0;

ϕðτ; ηÞ ¼ ω0ηþ ϕ0: ð4:8Þ

Same relations arise also in [19], where in the absence of
any chirality imbalance tan δ ¼ 0.
(v) Determination of α0
(v.a) Evaluating (3.4) at u ¼ 0, and using (3.15), we

show that for tan δ ≠ 0, α0 from (4.3) is given by

α0 ¼ �
�
−1þ 4

�
C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C21 − 4C2

q �−2
�

1=2
; ð4:9Þ

where

C1 ≡
�
β0ω0 −

½ð1 − χmÞω0 þ κð0ÞB τ0�
β0ð1þ χeÞ

��
κ

κ − 1

�
; ð4:10Þ

and

C2 ≡
�

σ0τ0
1þ χe

��
κ

κ − 1

�
: ð4:11Þ

(v.b) In the case of tan δ ¼ 0, α0 vanishes identically.
(vi) Evolution of M, N and κB
(vi.a) For tan δ ≠ 0, it is possible to determineM andN

analytically. They are given by

M ¼ 1

2
ln

�
1 −

2κβ0ω0 cos δ0
κ − 1

	
1 −

�
τ0
τ

�
−ð1−1

κÞ

�

; ð4:12Þ

and

N ¼ 1

2
ln

�
cos2δ0

	
tan2δ0 þ

�
τ0
τ

�
−2ð1−1

κÞ

�

−
1

2
ln

�
1 −

2κβ0ω0 cos δ0
κ − 1

	
1 −

�
τ0
τ

�
−ð1−1

κÞ

�

;

ð4:13Þ

with β0 ≡ E0

B0
and cos δ0 ¼ lð1þ α20Þ−1=2. Here, l≡�1

and α0 is given in (4.9). Plugging M and N from (4.12)
and (4.13) into formal solutions for B and E from (3.13),
the evolution of these fields is completely determined in

terms of free parameters κ, τ0, β0, σ0, ω0 and κ
ð0Þ
B as well as

χe and χm.
For tan δ ≠ 0, we also have the possibility to determine

the evolution of κB using (3.4). It is given by

κBðuÞ ¼ −
1

β0τ0 cos δ

	
ð1þ χeÞβ20eN−M−u dN

du

þ ð1 − χmÞeM−N−u dM
du

þ στ0β
2
0e

N−M


; ð4:14Þ

with u≡ lnð ττ0Þ. Plugging the corresponding expressions

for M and N from (4.12) and (4.13) into (4.14) and using
the time dependence of σ from (3.18) as well as αE from
(4.3), the τ-dependence of κB is completely determined in
terms of the aforementioned free parameters.
(vi.b) For tan δ ¼ 0, we show that M either satisfies

dM
du

¼ 0; ð4:15Þ

or a second order nonlinear differential equation

d2M
du2

þ dM
du

	
dM
du

þ στ0eu

ð1þ χeÞ


þ ω2

0

ð1þ χeÞ

×

�
1 − χm þ κBτ0eu

ω0

�
¼ 0: ð4:16Þ
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In contrast to the case of tan δ ≠ 0, here κB is assumed to be
constant and part of the initial condition. As described in
[19], (4.15) corresponds to ω0 ¼ 0, which characterizes
nonrotating E and B vectors. Moreover, for ω0 ¼ 0, we
have M ¼ 0. This leads, according to (3.13), to
B ¼ B0ðτ0τ Þ, even in the nonideal fluid. For ω0 ≠ 0, which
corresponds to rotating E and B vectors, the solution of
(4.16) leads to nonvanishing M, which describes a
deviation from the frozen flux theorem.

Once M is determined, N can also be given by

eN ¼ eM

β0lω0

dM
du

: ð4:17Þ

(vii) Evolution of L
(vii.a) For tan δ ≠ 0, using (3.11), ϵ ¼ κp as well as

p ¼ nT, we show that eL=κ, appearing in the formal
solution of TðτÞ from (3.13), reads

e
L
κ ¼ 1þ E2

0

ϵ0

Z
τ

τ0

dτ0σðτ0Þ
�
τ0
τ0

�
1−1

κ

e2N þ E0B0

ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
1−1

κ

eNþMκBðτ0Þ cos δðτ0Þ

þ χmB2
0

τ0ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
2−1

κ

e2M þ χeE2
0

τ0ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
2−1

κ

e2N

−
χmB2

0

ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
1−1

κ

e2M
dM
dτ0

−
χeE2

0

ϵ0

Z
τ

τ0

dτ0
�
τ0
τ0

�
1−1

κ

e2N
dN
dτ0

: ð4:18Þ

Here, σðτÞ, MðτÞ, N ðτÞ, and κBðτÞ are given in (4.13),
(4.12), (3.18) and (4.14), respectively.
(vii.b) For tan δ ¼ 0, L is determined by choosing a

constant κB, and plugging M as well as N from the
solution of master equations (4.16) and (4.17) into (4.18).
In this case cos δ ¼ l ¼ �1.

B. Proofs

(i) Relative angle between E and B
(i.a) We prove by contradiction that in a fluid with

nonvanishing σE, cos δ does not vanish. Let us assume
that cos δ ¼ 0, and plug this into (3.14). Assuming, without
loss of generality, that Mð0Þ ¼ N ð0Þ ¼ 0, we obtain
MðτÞ ¼ −N ðτÞ. Then, plugging cos δ ¼ 0 into (3.1),
and comparing the remaining ∂μBμ ¼ 0 with the inhomo-
geneous differential equation ∂μðBuμÞ ¼ BDM from
(3.12), we obtainM ¼ N ¼ 0, ∀ τ. Plugging these results
into (3.4), we finally arrive at σE ¼ 0, which is however
assumed to be nonvanishing. This shows that for σE ≠ 0,
we have cos δ ≠ 0, i.e., in a nonideal fluid with finite
electric conductivity, E and B cannot be perpendicular to
each other. As aforementioned, to derive (3.10) and (3.15),
we have used cos δ ≠ 0.
(i.b) To show tan δ ¼ αE, let us consider (3.10). Using

∂μðEuμÞ ¼ E dN
dτ from (3.13), we arrive first at

∂ζ
∂τ ¼

�
σ

χe
þ dN

dτ

�
tan δ −

σ

χe
αE: ð4:19Þ

Plugging this expression into (3.3), and subtracting it from
(3.4) multiplied with tan δ, we arrive at (4.1).
(i.c) To show the boost invariance of δ, ∂δ

∂η ¼ 0, let us
consider (2.24). Bearing in mind that Pi ¼ ∂iϑ, i ¼ 0, 3

and using the definitions of longitudinal components of ∂μ

from (2.14), we arrive first at

∂ϑðτ; ηÞ
∂τ ¼ κB

c
;

∂ϑðτ; ηÞ
∂η ¼ τκE

c
: ð4:20Þ

Then, using the η-independence of κB, we have ∂2ϑ
∂η∂τ ¼ 0

from the first relation in (4.20). Differentiating then the
second relation from (4.20) with respect to τ, we arrive at

τ
∂κE
∂τ þ κE ¼ 0: ð4:21Þ

Using at this stage (3.18), (4.21) is equivalently given by

σcos−2δ
∂δ
∂uþ

�
1 −

1

κ

�
σ tan δ ¼ 0; ð4:22Þ

with u ¼ lnð ττ0Þ. Here, (4.1) is also used. Plugging ∂δ
∂u from

(3.15) into (4.22), we arrive at

σ

	
1 −

1

κ
−

1

cos2δ

�
dM
du

þ dN
du

�

tan δ ¼ 0: ð4:23Þ

Since in a nonideal fluid σ is nonvanishing, we are faced
with two distinct equations

cos2δ ¼ κ

κ − 1

�
dM
du

þ dN
du

�
; ð4:24Þ

for nonvanishing αE, or

tan δ ¼ 0; ð4:25Þ
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for vanishing αE. Let us consider (4.24). Here, the
η-independence of M and N leads immediately to the
η-independence of δ. Moreover, using (4.1), we obtain
∂αE∂η ¼ 0. The same is also true for tan δ ¼ 0 from (4.25),

which leads also to ∂δ
∂η ¼ 0.

(ii) Evolution of κE and δ
(ii.a) For tan δ ≠ 0, (4.1) yields αE ≠ 0. Bearing in mind

that κE ¼ σαE, in a nonideal fluid with finite electric
conductivity σ, the AH current κEϵ0μν3Eν from (2.23), is
therefore nonvanishing. To determine the evolution of κE,
we simply solve (4.21), and arrive first at (4.2). Then,
plugging (4.2) and (3.18) into αE ¼ κE=σ, it turns out that
αE evolves as (4.3). Using at this stage δ ¼ tan−1αE from
(4.1), the evolution of the relative angle between the electric
and magnetic fields is thus given by (4.4).
(ii.b) For tan δ ¼ 0, the electric and magnetic fields are

either parallel or antiparallel, and remain so during the
evolution of the chiral fluid. Their relative angle is thus
given by

δ ¼ nπ; with n ¼ 0; 1; 2;…: ð4:26Þ

Let us notice that according to (4.1), tan δ ¼ 0 leads to
αE ¼ 0, and hence to a vanishing AH current once E
and B are parallel or antiparallel. This is also expected
from [23,24].
(iii) Evolution of the ϑ-vacuum
(iii.a) To determine the τ- and η-dependence of the

axionlike field ϑ for the tan δ ≠ 0 case, let us differentiate
the second equation in (4.20) with respect to η. Using the
boost invariance of κE, we have

∂2ϑ
∂η2 ¼ 0, which leads to the

ansatz

ϑðτ; ηÞ ¼ λϑðτÞηþ ϑ0ðτÞ: ð4:27Þ

Plugging (4.27) into (4.20), and using (4.2), we obtain

∂ϑðτ; ηÞ
∂η ¼ λϑ ¼ τ0κ

ð0Þ
E

c
¼ const: ð4:28Þ

Here, κð0ÞE ¼ σ0α0. Differentiating (4.27) with constant λϑ
with respect to τ, and using ∂ϑ

∂τ ¼ κB
c from (4.20), ϑ0ðτÞ is

given by

ϑ0ðτÞ ¼
1

c

Z
τ

τ0

κBðτ0Þdτ0 þ ϑ0; ð4:29Þ

with ϑ0 ¼ const Plugging these results into (4.27), the
evolution of the axionlike field ϑ is thus given by (4.5).
(iii.b) As concerns the τ- and η-dependence of ϑ for

tan δ ¼ 0, let us consider (4.20). In this case αE ¼ 0 leads
to ∂ϑ

∂η ¼ 0, and hence to ϑðτ; ηÞ ¼ ϑ0ðτÞ. Plugging this into

the first relation in (4.20), and assuming κB ¼ const, we
arrive at (4.6).
(iv) Evolution of the angles ζ and ϕ
(iv.a) Let us consider the case tan δ ≠ 0. To derive the

evolution of the angles ζ and ϕ in this case, we use (4.1)
and ∂δ

∂η ¼ 0 to obtain

∂ζ
∂τ ¼

∂ϕ
∂τ −

1

1þ α2E

dαE
dτ

; ð4:30Þ

∂ζ
∂η ¼ ∂ϕ

∂η : ð4:31Þ

Plugging ∂μðBuμÞ ¼ B dM
dτ from (3.12) into (3.1), we

arrive at

∂ζðτ; ηÞ
∂η ¼ B

E cos δ
dM
du

; ð4:32Þ

where u ¼ lnð ττ0Þ. Using the η-independence of E, B, δ
and M, we have

∂2ζðτ; ηÞ
∂η2 ¼ 0; ð4:33Þ

and, upon using (4.31),

∂2ϕðτ; ηÞ
∂η2 ¼ 0: ð4:34Þ

The last two equations lead to

ζðτ; ηÞ ¼ ωζðτÞηþ ζ0ðτÞ;
ϕðτ; ηÞ ¼ ωϕðτÞηþ ϕ0ðτÞ: ð4:35Þ

Plugging at this stage (4.32) into (3.2), we obtain

∂ϕðτ; ηÞ
∂τ ¼ −αE

dM
dτ

: ð4:36Þ

Here, (4.1) is used. Then, using (4.30), we arrive at

∂ζðτ; ηÞ
∂τ ¼ −αE

dM
dτ

−
1

1þ α2E

dαE
dτ

: ð4:37Þ

Bearing in mind that the rhs of (4.36) and (4.37) are
independent of η, we have

∂
∂η

�∂ϕ
∂τ

�
¼ ∂

∂η
�∂ζ
∂τ

�
¼ 0: ð4:38Þ

Plugging (4.35) into (4.38) leads immediately to
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∂ωϕ

∂τ ¼ 0;
∂ωζ

∂τ ¼ 0; ð4:39Þ

and hence to ωϕ ¼ const and ωζ ¼ const. Using at this
stage (4.31), we obtain

ωϕ ¼ ωζ ≡ ω0: ð4:40Þ

The relation (4.32) reduces therefore to

ω0 ¼
B

E cos δ
dM
du

: ð4:41Þ

Plugging ζðτ; ηÞ ¼ ω0ηþ ζ0ðτÞ and ϕðτ; ηÞ ¼ ω0ηþ
ϕ0ðτÞ into (4.37) and (4.36), we arrive at the differential
equations for ζ0ðτÞ and ϕ0ðτÞ. Then, plugging (4.2) into
these equations, and solving them lead to (4.7).
(iv.b) Following the same method as described above, we

arrive for the case tan δ ¼ 0 at (4.8). Let us notice that in
this case, the results from (4.8) coincide with those
presented in [19].
(v) Determination of α0
(v.a) To prove (4.9), which is only valid for the case

tan δ ≠ 0, let us consider (3.4). Using ∂μðEuμÞ ¼ E dN
dτ ,

multiplying (3.4) with τ
E, and evaluating the resulting

expression at u ¼ 0, we arrive first at

dN
du

����
u¼0

þ ½ð1 − χmÞω0 þ κBτ0�
β0ð1þ χeÞ

cos δ0 þ
στ0

1þ χe
¼ 0;

ð4:42Þ

where, according to (4.3), δ0 ≡ δðτ ¼ τ0Þ ¼ tan−1α0. To
determine dN

du ju¼0, let us then evaluate (4.24) at u ¼ 0. For
α0 ≠ 0, we obtain

dN
du

����
u¼0

¼
�
κ − 1

κ

�
cos2δ0 −

dM
du

����
u¼0

: ð4:43Þ

Plugging

dM
du

����
u¼0

¼ β0ω0 cos δ0; ð4:44Þ

from (4.41) into (4.43) and the resulting expression into
(4.42), we arrive at

cos2δ0 − C1 cos δ0 þ C2 ¼ 0; ð4:45Þ
where C1 and C2 are defined in (4.10) and (4.11), respec-
tively. The solution of the above equation reads

cos δ0 ¼
1

2
ðC1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C21 − 4C2

q
Þ: ð4:46Þ

Using at this stage cos δ0 ¼ lð1þ α20Þ−1=2, we arrive at α0
from (4.9). In this way, the initial value of the relative angle

between E and B fields, δ0 ¼ tan−1α0, is completely
determined in terms of free parameters κ, τ0, β0, σ0, ω0

and κð0ÞB as well as χe and χm.
(vi) Evolution of M, N and κB
(vi.a) For tan δ ≠ 0, the quantities M, N and κB can be

determined using (3.4), (3.9) and (4.41). In what follows,
we assume dM

du ≠ 0 (see below). To determine M, let us
first consider (3.9). Integrating this relation with respect to
τ, and using the formal solution of E and B from (3.13), we
arrive first at

eN cos δ ¼ e−M sin δ0
αE

: ð4:47Þ

Here, (4.1) is also used. Plugging then the formal solution
of E and B into (4.41), and comparing the resulting
expression for eN cos δ,

eN cos δ ¼ eM

β0ω0

dM
du

; ð4:48Þ

with (4.47), we arrive at the corresponding differential
equation to M,

e2M
dM
du

¼ β0ω0 sin δ0
αE

; ð4:49Þ

with αE from (4.3). Integrating (4.49) with respect to u, we
arrive at M from (4.12). Bearing in mind that since α0
from (4.9) is solely a function of free parameters

fκ; τ0; β0; σ0;ω0; κ
ð0Þ
B ; χe; χmg, M turns also out to be a

function of the same free parameters.
There are many equivalent possibilities to determine N

arising in the formal solution of E from (3.13). One of the
most simple ones is to solve the differential equation

dN
du

¼
�
κ − 1

κ

�
cos2δ −

dM
du

; ð4:50Þ

from (4.24) with cos2δ ¼ ð1þ α2EÞ−1. Inserting αE from
(4.3) and M from (4.12) into (4.50), we arrive at N
from (4.13). Similar to M, N is also a function of free

parameters κ, τ0, β0, σ0, ω0 and κð0ÞB as well as χe and χm.
Plugging M and N from (4.12) and (4.50) into the formal
solutions of B and E from (3.13), the magnitude of the
magnetic and electric fields are given in terms of these free
parameters.
To prove (4.14), let us finally consider (3.4). Using

∂μðEuμÞ ¼ E dN
dτ , and multiplying (3.4) with τ

B, we arrive
first at
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ð1þ χeÞ
E
B
dN
du

þ ð1 − χmÞ
B
E
dM
du

þ στ0eu
E
B

þ κBτ0eu cos δ ¼ 0: ð4:51Þ

This gives rise to κB, that in terms of M, N and their
derivatives with respect to u is given by (4.14).
(vi.b) Let us now consider the case tan δ ¼ 0. In this case,

the constraint relation (3.9) is automatically satisfied, and
no explicit relation between dM

du and dN
du arises. To determine

M andN , we follow the same method as described in [19],
where in a nonchiral fluid, tan δ vanished.
To derive the master equation (4.16) for M, let us

consider (4.51). Multiplying it with E
B, and using (4.41), we

arrive at

1

ω2
0cos

2δ

dM
du

�
ð1þ χeÞ

dM
du

dN
du

þ ð1 − χmÞω2
0cos

2δ

þ στ0eu
dM
du

þ κBω0τ0eucos2δ

�
¼ 0: ð4:52Þ

Two distinct differential equations for M, (4.15) or (4.16),
thus arise. The latter is derived using

dM
du

dN
du

¼ d2M
du2

þ
�
dM
du

�
2

; ð4:53Þ

which arises from (4.41). Once M is determined either
analytically or numerically by solving (4.15) or (4.16), it is
possible to determine N via (4.48), with cos δ ¼ l ¼ �1.
(vii) Evolution of L
(vii.a) To drive (4.18) in the case of tan δ ≠ 0, let us

consider (3.11), that is equivalently given by

Dϵþ θðϵþ pÞ þO ¼ 0: ð4:54Þ

For nonvanishing dM
dτ , O is defined by

O≡ χeEDEþ χmBDB − σE2 − κBEB cos δ: ð4:55Þ

It arises from (3.11) with ∂δ
∂η ¼ 0 and ∂ϕ

∂η ¼ ω0 with ω0

satisfying (4.41).7 Then, plugging the equation of state
ϵ ¼ κp with constant κ into (4.54) and using p ¼ nT, we
arrive at

∂μðTκuμÞ ¼ TκDL; with DL ¼ −
O
p
; ð4:56Þ

and O given in (4.55). Finally, plugging the formal
solutions of E and B from (3.13) into (4.55), and using

p ¼ p0

�
τ0
τ

�
1þ1

κ

e
L
κ ; ð4:57Þ

which arises by combining the evolution of nðτÞ from
(3.17) and TðτÞ from (3.13), we arrive at (4.18).
(vii.b) In the case of vanishing tan δ, the coefficient eL=κ

is given by (4.18) with constant κB and cos δ ¼ l. In this
case, M and N arising from the master equations (4.16)
and (4.17), are to be used.

V. NONROTATING ELECTRIC AND MAGNETIC
FIELDS; ANALYTICAL RESULTS

Let us assume for simplicity that the electric and CM
conductivity, σ and κB, are constant. In this case, the
evolution of αE is given by plugging (4.2) into κE ¼ σαE,
and reads

αEðτÞ ¼ α0

�
τ0
τ

�
: ð5:1Þ

In what follows, we show that in the nonideal transverse
CSMHD with nonvanishing electric field, the case dM

du ¼ 0

leads to α0 ¼ 0, and therefore to a vanishing AH current.
The key point in this case is that, according to (4.41),
dM
dτ ¼ 0 corresponds to vanishing angular velocity ω0. This
is dubbed “nonrotating electric and magnetic fields.” Using
these assumptions, (4.7) leads to

ζðτ; ηÞ ¼ ϕ0 − tan−1ðαEÞ;
ϕðτ; ηÞ ¼ ϕ0; ð5:2Þ

with αE given in (5.1). It is also possible to show that the
evolution of B and E fields is given by

BðτÞ ¼ B0

�
τ0
τ

�
;

EðτÞ ¼ E0

�
τ0
τ

�	�
1þ lκB

β0σ

�
e−

σðτ−τ0Þ
1þχe −

lκB
β0σ



; ð5:3Þ

with β0 ¼ E0

B0
.

To do this, we start with the formal solution of B from
(3.13). For dM

du ¼ 0, we have M ¼ 0. Choosing, without
loss of generality, M0 ¼ 0, the evolution of B is given by
B ¼ B0ðτ0τ Þ from (5.3). Hence, as in the case of the ideal
MHD, the magnetic fluxes are frozen.
To arrive at the evolution of the electric field from (5.3),

let us consider (3.4). Using ∂ϕ
∂η ¼ ω0, and bearing in mind

that for dM
dτ ¼ 0, we have ω0 ¼ 0, we arrive at a differential

equation for U ≡ eN

dU
dτ

þ C0U þAðτÞ ¼ 0; ð5:4Þ7For dM
dτ ¼ 0, or equivalently ∂μðBuμÞ ¼ 0, we have to replace

BDB in (4.55) by B2θ.
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where

C0 ≡ σ

1þ χe
;

AðτÞ≡ A0

ð1þ α2EÞ1=2
; with A0 ≡ κBl

β0ð1þ χeÞ
: ð5:5Þ

The most general solution to (5.4) reads

eN ¼ e−C0ðτ−τ0Þ − e−C0τ
Z

τ

τ0

dτ0eC0τ0Aðτ0Þ: ð5:6Þ

However, it turns out that in this nonrotating case αE ¼ 0,
and eN is therefore given by

eN ¼
�
1þA0

C0

�
e−C0ðτ−τ0Þ −

A0

C0
: ð5:7Þ

To show this, let us consider (5.4), that leads to

N ¼ ln

�
−

AðτÞ
dN
dτ þ C0

�
: ð5:8Þ

Plugging

dN
dτ

¼ −
1

αEð1þ α2EÞ
dαE
dτ

; ð5:9Þ

from (3.15) with dM
dτ ¼ 0 and tan δ ¼ αE from (4.1)

into (5.8), and differentiating both sides of the resulting
expression with respect to τ, we arrive, after using (5.9)
once again, at the following differential equation for αE

αEα
00
E − C0αEα0Eðα2E − 1Þ − 2α02E ¼ 0; ð5:10Þ

where the primes denote the derivation with respect to τ.
Plugging, at this stage, αE from (5.1) into (5.10), we obtain

C0α20τ
2
0ðα20τ20 − τ2Þ
τ5

¼ 0: ð5:11Þ

This leads immediately to α0 ¼ 0, and thus to αE ¼ 0. As
aforementioned, eN in this case is given by (5.7). Plugging
the definitions ofA0 and C0 from (5.5) into (5.7), and using
the formal solution of E ¼ E0ðτ0τ ÞeN , we arrive at EðτÞ
from (5.3). Let us notice that for parallel E and B fields with
l ¼ þ1, EðτÞ is always positive. For antiparallel E and B
fields, the positiveness of E sets certain constraint on the
ratio κB

β0σ
.

VI. ROTATING ELECTRIC AND MAGNETIC
FIELDS; NUMERICAL RESULTS

In this section, we focus on the evolution of electro-
magnetic and hydrodynamic fields in a fluid with finite

electric conductivity σ. In particular, we separately study
two cases of nonvanishing and vanishing AH coefficients
κE [see Secs. VI A and VI B]. We are interested in the effect

of various free parameters fκ; τ0; β0; σ0;ω0; κ
ð0Þ
B ; χe; χmg on

the proper time dependence of E, B and T. To be brief, we
only use

fκ; τ0; β0g ¼ f3; 0.5 fm=c; 0.1g: ð6:1Þ

As concerns σ0, arising in (3.18), and defined in (3.20), we
mainly work with two values, σ0 ≃ 8.6; 17.1 MeVc, cor-
responding to T0 ¼ 250, 500 MeV. Here, σc ¼ 6 MeVc
and Tc ¼ 175 MeV are chosen. In our numerical results
and corresponding plots, these two cases are referred to as
T0 ¼ 250 MeV and T0 ¼ 500 MeV cases. Since the effect
of electric and magnetic susceptibilities, χe and χm, on the
evolution of E and B for the case of tan δ ¼ αE ¼ 0 is
already studied in [19], we set χe ¼ χm ¼ 0, and focus only
on the interplay between the rest of these parameters,

fσ0;ω0; κ
ð0Þ
B g, and their effect on the τ-dependence of E, B

and T.
In the case of tan δ ¼ αE ≠ 0, we first explain the method

from which a valid range for the constant angular velocity
ω0 is found by choosing a fixed initial value of κB. Because
of the definition κB ¼ cμ5 with c ¼ P

f¼fu;dg q2f
e2

2π2
, a fixed

initial value of κB corresponds to a fixed initial value of the
axial chemical potential μ5 of the medium. In our plots
different values of κB are denoted by corresponding values
of μ5. Bearing in mind that ω0 remains constant during the
evolution of the fluid, we choose fixed values of ω0, and
compute L, M and N from which the evolution of T, E
and B arises as a function of τ [see (3.13)]. Apart from these
quantities, the τ-dependence of μ5 can also be determined
in the case of nonvanishing αE.
In the case of vanishing AH coefficient, i.e., for

tan δ ¼ αE ¼ 0, we have to work with fixed values of κB
(or equivalently μ5) during the evolution of the fluid. For
the sake of comparison, we use the same values of ω0 as in
the case of nonvanishing αE. Following the method,
originally introduced in our previous work [19], we
numerically solve the master equation (4.16) for M using
different sets of free parameters. Once M is determined N
and L can also be determined, using (4.17) and (4.18). This
leads eventually to the proper time dependence of B, E
and T via (3.13).

A. Case 1: Nonvanishing AH coefficient

1. Determination of suitable values for ω0

As indicated in the previous section, for tan δ ≠ 0, the
quantitiesM andN are determined analytically by making
use of (3.4), (3.9) and (4.41). The results forM and N are
given by (4.12) and (4.13), respectively. Plugging these
results in the formal solutions of B and E from (3.13), we
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obtain the τ-dependence of these fields in terms of afore-
mentioned free parameters. Moreover, plugging the results
forM andN into (4.14), the τ-dependence of κB, and up to
a constant numerical factor, the τ-dependence of μ5 are also
determined. To choose appropriate values for ω0 for fixed

κð0ÞB , let us consider (4.14). Setting u ¼ 0, we obtain

κð0ÞB ¼ 1

lτ0ð1þ α20Þκ
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α20

q
β0ð−1þ κ þ τ0κσ0

þτ0α
2
0κσ0Þ − lð1þ α20Þκω0 þ lð1þ α20Þβ20κω0

�
:

ð6:2Þ

Here, α0 ¼ tan δ0, with δ0 the initial angle between
the electric and magnetic fields. Using (6.2), it is possible
to determine ω0 in terms of free parameters fκ; τ0; β0;

σ0; κ
ð0Þ
B ; δ0; χe; χmg. In Fig. 1, ω0 is plotted as a function of

δ0 for δ0 ∈ ð− π
2
; π
2
Þ [Fig. 1(a)] and δ0 ∈ ðπ

2
; 3π
2
Þ [Fig. 1(b)].8

Free parameters are given by (6.1) and

fσ0; κð0ÞB ; χe; χmg ¼ f17.1 MeVc; κð0ÞB ; 0; 0g;

with κð0ÞB ¼ 50c MeV (blue solid curves) and κð0ÞB ¼
500 MeV (green dashed curves).
Similar results arise for σ0 corresponding to

T0 ¼ 250 MeV. According to these results, the range of

ω0 does not vary too much by increasing μð0Þ5 from μð0Þ5 ¼
50 to μð0Þ5 ¼ 500 MeV. Let us notice that, according to the
definition of cos δ0 ¼ lð1þ α20Þ1=2, we have l ¼ þ1 for
δ0 ∈ ð− π

2
;þ π

2
Þ and l ¼ −1 for δ0 ∈ ðπ

2
; 3π
2
Þ. Moreover, as it

turns out from Fig. 1, in the intervals δ0 ∈ ð− π
2
;þ π

2
Þ, ω0 is

negative, while for δ0 ∈ ðπ
2
; 3π
2
Þ, ω0 turns out to be positive.

Hence, the product Ω0 ¼ lω0 remains negative ∀ δ0. In
[19], we worked with positive and negative values of Ω0,
and showed that for Ω0 > 0, the electric field becomes
negative and thus unphysical. The above results confirm
this observation in the case of nonvanishing αE.
To study the effect of nonvanishing electric and magnetic

susceptibilities on ω0, we have plotted in Fig. 2 the angular
velocity ω0 as a function of δ0 for

CS-1∶ fχe;χmg ¼ f0;0g; thick solid curve;

CS-2∶ fχe;χmg ¼ f0.01;þ0.2g; thin solid curve;

CS-3∶ fχe;χmg ¼ f0.01;−0.2g; dashed curve;

ð6:3Þ

and σ0 corresponding to T0 ¼ 500 MeV as well as μð0Þ5 ¼
500 MeV in two intervals δ0 ∈ ð− π

2
;þ π

2
Þ [Fig. 2(a)] and

δ0 ∈ ðπ
2
; 3π
2
Þ [Fig. 2(b)]. In both intervals of δ0, the curves

for nonvanishing susceptibilities (CS-2 and CS-3) are
slightly shifted relative to the case of vanishing χe and
χm (CS-1). Let us notice that two cases CS-2 and CS-3
correspond to para- and diamagnetic fluids with χm > 0
and χm < 0, respectively.
In what follows, we pick up a number of positive and

negative ω0 ¼ �0.045, �0.1, and determine M, N and L
using the method described before. To see more directly
which δ0 corresponds to these ω0, we use the information
arising in Fig. 1, together with the corresponding results
to T0 ¼ 250 MeV, and present in Table I a list of initial

angles δ0 corresponding to these ω0s for the case μ
ð0Þ
5 ¼ 50

and μð0Þ5 ¼ 500 MeV as well as fχe; χmg ¼ f0; 0g and
fχe; χmg ¼ f0.1;þ0.2g. We are, in particular, interested
in χm > 0, because, according to lattice QCD results, the

(a)

(b)

FIG. 1. The angular velocity ω0, appearing in (4.7), is plotted as
a function of initial angle between the electric and magnetic field,
δ0, for free parameters fκ;τ0;β0;χe;χmg¼f3;0.5 fm=c;0.1;0;0g
and σ0 ¼ 17.1 MeVc, corresponding to T0 ¼ 500 MeV, as well

as the initial axial chemical potential μð0Þ5 ¼ 50 MeV (blue solid

curves) and μð0Þ5 ¼ 500 MeV (green dashed curves) in the interval
δ0 ∈ ð− π

2
;þ π

2
Þ (panel a) and δ0 ∈ ðπ

2
; 3π
2
Þ (panel b) where, by

definition, l ¼ þ1 and l ¼ −1, respectively.

8Here, parentheses denote open intervals, i.e., x ∈ ða; bÞ is
equivalent with a < x < b.
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QGP created at the RHIC and LHC is paramagnetic [31].
Let us notice that for l ¼ þ1 and l ¼ −1, we present only
angles in δ0 ∈ ð0; π

2
Þ and δ0 ∈ ðπ; 3π

2
Þ quadrants, respec-

tively. In the case of nonvanishing AH coefficient κE, δ0 is
determined by the initial value of α0 through tan δ0 ¼ α0.
According to the above scenario, affected by δ0, β0, σ0, χe
and χm of the fluid, ω0 is fixed. It has a crucial role, in
particular, on the evolution of the axial chemical potential
μ5 (or equivalently the CM conductivity κB).

2. Evolution of B, E and T

In Fig. 3, we have plotted B=B0 as a function of τ ∈
½0.5; 10� fm=c for ω0 ¼ þ0.1 and zero susceptibilities, and
compared its evolution for two initial axial chemical poten-

tials μð0Þ5 ¼ 50 MeV (red dots) and μð0Þ5 ¼ 500 MeV (black
solid curve). To do this, we first consider (6.2). Then,

plugging κð0ÞB ¼ 50c MeV and κð0ÞB ¼ 500c MeV, as well
as fκ; τ0; β0g from (6.1) and

fl;ω0; σ0g ¼ f−1; 0.1; 8.6 MeVcg;

into (6.2), we determine the corresponding α0 to μð0Þ5 ¼
50 MeV and μð0Þ5 ¼ 500 MeV. We arrive at α0 ¼ 45.66 and
α0 ¼ 47.03, respectively. Plugging these quantities into
(4.12), and bearing in mind that δ0 ¼ tan−1 α0, we arrive
atMðτÞ. This leads toB=B0 once the formal ansatz (3.13) is
used. The results presented in Fig. 3 shows that the effect of
initial axial chemical potential on the proper time depend-
ence of themagnetic field is negligible.We also plottedB=B0

for T0 ¼ 500 MeV with σ0 ¼ 17.1, and arrived at the same
conclusion. This shows that the effect of different initial
electric conductivity on B=B0 is negligible.
Plugging the same α0 ¼ 45.66 and α0 ¼ 47.03, corre-

sponding to μð0Þ5 ¼ 50 MeV and μð0Þ5 ¼ 500 MeV, together
with free parameters (6.1) into (4.13), we arrive at N .
Using the formal ansatz (3.13), we then obtain E=E0.

(a)

(b)

FIG. 2. The angular velocity ω0 is plotted as a function of
initial angle between the electric and magnetic field, δ0,

for free parameters fκ; τ0; β0; μð0Þ5 g ¼ f3; 0.5; 0.1; 500 MeVg
and σ0 ¼ 17.1 MeVc, corresponding to T0 ¼ 500 MeV. Three
different sets of χe and χm, CS-i, i ¼ 1, 2, 3 from (6.3) are used.
Panels (a) and (b) correspond to δ0 ∈ ð− π

2
;þ π

2
Þ and δ0 ∈ ðπ

2
; 3π
2
Þ,

respectively. In both intervals of δ0, the curves for nonvanishing
susceptibilities [CS-2 (thin solid curve) and CS-3 (dashed curve)]
are slightly shifted relative to the case of vanishing χe and χm
[CS-1 (thick solid curve)].

TABLE I. The angles δ0 corresponding to ω0 ¼ �0.045, �0.01 are listed for T0 ¼ 250, 500 MeV, μð0Þ5 ¼ 50, 500 MeV and
fχe; χmg ¼ f0; 0g and fχe; χmg ¼ f0.01;þ0.2g. The values of δ0 for each fixed value of negative and positive ω0 are in the δ0 ∈ ð0; π

2
Þ

and δ0 ∈ ðπ; 3π
2
Þ quadrants, respectively. The solutions for the other two quadrants are not presented here. It turns out that different

properties of the medium, such as T0, β0, σ0, μ
ð0Þ
5 , χe and χm, affect δ0 for each fixed value of ω0.

Angles for T0 ¼ 250 MeV Angles for T0 ¼ 500 MeV

μð0Þ5 ¼ 50 MeV μð0Þ5 ¼ 500 MeV μð0Þ5 ¼ 50 MeV μð0Þ5 ¼ 500 MeV

l ω0

χe ¼ 0 χe ¼ 0.01 χe ¼ 0 χe ¼ 0.01 χe ¼ 0 χe ¼ 0.01 χe ¼ 0 χe ¼ 0.01
χm ¼ 0 χm ¼ þ0.2 χm ¼ 0 χm ¼ þ0.2 χm ¼ 0 χm ¼ þ0.2 χm ¼ 0 χm ¼ þ0.2

þ1 −0.045 52:7° 63:1° 58:7° 66:4° 57:3° 70:7° 64:4° � � �
86:9° 86:0° 86:5° 85:4° 83:2° 78:9° 81:5° � � �

þ1 −0.1 88:7° 88:5° 88:7° 88:3° 87:4° 86:7° 87:3° 86:6°

−1 þ0.1 268:7° 268:4° 268:8° 268:5° 267:5° 267:2° 267:6° 266:9°

−1 þ0.045 231:3° 242:3° 224:8° 239:1° 235:8° 249:4° 228:9° 244:7°

267:1° 266:5° 267:4° 266:5° 263:4° 259:4° 264:4° 261:4°
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In Fig. 4, E=E0 is plotted as a function of τ ∈
½0.5; 10� fm=c for ω0 ¼ 0.1 and the same axial chemical

potentials μð0Þ5 ¼ 50 MeV (red dots) as well as μð0Þ5 ¼
500 MeV (black solid curve) as above. Similar to the
case of B=B0, the effect of different initial axial
chemical potential on E=E0 turns out to be negligible.
The same is also true for the effect of initial electric
conductivity.

To determine T=T0 from (3.13), let us consider eL=κ from

(4.18), and define a new parameter Σ0 ≡ B2
0

ϵ0
. Plugging also

σðτÞ from (3.18) into (4.18), and bearing in mind that
cos δ ¼ lð1þ α2EÞ1=2 with αE from (4.3), we arrive at a
more appropriate expression for eL=κ. In the case of zero
susceptibilities only the first two terms in (4.18) contribute.
Using the same free parameters as in the case of B=B0 and
E=E0 from Figs. 3 and 4 together with Σ0 ¼ 10, we arrive
at the proper time dependence of T=T0. This is demon-
strated in Fig. 5. Similar to previous examples, the effect of
different initial axial chemical potential on the evolution of
the temperature is negligible. Moreover, as it turns out,
different values of initial electric conductivity does not
affect the temperature too much. We also checked the effect
of negative ω0 on B, E and T, and arrived at the same
conclusions. Choosing various Σ0 does not change the
results presented in Fig. 5 as well.

3. Evolution of μ5
In contrast toE,B andT, the proper time dependence of μ5

is strongly affected by the initial axial chemical potentialμð0Þ5 ,
the angular velocity ω0 and the initial electric conductivity

σ0. Let us first consider the effect of variousμ
ð0Þ
5 on the proper

time dependence of μ5 for fixed fl;ω0; σ0; χe; χmg. To
determine it, we compute the corresponding α0 to

μð0Þ5 ¼ 50, 150, 250, 350 MeV by plugging

fκ; τ0; β0;l;ω0; σ0; χe; χmg
¼ f3; 0.5 fm=c; 0.1;−1; 0.1; 8.6 MeVc; 0; 0g

FIG. 3. The τ-dependence of B=B0 is demonstrated in the case

αE ≠ 0 for ω0 ¼ 0.1, T0 ¼ 250 MeV and μð0Þ5 ¼ 50 MeV (red
dots) and μ5 ¼ 500 MeV (black curve). Other parameters are
given in (6.1). As it turns out, the effect of different initial axial
chemical potential on the evolution of the magnetic field is
negligible.

FIG. 4. The τ-dependence of E=E0 is demonstrated in the case

αE ≠ 0 for ω0 ¼ 0.1, T0 ¼ 250 MeV and μð0Þ5 ¼ 50 MeV (red
dots) and μ5 ¼ 500 MeV (black curve). Other parameters are
given in (6.1). It turns out that the effect of different initial axial
chemical potential on the evolution of the electric field is
negligible.

FIG. 5. The τ-dependence of T=T0 is demonstrated in the case

αE ≠ 0 for ω0 ¼ 0.1, T0 ¼ 250 MeV and μð0Þ5 ¼ 50 MeV (red
dots) and μ5 ¼ 500 MeV (black dotted curve). Other parameters
are given in (6.1). Similar to B and E, the effect of different initial
axial chemical potential on the evolution of the temperature is
also negligible.
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and κð0ÞB ¼ μð0Þ5 c ¼ 50c; 150c; 250c; 350c MeV into (6.2).

We arrive at α0 ¼ 45.66, 45.96, 46.27, 46.57 for these κð0ÞB .
Using these α0 and aforementioned free parameters, we then
determineM,N and their derivatives with respect to u from
(4.12) and (4.13). Plugging all these quantities in (4.14), the
proper time dependence of κB ¼ μ5c is determined. In Fig. 6,

the effect of various initial axial chemical potentialμð0Þ5 ¼ 50,
150, 250, 350 MeV on the evolution of μ5 is plotted for
T0 ¼ 250 MeV. Depending on its initial value, μ5 either

increases (smallμð0Þ5 ) or decreases (largeμð0Þ5 ) with increasing
τ. According to these and several other results with different
ω0 and T0, μ5 approaches asymptotically to a certain value
μ5 ≃ 100–120 MeV at τ ¼ 2–4 fm=c, and remains almost
constant afterwards. This can be interpreted as the production
of an approximately constant CMcurrent, independent of the
initial value of μ5, at τ ≥ 6 fm=c.
In a more realistic model, where the pressure p and

the axial chemical potential μ5 are related,
9 it is possible to

relate a finite change in μ5 to a difference in the axial
number density n5, using n5 ¼ ∂p

∂μ5. As we have demon-

strated in Fig. 6, at τ ∼ 2 fm=c, μ5 increases from μð0Þ5 ¼
50 MeV to μ5 ∼ 100 MeV, and decreases from μð0Þ5 ¼
350 MeV to μ5 ∼ 200 MeV, respectively. On the other
hand, according to Fig. 5, at the same τ ∼ 2 fm=c, the

temperature decreases nearly 40% from T0 ¼ 250 MeV to
T ∼ 150 MeV. Using

pðT; μ5Þ ¼
gQGPπ2

90
T4 þ NcNf

6
μ25T

2 þ NcNf

12π2
μ45;

from [32],10 with gQGP ¼ ggl þ 7
8
gq the number of degrees

of freedom with ggl ¼ ðN2
c − 1ÞNs and gq ¼ 2NcNfNs and

Nf ¼ 3, Nc ¼ 3 as well Ns ¼ 2 the number of flavors,
colors as well as spin states of quarks and transverse

gluons, we arrive for μð0Þ5 ¼ 50 MeV and μð0Þ5 ¼ 350 MeV
to Δn5 ∼ ð0.13 GeVÞ3 and Δn5 ∼ ð0.29 GeVÞ3, respec-
tively. In general, defining μ5 ¼ μR − μL as being the
difference of right- and left-handed chemical potential,
Δμ5 > 0 and Δμ5 < 0 are related to a chirality flip in favor
of right- and left-handed quarks, respectively.
The evolution of μ5 is also affected by the initial value

of the electric conductivity, σ0. Following the procedure
described above, we determine μ5 for ω0 ¼ 0.1 and

μð0Þ5 ¼ 300 MeV at two different initial temperatures
T0 ¼ 250 MeV and T0 ¼ 500 MeV, giving rise to σ0 ¼
8.6 MeVc and σ0 ¼ 17.1 MeVc, respectively. The
τ-dependence of the corresponding μ5 is plotted in
Fig. 7. Here, blue solid and green dashed curves correspond
to T0 ¼ 250 MeV and T0 ¼ 500 MeV. According to this
result, the axial chemical potential μ5, or equivalently the
CM conductivity κB, decays slower for larger initial

FIG. 6. The τ-dependence of μ5 ¼ c−1κB is demonstrated in the
case αE ≠ 0 for T0 ¼ 250 MeV and various initial axial chemical

potentials μð0Þ5 ¼ 50, 150, 250, 350 MeV, denoted by red thick
and blue thin solid curves as well as green thick and black
thin dashed curves. Depending on its initial value, μ5 increases
or decreases in the first τ ¼ 2–4 fm=c, approaches asympto-
tically to μ5 ≃ 100–120 MeV, and remains almost constant
afterwards.

FIG. 7. The τ-dependence of μ5 is plotted for fl ¼ −1;ω0 ¼
0.1g and μð0Þ5 ¼ 300 MeV at two different temperatures T0 ¼
250 MeV (blue solid curve) and T0 ¼ 500 MeV (green dashed
curve), giving rise to σ0 ¼ 8.6 MeVc and σ0 ¼ 17.1 MeVc,
respectively. It turns out that the axial chemical potential μ5,
or equivalently CM conductivity κB, decays slower for larger
values of T0, or equivalently larger initial electric conductivity of
the medium.

9In our Bjorkenian setup, p=p0 ¼ ðτ0=τÞ1þ1=κ . Together with
T=T0 ¼ ðτ0=τÞ1=κ and κ ¼ 3, it thus leads to p ∝ T4. In this setup
μ5 does not appear in p. 10We neglect μ in p from [32].
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temperatures, or equivalently larger initial electric con-
ductivities of the medium. We have repeated this compu-
tation for various positive ω0 as well as initial values of μ5,
and arrived at the same conclusion.
In Fig. 8, the τ-dependence of μ5 is plotted for

two different values of ω0 ¼ 0.045 (blue solid curve)
and ω0 ¼ 0.1 (green dashed curve). The set of free
parameters corresponding to this plot are given by

fκ; τ0; β0;l; σ0; κð0ÞB ; χe; χmg
¼ f3; 0.5 fm=c; 0.1;−1; 17.1 MeVc; 450 MeV; 0; 0g:

ð6:4Þ

According to these results, μ5 decays faster for larger
values of positive ω0. As aforementioned, positive ω0s
correspond to initial angles δ0 in the second and third
quadrants, i.e., δ0 ∈ ðπ

2
; 3π
2
Þ.

As concerns the effect of negative values of ω0, we have
repeated the above computations for negative ω0, and
arrived partly at different results. In particular, the con-
clusions concerning the evolution of μ5 are different
from those corresponding to positive ω0. In Fig. 9, we
have chosen negative ω0, and plotted the counterparts of

Figs. 6–8. Apart from the free parameters fω0; μ
ð0Þ
5 ; T0g,

which are indicated in the figures, following choice of
remaining parameters is made:

fκ; τ0; β0;l; χe; χmg ¼ f3; 0.5 fm=c; 0.1;þ1; 0; 0g: ð6:5Þ

Let us first compare the results from Fig. 9(a) with
corresponding results from Fig. 6. As it turns out, for
negative ω0, μ5 decreases for all values of μ

ð0Þ
5 ¼ 50, 150,

250, 350 MeV. This is in contrast to the evolution of μ5 for
positive ω0, demonstrated in Fig. 6. Moreover, for negative
ω0, μ5 decays faster for smaller values of the initial axial
chemical potential. Independent of its initial value, how-
ever, μ5 becomes negative for τ ≳ 2 fm=c. For smaller

FIG. 8. The τ-dependence of μ5 is plotted for l ¼ −1 and

μð0Þ5 ¼ 450 MeV and T0 ¼ 500 MeV for two different angular
velocity ω0 ¼ 0.045 (blue solid curve) and ω0 ¼ 0.1 (green
dashed curve). Other free parameters are given in (6.4). It turns
out that the axial chemical potential μ5 decays slower for smaller
values of ω0.

(a) (b) (c)

FIG. 9. Using the set of free parameters (6.5), we have plotted in panel (a) the τ-dependence of μ5 for fixed ω0 ¼ −0.1,
T0 ¼ 250 MeV and μð0Þ5 ¼ 50, 150, 250, 350 MeV. The smaller the initial value of axial chemical potential is, the faster μ5 decays.

In panel (b), same free parameters are used, and the τ-dependence of μ5 is plotted for fixed ω0 ¼ −0.1, μð0Þ5 ¼ 300 MeV and
T0 ¼ 250 MeV (blue solid curve) and T0 ¼ 500 MeV (green dashed curve). As it turns out, μ5 increases faster for larger values of

initial electric conductivity σ0. In panel (c), the τ-dependence of μ5 is plotted for fixed μð0Þ5 ¼ 450 MeV, T0 ¼ 500 MeV and
ω0 ¼ −0.045 (blue solid curve) and ω0 ¼ −0.1 (green dashed curve), using the same set of free parameters. According to these
results, μ5 decays much slower for larger values of negative ω0. The results demonstrated in panels (a)–(c) for negative values of ω0

are to be compared with the results from Figs. 6–8 for positive values of ω0. In contrast to those results, for negative ω0, μ5 changes
its sign as time evolves. The sign flip of μ5 can be interpreted as a change in the direction of the CM current which is proportional
to κB ¼ μ5c.
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values of μð0Þ5 , μ5’s sign flips earlier than τ ¼ 2 fm=c.
Bearing in mind that μ5 ¼ κBc−1, a sign flip of μ5 can be
interpreted as a change in the direction of the CM current.
In Fig. 9(b), the effect of T0, or equivalently σ0, on the

evolution of μ5 is explored for ω0 ¼ −0.1 and μð0Þ5 ¼
300 MeV at T0 ¼ 250 MeV (blue solid curve) and T0 ¼
500 MeV (green dashed curve). In contrast to the result
demonstrated in Fig. 7 for ω0 ¼ þ0.1, for ω0 ¼ −0.1, μ5
increases faster for larger values of initial electric conduc-
tivity σ0. This can be regarded as one of the differences
between effects associated with positive and negative ω0.

Apart from this, whereas the axial chemical potential for
ω0 > 0 remains positive during its evolution, its sign
flips for ω0 < 0. According to the results demonstrated
in Fig. 9(b), the (proper) time at which μ5’s sign is flipped
becomes smaller the larger the initial value of electric
conductivity σ0 is.
To study the effect of different negative ω0 on the

τ-dependence of μ5, we have plotted μ5ðτÞ in Fig. 9(c) for

fixed value of μð0Þ5 ¼ 450 MeV and T0 ¼ 500 MeV and for
two different values of ω0 ¼ −0.045 (blue solid curve) and
ω0 ¼ −0.1 (green dashed curve). In contrast to the results
demonstrated in Fig. 8 for positive ω0, it turns out that apart
from the fact that for negativeω0 a sign flip of μ5 occurs at an
early proper time, the axial chemical potential μ5 decays

FIG. 10. The τ-dependence of B=B0 is demonstrated in the case
of αE ¼ 0 for the set of free parameters (6.6) and μ5 ¼ 0,
450 MeV. As it turns out, the effect of axial chemical potential
on the evolution of the magnetic field is negligible.

FIG. 11. The τ-dependence of E=E0 is demonstrated in the case
of αE ¼ 0 for μ5 ¼ 0 (red thick solid curve), μ5 ¼ 250 MeV
(black thin solid curve) as well as μ5 ¼ 450 MeV (green dashed
curve). Here, the set of free parameters (6.6) is used. In the case of
ω0 < 0, E=E0 decays faster for larger values of μ5.

(a)

(b)

FIG. 12. The effect of positive and negative angular velocity on
the evolution of the electric field is demonstrated. To do this,
fl;ω0g is chosen to be fþ1;−0.045g (red dotted curve) and
f−1;þ0.045g (black curve). Panels (a) and (b) correspond to two
different axial chemical potential, μ5 ¼ 250 MeV (panel a) and
μ5 ¼ 450 MeV (panel b). The rest of parameters are given in
(6.6). A comparison between these two panels shows that the
difference between the effect of positive and negative ω0 on the
decay rate of E increases with increasing μ5.

ROTATING SOLUTIONS OF NONIDEAL TRANSVERSE … PHYS. REV. D 98, 076011 (2018)

076011-19



slower for larger values of negativeω0.Moreover, μ5 decay to
larger negative values is more emphasized than for smaller
values of ω0.
We finally notice that the above conclusions, arising

from the plots demonstrated in Fig. 9, are independent of
the choice of ω0, μ

ð0Þ
5 and T0 (or σ0). We have repeated the

above computations for the case of nonvanishing electric
and magnetic susceptibilities, and arrived at the same
qualitative results and conclusions. The interplay between
these susceptibilities and the angular velocity ω0, and their
effects on the evolution of electromagnetic and hydro-
dynamic fields are already studied in [19].

B. Case 2: Vanishing AH coefficient

As explained at the beginning of this section, in the case
of vanishing AH coefficient αE,

11 we have to work with a
constant value of κB. For simplicity, we consider only the
case of vanishing electric and magnetic susceptibilities (see
[19] for the results corresponding to nonvanishing suscep-
tibilities). We mainly focus on the evolution of B, E and T.
Two different aspects of the effect of μ5 (or equivalently κB)
and ω0 on the τ-dependence of B, E and T are scrutinized:
(1) The effect of different constant μ5 and a fixed ω0.
(2) The effect of different constant ω0 and a fixed μ5.

In both cases, we arrive at the conclusion that the effect of
ω0 and μ5 on the evolution of B and T can be neglected,
while the τ-dependence of the electric field is affected by
different choices of ω0 and μ5. To show this, let us start by
studying the effect of different constant μ5 and a fixed ω0

on the evolution of B, E and T. In Fig. 10, the τ-dependence
of B=B0 is plotted for

fκ;τ0;β0;σ0;l;ω0;χe;χmg
¼f3;0.5 fm=c;0.1;17.1MeVc;þ1;−0.045;0;0g; ð6:6Þ

and μ5 ¼ 0, 450 MeV. The formal solution of B=B0 is given
in (3.13) in term of M. To determine M, we numerically
solved the master equation (4.16) with σ from (3.18) and
the above set of free parameters (6.6) and μ5 ¼ 0, 450 MeV.
As it is shown in Fig. 10, the effect of μ5 on the evolution
of the magnetic field is negligible. Same conclusion arises
if we replace fl;ω0g¼fþ1;−0.045g with fl;ω0g ¼
fþ1;−0.045g. Other choices of free parameters lead also
to the same qualitative behavior.
To determine the τ-dependence of E=E0, the formal

solution of E from (3.13) is used. Here, N is determined

FIG. 13. The τ-dependence of T=T0 is demonstrated in the case
αE ¼ 0 for the set of free parameters (6.6), Σ0 ¼ 10 and
μ5 ¼ 450 MeV. According to these results, the effect of axial
chemical potential on the evolution of the temperature is
negligible.

(a)

(b)

FIG. 14. (a) The τ-dependence of B=B0 is plotted for fixed
μ5 ¼ 350 MeV and different ω0 ¼ −0.035 (red dots) and ω0 ¼
−0.1 (black curve). (b) The τ-dependence of T=T0 is plotted for
fixed μ5 ¼ 350 MeV and different ω0 ¼ −0.035 (red dots) and
ω0 ¼ −0.1 (black curve). It turns out that the evolution of B and
T is not significantly affected by different choices for ω0.

11This assumption is equivalent with the assumption of
vanishing α0.
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from (4.17), where, in particular, the previously determined
M for the set (6.6) is used to find the τ-dependence of dM

du .
This gives rise to the τ-dependence of N and eventually to
the evolution of E=E0. The latter is demonstrated in Fig. 11
for μ5 ¼ 0 (red thick solid curve), μ5 ¼ 250 MeV (black
thin solid curve) and μ5 ¼ 450 MeV (green dashed curve).
According to these results, for ω0 < 0, the larger the axial
chemical potential μ5 is, the faster E decreases with τ.
Replacing fl;ω0g¼fþ1;−0.045g in (6.6) with fl;ω0g¼
f−1;þ0.045g, and following same steps as described
before, we arrive at the τ-dependence of E for positive
ω0. In contrast to the case of ω0 < 0, for ω0 > 0, E=E0

decays slower for larger values of μ5.
The opposite effect of positive (negative) and negative

(positive) ω0 (l) on the evolution of the electric field is
demonstrated in Fig. 12. Here, red dotted and black curves
correspond to fl;ω0g ¼ fþ1;−0.045g and fl;ω0g ¼
f−1;þ0.045g, respectively. Other free parameters are
given in (6.6). A comparison between Figs. 12(a) with μ5 ¼
250 MeV and 12(b) with μ5 ¼ 450 MeV shows that the
difference between the effect of positive and negative ω0 on
the decay rate of E increases with increasing μ5. Same
conclusions arise by using other sets of free parameters and
positive as well as negative ω0.
In Fig. 13, the proper time dependence of T=T0 is

demonstrated for the set of parameters (6.6) and
Σ0 ¼ B2

0=ϵ0 ¼ 10. To do this, we used the formal solution
of T from (3.13) with exp ðL=κÞ given in (4.18). For
vanishing electric and magnetic susceptibilities, only the
first three terms in (4.18) contribute to exp ðL=κÞ. To
determine them, previous results for M and N with free
parameters (6.6) and μ ¼ 0, 450 MeVare used. One should

bear in mind that in the case of αE ¼ 0, the CM conduc-
tivity κB is constant and cos δ ¼ l ¼ �1. According to the
results demonstrated in Fig. 13, the effect of axial chemical
potential on the evolution of T is negligible. Same con-
clusion arises if one replaces fl;ω0g ¼ fþ1;−0.045gwith
fl;ω0g ¼ fþ1;−0.045g. Other choices of free parameters
lead also to the same qualitative behavior.
Let us finally study the effect of different ω0 and a fixed

μ5 on the evolution of B, E and T. To do this, we used the
same method as described above, and determined the
τ-dependence of B, E and T for various ω0 ¼ −0.035;
−0.045;−0.06;−0.1 and a fixed μ5 ¼ 350 MeV. Other
free parameters are given in (6.6). In Figs. 14(a) and 14(b)
the proper time dependence of B=B0 and T=T0 are plotted
for ω0 ¼ −0.035 and ω0 ¼ −0.1. The results demonstrated
in these figures confirm our previous conclusion stating
that different choices of ω0 do not affect the evolution of B
and T significantly. The same conclusion arises for other
sets of free parameters.
As aforementioned, the evolution of the electric field is

strongly affected by ω0 for a fixed μ5. In Fig. 15(a), the
τ-dependence of E=E0 is plotted for fixed μ5 ¼ 350 MeV
and ω0 ¼ −0.1 (red thick solid curve), ω0 ¼ −0.06 (blue
thin solid curve), ω0 ¼ −0.045 (green thick dashed curve),
ω0 ¼ −0.035 (black thin dashed curve). Other free param-
eters are given in (6.6). According to these results, the
electric field decays faster for larger values of negative ω0.
This is, however, in contrast to the effect of positive ω0

on the decay rate of the electric field. This is demonstrated
in Fig. 15(b), where μ5 ¼ 350 MeV is fixed, and
angular velocities are given by ω0 ¼ þ0.035 (red
thick solid curve), ω0 ¼ þ0.045 (blue thin solid curve),

(a) (b)

FIG. 15. (a) The τ-dependence of E=E0 is plotted for fixed μ5 ¼ 350 MeV and different ω0 ¼ −0.1 (red thick solid curve), ω0 ¼
−0.06 (blue thin solid curve), ω0 ¼ −0.045 (green thick dashed curve), ω0 ¼ −0.035 (black thin dashed curve). For negative ω0,
corresponding to parallel electric and magnetic fields, the electric field decays faster for larger values of ω0. (b) The τ-dependence of
E=E0 is plotted for fixed μ5 ¼ 350 MeV and different ω0 ¼ þ0.035 (red thick solid curve), ω0 ¼ þ0.045 (blue thin solid curve),
ω0 ¼ þ0.06 (green thick dashed curve), ω0 ¼ þ0.1 (black thin dashed curve). For positiveω0, corresponding to antiparallel electric and
magnetic fields, the electric field decays faster for smaller values of ω0.
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ω0 ¼ þ0.06 (green thick dashed curve) and ω0 ¼ þ0.1
(black thin dashed curve). As it turns out, the electric field
decays faster for smaller values of positive ω0.

VII. CONCLUDING REMARKS

Building on our prior results from [19], we explored, in
the present paper, the physical features of the nonrotating
and rotating solutions for the electric and magnetic fieldsEμ

and Bμ by extending the previously considered Lagrangian
of the Maxwell theory with an additional CP violating
Chern-Simons term FμνF̃μν, which is proportional to a
pseudo-scalar axionlike field ϑðxÞ. Using this MCS
Lagrangian, we arrived, in particular, at the corresponding
equation of motion and energy-momentum tensor to the
MCS theory. Combining the latter with the energy-
momentum tensor of a nonviscous hydrodynamics, using
the homogeneous and inhomogeneous MCS equations, and
making the same assumptions as in [19], we arrived at an
appropriate formulation for the nonideal transverse
CSMHD. We emphasized that the specific feature of the
current appearing in the inhomogeneous MCS equation is
the presence of two nondissipative currents, the chiral
magnetic and the anomalous Hall currents. Denoting the
CM and AH conductivities by κB and κE, respectively, we
showed that in a transverse CSMHD, these coefficients are
the Lorentz boost transformed of the time and space
derivatives of the ϑ field, P0 ¼ ∂0ϑ and P3 ¼ ∂3ϑ. We
were, in particular, interested in the effect of these anoma-
lous currents on the evolution of electromagnetic and
hydrodynamic fields.
Following the same steps as in [19], we arrived at the

constitutive equations of nonideal transverse CSMHD.
Comparing these equations with the constitutive equations
of transverse MHD, there appears additional terms propor-
tional to κB and κE [see, in particular, (3.3), (3.4), (3.10)
and (3.11)]. Same inhomogeneous continuity equations
as in [19] with the generic form ∂μðfuμÞ ¼ fDλ and
f ∈ fB;E; Tκg12 as well as λ ∈ fM;N ;Lg characterize
the nonideal transverse CSMHD. The formal solutions to
these differential equations are presented in (3.13).
In Sec. IV, we presented a number of results arising from

the solution of the constitutive equations of CSMHD. One
of the most remarkable ones was that the relative angle
between E and B is given in terms of the AH coefficient
κE and the electric conductivity of the fluid σ through
δ ¼ tan−1 αE with αE ¼ κE=σ. This result is consistent with
our findings for transverse MHD from [19], as for vanish-
ing κE and nonvanishing σ, tan δ vanishes, and E and B
fields become either parallel or antiparallel as in [19].
Similar results were also found in [33], using gauge/gravity
duality. The angle δ was then shown to be boost-invariant
(η-independent). Its τ-dependence, however, was given by

the τ-dependence of κE from (4.2) and σ from (3.18). We
considered two cases of vanishing and nonvanishing AH
coefficient, and determined separately the τ-dependence of
ϑ, B, E and T for these cases. For the case of nonvanishing
κE, we were able to determine analytical solutions for M
and N , which eventually led to the τ-dependence of B ¼
jBj and E ¼ jEj. For κE ¼ 0, in contrast, M is determined
by two distinct differential equations (4.15) and (4.16),
corresponding to nonrotating and rotating solutions for B.
OnceM is determined,N and L could also be determined.
They eventually led to nonrotating and rotating solutions
for E and T in the nonideal CSMHD. We noticed that for
nonvanishing AH coefficient, (3.14) was the key relation,
that, once combined with other constitutive equations,
revealed analytical solutions for M. For vanishing AH
coefficient, this equation is trivially satisfied.
As concerns the angles ζ and ϕ, for nonvanishing κE,

they are, as in [19], linear in η, and depend, in contrast to
the κE ¼ 0 case, explicitly on τ. Hence, although the
relative angle of E and B fields is η-independent, the
angles ζ and ϕ change uniformly with η. The corresponding
angular velocity ω0 turned out to be constant. We showed
that in κE ≠ 0 case, ω0 is given in terms of the initial
conditions for E, B, σ and the CM as well as AH coefficients
κB and κE at τ0. This is in contrast to [19], where for κE ¼ 0
the angular velocity ω0 was part of initial conditions.
Using constitutive equations, we also showed that in the

κE ≠ 0 case, the τ-dependence of the CM conductivity κB
can be completely determined in terms M, N and their
derivatives with respect to u ¼ ln τ

τ0
as well as a number of

free parameters fE0; B0; σ0; α0; χe; χmg [see (4.14)]. For
κE ¼ 0, however, κB is constant and, similar to ω0, part of
initial conditions. Bearing in mind that κB is proportional to
the axial chemical potential μ5, the evolution of κB in the
case of κE ≠ 0 led automatically to the τ-dependence of μ5.
Starting with different initial values of μ5, we explored the
evolution of μ5 in Sec. VI. We were, in particular, interested
in the effect of ω0 on this evolution. We considered two
different cases of positive and negative ω0 in Figs. 6–8 as
well as Fig. 9, and showed that for positive ω0, under
certain circumstances, μ5 increases during the evolution of
the chiral fluid, whereas for negative ω0, it always
decreases, and at some point even changes its sign from
positive to negative [compare Fig. 6 with Fig. 9(a)]. This
sign flip in μ5 indicates a change in the direction of the CM
current, which is proportional to κB ∝ μ5. In Sec. VI, we
quantified the relation between Δμ5 with a change in the
axial number density n5 in a more realistic model, where
the pressure p depends, apart from T, on μ5. We notice that
the (proper) time dependence of Δμ5 can also be brought
into relation to ΔH, where H≡ 1

V

R
d3xA · B is the mag-

netic helicity. Here, B ¼ ∇ × A. For T ≫ μ5 the corre-
sponding relation is given by [34]

dμ5
dt

¼ −Γfμ5 −
c
πχ5

dH
dt

;
12Here, κ ¼ c−2s arises in the equation of state ϵ ¼ κp.
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where Γf is the rate of helicity-flipping, c ¼ P
f q

2
f
e2
2π is

defined before and χ5 ≡ ∂n5∂μ5 is the chiral susceptibility of the
medium. It would be interesting to further scrutinize the
results arisen in Sec. VI for the τ-dependence of μ5 with
regard to the helicity flip in the QGP with a chirality
imbalance. The corresponding backreaction is supposed to
affect the lifetime of the magnetic field, because helical
magnetic fields are apparently more long lived [34,35].
As concerns the effect of different initial values of

electric conductivities σ on μ5, it turned out that for positive
(negative) ω0, larger (smaller) values of σ0 inhibit the rapid
decay of κB as well as μ5 [compare Figs. 7 with Fig. 9(b)].
For a fixed σ0, however, larger (smaller) values of positive
(negative) ω0 enhance the decay rate of κB as well as μ5
[compare Figs. 8 with Fig. 9(c)]. Let us remind that positive
and negative signs forω0 is indirectly related to whether δ is
from ðπ

2
; 3π
2
Þ or ð− π

2
;þ π

2
Þ intervals.

The results presented in this paper can be extended in
many ways. As aforementioned, the Bjorken flow is mainly
characterized by a uniform longitudinal expansion of an
ideal relativistic fluid. Although it is able to describe the
early time dynamics of the QGP created in HICs, various
experimental results, in particular, the transverse momen-
tum of final hadrons signals a significant radial expansion
apart from the longitudinal one. There are many attempts to
overcome this specific shortcoming of Bjorken flow,
among others, the Gubser [36] and 3þ 1 dimensional
self-similar flow [37]. In [38], we present a generalization
of these flows to relativistic ideal MHD. Extending the
derivations in [38] to nonideal MHD, the resulting
model can be used as a basis to a computation similar to
that which is carried out in the present paper. In particular,
the role of chiral vortical current can be explored in this
setup, as the vorticity vanishes in a 1þ 1 dimensional
setup. Another open question is the inclusion of dissipative
terms, both in the energy-momentum tensor and electro-
magnetic currents, as the evolution of magnetic fields, in
particular the primordial ones, is usually described by the
system of nonrelativistic Maxwell and Navier-Stokes
equations [39]. Hydrodynamic dissipations modify the
constitutive equations, and, in this way, the proper time
dependence of the electric and magnetic fields may also be
affected.
The above results, in particular, the rotation of electric

and magnetic fields, the evolution of the axionlike field ϑ,
and the τ dependence of the CM and AH conductivities, κB
and κE may have important and not yet explored effects not
only on various observables in HIC experiments, like the
axial charge and photon production rates, but also on
various transport properties of electrons in Weyl semimet-
als. A consistent hydrodynamical description of Weyl
semimetals is recently presented in [40]. In [40,41], it is
shown that Chern-Simons contributions, including CME
and AHE, strongly modify the dispersion relation of the
collective modes in Weyl semimetals. The role played by

the Chern-Simons terms on the hydrodynamical flow of
chiral electrons in a Weyl semimetal slab is studied in [42].
It would be interesting to study the application of our
results, mainly resulted from the assumption of a uniform
and longitudinal expansion of the fluid, in the physics of
Weyl semimetals, and to compare the corresponding
findings with the results in [40–42].
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APPENDIX A: MAXWELL-CHERN-SIMONS
ENERGY-MOMENTUM TENSOR

To derive the MCS energy-momentum tensor Fμν from
(2.3), let us start with

fμ ≡ FμνJν; ðA1Þ

with J ν ¼ Jν − cPμF̃μν, as defined in Sec. II. Using Pμ ¼
∂μϑ and the homogeneous Maxwell equation ∂μF̃μν ¼ 0,
we arrive first at

∂μF μν ¼ Jν; ðA2Þ

with F μν ¼ Fμν þ cϑF̃μν. Then, plugging (A2) into (A1),
we obtain

fμ ¼ Fμν∂ρF ρν: ðA3Þ

Performing a number of straightforward algebraic manip-
ulations, where, in particular, the homogeneous Maxwell
equation in the form

∂ρFμν þ ∂νFρμ þ ∂μFνρ ¼ 0; ðA4Þ

is used, we arrive at

fμ ¼ ∂ρðFμνF ρνÞ þ 1

2
ð∂μFνρÞF ρν: ðA5Þ

Plugging, at this stage, the definition of F μν into the second
term on the rhs of (A5), we get

fμ ¼ ∂ρðFμνF ρνÞ þ 1

2
∂μðFνρF ρνÞ − 1

2
Fνρ∂μFρν

−
c
2
FνρPμF̃ρν −

cϑ
2
Fνρ∂μF̃ρν: ðA6Þ
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Using (A4), the third and last terms on the rhs of (A6) are
given by

Fνρ∂μFρν ¼ −
1

2
∂μðFνρFνρÞ;

cϑFνρ∂μF̃ρν ¼ −
1

2
∂μðcϑF̃αβFαβÞ þ

c
2
PμF̃αβFαβ: ðA7Þ

Plugging these expressions into (A6), we arrive after some
algebraic manipulations at

JνFνμ¼ ∂ρ

�
F ρνFνμ−

1

4
gρμFνσF νσ

�
þc
4
PμFνρF̃νρ; ðA8Þ

where (A1) is used. The expression arising in the total
derivative can be identified as the MCS energy-momentum
tensor Tμν

MCS. We therefore have

∂μT
μν
MCS ¼ JμFμν þ c

4
PνFμρF̃μρ; ðA9Þ

with

Tμν
MCS ¼ F μρFρ

ν þ 1

4
gμνFρσF ρσ; ðA10Þ

as claimed.

APPENDIX B: τ AND η DEPENDENCE OF THE
LONGITUDINAL COMPONENTS OF THE
ELECTRIC AND MAGNETIC FIELDS

As it is explicitly stated in Sec. II, the longitudinal
components of Eμ and Bμ vanish because of symmetry
properties of the transverse MHD. Using, in particular, the
definition of Bμ and Eμ in terms of Fμν in the paragraph
below (2.7), we have

B0 ¼ − sinh ηF12; Bz ¼ − cosh ηF12; ðB1Þ

and

E0 ¼ sinh ηF30; Ez ¼ cosh ηF30: ðB2Þ

For B0 ¼ Bz ¼ 0 and E0 ¼ Ez ¼ 0, we have, in particular,
F12 ¼ 0 and F30 ¼ 0. In this Appendix, we first show that
F12 and F30 do not evolve with τ and η, i.e.,

∂Bi

∂τ ¼ ∂Bi

∂η ¼ 0; i ¼ 0; z; ðB3Þ

∂Ei

∂τ ¼ ∂Ei

∂η ¼ 0; i ¼ 0; z; ðB4Þ

as stated in (2.12). To prove (B3), let us start with
the homogeneous Maxwell equation in the form (A4).
For ðμ; ν; ρÞ ¼ ð0; 1; 2Þ and ðμ; ν; ρÞ ¼ ð3; 1; 2Þ, we have

∂2F01 þ ∂1F20 þ ∂0F12 ¼ 0; ðB5Þ

and

∂2F31 þ ∂1F23 þ ∂3F12 ¼ 0: ðB6Þ

Because of the assumed translational invariance in the x–y
plane, all terms in (B5) and (B6) including ∂1 and ∂2

vanish. As concerns the remaining terms, ∂0F12 in (B5) and∂3F12 in (B6), they are given by

∂F12

∂t ¼
�
cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η

�
F12 ¼ 0;

∂F12

∂z ¼
�
− sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η

�
F12 ¼ 0: ðB7Þ

Here, (2.14) is used. Combining there two relations, we
first obtain

∂F12

∂τ ¼ 0;
∂F12

∂η ¼ 0: ðB8Þ

Using, at this stage, (B1) and, in particular, F12 ¼ 0, we
finally arrive at (B3).
As concerns the τ- and η-dependence of the longitudinal

components of Eμ, we start with the inhomogeneous MCS
equation of motion from (2.2), with J μ from (2.23). For
ν ¼ 0, 3, we have

∂F30

∂t ¼ −J 3;
∂F30

∂z ¼ J 0: ðB9Þ

Using (2.23) and Bi ¼ Ei ¼ 0, i ¼ 0, z, we arrive at

J 3 ¼ χe
∂E3

∂τ ; J 0 ¼ χe
∂E0

∂τ : ðB10Þ

Plugging (B10) into (B9), and using (B2) as well as the
definitions of ∂t and ∂z from (2.14), we obtain

�
ð1þ χeÞ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η

�
F30 ¼ 0;

�
−ð1þ χeÞ sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η

�
F30 ¼ 0: ðB11Þ

Combining these two relations, we first obtain

∂F30

∂τ ¼ 0;
∂F30

∂η ¼ 0: ðB12Þ

Using, at this stage, (B2) and, in particular, F30 ¼ 0, we
finally arrive at (B4). A comparison with the proof of the
same claims (B3) and (B4) in [19], where no CP violating
term was considered in the Lagrangian density of the
Maxwell theory, we observe that the additional terms in J μ

proportional to c have no effects on the evolution of the
longitudinal components of Bμ and Eμ.
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