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We formulate the on-shell effective field theory (OSEFT) in an arbitrary frame and study its
reparametrization invariance, which ensures that it respects Lorentz symmetry. In this formulation, the
OSEFT Lagrangian looks formally equivalent to the sum over lightlike velocities of soft collinear effective
field theory in the Abelian limit, but differences remain in the scale of the gauge fields involved in the two
effective theories. We then use the OSEFT Lagrangian expanded in inverse powers of the on-shell energy to
derive how the classical transport equations for charged massless fermions are corrected by quantum
effects, as derived from quantum field theory. We provide a formulation in a full covariant way and explain
how the consistent form of the chiral anomaly equation can be recovered from our results. We also show
how the side-jump transformation of the distribution function associated with massless charged fermions
can be derived from the reparametrization invariance transformation rules of the OSEFT quantum fields.
Finally, we discuss the differences in our results with respect to others found in the literature.

DOI: 10.1103/PhysRevD.98.076005

I. INTRODUCTION

In this paper, we use the so-called on-shell effective
field theory (OSEFT) [1–3] to provide a derivation of the
transport equations obeyed by charged chiral fermions
beyond the classical limit approximation.
A formulation of transport theory for chiral fermions has

been developed in Refs. [4–7], starting with the action of a
point particle modified by the Berry curvature, together
with a modified Poisson bracket structure. Other alternative
approaches to derive the same transport equation can be
found in the literature [1,8–17].
The first derivation of chiral kinetic theory (CKT) from

quantum field theory was made in Ref. [6] for systems at
finite density and zero temperature, using the so-called high
density effective field theory (HDET) [18]. OSEFT was

actually proposed to provide a similar derivation that could
be valid also in a thermal background, where antifermions
are also relevant degrees of freedom. Regardless of the
background, transport equations describe the propagation
of on-shell quasiparticles, and therefore it seems natural to
use for their derivation an effective field theory approach
that describes only the propagation of on-shell degrees of
freedom, as OSEFT, while off-shell modes are integrated
out. Let us stress that the notion of an on-shell quasiparticle
depends on the energy scales one is looking at in the system
under consideration. It is well known that for plasmas at
finite temperature T only the high energy modes of order T
can be considered as quasiparticles and their evolution
studied with classical transport equations [19–21], while
the same picture does not apply to lower energy modes. To
get corrections to the classical point-particle picture
described above from quantum field theory, one simply
has to study how the off-shell modes modify the evolution
of the highly energetic modes. These corrections are taken
into account in the OSEFT Lagrangian and expressed as
operators of increasing dimension over powers of the on-
shell energy scale so that these modifications can be
described with the accuracy one desires. The OSEFT
Lagrangian can then be used to derive how the classical
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transport picture is modified, by using for their derivation
an increasing number of terms in the high energy
expansion.
One of the advantages of our formulation is that it may

allow us to derive transport equations in full covariant form
and derive their properties under Lorentz transformations.
While the initial proposals of CKT were not given in a
covariant form, it was soon realized that it would have
peculiar properties under Lorentz transformations [22,23],
especially seen when formulating two-body collisions but
also expressed in the so-called side-jump behavior of the
distribution function of CKT, that expresses that it is frame
dependent.
We present in this paper a derivation of CKT in a

covariant way, as derived from OSEFT, and explain how
the side-jump effects can be deduced from the same
symmetries of that effective field theory. While previous
formulations of OSEFT were given in the preferred frame
of the thermal bath, we generalize it to an arbitrary frame,
introducing the frame vector uμ. The resulting OSEFT
Lagrangian then looks formally equivalent to that corre-
sponding to a sum over velocities of the so-called soft
collinear effective field theory (SCET) [24–27], although
there are some differences, as will be discussed in the
following. We further study the reparametrization invari-
ance of OSEFT, that ensures that our formalism is respect-
ful of Lorentz invariance.
We compute both the vector current and axial current in

the OSEFT, by taking functional derivatives to the action,
and take these expressions to deduce the corresponding
values in the transport framework, which requires a Wigner
transformation of a two-point function, together with a
gradient expansion. As very clearly explained in the review
[28], such a definition can only lead to the consistent form
of the chiral anomaly, rather than the covariant form. We
check from our expressions that this is indeed the case.
Our final form of the relativistic chiral transport equation

mainly differs from that introduced in Refs. [9,10,13], in
pieces that may be subleading when considering effects
close to thermal equilibrium, but that might be relevant for
studies off equilibrium, and also in the gradient terms of the
gauge fields. It also differs, when fixing the frame, with the
chiral transport equation obtained from the modified form
of the one-point particle action.
Our paper is organized as follows. In Sec. II, we

formulate OSEFT in an arbitrary frame, introducing a
frame vector and showing its formal equivalence with soft
collinear effective field theory. In Sec. III, we study the
reparametrization invariance of this effective field theory, a
basic ingredient to show that it is respectful of Lorentz
symmetry. In Sec. IV, we introduce the basic two-point
function in the OSEFT that will be used to derive the basic
set of transport equations. The main content of the paper is
in Sec. V, with the derivation of the collisionless transport
equation, first using the OSEFT variables in Sec. VA and

then expressed in terms of the QED original variables in
Sec. V B. In Sec. VI, we derive both the vector and axial
current obtained in the OSEFT approach and check that
they obey the consistent form of the quantum anomalies. In
Sec. VII, we derive the side-jump transformation of the
distribution function from the reparametrization invariance
transformations of the OSEFT quantum fields. We con-
clude in Sec. VIII, where we summarize our main findings
and give a possible interpretation of the origin of the
discrepancy of our results with alternative approaches. In
Appendix A, we give some details of our computations,
while in Appendix B, we show how to obtain the chiral
magnetic effect from our formulation.
We use natural units ℏ ¼ c ¼ kB ¼ 1 and metric con-

ventions gμν ¼ ð1;−1;−1;−1Þ. We also use boldface
letters to denote 3-vectors.

II. OSEFT IN AN ARBITRARY
FRAME AND SCET

Let us review the OSEFT as originally formulated [1,2],
introducing the basic fields and notation. Let us recall that
the propagation of an on-shell massless fermion is
described by its energy p, with p > 0, and the lightlike
4-velocity vμ ¼ ð1; vÞ, where v is three-dimensional unit
vector, and thus its 4-momentum is pμ ¼ pvμ. However,
for a fermion close to being on shell, its 4-momentum can
be expressed as

qμ ¼ pvμ þ kμ; ð1Þ

where kμ is the residual momentum (kμ ≪ p), i.e., the part
of the momentum which makes qμ off shell. A similar
decomposition of the momentum for almost on-shell
antifermions can be done as follows,

qμ ¼ −pṽμ þ kμ; ð2Þ

where ṽμ ¼ ð1;−vÞ.
The Dirac field can be written as

ψv;ṽ ¼ e−ipv·xðPvχvðxÞ þ PṽH
ð1Þ
ṽ ðxÞÞ

þ eipṽ·xðPṽξṽðxÞ þ PvH
ð2Þ
v ðxÞÞ; ð3Þ

where the basic OSEFT quantum fields obey

Pvχv ¼ χv; Pṽχv ¼ 0; ð4Þ

Pṽξṽ ¼ ξṽ; Pvξṽ ¼ 0 ð5Þ

and the particle/antiparticle projectors are expressed as

Pv ¼
1

2
γ · v γ0; Pṽ ¼

1

2
γ · ṽ γ0: ð6Þ
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It is possible to integrate out the Hð1;2Þ fields of the QED
Lagrangian [1], to have an effective theory for the fields χv
and ξṽ only.
If we assume that the physical phenomena we aim to

describe are dominated by the contribution of on-shell
particles, then the corresponding OSEFT Lagrangian can
be written as a sum over the different values of the on-shell
momenta as

L ¼
X
p;v

Lp;v; ð7Þ

where the precise meaning of the sum displayed in Eq. (7)
is not needed at this stage (we will come back to this point
later on; see also Ref. [2]), and

Lp;v ¼ Lp;v þ L̃p;ṽ

¼ χ̄vðxÞ
�
iv ·Dþ i=D⊥

1

2pþ iṽ ·D
i=D⊥

�
γ0χvðxÞ

þ ξ̄ṽðxÞ
�
iṽ ·Dþ i=D⊥

1

−2pþ iv ·D
i=D⊥

�
γ0ξṽðxÞ;

ð8Þ

where Dμ ¼ ∂μ þ ieAμ is the covariant derivative,
=D⊥ ¼ Pμν

⊥ γμDν, and

Pμν
⊥ ¼ gμν −

1

2
ðvμṽν þ vνṽμÞ ð9Þ

is minus the transverse projector to v, written in covariant
form. Note that with our conventions k2⊥¼Pμν

⊥ kμkν¼−k2⊥.
From now on, and as done in Ref. [2], whenever we write a
tensor with the symbol ⊥, it means that a transverse
projector applies to all its Lorentz indices. If only the
transverse projector is applied to one of the indices, we will
write ⊥ only affecting that index. Thus, σμν⊥ ¼ Pμα

⊥ Pνβ
⊥ σαβ,

while σμ⊥ν ¼ Pμα
⊥ gνβσαβ.

In the original formulation of the OSEFT, a choice of
frame was made [1,2]. The energies of the on-shell particles
in Eq. (1) are measured in the same frame where, e.g., the
thermal bath is defined. If we want to express the same
OSEFT Lagrangian in an arbitrary frame, we will then have
to introduce a timelike vector uμ which defines that frame.
Then, one could write all the above different equations
simply by replacing

p → uμpμ ≡ E; γ0 → γμuμ: ð10Þ

With our specific choice of variables vμ and ṽμ, then it is
not difficult to see that

uμ ¼ vμ þ ṽμ

2
: ð11Þ

Note that in OSEFT uμ is not an independent vector, once
vμ and ṽμ have been defined. While in the static frame we
chose a particular definition of the vectors vμ and ṽμ, which
implicitly assumed that uμ ¼ ð1; 0; 0; 0Þ, in an arbitrary
frame, we will only ask that these lightlike vectors obey

v2 ¼ ṽ2 ¼ 0; v · ṽ ¼ 2: ð12Þ

Thus, u · v ¼ 1 and u2 ¼ 1 are automatically fulfilled.
In our formulation of the OSEFT in an arbitrary frame,

we will sometimes use ṽμ, and sometimes we will use uμ.
The last option is convenient, as in kinetic theory it may
appear also in the thermal equilibrium distribution asso-
ciated with the massless particles.
As for the particle/antiparticle projectors in an arbitrary

frame, we will write them as

Pv ¼
1

2
=v=u ¼ 1

4
=v=̃v ð13Þ

Pṽ ¼
1

2
=̃v=u ¼ 1

4
=̃v=v; ð14Þ

where we used that =v=v ¼ =̃v=̃v ¼ 0.
The OSEFT Lagrangian in a general frame is then

written down as

L ¼
X
E;v

ðLE;v þ L−E;ṽÞ; ð15Þ

where

LE;v þ L−E;ṽ

¼ χ̄vðxÞ
�
iv ·Dþ i=D⊥

1

2Eþ iṽ ·D
i=D⊥

�
=̃v
2
χvðxÞ

þ ξ̄ṽðxÞ
�
iṽ ·Dþ i=D⊥

1

−2Eþ iv ·D
i=D⊥

�
=v
2
ξṽðxÞ;

ð16Þ

where we have used that

=vχv ¼ 0; =̃vξṽ ¼ 0:

It is noteworthy that Eq. (16) formally looks similar
to the Lagrangian of soft-collinear effective field theory
[24–27]. The corresponding projectors Eqs. (13) and (14)
are also those used in SCET. We note that the explicit forms
of the OSEFT and SCET Lagrangians differ because of our
different convention in defining the quantum fluctuating
fields: in SCET, the exponential terms of Eq. (3) have been
included in the quantum fields of the effective theory. We
also explicitly separate the contribution of particles and
antiparticles. Further, we recall that we are considering an
effective field theory for QED, while SCET is an effective
field theory for QCD.
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After noticing the above formal similarities of SCET and
OSEFTwhen the latter is formulated in an arbitrary frame,
it has to be stressed that they are still different effective field
theories. SCET was originally formulated to describe the
physics associated with highly energetic jets in vacuum,
and there are only two lightlike vectors in the theory, vμ

and ṽμ, fixed by the direction of the jet. In SCET, the
covariant derivatives are associated with collinear and ultra-
soft gauge fields. OSEFT was in principle developed to
describe many body particle systems, close to thermal
equilibrium, where one can consider having many on-shell
particles and their propagation in the background of soft
gauge fields. Thus, for a fixed value of the energy, there
might be particles moving in all arbitrary (lightlike) direc-
tions, and a sum over vμ is displayed in the final Lagrangian,
which is absent in SCET. In OSEFT, the covariant deriv-
atives we use mainly contain soft gauge fields.
OSEFT also uses a different notation, which makes clear

that its main goal is to make an analytical expansion in
powers of the inverse of the on-shell energy 1=E. At finite
temperature and/or density, we will obtain different expres-
sions multiplied by a particle distribution function. After
integration over momenta, this expansion on the inverse of
the on-shell energy will turn out to give an expansion in
powers of the inverse of the temperature and/or chemical
potential [2,3].
After mentioning the explicit similarities and differences

of these two effective field theories, it is possible to use
some of the results obtained in SCET to learn about some
properties of OSEFT, such as that of reparametrization
invariance, which will be discussed in the following section.

III. REPARAMETRIZATION
INVARIANCE OF OSEFT

Reparametrization invariance (RI) is the symmetry
associated with the ambiguity of the decomposition of
the momentum qμ performed in Eq. (1). If Mμν defines the
six Lorentz generators of SOð3; 1Þ, the decomposition of
Eq. (1) suggests an apparent breaking of five Lorentz
generators, namely, fvμMμν; uμMμνg or, equivalently,
fvμMμν; ṽμMμνg. However, it is possible to show that
the OSEFT Lagrangian is RI invariant, which is equivalent
to saying that is Lorentz invariant. Let us stress that this
reduces to the study of the RI of SCET for every sector of
the theory defined by the vectors vμ and ṽμ, something
which has been extensively investigated [29]. The fact that
the covariant derivatives displayed in SCET and OSEFT
contain gauge fields of different scales does not, however,
affect the proof of RI, which turns out to be formally
equivalent in the two effective field theories.
Let us review how this effectively works. The Dirac field

defined in Eq. (3) should be the same independent of the
choice of the parameters used to define the effective field
theory; thus,

ψv;ṽðxÞ ¼ ψ 0
v0;ṽ0 ðxÞ: ð17Þ

As inSCET,wewill see that the effective field theory action
remains invariant under infinitesimal changes of the vectors
vμ and ṽμ that preserve their basic properties expressed in
Eq. (12). It is possible to show that the OSEFT Lagrangian is
invariant under the following symmetries,

ðIÞ
�
vμ → vμ þ λμ⊥
ṽμ → ṽμ

ðIIÞ
�
vμ → vμ

ṽμ → ṽμ þ ϵμ⊥
ðIIIÞ

�
vμ → ð1þ αÞvμ
ṽμ → ð1 − αÞṽμ; ð18Þ

where fλμ⊥; ϵμ⊥; αg are five infinitesimal parameters and
v · λ⊥ ¼ v · ϵ⊥ ¼ ṽ · λ⊥ ¼ ṽ · ϵ⊥ ¼ 0. Please note that the
transformation rule of the vector uμ can be deduced from
Eq. (11).
Just to have a flavor of the meaning of the above

symmetries, let us imagine one fixes the values of the
two lightlike vectors as vμ ¼ ð1; 0; 0; 1Þ and ṽμ ¼
ð1; 0; 0;−1Þ. Then, apparently, there are five broken gen-
erators in the OSEFT, which are Q�

1 ¼ J1 � K2, Q�
2 ¼

J2 � K1, and K3, where Ji and Ki are the generators of
rotations and boosts, respectively. Then, type I refers to the
combined action of an infinitesimal boost in the xðyÞ
direction and a rotation around the yðxÞ axis, such that
ṽμ is left invariant, with generators ðQ−

1 ; Q
þ
2 Þ. Type II

transformations are similar, but ðQþ
1 ; Q

−
2 Þ leave vμ invari-

ant, while type III is a boost along the direction 3, K3.
It is also worth it to note that the generators ðQþ

1 ; Q
−
2 ; J3Þ

obey the SEð2Þ Lie algebra, that is the symmetry group of

the two-dimensional Euclidean plane. They correspond to
what is known as the Wigner little group associated with
the vector pμ ¼ pvμ [30]; see also Refs. [31–33]. Similarly,
the generators ðQ−

1 ; Q
þ
2 ; J3Þ correspond to Wigner’s little

group associated with pμ ¼ −pṽμ (antiparticles). As dis-
cussed in Ref. [30], theseWigner translations are associated
with shifts of the trajectory of finite wave packets of
massless particles proportional to the particle’s helicity.
It is possible to check easily that our Lagrangian is

invariant under the above three RI transformations [29],
which formally is equivalent to saying that it is Lorentz
invariant. Let us discuss these briefly, as they are the same
RI symmetries of SCET. Wewill mainly focus now on what
our different notation implies. We will concentrate in the
following in the particle sector, as for antiparticles things
work analogously after trivial changes (namely, u · p →
−u · p and vμ ↔ ṽμ). We will also see that the type II
symmetry will allow us to generate the side jumps that were
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discussed in the framework of chiral kinetic theory in
Ref. [22]. This point will be discussed in Sec. VII.
Let us first start with type I symmetry. The change in the

vector vμ implies a relabeling of what is called on-shell and
residual parts of the momentum defined in Eq. (1). After a
type I symmetry, the on-shell part and residual momenta
change as

ðu · pÞvμ → ðu · pÞvμ þ 1

2
ðλ⊥ · pÞvμ þ ðu · pÞλμ⊥; ð19Þ

kμ → kμ −
1

2
ðλ⊥ · pÞvμ − ðu · pÞλμ⊥; ð20Þ

respectively. This implies that under a type I transformation
the covariant derivatives acting on the fluctuating fields
also transform.
Type II symmetry implies that the new on-shell and

residual momenta change as

ðu · pÞvμ → ðu · pÞvμ þ 1

2
ðp · ϵ⊥Þvμ; ð21Þ

kμ → kμ −
1

2
ðp · ϵ⊥Þvμ; ð22Þ

while the type III transformation leads to the changes

ðu · pÞvμ → ðu · pÞvμð1þ 2αÞ − αðṽ · pÞvμ; ð23Þ

kμ → kμ − 2αEvμ þ αðṽ · pÞvμ ð24Þ

in the on-shell and residual momenta, respectively.
In Table I, we summarize the transformation rules under

all three types of transformations.
The OSEFT Lagrangian is invariant under these three RI

transformations [29]:

δðIÞLE;v ¼ δðIIÞLE;v ¼ δðIIIÞLE;v ¼ 0: ð25Þ

In explicit computations of Feynman diagrams, or
derivations of transport equations, we will expand the
Lagrangian in power series of 1=E. While Eq. (25) is
exact to all orders in a 1=E expansion, in a perturbative
analysis in 1=E, it is important to note that RI invariance
implies that different terms in the expansion are connected
by symmetry. This comes from the fact that the covariant
derivatives, or the fields, transform with terms proportional
to E.
For completeness, we will also mention other discrete

symmetries of the OSEFT. Under parity, charge conjuga-
tion, and time reversal, the basic OSEFT fields transform as

χvðxÞ → γ0χ ṽðx̃PÞ; ξṽðxÞ → γ0ξvðx̃PÞ ð26Þ

χvðxÞ → −iγ2ξ�vðxÞ; ξṽðxÞ → −iγ2χ �̃vðxÞ ð27Þ

χvðxÞ → −γ1γ3χ ṽð−x̃TÞ; ξṽðxÞ → −γ1γ3ξvð−x̃TÞ; ð28Þ

respectively, where if xμ ¼ ðx0;xÞ, then x̃μP ¼ ðx0;−xÞ,
and x̃μT ¼ ð−x0;xÞ.
There is also a spin symmetry, which is not a SUð2Þ

symmetry but a Uð1Þ symmetry, which corresponds to
helicity [33].

IV. WIGNER FUNCTION IN THE OSEFT

We focus our attention here on the basic Wigner function
used in the following part of the paper for the derivation of
the transport equations from OSEFT. We will use the
Keldysh-Schwinger formulation, allowing the time varia-
bles to take complex values, and define the two-point
Green’s functions of the OSEFT on the closed time-path
contour. These are represented by a 2 × 2 matrix,

TABLE I. Transformation rules in OSEFT under RI transformations of types I, II, and III.

Type I Type II Type III

vμ vμ þ λμ⊥ vμ vμð1þ αÞ
ṽμ ṽμ ṽμ þ ϵμ⊥ ṽμð1 − αÞ
uμ uμ þ λμ⊥

2
uμ þ ϵμ⊥

2
uμð1 − αÞ þ αvμ

E Eþ 1
2
λ⊥ · p Eþ 1

2
ðϵ⊥ · pÞ Eð1þ αÞ − αðṽ · pÞ

Dμ Dμ þ iEλ⊥μ þ i
2
ðλ⊥ · pÞvμ Dμ þ i

2
ðϵ⊥ · pÞvμ Dμ þ 2iαEvμ − iαðṽ · pÞvμ

ðv ·DÞ ðv ·DÞ þ λ⊥ ·D⊥ ðv ·DÞ ðv ·DÞð1þ αÞ
ðṽ ·DÞ ðṽ ·DÞ þ iλ⊥ · p ðṽ ·DÞ þ iϵ⊥ · pþ ϵ⊥ ·D⊥ ðṽ ·DÞð1 − αÞ þ 4iEα − 2iαðṽ · pÞ
D⊥

μ D⊥
μ − λ⊥μ

2
ðṽ ·DÞ − ṽμ

2
λ⊥ ·D⊥ þ iEλ⊥μ D⊥

μ − ϵ⊥μ
2
ðv ·DÞ − vμ

2
ϵ⊥ ·D⊥ D⊥

μ

Pv Pv þ 1
4
=λ⊥ =̃v Pv − 1

4
=ϵ⊥=v Pv

χvðxÞ ð1þ 1
4
=λ⊥ =̃vÞχvðxÞ ð1þ 1

2
=ϵ⊥ 1

2Eþiṽ·D i=D⊥ÞχvðxÞ χvðxÞ
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SE;vðx; yÞ ¼
�ScE;vðx; yÞ S<E;vðx; yÞ
S>E;vðx; yÞ SaE;vðx; yÞ

�

¼
� hTχvðxÞχ̄vðyÞi −hχ̄vðyÞχvðxÞi

hχvðxÞχ̄vðyÞi hT̃χvðxÞχ̄vðyÞi

�
; ð29Þ

where T denotes time ordering and T̃ denotes anti–time
ordering.
We will focus on one of the entries only, namely, S<E;v, as

this two-point function depends only on medium effects,
while the diagonal entries of Eq. (29) do also contain
vacuum contributions. We will drop the superindex < in
what follows to make the notation lighter.
A similar two-point function can be introduced for the

antiparticle quantum fluctuations. From now on, we will
focus on the particle’s sector, as the antiparticle’s transport
equations may be derived similarly, and only involve some
few changes to the particle’s derivation (E → −E, and
vμ ↔ ṽμ). However, we will have to take into account both
degrees of freedom when computing physical observables.
In order to make contact with transport theory, one

defines the (gauge-covariantly modified) Wigner transform
of the above two-point functions. If X ¼ 1

2
ðxþ yÞ and s ¼

x − y define the center of mass and relative coordinates,
respectively, then

SE;vðX; kÞ ¼
Z

d4seik·sU

�
X;X þ s

2

�

× SE;v

�
X þ s

2
; X −

s
2

�
U

�
X −

s
2
; X

�
; ð30Þ

where U is the Wilson line,

Uðx; yÞ ¼ P exp

�
−ie

Z
γ
dxμAμðxÞ

�
; ð31Þ

and P denotes path-ordering along the path γ from x to y.
Using that

U

�
X;X þ s

2

�
U

�
X −

s
2
; X

�
≈ eies·AðXÞ; ð32Þ

then one can show that the introduction of the Wilson line
allows us to define the Wigner function in terms of the
kinetic momentum k̄μ ¼ kμ − eAμðXÞ. From now on, we
will denote the kinetic momentum without the bar to keep
the notation light.
We will focus on the construction of the transport

equation associated with the vector and axial vector
components of the above two-point function and define

TrðγμSE;vðX; kÞÞ ¼
X
χ¼�

TrðγμPχγνJ
ν;χ
E;vðX; kÞÞ

¼ 2
X
χ¼�

Jμ;χE;vðX; kÞ; ð33Þ

where χ is an index that indicates the helicity/chirality of
the particle and

Pχ ¼
ð1þ χγ5Þ

2
ð34Þ

is a chirality projector.
Now, simply by using that

gμν ¼ Pμν
⊥ þ 1

2
ðvμṽν þ vνṽμÞ; ð35Þ

one can decompose

Jμ;χE;vðX; kÞ ¼ vμGχ
E;vðX; kÞ þ ṽμHχ

E;vðX; kÞ þ Jμ;χðE;vÞ;⊥ðX; kÞ:
ð36Þ

Further, for the constraint =vχv ¼ 0 for particles, one
can deduce that Hχ

E;v ¼ 0. One can also show that
h χ̄vðxÞγ⊥μ χvðxÞi ¼ 0, and thus, Jμ;χðE;vÞ;⊥ðX; kÞ ¼ 0.

We will thus write our transport equations in terms of the
two-point function

GE;vðx; yÞ ¼
�
χ̄vðyÞ

=̃v
2
χvðxÞ

�
ð37Þ

and its (gauge-covariantly modified) Wigner transform.
A basic ingredient to derive classical or semiclassical

transport equations is to perform the gradient expansion,
which assumes

∂X ≪ ∂s. ð38Þ

By doing this, we will consistently neglect gradients of the
gauge fields. This does not mean that we are considering
only situations of constant background fields but rather that
their variation is consistently neglected, as we will not take
into account second order derivatives on X of the two-point
Green function.

V. DERIVATION OF THE COLLISIONLESS
TRANSPORT EQUATION

A. Computation using the OSEFT variables

For our derivation, we substantially follow the approach
of Ref. [6], where a chiral transport equation valid for Fermi
systems at T ¼ 0 was derived from HDET [18]. Actually,
one of the motivations to develop OSEFT in Ref. [1] was to
extend the validity of the same derivation at finite temper-
ature, where also antiparticles have to be taken into
account. While in a system at finite density and vanishing
temperature the Fermi sea provides a natural privileged
frame, our derivation will be valid for an arbitrary frame.
With some minor technical differences (the use of Dirac
rather than Weyl fermions, use of local field redefinitions,
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and consideration of nonhomogeneous distribution func-
tions), we will find the final form of the chiral transport
equation in an arbitrary frame, respectful of reparametriza-
tion invariance, and therefore Lorentz invariance. We will
point out an important difference from Ref. [6] in our final
results.
We start by considering the equations obeyed by the

two-point Green’s functions, as follows from the OSEFT
Lagrangian. To derive the collisionless transport equation,
it is enough to consider the tree level equations. These can
be expressed as

X
n¼0

ðOðnÞ
x ÞSE;vðx; yÞ ¼ 0 ð39Þ

and

X
n¼0

SE;vðx; yÞðOðnÞ
y Þ† ¼ 0; ð40Þ

where from the OSEFT Lagrangian we can extract [34]

Oð0Þ
x ¼ iv ·D

=̃v
2
; ð41Þ

Oð1Þ
x ¼ −

1

2E

�
D2⊥ þ e

2
σμν⊥ Fμν

�
=̃v
2
; ð42Þ

Oð2Þ
x ¼ −

1

4E2
i=D⊥ðiṽ ·DÞi=D⊥

=̃v
2

¼ 1

8E2
ð½=D⊥; ½iṽ ·D; =D⊥�� þ fð=D⊥Þ2; iṽ ·DgÞ =̃v

2
;

ð43Þ

and we limit our study to operators up to 1=E2 in the energy
expansion.
It is convenient to introduce local field redefinitions to

eliminate the temporal derivative in Eq. (43), as in Ref. [2],
as these simplify quite a lot the computations at higher
orders [35]. Local field redefinitions might not be respect-
ful of RI if one considers off-shell quantities, but they will
not affect the result of on-shell quantities. Thus, after the
field redefinition

χv → χ0v ¼
�
1þ =D2⊥

8E2

�
χv; ð44Þ

the second order differential operator becomes

Oð2Þ
x;LFR ¼ 1

8E2

�
½=D⊥; ½iṽ ·D; =D⊥��

−
�
D2⊥ þ e

2
σμν⊥Fμν; ðiv ·D − iṽ ·DÞ

	�
=̃v
2

ð45Þ

We have checked that these two forms of the second-
order Lagrangian lead to an equivalent form of the (on-
shell) transport equation.
We now combine the sum and difference of Eqs. (39) and

(40) and compute their Wigner transform. For every order
in the energy expansion, we define

IðnÞ� ¼
Z

d4seik·sðOðnÞ
x Uðx; yÞSE;vðx; yÞ

� SE;vðx; yÞUðx; yÞOðnÞ†
y Þ; ð46Þ

however, note that these are matrix equations in the Dirac
subspace of the particles. In order to recover the transport
equation, we trace the above equations,

TrðIðnÞ� Þ ¼
X
χ¼�

IðnÞχ;�: ð47Þ

We can also derive separate equations for each helicity
by multiplying by the appropriate chiral projector.
Furthermore, from Eqs. (33) and (36), one can write

Gχ
E;vðX; kÞ ¼

1

2
ðṽ · JχE;vÞðX; kÞ: ð48Þ

We leave for the Appendix A some details of the
computations and present here our final results. For n ¼ 0,

Ið0Þχ;þ ¼ 4k · vGχ
E;vðX; kÞ; ð49Þ

Ið0Þχ;− ¼ 2ivμ½∂μ
X − eFμνðXÞ∂k;ν�Gχ

E;vðX; kÞ; ð50Þ

for n ¼ 1,

Ið1Þχ;þ ¼ 2

E

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μν

�
Gχ

E;vðX; kÞ; ð51Þ

Ið1Þχ;− ¼ 2
i
E
kμ⊥½∂X;μ − eFμν∂ν

k�Gχ
E;vðX; kÞ; ð52Þ

while for n ¼ 2, one gets

Ið2Þχ;þ ¼ −
2

E2

��
k2⊥ −

eχ
4
ϵαβμ⊥ν⊥ ṽβvαFμν

�
ṽ · k − v · k

2

þ eχ
4
ϵαβμ⊥ν⊥ ṽβvαFνρṽρkμ

�
Gχ

E;vðX; kÞ; ð53Þ

and

Ið2Þχ;− ¼ 2

E2

�
−kμ⊥

ṽ · k − v · k
2

þ 1

4

�
k2⊥ −

eχ
4
ϵαβδγṽβvαF⊥

δγ

�

× ðvμ − ṽμÞ − eχ
8
ϵαβμ⊥ν⊥ ṽβvαFνρṽρ

�

× i½∂X;μ − eFσ
μðXÞ∂k;σ�Gχ

E;vðX; kÞ: ð54Þ
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We can check that, when computed in the static frame
defined by fixing the frame vector as uμ ¼ ð1; 0; 0; 0Þ, and
using Eq. (11), our results agree with those computed from
HDET in Ref. [6] if we replace the chemical potential μ by
the energy E, except in what follows. With the local field
redefinition, the factor multiplying the time derivative in
the transport equation is 1, while without it, one gets a
nontrivial factor. We have checked that the same equation is
obtained if we normalize the transport equation of Ref. [6]
so as to obtain the same normalisation of the time derivative
term. We, however, disagree in the numerical factor of the
piece proportional to Fνρṽρ in Eqs. (53) and (54), in what it
is apparently an algebraic mistake. The numerical factors
found above turn out to be essential to deriving both the
proper form of the dispersion relation and the consistent
form of the anomaly equation.

B. Going backward to the original variables

Having derived the relevant equations in terms of the
OSEFT variables, let us now go back and express them in
terms of the original momenta of the full theory.

1. Dispersion relation

The dispersion relation is fixed after imposing

Ið0Þχ;þ þ Ið1Þχ;þ þ Ið2Þχ;þ ¼ 0; ð55Þ

which suggests that the Wigner function can be written as

Gχ
E;vðX; kÞ ¼ 2πδðKχÞfχE;vðX; kÞ; ð56Þ

where fχE;vðX; kÞ is the particle distribution function, and
we have introduced a ð2πÞ factor in order to reproduce, to
leading order, the expected density in a QED plasma. We
keep the labels E and v in the distribution function, as
this function will depend on the on-shell variables; see
e.g., Ref. [2], where it was explicitly seen that close to
equilibrium the on-shell energy acts as a sort of chemical
potential for the residual momentum. The function Kχ fixes
then the dispersion relation, to the order considered, and
can be read from the Iχ;þ functions. In particular, up to
order n ¼ 2,

Kχ ¼ 2k · vþ 1

E

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μν

�

−
1

E2

��
k2⊥ −

eχ
4
ϵαβμ⊥ν⊥ ṽβvαFμν

�
ṽ · k − v · k

2

þ eχ
4
ϵαβμ⊥ν⊥ ṽβvαFνρṽρkμ

�
: ð57Þ

Note that we could replace ϵαβμνṽβvα ¼ 2ϵαβμνuβvα in the
above expression. The on-shell constraint can be solved to
different orders in the energy expansion. To leading order it
is simply

2k · v ¼ 0; ð58Þ

while at the following order,

2k · vþ 1

E

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μν

�
¼ 0; ð59Þ

showing that ðv · kÞ turns out to be subleading in the 1=E
expansion when taken on shell.
It turns out convenient to express the on-shell constraint

in terms of the original momentum qμ. Then, one can check
that it leads to the constraint

q2 − eSμνχ Fμν ¼ 0; ð60Þ

where Sμνχ is the spin tensor defined as

Sμνχ ¼ χ
ϵαβμνuβqα
2ðq · uÞ ; ð61Þ

if solved up to order 1=E2 in the OSEFT variables. To see
this, we can express Eq. (60) in terms of on-shell and
residual momenta. Using

Eq ≡ q · u ¼ Eþ k · u; ð62Þ

and also that we can write for the residual momentum

kμ ¼ kμ⊥ þ 1

2
ðv · kÞṽμ þ 1

2
ðṽ · kÞvμ;

k2 ¼ k2⊥ þ ðv · kÞðṽ · kÞ; ð63Þ

then the spin tensor can be written as

Sμνχ ¼ χ

2
ϵαβμνuβ

�
vα þ

k⊥α
E

�
þO

�
1

E2

�
: ð64Þ

We can then easily obtain

q2−eSμνχ Fμν ¼ 2E

�
v ·kþ 1

2E
ðk2⊥−eSμνχ FμνÞ

�
1−

ðṽ ·kÞ
2E

��

þO
�

1

E2

�
; ð65Þ

where in the last expression we used Eq. (59) and the fact
that we are considering expansions in powers of 1=E.
Furthermore, employing once again the decomposition in
Eq. (35) both for kα and Fμν, we can express Sμνχ Fμν in
terms of the OSEFT variables

Sμνχ Fμν ¼
χ

2
ϵαβμνuβ

�
vα þ

k⊥α
E

�
ðF⊥

μν þ Fμ⊥ρṽ
ρvν

þ Fμ⊥ρv
ρṽνÞ þO

�
1

E2

�
: ð66Þ
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Finally, we can replace the above vector uβ by ṽβ=2, the
difference being a higher 1=E effect. This can be checked
by noticing that vμAμ ≪ ṽμAμ. Note that the condition
Eq. (58) involves the kinetic, rather than canonical,
momentum, which implies that not all the vector gauge
field components are equally relevant in the 1=E expansion.
Under these conditions, one can then check that Eq. (65)

becomes exactly EKχ. Equation (55) thus enforces the on-
shell condition Eq. (60), as anticipated.
Thus, in returning to the original variables, we will

identify, to order n ¼ 2 accuracy in the 1=E expansion,

Gχ
E;vðX; kÞ ¼ ð2πÞδðKχÞfχE;vðX; kÞ

¼ ð2πÞEδðEKχÞfχE;vðX; kÞ
¼ πEδþðQχÞfχðX; qÞ; ð67Þ

where we have defined

δþðQχÞ ¼ δðq2 − eSμνχ FμνÞ2θðEqÞ: ð68Þ

When the Wigner function is expressed in terms of the
original variables, there is still an E dependence. In explicit
computations of physical parameters, such as the vector
current (see Sec. VI), this E dependence disappears when
one finally expresses the whole current in terms of the
original variables.

2. Transport equation

The transport equation is obtained from

Ið0Þχ;− þ Ið1Þχ;− þ Ið2Þχ;− ¼ 0: ð69Þ

We will express the transport equation in terms of the
original momentum qμ. Let us define the vector

vqμ ≡ qμ

Eq
¼ E

Eq
vμ þ kμ

Eq
; ð70Þ

which satisfies u · vq ¼ 1. In the absence of gauge fields,
this vector can be written as

vqμ ¼ vμ þ kμ − vμðk · uÞ
E

− ðk · uÞ k
μ − vμðk · uÞ

E2
þ � � �

ð71Þ

If we further consider the on-shell condition at lowest order
v · k ¼ 0, then

kμ − vμðk · uÞjo:s: ¼ kμ⊥; ð72Þ

and it is not difficult to realize that

vqμjo:s: ¼ vμ þ kμ⊥
E

− ðk · ṽÞ kμ⊥
2E2

þ vμ − ṽμ

4E2
k2⊥ þO

�
1

E3

�
:

ð73Þ

If we now we include the gauge fields, after using
Eq. (59), we then get

vqμjo:s: ¼ vμ þ kμ⊥
E

− ðk · ṽÞ kμ⊥
2E2

þ vμ − ṽμ

4E2

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μν

�
þO

�
1

E3

�
;

ð74Þ

which is the combination that appears in the Iχ;− functions.
If we define

Δμ ≡ ∂μ
X − eFμνðXÞ∂q;ν; ð75Þ

one can write the transport equation in terms of the original
variables as

�
vqμ−

e
2E2

q
Sμνχ Fνρð2uρ−vρqÞ

�
ΔμfðX;qÞδþðQÞ¼ 0; ð76Þ

where we have used that ṽρ ¼ 2uρ − vρq in the last term
only. In the absence of the 1=Eq corrections, Eq. (76)
corresponds to a classical transport equation of a charged
fermion in the collisionless limit [37].
After taking into account the on-shell condition, Eq. (76)

is similar, but not identical, to the one proposed in
Ref. [10], see also Refs. [9,13], if we identify their frame
vector nμ with our uμ. For homogeneous backgrounds,
Eq. (76) contains a term, the piece proportional to
Sμνχ Fνρv

ρ
q, which is absent in Eq. (11) of Ref. [10]. It could

be eliminated by introducing a new term in the OSEFT
Lagrangian at order 1=E2, namely, the same that appears in
Eq. (43), but changing the ðṽ ·DÞ by ðv ·DÞ. However, this
could only be done at the expense of breaking reparamet-
rization invariance and, ultimately, Lorentz invariance.
For nonhomogeneous backgrounds, Eq. (11) of Ref. [10]

kept some gradient terms of the gauge fields and frame
vector. The gradient expansion used to reach to the above
transport equation was made by neglecting gradients of the
electromagnetic fields (see Appendix A), which would
otherwise naturally emerge in the computations of the
functions Iχ;−; thus, not all the gradient terms were kept in
Refs. [9,13], and in a close to thermal equilibrium situation,
it might be nonconsistent to keep those gradient terms
while neglecting ∂2

XG.
Let us consider now our covariant relativistic equation

and write it in the frame uμ ¼ ð1; 0; 0; 0Þ. In this frame,
Fi0 ¼ Ei, Fij ¼ −ϵijkBk, and also
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Sμνχ → Sijχ ¼ χ
ϵijkqk

2q0
; Sμνχ Fμν ¼ −χB ·

q
q0

. ð77Þ

After considering the on-shell condition, it is not difficult
to arrive at

�
Δ0 þ q̂i

�
1þ eχ

B · q̂
2q2

�
Δi þ eχ

ϵijkEjq̂k − Bi⊥;q

4q2
Δi

�

× fχðX;qÞ ¼ 0; ð78Þ
where we have defined Bi⊥;q ≡ Bi − q̂iðB · q̂Þ. This equa-
tion differs from Eq. (13) of Ref. [9], which for homo-
geneous backgrounds reads

�
Δ0þ q̂i

�
1þeχ

B · q̂
2q2

�
Δiþeχ

ϵijkEjq̂k

2q2
Δi

�
fχðX;qÞ¼ 0:

ð79Þ
Eq. (78) also differs from the transport equation

described in Sec. IIB of Ref. [6], although that equation
leads to the covariant chiral anomaly equation, while ours
leads to the consistent form of the chiral anomaly equation,
as we discuss in the following section.

VI. CONSISTENT CURRENT AND CHIRAL
ANOMALY EQUATION

In this section, we compute both the consistent electro-
magnetic and chiral currents. For the computation of the
latter, the best option is to introduce an artificial chiral
gauge field A5

μ and an artificial gauge field tensor F5
μν,

which are finally sent to zero, as advocated in Ref. [28] and

in Ref. [14], for example. Thus, we assume that the original
QED Lagrangian reads

L ¼
X
E;v

ðψ̄v;ṽðxÞiγμð∂μ þ ieAμ þ ieγ5A5
μÞψv;ṽðxÞÞ: ð80Þ

One can proceed with the same derivation of the OSEFT
Lagrangian in the presence of the chiral field. After
introducing the chiral projectors, it is not difficult to realize
that all our equations remain valid if we replace

Aμ → Aμ þ χA5
μ; Fμν → Fμν þ χF5

μν; ð81Þ
in all our final formulas, in agreement with the prescription
of Ref. [14].
The electromagnetic and chiral currents are obtained

from the OSEFT action, simply by performing the func-
tional derivatives

jμðxÞ ¼ −
δS

δAμðxÞ
; j5μðxÞ ¼ −

δS
δA5

μðxÞ
; ð82Þ

respectively. Alternatively, one could start with the QED
currents and plug the explicit expression of the Dirac fields
in Eq. (3) to finally write the current in terms of the OSEFT
fields. For example, considering only the contribution of
the particles,

ψ̄v;ṽðxÞγμψv;ṽðxÞ → ð χ̄vðxÞ þ H̄ð1Þ
ṽ ðxÞÞγμðχvðxÞ þHð1Þ

ṽ ðxÞÞ
≡ jμðxÞ: ð83Þ

Using the expression of the Hð1Þ
ṽ of Ref. [1] generalized to

an arbitrary frame, we find

jμðxÞ ¼ vμχ̄v
=̃v
2
χv þ

1

2E

�
χ̄vγ

μ
⊥i=D⊥

=̃v
2
χv þ χ̄vði=⃖DÞ⊥γμ⊥

=̃v
2
χv

�

−
ṽμ

4E2

�
χ̄vði=⃖DÞ⊥ði=DÞ⊥

=̃v
2
χv

�
þ vμ

8E2

�
χ̄vð=⃖DÞ2⊥

=̃v
2
χv þ χ̄vð=DÞ2⊥

=̃v
2
χv

�

−
1

4E2

�
χ̄vðiṽ ·DÞγμ⊥ði=DÞ⊥

=̃v
2
χv þ χ̄vði=⃖DÞ⊥ðiṽ · D⃖Þγμ⊥

=̃v
2
χv

�
þO

�
1

E3

�
; ð84Þ

where we have to take into account the local field
redefinition, Eq. (44), so as to compute the current in
the same way as the corrections to the transport equations.
A completely analogous computation can be carried out for
the chiral current.
At leading order in the energy expansion, one can

immediately express the current in terms of the two-point
function. After a Wigner transform, one finds

jμð0ÞðXÞ ¼ e
X
E;v;χ

Z
d4k
ð2πÞ4 v

μ2Gχ
E;vðX; kÞ: ð85Þ

We can use now the explicit form of the Wigner function at
order n ¼ 0; see Eq. (56). If we further make the identi-
fication [2,38]

X
E;v

Z
d4k
ð2πÞ4 ≡

Z
d4q
ð2πÞ4 ; ð86Þ

then, at leading order, the current is expressed as

jμð0ÞðXÞ ¼ e
X
χ¼�

Z
d4q
ð2πÞ3 2θðEqÞδðq2ÞqμfχðX; qÞ; ð87Þ
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where we have approximated Evμ ≈ qμ at leading order,
and it is understood that the on-shell condition is taken to
leading order, thus, without the gauge field contribution.
Similarly, the axial current at leading order reads

jμ
5;ð0ÞðXÞ ¼ e

X
χ¼�

χ

Z
d4q
ð2πÞ3 2θðEqÞδðq2ÞqμfχðX; qÞ: ð88Þ

At the following orders in the energy expansion, and due
to the presence of derivative terms in the explicit expression
of the current, a point-splitting regularization is needed.

This means that we take the field χ̄v at the value y. We then
perform the (gauge-covariantly modified) Wigner trans-
form, together with the derivative expansion, to finally take
the limit y → x. Note that this point-splitting regularization
is only needed to properly define the Wigner transform
(see, e.g., the scalar QED example explained in Ref. [39]
for the proper definition of the current) and not to regulate
ultraviolet problems, which are absent in the two-point
function we are studying.
If one considers corrections up to order n ¼ 2, then the

vector current reads

jμð2ÞðXÞ ¼ e
X
E;v;χ

Z
d4k
ð2πÞ4

��
vμ þ kμ⊥

E
− ðk · ṽÞ kμ⊥

2E2
þ vμ − ṽμ

4E2

�
k2⊥ −

eχ
4
ϵαβμνṽβvαF⊥

μν

��
:

−
χ

4E

�
ϵμναβṽαvβ −

ðk · ṽÞ
2E

ϵμναβṽαvβ

�
½∂X

ν − eFνσ∂σ
k� þ

χ

8E2
ϵμναβṽαvβkνṽρ½∂X

ρ − eFρσ∂σ
k�

þ eχ
8E2

ϵμραβṽαvβFρσṽσ
	
2Gχ

E;vðX; kÞ; ð89Þ

which, if converted to the original momentum, reads

jμð2ÞðXÞ ¼ e
X
χ¼�

Z
d4q
ð2πÞ3

�
qμ þ Sμνχ Δν −

e
2Eq

Sμνχ Fνρð2uρ − vρqÞ
	
fχðX; qÞδþðQχÞ: ð90Þ

For the axial current, we get the same expression, but the
whole integral is multiplied by χ.
In order to get the complete current, the antiparticle

contribution has to be added. As mentioned in Sec. IV, this
can be recovered from the OSEFT particle contribution,
Eq. (89), by simply replacing vμ ↔ ṽμ and E → −E.
Let us consider the current associated with one single

value of the chirality. Using the transport equation (76) and
the antisymmetry of the spin tensor, it is not difficult to
deduce

∂μj
μ
χðXÞ ¼ e2

Z
d4q
ð2πÞ3

�
qμþSμνχ Δν−

e
2Eq

Sμνχ Fνρð2uρ−vρqÞ
	

×Fμλ
∂
∂qλ ðf

χδþðQχÞÞ: ð91Þ

To deduce the form of the chiral anomaly, we will now
consider the frame uμ ¼ ð1; 0; 0; 0Þ, as then the analysis
simplifies quite a lot. We will also consider the situation
where, to leading order, the distribution function corre-
sponds to a thermal distribution function, with a chemical
potential that depends on the chirality: that is, there is a
fermion chiral imbalance in the system. The proof, how-
ever, can also be extended to distribution functions which,
when the on-shell condition to leading order is considered,
are parity invariant. One can express the integral on the rhs

of Eq. (91), after taking into account the on-shell condition,
as a surface integral. As the distribution function vanishes
for jqj → ∞, the only nonvanishing contribution arises for
low values of the momenta, where the quasiparticle picture
breaks down. We proceed as in Ref. [5] and Refs. [1,8], and
define a sphere centered in jqj ¼ 0 of radius R and then
compute the only nonvanishing surface integral

∂μj
μ
χðXÞ ¼ −e2χ lim

R→0

�Z
dSR

ð2πÞ3 · E
q̂ ·B
4R2

fχðjqj ¼ RÞ

−
Z

dSR

ð2πÞ3 ·
q̂
4R2

E · Bfχðjqj ¼ RÞ
�

¼ e2χ
E ·B
2π2

1

6
fχðjqj ¼ 0Þ: ð92Þ

At this point, we should consider the contribution of all
the chiralities, of both fermions and antifermions so as to
obtain the full complete contribution to the axial and vector
currents. We thus assume the following fermion and
antifermion distribution functions,

fχðjqjÞ ¼ 1

eðjqj−μχÞ=T þ 1
; f̃χðjqjÞ ¼ 1

eðjqjþμχÞ=T þ 1
;

ð93Þ
respectively, to obtain the nonconservation of the chiral
current
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∂μJ
μ
5ðXÞ ¼

1

3

e2

2π2
ðE · Bþ E5 · B5Þ: ð94Þ

The vector current also has a quantum anomaly also in the
presence of chiral gauge fields

∂μJ μðXÞ ¼ 1

3

e2

2π2
ðE5 ·BþE · B5Þ: ð95Þ

Eq. (94) gives account of the consistent form of the chiral
anomaly equation, rather than its covariant form. We refer
the reader to the excellent review [28] that gives very clear
explanations about these two different forms of the quan-
tum anomaly. After defining our currents as functional
derivatives of the action, one cannot get anything else than
the consistent currents. Unfortunately, the vector current is
also nonconserved. It is possible to add the so-called
Bardeen counterterms [40] to the quantum action

e2
Z

d4xϵμνρλAμA5
νðc1Fρλ þ c2F5

ρλÞ; ð96Þ

with the choice c1 ¼ 1
12π2

and c2 ¼ 0, and then one can get a
vector conserved current [28].
Previous approaches to CKT have shown to provide both

the covariant currents and also the covariant form of the
chiral anomaly [1–3]; see also Ref. [14]. One can relate the
consistent and covariant currents by adding Chern-Simons
currents [28].

VII. SIDE JUMPS DERIVED FROM
REPARAMETRIZATION INVARIANCE

OF THE OSEFT

Once we know how the fields of the OSEFT behave
under the three types of RI transformations, we can deduce
how the different two-point functions behave under the
same transformations. Then, after performing the (gauge-
covariantly modified) Wigner transform and a gradient
expansion, we can deduce how the distribution function
behaves under the same sort of transformations.
It is actually easy to show that under the type I and type

III symmetries of RI the distribution function in the OSEFT
remains invariant. For example, under type I symmetry, the
basic two-point function transforms as (see Table I)

�
χ̄vðyÞ

=̃v
2
χvðxÞ

�0

→

�
χ̄vðyÞ

�
1þ 1

4
=̃v=λ⊥

�
=̃v
2

�
1þ 1

4
=λ⊥ =̃v

�
χvðxÞ

�

¼
�
χ̄vðyÞ

=̃v
2
χvðxÞ

�
; ð97Þ

where we have used that =λ⊥ =̃v ¼ −=̃v=λ⊥, and =̃v=̃v ¼ 0. It then
follows that

ðfχE;vðX; kÞÞ0 ¼ fχE;vðX; kÞ ð98Þ

under a type I transformation. Similarly, it is possible to
show that the distribution function does not change under a
type III transformation.
The Green function (37) used in our derivation of the

transport equation has, however, a nontrivial transformation
under type II symmetry. Using the transformation rules of
Table I, we obtain
�
χ̄vðyÞ

=̃v
2
χvðxÞ

�0
→

�
χ̄vðyÞ

=̃vþ =ϵ⊥
2

χvðxÞ
�

þ
�
χ̄vðyÞ

�ði=⃖D⊥;yÞ†=ϵ†⊥
2E

�
=̃v
2
χvðxÞ

�

þ
�
χ̄vðyÞ

=̃v
2

�
1

2

=ϵ⊥i=D⊥;x

2E

�
χvðxÞ

�

þO
�

1

E2

�
: ð99Þ

In OSEFT, hχ̄vðyÞγμ⊥χvðxÞi ¼ 0. After the Wigner trans-
form, together with the gradient expansion, we end up with

ðGχ
E;vðX;kÞÞ0→Gχ

E;vðX;kÞ−
1

2E
k⊥ · ϵ⊥Gχ

E;vðX;kÞ

−
χ

E
ϵμ⊥ν⊥αβvαṽβϵ⊥ν ð∂X

μ −eFμλ∂λ
kÞGχ

E;vðX;kÞ:
ð100Þ

Taking into account the definition of the two-point
function at order 1=E involves the current density that
might be computed [see the integrand of Eq. (89) at order
1=E] as

Gχ
E;vðX;kÞ¼

1

2
ṽμ ·

�
vμþkμ⊥

E
þ���

�
ð2πÞfχE;vðX;kÞδþðKχÞ;

ð101Þ

this implies that the distribution function should change as

ðfχE;vðX;kÞÞ0 → fχE;vðX;kÞ−
χ

E
ϵμ⊥ν⊥αβvαṽβϵ⊥ν ð∂X

μ −eFμλ∂λ
kÞ

×fχE;vðX;kÞ; ð102Þ

under a type II transformation.
In terms of the original variables, one then gets

ðfχðX;qÞÞ0→fχðX;qÞ− 1

Eq
Sμνχ ϵ⊥ν ΔμfχðX;qÞþO

�
ϵ2⊥;

1

E2
q

�
:

ð103Þ

Taking into account that ϵμ⊥=2 ¼ u0μ − uμ, we see that
Eq. (103) agrees with the infinitesimal form of the side-
jump transformation first discussed in Ref. [23] in the
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absence of gauge fields, later generalized in the presence of
the gauge fields in Ref. [9].

VIII. DISCUSSION

We have derived from OSEFT the corrections to the
classical transport equations associated with on-shell mass-
less charged fermions and antifermions. We have seen how
from the proposed equations one can derive the consistent
form of the chiral anomaly equation when considering a
chiral imbalance system in thermal equilibrium. Our
formulation turns out to be the proper generalization of
the HDET approach to chiral transport theory of Ref. [6],
but valid also for finite temperature systems and formulated
in an arbitrary frame. The study of reparametrization
invariance of the theory allows us to claim that the results
are consistent with Lorentz symmetry, even if the kinetic
equation depends on a frame vector. We have also deduced
the side jumps of the distribution function of the theory
from the transformation rule under RI of the OSEFT
quantum fields.
Let us insist that when we consider the frame vector as

uμ ¼ ð1; 0Þ our equations almost agree with those of
Ref. [6], except in a couple of factors, in what apparently
was an algebraic mistake. It is, however, important to stress
that the transport equation obtained either in Ref. [6] or in
this paper do not match exactly with the transport equation
in Sec. IIB of Ref. [6], which were obtained starting with a
corrected form of the classical point-particle action, with
modified Poisson brackets. This starting point can be
justified by performing a Foldy-Wouthuysen diagonaliza-
tion of the quantum Dirac Hamiltonian, as seen in Ref. [1].
However, the same exact form of the transport equation is
not obtained if the starting point is a quantum field theory.
Let us stress that in such a formulation one obtains the
covariant form of the chiral anomaly, as the chiral current is
not defined by performing a functional derivative of an
action, but from the equation obeyed by the current in the
transport approach.
The question remains whether there can be more than

one possible transport equation describing the same system
equally well. The Foldy-Wouthuysen diagonalization used
in Ref. [1] suggests that the starting quantum fields used
there or those used in our OSEFTapproach are not the same
beyond the classical limit approximation. Thus, probably it
is not so surprising that one does not end up with the same
exact form of the corresponding kinetic equations, while
the two approaches give an equivalent description of the
system.
Probably more surprising are the discrepancies we

obtained from the results of Refs. [9,10,13], obtained from
massless QED, assuming homogenous gauge field back-
grounds. OSEFTonly helps in organizing the quantum field
theory computation at large energies, as it has already been
checked in the computation of Feynman diagrams at high T

[2,41]. We cannot comment on the possible origin of these
discrepancies, although it seems that the approach should
also lead to the consistent form of the chiral anomaly, rather
than its covariant form, as claimed in Ref. [10].
Let us, however, stress that discrepancies of our results

with others published in the literature only appear at order
n ¼ 2 in the energy expansion both in the transport
equation and the current. Let us mention that, since the
chiral magnetic effect as well as other chiral transport
effects appear already at order n ¼ 1, our formulation gives
the same description as that of other formulations (see
Appendix B for the computation of the chiral magnetic
effect).
While in this manuscript we have focused our attention

to the collisionless form of the transport equation, a much
more challenging task is to derive the collision terms from
OSEFT, such that the Lorentz symmetry is respected and
the side jumps are properly described. This will be the
subject of a different project.
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APPENDIX A: DERIVATION OF THE Iχ ;±
FUNCTIONS

We provide in this Appendix some details of the
computation of the Iχ;� functions. We take here e ¼ 1
for simplicity.
We start from the equation of motion for quantum

fields χv,

ðOð0Þ
x þOð1Þ

x þOð2Þ
x ÞχvðxÞ ¼ 0; ðA1Þ

and similarly its Hermitian conjugate for y. By adding and
subtracting them, we can build equations for the two-point
function. For each piece, we isolate the different possible
Dirac structures, so we write

OðnÞ
x ¼ ðαðnÞx þ βðnÞx;μνσ

μν
⊥ Þ =̃v

2
; ðA2Þ

then, taking the trace of Eq. (46), one gets
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TrðIðnÞ� Þ ¼
Z

d4seik·s
�
ðαðnÞx � αðnÞ�y ÞTr

�
=̃v
2
SE;vðx; yÞ

�
þ ðβðnÞx;μν � βðnÞ�y;μνÞTr

�
σμν

=̃v
2
SE;vðx; yÞ

�	
: ðA3Þ

For the α and β coefficients, we find (after neglecting terms of higher order in the gradient expansion like ∂X
αFμν)

αð0Þ ¼ iv ·D; βð0Þμν ¼ 0; ðA4Þ

αð1Þ ¼ −
1

2E
D2⊥; βð1Þμν ¼ −

1

4E
Fμν; ðA5Þ

αð2Þ ¼ 1

4E2
ðvα − ṽαÞðFμαDμ − iDαD2⊥Þ; βð2Þμν ¼ i

4E2

�
FμαṽαDν −

1

2
Fμνðv ·D − ṽ ·DÞ

�
: ðA6Þ

We now perform the change of variables to the center of mass and relative coordinates X, s. The recurring combinations will
be

Dx
α − ðDy

αÞ� ¼ 2ð∂s
α þ iAαðXÞÞ; Dx

α þ ðDy
αÞ� ¼ ∂X

α þ isβ∂βAαðXÞ; ðA7Þ

together with

ðDx⊥Þ2 þ ððDy
⊥Þ�Þ2 ¼ 2ð∂X · ∂s þ ið∂X · AðXÞ þ AðXÞ · ∂XÞ þ isβ∂X

βA
αðXÞð∂s

α þ iAαðXÞÞÞ; ðA8Þ

ðDx⊥Þ2 þ ððDy
⊥Þ�Þ2 ¼ 2ð∂2

s þ 2iAðXÞ · ∂s − AðXÞ2Þ: ðA9Þ

We also use that

Tr

�
=̃v
2
SE;v

�
¼ 2

X
χ¼�

Gχ
E;v; Tr

�
σμν

=̃v
2
SE;v

�
¼ −

X
χ¼�

χϵμναρṽαJ
χ
ðE;vÞ;ρ; ðA10Þ

where G and J are defined in Eqs. (36) and (37), respectively.
For an example, we can work out the lowest order function. If here kμ denotes the canonical momentum, then

Ið0Þþ ¼
Z

d4seik·siv · ðDx −D�
yÞ
X
χ¼�

2Gχ
E;vðX; sÞe−iAs

¼
Z

d4seik·siv · 2ð−ikþ iAðXÞÞ
X
χ¼�

2Gχ
E;vðX; sÞe−iAs

¼ 4ðv · k̄Þ
Z

d4seik̄·s
X
χ¼�

Gχ
E;vðX; sÞ ¼ 4ðv · k̄Þ

X
χ¼�

Gχ
E;vðX; k̄Þ; ðA11Þ

where now k̄μ ¼ kμ − Aμ is the canonical momentum.

APPENDIX B: CHIRAL MAGNETIC EFFECT

In this Appendix, we briefly show how from our formulation one can reproduce the chiral magnetic effect. We start from
the current Eq. (90) and focus on its spatial components in the local rest frame uμ ¼ ð1; 0; 0; 0Þ. After performing the q0
integration, we get

jiðXÞ ¼ e
X
χ¼�

Z
d3q
ð2πÞ3

�
qi

Eq
þ Sijχ Δj

Eq
−

e
2E2

q
Sijχ Fjσṽσ

�
fχðX; qÞ





q0¼Eq

; ðB1Þ

with the dispersion relation in this frame given by
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q0 ¼ Eq ¼ jqj
�
1 − eχ

B · q̂
2jqj2

�
: ðB2Þ

We now expand the distribution function using the
dispersion relation and assume we are in equilibrium so
we can use the standard Fermi-Dirac expressions:

fχðX; qÞjq0¼Eq
¼ fχðjqjÞ − eχ

B · q̂
2jqj

dfχðjqjÞ
djqj ;

fχðjqjÞ ¼ 1

1þ eðjqj−μχÞ=T
; ðB3Þ

this in turn eliminates all terms containing spatial deriv-
atives, and keeping only the leading terms in 1=jqj, we are
left with

jiðXÞ ¼ e
X
χ¼�

Z
d3q
ð2πÞ3

��
qi

jqj − eϵjkl
Sijχ
jqjB

l ∂
∂qk

�
fχðjqjÞ

− e
qi

jqj χ
B · q̂
2jqj

dfχðjqjÞ
djqj

�
: ðB4Þ

After an integration by parts and performing angular
integration, we finally arrive at

jiðXÞ ¼ −
e2

4π2
Bi
X
χ¼�

χ

Z
djqjjqj df

χðjqjÞ
djqj ¼ e2

μ5
4π2

Bi;

ðB5Þ

where μ5 ¼ μ1 − μ−1, which is exactly the expected result
for the chiral magnetic effect [42–44]; see also Ref. [8].
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