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Weak pion production off the nucleon at low energies has been systematically investigated in manifestly
relativistic baryon chiral perturbation theory with explicit inclusion of the Δð1232Þ resonance. Most of the
involved low-energy constants have been previously determined in other processes such as pion-nucleon
elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few
remaining constants are set to be of natural size. As a result, the total cross sections for single pion
production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results
are consistent with the scarce existing experimental data except in the νμn → μ−nπþ channel, where
higher-order contributions might still be significant. The Δ resonance mechanisms lead to sizeable
contributions in all channels, especially in νμp → μ−pπþ, even though the considered energies are close to
the production threshold. The present study provides a well-founded low-energy benchmark for
phenomenological models aimed at the description of weak pion production processes in the broad
kinematic range of interest for current and future neutrino-oscillation experiments.
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I. INTRODUCTION

Neutrino interactions with matter are at the heart of many
relevant phenomena in astrophysics, nuclear physics, and
particle physics. Among them, neutrino oscillations have
revealed that neutrinos are massive, providing evidence of
physics beyond the standard model. Precision studies of
neutrino-oscillation parameters demand a good understand-
ing and accurate modeling of neutrino interactions with
nucleons and nuclei [1–3]. In this context, weak pion
production has been actively investigated.
Single-pion production amounts to one of the leading

contributions to the inclusive (anti)neutrino-nucleus cross
section in the energy range of interest for ongoing and
future oscillation experiments. As such, it can be part of
the signal or a background that should be precisely con-
strained. Single charged pion production in charged-current

interactions is a source of events that can be misidentified
as quasielastic [νlðν̄lÞN → l∓N0] if the pion is not identi-
fied, introducing a bias in the kinematic neutrino energy
reconstruction.1 Furthermore, neutral-current π0 production
events in Cherenkov detectors contribute to the electronlike
background in νμ → νe measurements. In spite of the
progress, 20%–30% errors are currently taken for single-
pion production in oscillation analyses due to conflicts
between data sets and models [4].
It was acknowledged early that, at low and intermediate

energies, weak pion production should proceed predomi-
nantly through the excitation of the Δð1232Þ3=2þ reso-
nance (see Ref. [5] and references therein). Isobar models
accounting for heavier nucleon resonances were sub-
sequently developed [6,7]. The nucleon-to-resonance tran-
sitions were parametrized in terms of real form factors
obtained from quark models [7–10] or phenomenology. In
the later case, owing to the symmetry of the conserved
vector current under isospin rotations, vector transition
form factors can be related to electromagnetic ones
extracted from electron scattering data, while the partial
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1Neutrino fluxes are not monochromatic. Therefore, the
neutrino energy, on which oscillation probabilities depend, is
not known on an event-by-event basis but can be approximately
reconstructed from the final-lepton kinematics in quasielastic
events.
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conservation of the axial current (PCAC) allows us to
derive the off-diagonal Goldberger-Treiman (GT) relation
for the leading axial couplings [6,11–13]. Additional, but
rather limited, information on the transition axial form
factors can be obtained from available weak pion-produc-
tion bubble-chamber data on hydrogen and deuterium
[14–16]. Nonresonant mechanisms were added to the
resonant ones in Refs. [6,17,18] and further extended to
fulfill chiral symmetry constraints at threshold in Ref. [19].
In these studies, the range of applicability of the Born terms
is expanded by the introduction of form factors. In the
approach of Ref. [19] (denoted as HNV from now on), a
good agreement with bubble chamber data was achieved at
the price of introducing tensions in the value of the leading
N − Δð1232Þ axial coupling, CA

5 in the notation of Ref. [5],
with respect to the GT value at a 2σ level [15].2 The two
values could be reconciled by imposing Watson’s theorem
in the dominant partial wave [22]. The importance of a
consistent treatment of the Δð1232Þ was stressed in
Refs. [23,24], also accounted for in the HNV model by
the introduction of new contact terms that absorb the
unphysical spin-1=2 components in the Δ propagator
[25]. Extensions of the HNV model to higher energies
have been developed by enlarging the resonant content of
the model beyond the Δð1232Þ [26–28] and by applying
Regge phenomenological corrections to the nonresonant
contribution [27]. A power counting was introduced in
Ref. [29] in an effective model with pion, nucleons,
Δð1232Þ but also scalar (σ) and vector (ρ, ω) mesons as
degrees of freedom. Next-to-leading order (NLO) (but only
tree-level) corrections to weak pion production were
investigated. In the dynamical model of Ref. [30], the
amplitudes are obtained by solving the Lippmann-
Schwinger equation in coupled channels, fulfilling
Watson’s theorem by construction. In this model, PCAC
is used to partially constrain the axial current in terms of the
pion-nucleon scattering amplitude fitted to data.
Chiral perturbation theory (ChPT) [31–34], the effective

field theory of QCD at low energies, plays a prominent role
in the systematic and model independent study of modern
hadronic physics. Initially developed for the description of
the interactions among the Goldstone bosons originating
from the spontaneous breaking of the SUð3ÞL × SUð3ÞR
chiral symmetry of QCD, it has achieved a remarkable level
of precision in the description of a multitude of low-energy
observables involving mesons and baryons [35,36]. Amid
the large collection of processes successfully described by
ChPT, we should mention pion photo- and electroproduc-
tion off the nucleon. Thewealth of precise data available for

these reactions has led to intense theoretical research,
reaching a very sophisticated and accurate description of
the low-energy data; see, e.g., Ref. [37] and references
therein for a recent experimental and theoretical review.
However, beyond leading-order (LO) tree-level ampli-

tudes, the systematic application of ChPT to neutrino-
induced pion production has been rare. To our knowledge,
it is limited to several low-energy theorems that have been
derived for weak pion production, including one-loop
corrections, using the heavy-baryon formalism [38]. We
report here the first systematic study of weak pion
production up to next-to-next-to-leading order (NNLO)
in covariant ChPT with nucleons and Δð1232Þ. The
information gathered in the study in pion production with
electromagnetic probes and pion-nucleon scattering within
the same framework provides valuable input for weak pion
production. By construction, the amplitudes obtained in
ChPT fulfill perturbative unitarity and Watson’s theorem.
As emphasized in Ref. [38], ChPT brings about corrections
to the axial current that cannot be derived using PCAC.
Furthermore, unlike most phenomenological models, it
does not require ad hoc assumptions about the form factors
to enforce the (partial) conservation of the (axial) vector
current [39]. The predictive power of ChPT calculations is
limited to the threshold region but nonetheless they can be
very valuable for the neutrino cross-section program [3] as
a benchmark for phenomenological models that aim to
describe weak pion production in wider energy regions.
This paper is organized as follows. In Sec. II, the generic

formalism of weak pion production is presented. In Sec. III,
the hadronic tensor is systematically studied in the ChPT
framework. Specifically, we discuss the power-counting rule
in subsection III A and then display all the relevant pieces of
the Lagrangian in subsection III B. The calculation of the
hadronic transition amplitude and its renormalization are
carried out in subsections III C and III D, respectively.
Section IV comprises numerical results: the total cross
sections are shown in subsection IVB after the parameter
values are specified. Pion angular distributions and multipole
amplitudes are briefly discussed in subsections IVC and IV
D, respectively. We summarize in Sec. V. Furthermore, the
explicit expressions of the transition amplitude at tree level
are compiled in Appendix A. We also display the axial-
vector operators in an alternative basis, well suited for chiral
expansions, in Appendix B and the renormalization factors
as well as β functions are in Appendix C. The amplitudes in
the isobaric frame, defined in terms of the Lorentz vector and
axial-vector amplitudes and well suited to perform multipole
expansions, are shown in Appendix D.

II. FORMALISM

A. Kinematics, Lorentz and isospin decompositions

Charged-current weak pion production off the nucleon
consists of processes of the type

2Deviations from the N − Δð1232Þ off-diagonal GT relation
are expected only at the few-% level, as they arise from chiral
symmetry breaking. Systematic studies of the corrections to this
GT relation using chiral perturbation theory have been reported in
Refs. [20,21].
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νlðk1Þ
ν̄lðk1Þ

�
þ Nðp1Þ →

l−ðk2Þ
lþðk2Þ

�
þ N0ðp2Þ þ πbðqÞ; ð1Þ

induced either by neutrinos νl or antineutrinos ν̄l; see
Ref. [40] for a classic review of electroweak pion produc-
tion. This reaction is described by the Lorentz-invariant
amplitude T fi, which is defined by

outhlðk2ÞN0ðp2ÞπbðqÞjνlðk1ÞNðp1Þiin
¼ ið2πÞ4δð4Þðk1 þ p1 − k2 − p2 − qÞT fi: ð2Þ

In the antineutrino case, one replaces νl → ν̄l and
l− → lþ in the above definition. The amplitude T fi is a
function of the following six Mandelstam variables,

s≡ ðk1 þ p1Þ2; s1 ≡ ðk2 þ p2Þ2; s2 ≡ ðqþ p2Þ2;
t1 ≡ ðk1 − k2Þ2; t2 ≡ ðk1 − qÞ2; t≡ ðp1 − p2Þ2;

ð3Þ

which fulfill the constraint

m2
N þ sþ t1 þ t2 ¼ tþ s1 þ s2; ð4Þ

where the neutrino mass has been approximated to zero. We
work in the isospin limit so the mass of all nucleons (pions)
has been set to mN (Mπ). Henceforth, t is always given in
terms of the other five invariants.
In the limit jt1j ≪ M2

W , whereMW is the vector W-boson
mass, the scattering amplitude T fi can be written as

T fi ¼
GFffiffiffi
2

p jVudjLμHμ; ð5Þ

where the leptonic and hadronic currents, denoted by Lμ

and Hμ, respectively, are given by

Lμ ≡
�
ūlðk2Þγμð1 − γ5Þuνlðk1Þ; neutrino

v̄νlðk1Þγμð1 − γ5Þvlðk2Þ; antineutrino
ð6Þ

Hba
μ ≡hN0ðp2ÞπbðqÞjVa

μð0Þ − Aa
μð0ÞjNðp1Þi; ð7Þ

in terms of the isovector vector and axial-vector currents Va
μ

and Aa
μ; Hμ depends only on variables s2, t1 and t. Its

isospin structure has the form

Hba
μ ðs2; t; t1Þ ¼ χ†f

�
1

2
fτb; τagHþ

μ þ 1

2
½τb; τa�H−

μ

�
χi; ð8Þ

where χi and χf are isospinors of the initial and final
nucleon states, respectively. Furthermore, the Lorentz
decomposition reads

H�
μ ðs2; t; t1Þ ¼

X8
i¼1

ūN0 ðp2ÞfA�
i ðs2; t; t1ÞOA

μ;i

þ V�
i ðs2; t; t1ÞOV

μ;iguNðp1Þ; ð9Þ

with the Lorentz axial-vector operators3

OA
μ;1 ¼ qμ; OA

μ;2 ¼ p1;μ; OA
μ;3 ¼ p2;μ;

OA
μ;4 ¼ qqμ; OA

μ;5 ¼ qp1;μ; OA
μ;6 ¼ qp2;μ;

OA
μ;7 ¼ γμq; OA

μ;8 ¼ γμ; ð10Þ
and Lorentz vector operators

OV
μ;i ¼ OA

μ;iγ5; i ¼ 1;…; 8: ð11Þ
The set of vector operators is complete but they are not
independent if the conservation of the vector current is
imposed. To be specific, there exist two constraints on Vi:

k · qV1 þ k · p1V2 þ k · p2V3 þ ðM2
π − 2p1 · qÞV7

þ 2mNV8 ¼ 0;

k · qV4 þ k · p1V5 þ k · p2V6 þ V8 ¼ 0; ð12Þ
with k≡ k1 − k2. Eventually, once the functions H�

μ are
determined, the hadronic transition amplitudes for the
various physical weak pion production processes can be
readily obtained through

Hμðνlp → l−πþpÞ ¼ Hμðν̄ln → lþπ−nÞ ¼ Hþ
μ −H−

μ ;

Hμðνln → l−πþnÞ ¼ Hμðν̄lp → lþπ−pÞ ¼ Hþ
μ þH−

μ ;

Hμðνln → l−π0pÞ ¼ Hμðν̄lp → lþπ0nÞ ¼ −
ffiffiffi
2

p
H−

μ :

ð13Þ

B. Cross section

Unless otherwise stated, the energies and momenta are
defined in the center-of-mass frame (CM) of the initial
(anti)neutrino and nucleon. The directions of pion and
lepton three-momenta directions are specified in the refer-
ence frame depicted in Fig. 1. By construction, Oxz is the
lepton scattering plane.
The total cross section reads

σðsÞ ¼ 1

ð4πÞ4 ffiffiffi
s

p jk1j
Z

ωþ
l

ω−
l

dωl

Z
ωþ
π

ω−
π

dωπ

Z þ1

−1
dx1

×
Z

π

0

dϕ12jT fij2; ð14Þ

where x1 ¼ cos θ1 and ϕ12 is the angle between the Oxz
plane and the one spanned by k⃗2 and q⃗. Here, the limits for
the lepton energy ωl are given by

3This simple basis can be easily related to the ones in Ref. [40]
or Ref. [19], if needed.
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ω−
l ¼ ml; ωþ

l ¼ ð ffiffiffi
s

p
−MπÞ2 þm2

l −m2
N

2ð ffiffiffi
s

p
−MπÞ

; ð15Þ

and the ones for the pion energy ωπ are

ω�
π ¼ 1

2ðs − 2ωl
ffiffiffi
s

p þm2
lÞ
n
ð ffiffiffi

s
p

− ωlÞ

× ðs − 2ωl
ffiffiffi
s

p þm2
l þM2

π −m2
NÞ � ðω2

l −m2
lÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − 2ωl

ffiffiffi
s

p þm2
l −M2

π −m2
N �2 − 4M2

πm2
N

q o
;

ð16Þ

In the above, ml denotes the outgoing-lepton mass. The
invariant amplitude squared can be written as

jT fij2 ¼
G2

F

2
jVudj2LμνHμν; ð17Þ

in terms of the conventional leptonic and hadronic tensors.
From Eq. (6), the leptonic tensor for a neutrino-induced
process is given by

Lμν ¼ Tr½=k1γμð1 − γ5Þð=k2 þmlÞγνð1 − γ5Þ�
¼ 8½k1;μk2;ν þ k1;νk2;μ − gμνk1 · k2 þ iϵμναβkα1k

β
2�; ð18Þ

with ϵ0123 ¼ þ1. For the corresponding antineutrino reac-
tion, the term proportional to the fully antisymmetric tensor
gets a minus sign. On the other hand, the hadronic tensor
Hμν reads

Hμν ¼
1

2
Tr½ðp1 þmNÞH̃μðp2 þmNÞHν�; ð19Þ

where H̃μ ¼ γ0H
†
μγ0. The hadronic transition amplitudes

Hμ are those introduced in Eq. (13).

The total cross section is a function of only s, so that the
other four Mandelstam variables should be expressed in
terms of s and the integration variables,

s1ðs;ωπÞ ¼ s − 2
ffiffiffi
s

p
ωπ þM2

π;

s2ðs;ωlÞ ¼ s − 2
ffiffiffi
s

p
ωl þm2

l;

t1ðs;ωl; x1Þ ¼ m2
ν þm2

l − 2ωνωl þ 2jk⃗1jjk⃗2jx1;
t2ðs;ωl;ωπ; x1;ϕ12Þ ¼ m2

ν þM2
π − 2ωνωπ þ 2jk⃗1jjq⃗jx2;

ð20Þ

where xi ≡ cos θi and the moduli of the three momenta are

jq⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
π −M2

π

q
; jk⃗2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l −m2

l

q
; jk⃗1j ¼ ων;

ð21Þ

with ων ¼ ðs −m2
NÞ=ð2

ffiffiffi
s

p Þ. Furthermore, x2 ¼ x1x12 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x21Þð1 − x212Þ

p
cosϕ12, and x12 is obtained from

jk⃗2jjq⃗jx12¼
1

2
ðm2

lþM2
π −m2

N þ sÞ− ffiffiffi
s

p ðωlþωπÞþωlωπ:

ð22Þ

The invariant s can be related to the energy of the neutrino
in the laboratory frame, Eν, by

s ¼ m2
N þ 2mNEν; ð23Þ

so that the total cross section can be expressed as a function
of Eν.

III. SYSTEMATIC ANALYSIS OF THE
HADRONIC TENSOR IN ChPT

In this section, the different ingredients required to
obtain the hadronic current in ChPT are presented.

A. Power counting

As an expansion in powers of momenta and light-quark
masses, ChPT relies on a hierarchy of the contributions
(diagrams) known as power counting. The presence of
matter fields as explicit degrees of freedom introduces new
scales that do not vanish in the chiral limit, causing the
presence of power-counting-breaking (PCB) terms [41] in
the diagrams with loops. To remedy this problem, various
approaches have been proposed in the past thirty years:
e.g., the heavy baryon (HB) formalism [42,43], the infrared
regularization (IR) prescription [44,45], and the extended-
on-mass-shell (EOMS) scheme [46–48].4
For ChPT in the one-baryon sector, denoted in short as

BChPT, the EOMS scheme has proven to be a very

FIG. 1. Kinematics and reference frame.

4See also Refs. [36,49] for further discussion on this topic.
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effective tool. It is covariant and preserves the analytic
structure of the calculated physical quantities with correct
power counting. When the proper limits are taken, EOMS
reproduces the results obtained using the HB or the IR
formalisms but usually offers a faster chiral convergence
because covariance and the analytic structure of the loops
are maintained [50–52]. Due to the above-mentioned facts,
the EOMS scheme is gaining a widespread acceptance and
has been applied to many relevant processes, e.g., pion-
nucleon scattering [53–56] and pion photoproduction [57–
59], among others. It has also been used to describe heavy-
light systems [60–62]. Furthermore, there have been
attempts to create a new framework based on EOMS to
extend the applicability beyond the low-energy region but
restricted to small scattering angles [63].
The explicit inclusion in BChPTof baryon states heavier

than the nucleon, such as theΔ resonance, is not trivial. The
Δð1232Þ excitation is the lightest baryon resonance, located
only ∼200 MeV above the πN threshold, and hence crucial
for a good description of the πN physics even at low
energies. In BChPT with Δð1232Þ, apart from the external
momenta p and the pion mass Mπ, an additional small
parameter appears, namely the mass difference δ ¼ mΔ−
mN ∼ 300 MeV. Different assumptions about the expan-
sion parameters lead to different power-counting rules. In
the small scale expansion (SSE) scheme proposed in
Refs. [64,65], both δ and Mπ are counted as OðpÞ. Instead,
in the so-called δ-counting, developed in Ref. [66], a different
counting, δ ∼Oðp1

2Þ, is introduced in order to preserve the
hierarchy p=ΛχSB ∼Mπ=ΛχSB ∼ ðδ=ΛχSBÞ2, with ΛχSB ∼
1 GeV being the chiral symmetry breaking scale.
In the present work, we are interested in the energy range

from the production threshold Ethr
ν . (≃276.5 MeV for

l ¼ μ) to Emax
ν ∼Ethr

ν þMπ (≃415 MeV for l ¼ μ). With
such a choice, Q2 ≡ −t1 is always smaller than 0.02 GeV2

and the pion momentum is smaller than 0.18 GeV.
Furthermore, the invariant mass of the final hadronic πN
system, denoted as W ≡ ffiffiffiffiffi

s2
p

, is ≤ 1.18 GeV, well below
the Δ-resonance peak. Hence, we prefer to employ the δ-
counting rule. Specifically, for a given Feynman diagram
with L loops, VðkÞ vertices of OðpkÞ, Iπ internal pions, IN
nucleon propagators and IΔ Δ-propagators, its chiral
dimension D is obtained according to the rule

D ¼ 4Lþ
X
k

kVðkÞ − 2Iπ − IN −
1

2
IΔ: ð24Þ

Here, we aim to perform a calculation of the hadronic
transition amplitude up to the chiral order Oðp3Þ, i.e.,
OðpD=ΛD

χSBÞ with D ¼ 3.

B. Chiral effective Lagrangians

Given our working accuracy and according to the power-
counting rule (24), the following chiral Lagrangians are
needed for our calculation,

Leff ¼
X2
i¼1

Lð2iÞ
ππ þ

X3
j¼1

LðjÞ
πN þ

X2
k¼1

½LðkÞ
πΔ þ LðkÞ

πNΔ�; ð25Þ

where superscripts represent chiral orders while subscripts
denote the relevant degrees of freedom. For clarity, the
effective Lagrangian is classified in three parts: the purely
pionic sector, the pion-nucleon sector, and the one involv-
ing Δ resonances.

1. Pionic interactions

The required terms in the purely pionic sector are given
by [32,41]

Lð2Þ
ππ ¼ F2

4
Tr½DμUðDμUÞ† þ χU† þUχ†�; ð26Þ

Lð4Þ
ππ ¼ l3 þ l4

16
½TrðχU† þUχ†Þ�2

þ l4

8
Tr½DμUðDμUÞ†�Tr½χU† þ Uχ†�

þ i
l6

2
Tr½FL

μνðDμUÞ†DνU�; ð27Þ

where FL
μν ¼ ∂μlν − ∂νlμ − i½lμ; lν� is the left-handed field-

strength tensor; lμ ¼ −gWVudlaμτa=2 is the left-handed
external field and τa (a ¼ 1, 2, 3) are the Pauli matrices.5

Here, χ ¼ diagfM2;M2g is the mass matrix with M being
the pion mass in the isospin limit. Tr½� � �� denotes the trace
in flavor space. Furthermore, F is the pion decay constant
in the chiral limit and l3;4;6 are mesonic low-energy
constants (LECs). The Goldstone pion fields are collected
in the 2 × 2 matrix U

U ¼ u2 ¼ exp

�
iτbπb

F

�
; DμU ¼ ∂μU þ iUlμ; ð28Þ

where the corresponding covariant derivative has also been
defined.

2. Interactions with nucleons

The relevant terms describing the interactions between
pions, or external fields lμ, and nucleons read [67]

Lð1Þ
πN ¼ ΨN

�
i=D −mþ g

2
=uγ5

�
ΨN; ð29Þ

5We identify l1μ ¼ W1
μ, l2μ ¼ W2

μ and l3μ ¼ 0, to which the
physical weak-boson fields W�

μ are related via W�
μ ¼

ðW1
μ ∓ iW2

μÞ=
ffiffiffi
2

p
. Note that, to be consistent with Eq. (5), we

always factorize out the combination −gW=ð2
ffiffiffi
2

p ÞVud from the
hadronic transition amplitude Hμ calculated in subsection III C.

Furthermore, the factor gW=ð2
ffiffiffi
2

p Þ, together with an identical
one from the lepton sector, is absorbed in the Fermi constant

as GF ¼ ffiffiffi
2

p g2W
8M2

W
, where MW denotes the mass of the vector W

boson.
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Lð2Þ
πN ¼ ΨN

�
c1Tr½χþ� −

c2
4m2

Tr½uμuν�ðDμDν þ H:c:Þ þ c3
2
Tr½uμuμ�

þ
�
ic4
4

½uμ; uν� þ
c6
8m

Fþ
μν

�
σμν

�
ΨN; ð30Þ

Lð3Þ
πN ¼ ΨN

�
−

d1
2m

ð½uμ; ½Dν; uμ��Dν þ H:c:Þ − d2
2m

ð½uμ; ½Dμ; uν��Dν þ H:c:Þ

þ d3
12m3

ð½uμ; ½Dν; uλ��ðDμDνDλ þ sym:Þ þ H:c:Þ þ d5
2m

ði½χ−; uμ�Dμ þ H:c:Þ

þ d6
2m

ði½Dμ; F̃þ
μν�Dν þ H:c:Þ þ d8

2m
ðiϵμναβTr½F̃þ

μνuα�Dβ þ H:c:Þ

þ d14
4m

ðiσμνTr½½Dλ; uμ�uν�Dλ þ H:c:Þ þ d15
4m

ðiσμνTr½uμ½Dν; uλ��Dλ þ H:c:Þ

þ d16
2

γμγ5Tr½χþ�uμ þ
d18
2

iγμγ5½Dμ; χ−� −
d20
8m2

ðiγμγ5½F̃þ
μν; uλ�Dλν þ H:c:Þ

þ d21
2

iγμγ5½F̃þ
μν; uν� þ

d22
2

γμγ5½Dν; F−
μν� þ

d23
2

γμγ5ϵ
μναβTr½uνF−

αβ�
�
ΨN; ð31Þ

with the nucleon doublet ΨN ¼ ðp; nÞT . Here, m and g are
the nucleon mass and axial charge in the chiral limit. The
LECs ci and dj have units of GeV−1 and GeV−2, respec-
tively. The involved chiral blocks are given by

uμ ¼ iu†∂μUu† þ iulμu†; Γμ ¼
1

2
½u†; ∂μu� −

i
2
ulμu†;

Dμ ¼ ∂μ þ Γμ; ð32Þ

χ� ¼ u†χu† � uχ†u; F�
μν ¼ �uFL

μνu†;

F̃þ
μν ¼ Fþ

μν −
1

2
Tr½Fþ

μν�: ð33Þ

In practice, the Levi-Civita tensor can be expressed in terms
of Dirac gamma matrices: ϵμναβ ¼ − i

8
½f½γμ; γν�; γαg; γβ�γ5.

In such a manner, the Lorentz structure of the hadronic
transition amplitude can be readily expressed in terms of
the operators given in Eqs. (10) and (11).

3. Interactions with Δ
The Δ-resonance is a state of spin-3=2, which can be

represented by a vector-spinor Ψμ in the Rarita-Schwinger
formalism [68]. It is also a field of isospin-3=2; thus, it can
be described by a vector-spinor isovector-isospinor field
Ψi;μ, with μ and i being the Lorentz vector and isovector
indices, respectively. We refer the reader to Ref. [65] for the
so-called isospurion formulation, where the relations
between the field Ψi;μ and the physical Δð1232Þ states,
Δþþ, Δþ, Δ0, and Δ−, are presented. The interactions of Δ
resonances with pions read

Lð1Þ
πΔ ¼ Ψi;μξ

3
2

ijðiγμναDα;jk −mΔγμνδ
jkÞξ3

2

klΨl;ν; ð34Þ

Lð2Þ
πΔ ¼ Ψi;μξ

3
2

ijða1Tr½χþ�δjkgμνÞξ
3
2

klΨl;ν; ð35Þ

where mΔ is the Δ bare mass and a1 a bare coupling
constant; the covariant derivative is defined by

Dμ;ij ¼ ð∂μ þ ΓμÞδij − iϵijkTr½τkΓμ�: ð36Þ

Furthermore, ξ
3
2

ij ¼ δij − 1
3
τiτj is the isospin-3=2 projection

operator; the Dirac matrices with multiple Lorentz indices
are defined as

γμνα ¼
1

4
f½γμ; γν�; γαg; γμν ¼

1

2
½γμ; γν�: ð37Þ

Finally, the effective Lagrangian for pion-nucleon-Δ inter-
action has the form [64,65,69]

Lð1Þ
πNΔ ¼ hAΨi;αξ

3
2

ijω
j
αΨN þ H:c:; ð38Þ

Lð2Þ
πNΔ ¼ Ψi;αξ

3
2

ij

�
−i

b1
2
Fþ;j
αβ γ5γ

β þ ib2F
−;j
αβ γ

β þ ib3ω
j
αβγ

β

þ i
b7
m

F−;j
αβ iD

β þ i
b8
m

ωj
αβiD

β

�
ΨN þ H:c:; ð39Þ

where hA denotes the LO axial coupling constant, bk are
NLO LECs, and the chiral blocks with isovector index i are
defined as
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F�;i
μν ¼ 1

2
Tr½τiF�

μν�; ωi
μ ¼

1

2
Tr½τiuμ�;

ωi
μν ¼

1

2
Tr½τi½Dμ; uν��: ð40Þ

In fact, as pointed out in Ref. [70], the b2 and b7 terms can
be eliminated thanks to the identity, F−

μν ¼ ½Dμ; uν�−
½Dν; uμ�. Furthermore, the b3 and b8 terms are redundant
too [70,71], which has been explicitly checked in πN
scattering [55], showing that their contributions can be
absorbed in the LO Δ-exchange and contact terms.

Therefore, for Lð2Þ
πNΔ, we only need to take the b1 term

into consideration.

C. Hadronic transition amplitudes

The tree-level diagrams relevant to our calculation up to
Oðp3Þ are depicted in Fig. 2. They are labeled according to
the scheme shown in Table III in Appendix A. Therein, the
chiral order of each tree-level contribution is specified, as
well, for convenience. The explicit expressions for the
corresponding amplitudes are listed diagram by diagram in
this Appendix.
In Fig. 2, the diagrams with mass insertions in the

internal pion, nucleon and Δ propagators are not shown.
Such amplitudes with mass insertions in internal nucleon
and Δ lines, which are generated by terms proportional to

the c1 term in Lð2Þ
πN and the a1 term in Lð2Þ

πΔ, can be taken into
account by the following replacement in the nucleon and Δ
propagators:

m → m2 ¼ m − 4c1M2;

mΔ → mΔ;2 ¼ mΔ − 4a1M2: ð41Þ

On the other hand, the insertions in pion propagators,

generated by the l3 and l4 terms in Lð4Þ
ππ , contain momen-

tum-dependent pieces. Hence, their contribution can not be
incorporated as in the nucleon and Δ cases. Instead, the
contribution of a diagram with one insertion in a pion line
results from the substitution

H�
μ → ξðq2πÞH�

μ ; ð42Þ

with

ξðq2πÞ ¼ −
2M2

F2

�
l4 þ l3

M2

M2 − q2π

�
; ð43Þ

where qπ is the momentum transferred in the pion propa-
gator. Note that, up to the order we are working in, the pion-
insertions for diagrams TD

12, T
E
112, T

F
12 and TG

112 need to be
taken into consideration only once, since ξðq2πÞ is of
order Oðp2Þ.
For the calculation of loop contributions, we need all the

diagrams generated from the topologies shown in Fig. 3. In
total, there are 89 diagrams. An example of how to generate
them from topology (b) of Fig. 3 is shown in Fig. 4. The
calculation of these one-loop amplitudes is straightforward
but yields lengthy analytical expressions, which we do not
show explicitly here,6 but they can be obtained from the
authors upon request. Finally, the contributions of diagrams
corresponding to loop corrections on the external legs are
included through wave function renormalization, which is
discussed in the next section.

D. Renormalization

In the above subsection, we have described the calcu-
lation of the hadronic transition amplitudes up to Oðp3Þ,
corresponding to the Feynman diagrams excluding correc-
tions at external pion and nucleon legs. In fact, the sum of
all their contributions yields the amputated amplitude, Ĥμ,
for which the superscripts ‘�’ are suppressed for brevity.
According to the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula [72], the full amplitude is related to the
amputated one through

Hμðs2; t; t1Þ ¼ Z
1
2
πZNĤμðs2; t; t1Þ; ð44Þ

FIG. 2. Topologies of tree-level diagrams. The solid, dashed and wiggled lines represent nucleons, pions and left-hand currents. The
letters in the circles mark the possible chiral orders of the vertices. Diagrams withΔ-exchange are obtained by replacing internal nucleon
lines by Δ propagators. Diagrams with mass insertions in the internal pion, nucleon and Δ propagators are not shown explicitly.

6The simpler expressions of the one-loop contributions ob-
tained for pion photoproduction can be found in Ref. [58].
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where Zπ and ZN are wave function renormalization
functions of the pion and nucleon fields, respectively.
Their explicit expressions are given in Appendix C.
In the full amplitude, the loop contributions are evaluated

using dimensional regularization. The ultraviolet (UV)
divergences stemming from the loops are subtracted using
the modified minimal subtraction (MS − 1) scheme and
absorbed by the LECs appearing in the counterterms
generated by the effective Lagrangian. That is, we split
the bare LECs in the following way,

X ¼ Xr þ βX
16π2

R; X ∈ fm; g; ci; dj; lkg; ð45Þ

where R ¼ 2=ðd − 4Þ þ γE − 1 − lnð4πÞ, d the number of
space-time dimension, and γE the Euler constant. We refer

to the effective Lagrangians, in Eqs. (30), (31), and (27), for
the values of the indices i, j, k. Furthermore, βX are beta
functions.
As already mentioned in the beginning of this section,

there exist PCB terms due to the appearance of nucleon
internal lines in the loop diagrams. To restore the power
counting, we apply the EOMS scheme. Therefore, after the
cancellation of the UV divergences, one has to perform
additional finite shifts for the OðpÞ and Oðp2Þ UV
renormalized LECs as

Xr ¼ X̃ þ mβ̃X
16π2F2

; X ∈ fm; g; cig; ð46Þ

with β̃X being the beta functions for this finite
renormalization.

FIG. 4. One-loop diagrams generated from topology (b) of Fig. 3. The solid, dashed and wiggled lines represent nucleons, pions and
left-hand currents. Circled numbers mark the chiral orders of the vertices.

FIG. 3. Topologies from which one-loop diagrams are generated. Topologies leading to corrections on the external pion and nucleon
legs are not shown because the corresponding contributions are taken into account by wave-function renormalization. The solid lines
represent nucleons, while the dashed ones stand for the pions. Vertices with crosses, circles and grey dots denote positions at which
incoming left-hand currents, incoming pions and outgoing pions, respectively, can be inserted. Incoming pions are always coupled to
left-hand currents.
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The verification of the cancellation of UV divergences
and PCB terms is delicate. The vector and axial-vector
operators given in Eqs. (10) and (11) are not well suited to
perform a chiral expansion due to the fact that sometimes
the chiral order of their combination is underestimated. For
instance, the chiral orders of OA

μ;5 and OA
μ;6 are both

assigned to be OðpÞ. Consequently, the combination
OA

μ;5 −OA
μ;6 is naively counted asOðpÞ. However, its actual

chiral order should be Oðp2Þ, since ðp1;μ − p2;μÞ gives an
additional contribution of OðpÞ. Therefore, to overcome
such issues during renormalization, we have chosen a
chiral-expansion-suited (CES) basis; see Eq. (B1) and
Eq. (B2) in Appendix B. Another advantage of the CES
basis is that vector current conservation is automatically
implemented. With the help of the CES basis, we remove
the UV divergences and PCB terms order by order in the
chiral expansion and obtain the explicit expressions for the
β functions, namely, βX and β̃X in Eqs. (45) and (46), which
are relegated to Appendix C.
All the parameters in the renormalized full amplitude are

UV finite. For practical convenience, we write F,M, m̃ and
g̃ in terms of their corresponding physical values, Fπ , Mπ ,
mN and gA by using the relations specified in Eq. (C7) and
Eq. (C9). The terms of Oðp4Þ and higher orders generated
by the above substitutions, as well as by the wave function
renormalization in Eq. (44) are neglected.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Low-energy constants

The available data for neutrino-induced charged-current
single pion production on nucleons at low energies are very
scarce. In fact, they are limited to the early experimental
measurements at the ANL [73,74] and the BNL [75,76]
hydrogen- and deuterium-filled bubble chambers. These
data have been recently reanalyzed for the flux uncertainty
in Ref. [77]. Muon neutrino beams were used for both ANL
and BNL with average energies around 1 GeVand 1.6 GeV,
respectively. Although events for all allowed channels
induced by muon neutrinos were detected, almost all the
data are beyond the energy region where ChPT is expected
to be valid. This is also the case for the data on muon
antineutrino-induced processes measured at CERN-PS
[78]. Therefore, the task of fixing the unknown LECs
present in the hadronic transition amplitudes calculated
above by fitting the above mentioned ν − ν̄ data is
unattainable. Nonetheless, most of the required LECs are
known, as they have been obtained in the analysis of other
processes or physical quantities. We take their values from
the studies of πN scattering [53–55]7 and the axial radius of

the nucleon [80], which used the EOMS scheme as in the
present calculation.
For the parameters appearing in the LO Lagrangians, i.e.,

Lð2Þ
ππ , L

ð1Þ
πN , L

ð1Þ
πΔ, and Lð1Þ

πNΔ [Eqs. (26), (29), (34), and (38)],
the values of their corresponding physical counterparts are
set to [81,82]

Fπ ¼ 92.21 MeV; gA ¼ 1.27; hA ¼ 1.43� 0.02;

Mπ ¼ 138.04 MeV; mN ¼ 938.9 MeV;

mΔ ¼ 1232 MeV; ð47Þ

where hA is determined from the strong decay width of
Δ → πN (Γstr

Δ ¼ 118� 2 MeV [81]). See Ref. [82] for
details.
In the higher-order effective Lagrangians relevant to our

calculation, there are in total 22 LECs. Three of them, lr
3,

lr
4 and dr16, become irrelevant after the procedure of

renormalization and replacement of the LO parameters
by their physical ones as discussed in the previous section.
Furthermore, as shown in Table I, most of them are pinned
down in processes other than weak pion production. The
so-called scale-independent parameter l̄6 was extracted
from the electromagnetic charge radius of the pion hr2iπ at
Oðp4Þ in Ref. [32]. The value of l6 at the renormalization
scale μ, denoted by lr

6 in Eq. (45) can be obtained through
the following renormalization group equation [32]

lr
6 ¼

βl6
16π2

�
l̄6 þ ln

M2

μ2

�
; ð48Þ

with M2 ¼ B0ðmu þmdÞ ≃M2
π , where B0 is a constant

related to the quark condensate and βl6 ¼ −1=6 as can be

TABLE I. Values of the LECs determined from other processes.
Details on the different sources are explained in the text. Here
dr1þ2 ¼ dr1 þ dr2 and dr14−15 ¼ dr14 − dr15.

LEC Value Source

Lð4Þ
ππ l̄6 16.5� 1.1 hr2iπ [32]

Lð2Þ
πN

c̃1 −1.00� 0.04

πN scattering [53]
c̃2 1.01� 0.04
c̃3 −3.04� 0.02
c̃4 2.02� 0.01
c̃6 1.35� 0.04 μp and μn [81,83]

Lð3Þ
πN

dr1þ2 0.15� 0.20

πN scattering [53]
dr3 −0.23� 0.27
dr5 0.47� 0.07

dr14−15 −0.50� 0.50
dr18 −0.20� 0.80
dr22 0.96� 0.03 hr2AiN [80]

Lð2Þ
πNΔ

b1 ð4.98� 0.27Þ=mN Γem
Δ [82]

7A recent determination of some of the LECs has been
performed in Ref. [79] by making use of πN threshold and
subthreshold parameters, instead of partial wave phase shifts.
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seen from Eq. (C11). As usual in BChPT, we set μ ¼ mN ,
which yields

lr
6 ¼ ð−1.34� 1.74Þ × 10−2: ð49Þ

LECs c̃i’s and drj’s displayed in Table I, except c̃6 and d
r
22,

have been fixed in pion-nucleon scattering, calculated up to
Oðp3Þ using the δ-counting within the EOMS scheme [53].
This is exactly the same approach employed in the present
study. The model was fitted to the experimental phase shifts
from Ref. [84]. On the other hand, the value of c̃6 has been
obtained in Ref. [83] by adjusting the corresponding chiral
results for the magnetic moments of protons and neutrons,
μp and μn, to their empirical values from Ref. [81]. There are
two determinations of this parameter in Ref. [83]: one is
obtained without and the other with explicit Δ’s which are
present only in loops. We have chosen the former determi-
nation as the central value for c̃6, since in the adopted power-
counting rule loops with internal Δ’s are of higher order and
beyond our consideration. The difference between the two
determinations is then assigned to the error of c̃6.
Specifically, we have c̃6 ¼ ð1.35� 0.04Þ GeV−1 in the
end.8 As for dr22, it is pinned down in the extraction of
the nucleon axial charge and radius from lattice QCD results
in Ref. [80]. Similarly to c̃6, the Δ resonance is involved in
the axial form factor only at loop level; hence, we employ its
value from the Δ-less fit therein.
Finally, as demonstrated in Ref. [82], the electromag-

netic width of the Δ resonance can be expressed in terms of
the NLO πNΔ coupling b1. Given that Γem=ðΓem þ ΓstrÞ ¼
0.55% − 0.65% with Γstr

Δ ¼ 118� 2 MeV [81], the value
of b1 is fixed to be b1 ¼ ð4.98� 0.27Þ=mN . As mentioned
in Ref. [82], the sign of b1 remains undetermined, but here
we have chosen a positive sign as further discussed in the
next subsection.
Apart from the known parameters discussed above, there

are still seven unknown LECs: dr1, d
r
6, d

r
8, d

r
14, d

r
20, d

r
21, and

dr23.
9 In our numerical computation, we assume them to be of

natural size, namely, drj ¼ 0.0� 1.0 GeV−2 with j ∈ f1; 6;
8; 14; 20; 21; 23g. In view of the values of the known dj’s in
Table I, our assumption seems quite reasonable. Note that the
dr2 and dr15 can be obtained from dr1þ2 and dr14−15 in Table I
with the help of the assumed dr1 and dr14 values, while the
errors are propagated in quadrature.

B. Total cross sections

Once the parameters in the hadronic transition ampli-
tudes have been specified, we are now in the position to
make predictions for experimental observables. First, the
(anti)neutrino-induced pion-production cross sections are
calculated up to Oðp3Þ. The convergence properties of our
results are then discussed. We consider the muon flavor, for
which the available measurements have been performed.
As previously explained in subsection III A, we expect our
model to be reliable up to energies Eν ≃ 415 MeV, so that
we are relatively far from the Δ pole and the δ counting is
appropriate.
In the left (right) column of Fig. 5, the results are shown

for neutrino (antineutrino)-induced pion production, res-
pectively. The plots are displayed up to Eν ¼ 450 MeV,
slightly above our validity limit, to better show the trends of
the curves. The Δ-width effect is taken into account as well
by means of Eq. (A4), though its contribution is of higher
order. Furthermore, its effects are really minor in the energy
region we are concerned with. Its implementation enables
us to eventually extend our results smoothly to higher
energies, even passing the Δ-peak. Due to the nearby
existence of the Δ pole, the Δ contribution (black dash-
dotted line) increases rapidly in the region above
Eν ≃ 415 MeV, as can be observed especially from the
plot for the reaction νμp → μ−pπþ. Meanwhile, except for
this latter channel, the nucleonic contribution (blue dashed
line) grows steadily and dominates the total cross sections
in the region below Eν ≃ 415 MeV. The bands in the plots
show the uncertainty associated to the error estimations of
the LECs discussed in the previous section.
In the considered energy region, there is only one

experimental data point from the ANL measurements
[73,74,77] for each neutrino-induced reaction channel. As
can be seen in Fig. 5, our full chiral predictions (red lines
with bands), at Eν ∼ 400 MeV, are in good agreement with
the ANL data in the channels of νμp → μ−pπþ and
νμn → μ−pπ0. However, the theoretical cross section for
the νμn → μ−nπþ reaction is smaller than the central value
of the experiment. Nevertheless, the chiral calculation for
this latter channel is still consistent with data due to the large
experimental uncertainties. Unfortunately, for the antineu-
trino processes, so far there are no available data at low
energies, preventing us from assessing our predictions.
We also compare our results with those of the HNV

model [19], which allows for a simple but meaningful
comparison: the HNV phenomenological model, gives a
good description of the weak pion production process for a
wider range of neutrino energies well above 1 GeV. This
model incorporates both the contributions from the Δ pole
mechanisms and nonresonant terms constrained by chiral
symmetry and given by the tree diagrams of Fig. 2 at their
lowest order. The counterparts of those diagrams in ChPT
are represented by the LOΔ-less tree diagrams ofOðpÞ and
theΔ-exchange ones ofOðp3=2Þ andOðp5=2Þ. In particular,

8In Ref. [83], the ρ meson is explicitly included in the
calculation and the combination c̄6 ¼ c6 þ cρ6 is determined,
where cρ6 ¼ −Gρ=ð2gρÞ is the part saturated by the ρ, given in
terms of parameters Gρ, gρ, related to ρ interactions. In our case,
without explicit ρ meson, this ρ contribution is absorbed by the
LEC. Therefore, we identify our c̃6 with c̄6 rather than c6.9Some of these LECs, d8, d9, d20, and d21, also appear in pion
electroproduction on the nucleon. Their values have been
determined in the analysis of that process in Ref. [37]. Although
Ref. [37] uses the EOMS scheme, we cannot use their results
directly because the Δ is not included in the calculation.
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for the Δ contribution, we find the following correspon-
dence,

C5Að0Þ ¼
ffiffiffi
2

3

r
hA; C3Vð0Þ ¼

b1mNffiffiffi
6

p ; ð50Þ

where C5A and C3V are two of the Adler N → Δ axial and
vector form factors that are conventionally used in the
literature [5,86] including the HNV model. Imposing the
values of hA and b1 specified in the above subsection, we
obtain C5Að0Þ ≃ 1.17� 0.02 and C3Vð0Þ ≃ 2.01� 0.11,
which are comparable to the values C5Að0Þ ¼ 1.2, and
C3Vð0Þ ¼ 2.13 used in the HNV model and taken there
from Refs. [87] and [11], respectively. The small numerical
difference in C5Að0Þ comes from a different choice of the Δ
width in Ref. [87]. This observation also supports the
choice of a positive b1. Note that while HNV does not obey
a systematic power counting or include loop diagrams,
some higher-order corrections are implemented through
phenomenological form factors for the vertices in the axial
and vector weak currents.10 Our results are systematically

larger than the HNV ones. This is mainly due to the
inclusion of the Oðp3Þ terms coming both from tree and
loop diagrams. The enhancement improves the agreement
with data though the large error bars preclude any strong
claim. Particularly interesting is the νμn → μ−nπþ channel,
where there is a large contribution of the Oðp3Þ terms but
the results are still below data.
In Fig. 6, we display the total cross sections for the

neutrino reactions order by order, in order to show the
convergence properties of the chiral series.11 For all
the channels, a calculation with a higher chiral order
brings the predictions closer to the experimental data.
Moreover, the resulting contribution when stepping from
Oðp2Þ up to Oðp3Þ is quite significant in the improvement
of the predictions. On the other hand, it seems clear that
next-order effects could still be relevant. In fact, it has been
shown for νμn → μ−nπþ, that the failure on the description
of the ANL data might be cured by partially restoring
unitarity [22]. This can be approximately done by imposing
Watson’s theorem for the dominant vector and axial
multipoles [22]. In a systematic ChPT calculation, this

FIG. 5. Cross sections for weak pion production. The grey vertical line corresponds to Eν ¼ 0.415 GeV. Dots correspond to the HNV
model [19]. The original ANL data are taken from Refs. [73,74], while the recently reanalyzed ones are from Refs. [77,85].

10In particular, some additional higher order Δ couplings such
as C4A, C4V , or C5V are present. We do not consider them here as
they would appear, together with many other contributions, in a
higher order calculation.

11The same behavior is present in the case of the antineutrino
reactions because neutrinos and antineutrinos share the same
hadronic transition amplitude.
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FIG. 7. Pion polar-angle distributions for three different kinematic configurations. Dashed line for case (a): Eν ¼ 0.315 GeV,
W ¼ 1.11 GeV, Q2 ¼ 0.04 GeV2. Solid line and uncertainty band for case (b): Eν ¼ 0.365 GeV, W ¼ 1.13 GeV, Q2 ¼ 0.05 GeV2.
Dash-dotted line for case (c): Eν ¼ 0.415 GeV, W ¼ 1.15 GeV, Q2 ¼ 0.08 GeV2. For a better visualization, dashed and dash-dotted
lines have been multiplied by 15 and 1=3 respectively.

FIG. 6. Total cross sections for neutrino-induced pion production at different chiral orders. The grey vertical line corresponds to
Eν ¼ 415 MeV. Original ANL data are taken from Refs. [73,74], while the reanalyzed ones are from Refs. [77,85].
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corresponds to the inclusion of higher-order loops: espe-
cially those whose internal pion and nucleon lines can be
put on shell. Another possible solution has been suggested
in Ref. [25] and amounts to the need of extra higher-order
contact terms.

C. Pion angular distributions

Although for weak pion production differential cross
sections are only available in averages over broad spectra of
incoming neutrino energies, the low-energy predictions of
the present approach may nonetheless be valuable for the
comparison with future data and as benchmark for phe-
nomenological models. Here, we discuss pion angular
distributions in the so called isobaric frame, i.e., the CM
frame of the outgoing πN pair, usually considered for
pion electroproduction, see e.g., Ref. [88]. To this end, the
pion polar angle θ�π is defined with respect to the virtual W
boson direction k̂� ¼ ðk⃗�1 − k⃗�2Þ=jk⃗�1 − k⃗�2j, where the aster-
isk denotes a quantity in the πN pair CM frame. Besides,
the pion azimuthal angle ϕ�

π is the angle between the
reaction plane spanned by k⃗�1, k⃗

�
2 and the production plane,

by q⃗�, k̂�.
Numerical results for pion polar and azimuthal angular

distributions, dσ=ðdWdQ2d cos θ�πÞ and dσ=ðdWdQ2dϕ�
πÞ,

are shown in Figs. 7 and 8, respectively. Three different sets

of fEν;W;Q2g inside the adopted validity region have
been chosen: (a) close to threshold, (b) at intermediate Eν

value, and (c) at the upper neutrino-energy limit. In
Figs. 7 and 8, to render the comparison easy, the results
for case (a) and case (c) have been scaled by factors of
15 and 1=3, respectively. It can be observed that the
shapes of the cos θ�π distribution for the three different
cases in each channel are similar but there are differences
among channels. This observation also holds true for the
azimuthal ϕ�

π distributions. One can also see from Fig. 8
that the ϕ�

π distributions are almost symmetric around π,
indicating that the asymmetries proportional to sinϕ�

π and
sin 2ϕ�

π identified in Ref. [19], are negligible at low
energies. Representatively, for case (b) we display the
error bands resulting from the propagation of the LEC
uncertainties.

D. Multipole expansion

Multipole amplitudes carry detailed information about
the hadronic transition induced by the weak interaction.
The formalism for the multipole expansion of the hadronic
matrix elements was developed in detail in Ref. [40], thus
here we only show the formulae needed to establish the
connection to our chiral amplitudes. Based on Ref. [40], we
can write (for any ϵμ ∝ Lμ)

FIG. 8. Pion azimuthal angular distributions. Same definitions as in Fig. 7.
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ϵμHVð�Þ
μ ¼ −i

X6
j¼1

FVð�Þ
j η†fΣV

j ηi;

ϵμHAð�Þ
μ ¼ −i

X8
j¼1

GAð�Þ
j η†fΛA

j ηi; ð51Þ

where HV;Að�Þ stand for the second and first terms in
Eq. (9), in this order; ηi and ηf are two-component Pauli
spinors of the initial and the final nucleons in the isobaric
frame. For the explicit expression of the Pauli operators, ΣV

j

and ΛA
j , we refer the reader to Ref. [40]. The above

equations allow us to relate the isobaric amplitudes FV
j

(GA
j ) to Vi (Ai). The resulting expressions are relegated to

Appendix D. It is convenient to introduce linear combi-

nations ofHV;Að�Þ
μ , which denote transitions to pure isospin

states of the final pion-nucleon pair

HV;AðI¼1=2Þ
μ ¼ HV;AðþÞ

μ þ 2HV;Að−Þ
μ ;

HV;AðI¼3=2Þ
μ ¼ HV;AðþÞ

μ −HV;Að−Þ
μ : ð52Þ

Equivalent combinations for the isobaric amplitudes obvi-
ously apply. It is now possible to write multipole expan-

sions of FVðIÞ
j and GAðIÞ

j for transitions to pion-nucleon
states with angular momentum l. They are given in
Ref. [40], as well as the corresponding inversion formulas.
In general, for any given angular momentum l, there are

six vector multipole amplitudes, Ml�, El�, and Ll�, and
eight axial-vector ones, Ml�, El� and Ll� and Hl�.

Specifically, for S (l ¼ 0) and P (l ¼ 1) waves, there
are only 5 and 12 amplitudes, respectively. As illustration,
their values for both I ¼ 1

2
and I ¼ 3

2
are displayed in

Table II at W ¼ 1.13 GeV and Q2 ¼ 0.05 GeV2, which is
a typical point of the available phase space in the energy
range considered in this work.12 The errors are propagated
from the uncertainties of the involved LECs. In the case of
the imaginary parts, they are negligible and, therefore, not
shown. One can see that the S-wave multipoles in Table II
are larger than the corresponding P-wave ones by one order
of magnitude.13 We have checked that the P-wave multi-
poles decrease rapidly to zero when W goes to threshold.

V. SUMMARY AND OUTLOOK

Charged current (anti)neutrino-induced pion production
off the nucleon at low energies has been systematically
studied for the first time within the framework of manifestly
relativistic baryon chiral perturbation theory up to Oðp3Þ,
(NNLO), for the low-energy chiral representation of the
hadronic-transition amplitude. The Δð1232Þ resonance
has been included explicitly using the δ-counting rule.
To tackle the power-counting violation of the nucleon loops
we have performed the renormalization in the EOMS
approach [46–48] in which the power counting is restored
by means of finite shifts of the LEC values in the chiral
effective Lagrangians after the conventional UV subtrac-
tion in the MS − 1 scheme.
Remarkably, at this order, most of the involved LECs

(15 out of 22) have been previously determined in other
processes such as pion-nucleon scattering. Furthermore,
another 4 of the remaining unknown LECs in theOðp3Þ πN
Lagrangian may be obtained in the future from available
pion electroproduction data. For numerical estimates, the
unknown LECs have been assumed to be of natural size.
Consequently, we have predicted the total cross sections in
all the physical reaction channels, both for neutrino- and
antineutrino-induced pion production. We have also esti-
mated the theoretical uncertainties due to the limited knowl-
edge of some LECs. Our results are expected to be reliable
up to the neutrino laboratory energy of Eν ¼ 415 MeV,
which is relatively close to the threshold and well below
the Δ peak. Hence, the energy range is well suited for the
adopted δ-counting. Nonetheless, mechanisms involving
the Δ resonance contribute significantly to all production
channels, especially to the νμp→μ−pπþ one.

TABLE II. S- and P-wave multipole amplitudes calculated at
W ¼ 1.13 GeV and Q2 ¼ 0.05 GeV2. Here, the multipole am-
plitudes are dimensionless by definition.

I ¼ 1=2 I ¼ 3=2

E0þ ð29:5þ0.75
−0.91 ; 4.79Þ ð−15:6þ0.5

−0.5 ; 1.20Þ
L0þ ð−197þ75

−70 ;−32.1Þ ð188þ35
−34 ;−6.58Þ

M0þ ð7.25þ0.51
−0.32 ; 0.116Þ ð−1.03þ0.43

−0.40 ;−0.219Þ
L0þ ð7.14þ24.3

−17.2 ; 7.14Þ ð−67:2þ9.9
−11.8;−0.219Þ

H0þ ð8.90þ18.9
−13.2 ; 5.37Þ ð−48:6þ7.6

−9.5 ;−0.125Þ
M1þ ð−7.85þ1.52

−2.09 ; 0.107Þ ð21:8þ1.2
−2.3 ; 1.36Þ

E1þ ð3.27þ0.40
−0.47 ;−0.0812Þ ð−2.21þ0.24

−0.20 ;−0.127Þ
L1þ ð−27:9þ4.1

−3.5 ; 0.612Þ ð24:4þ1.9
−2.2 ; 1.54Þ

M1− ð−15:8þ1.1
−2.1 ;−0.500Þ ð−7.27þ1.51

−2.12 ; 0.147Þ
L1− ð−50:9þ10.2

−9.2 ; 0.432Þ ð47:0þ4.8
−5.2 ; 3.36Þ

M1þ ð157þ7
−4 ;−0.796Þ × 10−3 ð−14:7þ0.69

−0.39 ;−0.318Þ × 10−2

E1þ ð1.42þ1.96
−2.44 ;−0.120Þ ð−39:7þ1.3

−1.3 ;−2.79Þ
L1þ ð−1.09þ2.45

−1.64 ; 0.0744Þ ð20:9þ1.0
−1.0 ; 1.45Þ

H1þ ð−0.641þ1.560
−1.027 ; 0.0469Þ ð12:7þ0.7

−0.6 ; 0.881Þ
E1− ð1.69þ2.47

−2.34 ; 1.68Þ ð−1.99þ1.69
−2.10 ; 0.140Þ

L1− ð4.74þ4.17
−4.36 ; 2.12Þ ð−5.17þ3.04

−4.02 ; 0.121Þ
H1− ð3.52þ3.09

−3.59 ; 1.34Þ ð−3.40þ2.03
−2.68 ; 0.0683Þ

12For the purpose of benchmarking other theoretical models,
multipole amplitudes at any other values of W and Q2 are
available from the first author (D. Y.) upon request.

13In Ref. [38], the S-wave axial-vector multipole amplitudes
are calculated using HB ChPT but only at threshold and in the
approximation of zero lepton mass. Note also that those multipole
amplitudes are obtained with a different normalization with
respect to ours, and have dimensions of ½mass�−1.
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It has been found that ourpredictionsare consistentwith the
few existing experimental ANL data for the neutrino-induced
processes except νμn → μ−nπþ. This might indicate that
higher-order contributions are still relevant for this channel as
suggested by the more phenomenological study of Ref. [25].
Lacking a full calculation, such higher-order contributions
might be approximated by unitarity corrections or some extra
contact counterterms. So far there are no low-energy exper-
imental data for antineutrino-induced pion production on
nucleons. Our results for these processes provide a set of
theoretical predictions that fully rely on ChPT.
Finally, our chiral representation of weak pion production

can be applied to study various low-energy theorems in the
future. It can also be adapted to make a comprehensive
analysis of pion photo-, electro-production and neutral-
current induced weak production in all physical channels
by further incorporating the isoscalar vector part of the
hadronic currents. Most importantly, the present study
provides a well-founded low-energy benchmark for phe-
nomenological models aimed at the description of weak pion
production processes in the broad kinematic range of interest
for current and future neutrino-oscillation experiments.
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APPENDIX A: CHIRAL HADRONIC
AMPLITUDES AT TREE LEVEL

In what follows, all the tree amplitudes corresponding to
the diagrams specified in Table III are listed. We use the
abbreviations

Σx ¼ x −m2
N þM2

π; Σ0
x ¼ x −m2

N þ t1; ðA1Þ

Δx ¼ x −m2
N −M2

π; Δ0
x ¼ x −m2

N − t1; ðA2Þ

with x ∈ fs2; ug. The Mandelstam variable u is defined as
u≡ ðp1 − qÞ2 and, hence, can be written in terms of the
variables in Eq. (3) via u ¼ 2m2

N − s2 − t − t1. Hereafter,
the Lorentz indices of the axial and vector operators are
suppressed. Furthermore, we shall use the shorthands:

OA;V
i�j�k���� ¼ OA;V

i �OA;V
j �OA;V

k � � � � ;
i; j; k ∈ f1;…; 8g: ðA3Þ

As for the Δ-exchange diagrams, the Δ-width effect can
be included through the following substitution:

1

m2
Δ − sΔ

→
1

m2
Δ − imΔΓΔðsΔÞ − sΔ

; sΔ ≡ p2
Δ; ðA4Þ

with the energy-dependent width given by [89]

ΓΔðsΔÞ¼
h2Aλ

3
2ðsΔ;M2

π;m2
NÞ

192πF2
πs3Δ

½ðsΔ−M2
πþm2

NÞmΔþ2sΔmN �

×θð ffiffiffiffiffi
sΔ

p
−mN −MπÞ; ðA5Þ

being λða; b; cÞ≡ a2 þ b2 þ c2 − 2ab − 2ac − 2bc the
Källén function and θðxÞ the step function.
In the following, H�

μ ¼ −2
ffiffiffi
2

p
H�

μ .

1. At O( p)

(i) Diagram TA
11:

H�
μ ¼ g

8Fðm2 − s2Þ
fg½ðmþmNÞð2OA

1 −OA
7 Þ

þ ðm2
N − s2ÞOA

8 � − ½ðmþmNÞð2OV
1 −OV

7 Þ
þ ðm2

N − s2ÞOV
8 �g: ðA6Þ

TABLE III. Labels for tree diagrams.

Δ-less diagram Δ-exchange diagram

Topology Label OðpÞ Oðp2Þ Oðp3Þ Oðp3=2Þ Oðp5=2Þ
Type (a) TAðΔÞ

ij
TA
11 TA

21 TA
31; T

A
13 TAΔ

11 TAΔ
21

Type (b) TBðΔÞ
k

TB
1 TB

2 TB
3

Type (c) TCðΔÞ
ij

TC
11 TC

12 TC
13; T

C
31 TCΔ

11 TCΔ
12

Type (d) TDðΔÞ
im

TD
12 TD

14; T
D
32

Type (e) TEðΔÞ
ijm

TE
112 TE

114; T
E
132; T

E
312 TEΔ

112

Type (f ) TFðΔÞ
km

TF
12 TF

22 TF
32; T

F
14

Type (g) TGðΔÞ
ijm

TG
112 TG

114; T
G
312; T

G
132 TGΔ

112
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(ii) Diagram TB
1 :

Hþ
μ ¼ 0; H−

μ ¼ −
1

4F
fOA

8 − gOV
8 g: ðA7Þ

(iii) Diagram TC
11:

Hþ
μ ¼ g

8Fðm2 − uÞ fg½ðmþmNÞOA
7 − ðm2

N − uÞOA
8 � þ ½ðmþmNÞOV

7 þ ðm2
N − uÞOV

8 �g ¼ −H−
μ : ðA8Þ

(iv) Diagram TD
12:

Hþ
μ ¼ 0; H−

μ ¼ gmNOV
1þ2−3

2FðM2 − tÞ : ðA9Þ

(v) Diagram TE
112:

H�
μ ¼ g2

8Fðt1−M2Þðm2− s2Þ
f2mNðm2

N − s2ÞOA
1−2þ3þð3m2

N þ s2ÞOA
4−5þ6g: ðA10Þ

(vi) Diagram TF
12:

Hþ
μ ¼ 0; H−

μ ¼ −
OA

4−5þ6

4FðM2 − t1Þ
: ðA11Þ

(vii) Diagram TG
112:

Hþ
μ ¼ g2

8Fðt1 −M2Þðm2 − uÞ f2mNðm2
N − uÞOA

1−2þ3 − ð3m2
N þ uÞOA

4−5þ6g ¼ −H−
μ : ðA12Þ

2. At Oðp2Þ
(i) Diagram TA

21:

H�
μ ¼ c6gA

16FπmNðs2 −m2
NÞ

fm2
Nð7OV

1 þOV
2þ3 − 3OV

7 Þ

þ 2mN ½OV
4þ5þ6 þ ðm2

N − s2ÞOV
8 � þ s2OV

1−2−3−7g: ðA13Þ
(ii) Diagram TB

2 :

Hþ
μ ¼ 1

4m2
NFπ

fc2½ΔuOA
2 − Δs2O

A
3 � − 4c3m2

NO
A
1g;

H−
μ ¼ 1

8FπmN
f4c4mNOA

1−7 þ c6ðOA
1−2−3−7 þ 2mNOA

8 Þg: ðA14Þ

(iii) Diagram TC
12:

Hþ
μ ¼ −H−

μ ¼ c6gA
16FπmNðm2

N − uÞ fm
2
NðOV

1−2−3 þ 3OV
7 Þ

þ 2mNðm2
N − uÞOV

8 − uOV
1−2−3−7 þ 2mNOV

4−5−6g: ðA15Þ
(iv) Diagram TF

22:

Hþ
μ ¼ OA

1−2þ3

8Fπm2
NðM2

π − t1Þ
f16c1m2

NM
2
π − 4c3m2

NðM2
π − tþ t1Þ

− c2½ðs2 þ uÞðt1 þM2
πÞ − 2ðs2uþM2

πt1Þ þ 2m2
Nðm2

N − tÞ�g;
H−

μ ¼ c4
4FπðM2

π − t1Þ
fðs2 − uÞOA

1−2þ3 − 4mNOA
4−5þ6g: ðA16Þ
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3. At Oðp3Þ
(i) Diagram TA

31:

H�
μ ¼ −

gA
8FπmNðm2

N − s2Þ
f4d16mNM2

π½−2mNð2OA
1 −OA

7 Þ þOA
8 ðs2 −m2

NÞ�

þ d6½2ð2mNOV
5 þOV

2 ðm2
N − s2ÞÞt1 − Δ0

s2ð2mNOV
4−5þ6 þOV

1−2þ3ðm2
N − s2ÞÞ�

− d22mN ½OA
4−5þ6ð3m2

N þ s2Þ þ 2mNð2OA
1 −OA

7 Þt1 þ ðm2
N − s2Þð2mNOA

1−2þ3 þOA
8 t1Þ�g: ðA17Þ

(ii) Diagram TA
13:

H�
μ ¼ −

ðd18 − 2d16ÞM2
π

4Fπðm2
N − sÞ fgA½2mNð2OA

1 −OA
7 Þ þ ðm2

N − s2ÞOA
8 �

− ½2mNð2OV
1 −OV

7 Þ þ ðm2
N − s2ÞOV

8 �g: ðA18Þ

(iii) Diagram TB
3 :

Hþ
μ ¼ d8

FπmN
fΔs2O

V
2 − 2mNOV

5þ6 −OV
1−7ð4m2

N − tÞ −OV
3 ðΔ0

s2 þ tÞ

þmNOV
8 ðΔs2 þ Δ0

s2 þ tÞg þ d14ðs2 − uÞ
4FπmN

OA
1−7

þ d15
8FπmN

f4mNOA
5þ6 −OA

1þ2þ3−7ðΔs2 þ Δ0
s2 þ tÞg − d23

2Fπ
f2OA

5þ6 −OA
8 ðΔs2 þ Δ0

s2 þ tÞg;

H−
μ ¼ −

d1ðs2 − uÞ
2FπmN

OA
1 þ d2

4FπmN
fOA

1 ðu − s2Þ −OA
2þ3ðM2

π − tþ t1Þg

−
d3

12Fπm3
N
fΔs2ð2Δs2 þ tÞOA

3 þ ð2Δ0
s2 þ tÞðΔ0

s2 þ tÞOA
2g −

d5M2
π

FπmN
OA

2þ3

þ d6
4FπmN

½ðΔs2 þ tÞOA
2 − Δ0

s2O
A
3 � þ

ð2d16 − d18ÞM2
πOV

8

2Fπ

−
d20

16Fπm2
N
f2ð2mNOV

3 þOV
6 ÞΔs2 þ 2ð2mNOV

2 þOV
5 ÞðΔ0

s2 þ tÞ

−OV
8 ððΔs2 þ Δ0

s2ÞðΔs2 þ Δ0
s2 þ tþm2

NÞ þ 2Δs2ðt1 − s2Þ −m2
NðM2

π − t1ÞÞg

−
d21
4Fπ

½4mNOV
1 þ 2OV

4 −OV
8 ðM2

π − tþ t1Þ�

þ d22
8Fπ

½4mNOV
2−3 þ 2OV

5−6 −OV
8 ðM2

π − t − t1Þ�: ðA19Þ

(iv) Diagram TC
13:

Hþ
μ ¼ −

gA
8FπmNðm2

N − uÞ f4d16mNM2
π½2mNOA

7 − ðm2
N − uÞOA

8 �

þ d22mN ½mNð2OA
7 t1 þmNð2mNOA

1−2þ3 − 3OA
4−5þ6 −OA

8 t1ÞÞ − ð2mNOA
1−2þ3 þOA

4−5þ6 −OA
8 t1Þu�

þ d6½m3
NðmNOV

1−2þ3 þ 2OV
4−5þ6Þ þmNðmNOV

1−2−3 þ 2OV
4−5−6Þt1

− ð2mNðmNOV
1−2þ3 þOV

4−5þ6Þ þOV
1−2−3t1ÞuþOV

1−2þ3u
2�g ¼ −H−

μ : ðA20Þ

(v) Diagram TC
31:

Hþ
μ ¼ ðd18 − 2d16ÞM2

π

4Fπðm2
N − uÞ fgA½2mNOA

7 − ðm2
N − uÞOA

8 � þ ½2mNOV
7 þ ðm2

N − uÞOV
8 �g ¼ −H−

μ : ðA21Þ
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(vi) Diagram TD
14:

Hþ
μ ¼ 0;

H−
μ ¼ gAmN

2F3
πðM2

π − tÞ fl6ðt −M2
πÞOV

1−2þ3 þ ðl6t1 − 2l6M2
πÞOV

1þ2−3g: ðA22Þ

(vii) Diagram TD
32:

Hþ
μ ¼ 0; H−

μ ¼ −
ð2d16 − d18ÞM2

πmNOV
1þ2−3

FπðM2
π − tÞ : ðA23Þ

(viii) Diagram TE
114 þ TE

312 þ TE
132:

H�
μ ¼ −

½2gAF2
πð2d16 − d18Þ þ g2Al4�M2

π

4F3
πðm2

N − s2ÞðM2
π − t1Þ

f2mNðm2
N − s2ÞOA

1−2þ3 þ ðs2 þ 3m2
NÞOA

4−5þ6g: ðA24Þ

(ix) Diagram TF
14:

Hþ
μ ¼ 0; H−

μ ¼ −
l4M2

πOA
4−5þ6

2F3
πðM2

π − t1Þ
: ðA25Þ

(x) Diagram TF
32:

Hþ
μ ¼ ðd14 − d15Þðu − s2Þ

8FπmNðM2
π − t1Þ

f4mNOA
4−5þ6 þ ðΔu þ Δ0

u þ tÞOA
1−2þ3g;

H−
μ ¼ u − s2

16Fπm3
NðM2

π − t1Þ
OA

1−2þ3f16d5m2
NM

2
π þ 4ðd1 þ d2Þm2

NðM2
π − tþ t1Þ þ d3½ð2s2ðs2 þ tÞ − ð2s2 þ tÞt1

þ 2t21 − 2m2
NðΔs2 þ Δ0

s2 þ tþm2
NÞ −M2

πð−2M2
π þ 2s2 þ tþ 2t1ÞÞ�g: ðA26Þ

(xi) Diagram TG
114 þ TG

132 þ TG
312:

Hþ
μ ¼ −H−

μ ¼ −
½2gAF2

πð2d16 − d18Þ þ g2Al4�M2
π

ð4F3
πðM2

π − t1Þðm2
N − uÞÞ f2mNðm2

N − uÞOA
1−2þ3 − ð3m2

N þ uÞOA
4−5þ6g: ðA27Þ

4. At Oðp3=2Þ
(i) Diagram TAΔ

11 :

Hþ
μ ¼ −2H−

μ ¼ h2A
18Fπm2

Δðm2
Δ − s2Þ

f2m3
ΔO

A
1þ7 − 2ðmNOA

1þ3 þOA
4þ6ÞΣs2

þm2
Δ½4OA

4 − 2OA
6 þ 2mNOA

1þ7 þOA
8Δs2 �

þmΔ½Σs2ð2OA
3 þOA

7 −mNOA
8 Þ þ 2M2

πOA
1þ3 þ 2mNOA

4þ6�g: ðA28Þ

(ii) Diagram TCΔ
11 :

Hþ
μ ¼ 2H−

μ ¼ h2A
18Fπm2

Δðm2
Δ − uÞ f2m

3
Δð3OA

1 −OA
7 Þ − 2ðmNOA

1−2 −OA
4−5ÞΣu

þm2
Δ½2mNð3OA

1 −OA
7 Þ − 2ð2OA

4 þOA
5 Þ −OA

8Δu�
−mΔ½−2M2

πOA
1−2 þ 2mNOA

4−5

− ð2OA
1−2 −OA

7 þmNOA
8 ÞΣu�g: ðA29Þ
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(iii) Diagram TEΔ
112:

Hþ
μ ¼ −2H−

μ ¼ h2A
18Fπm2

Δðm2
Δ − s2Þðt1 −M2

πÞ
f½mNOA

1−2þ3 þOA
4−5þ6�Σs2Σ

0
s2

−m3
Δ½4mNOA

4−5þ6 þOA
1−2þ3ðs2 þ 3u − 4m2

NÞ�
−m2

Δ½OA
4−5þ6ð2s2 − tþ 2uÞ −mNOA

1−2þ3ð3uþ s2 − 4m2
NÞ�

þmΔ½mNOA
4−5þ6ðΣs2 þ s2 þ t1 −m2

NÞ þOA
1−2þ3ðΣs2t1 þ Σ0

s2M
2
πÞ�g: ðA30Þ

(iv) Diagram TGΔ
112:

Hþ
μ ¼ 2H−

μ ¼ −
h2A

18Fπm2
Δðm2

Δ − uÞðt1 −M2
πÞ
f½mNOA

1−2þ3 þOA
4−5þ6�ΣuΣ0

u

þm3
Δ½−4mNOA

4−5þ6 þOA
1−2þ3ð3s2 þ u − 4m2

NÞ�
þm2

Δ½OA
4−5þ6ðt − 2s2 − 2uÞ þmNOA

1−2þ3ð3s2 þ u − 4m2
NÞ� þmΔ½mNOA

4−5þ6ðΣu þ uþ t1 −m2
NÞ

−OA
1−2þ3ðΣut1 þ Σ0

uM2
πÞ�g: ðA31Þ

5. At Oðp5=2Þ
(i) Diagram TAΔ

21 :

Hþ
μ ¼ hAb1

36Fπm2
Δðm2

Δ − s2Þ
f2½mΔmNðΔs2 þ t1 − 2m2

ΔÞ

þ Σs2ðt1 − 2m2
NÞ þm2

Δðt − 2uÞ�OV
1 þ 2mΔðmΔΔs2 þmNΣs2ÞOV

2

− 2½ðmΔ þmNÞðmΔM2
π þmNΣs2Þ þ ðs2 þmΔmNÞΣs2 �OV

3

þ 2½mNðm2
Δ − Σs2Þ þmΔðm2

Δ −M2
πÞ�OV

4 þ 2mΔ½Σs2 − 2mΔðmΔ þmNÞ�OV
5

− 2½mΔð2m2
Δ þM2

πÞ þmNð2m2
Δ þ Σs2Þ�OV

6 þ ½8m2
ΔmNðmΔ þmNÞ

−mΔmNð2Σs2 þ Σ0
s2Þ − Σs2Σ

0
s2 þm2

ΔðΣs2 − 3tþ 2t1Þ�OV
7

þ ½m2
ΔðmΔ þmNÞð3Δs2 þ Δ0

s2 þ 3t − 2t1Þ þmNΣs2Σ
0
s2

−mΔððm2
N − s2Þ2 − ðM2

π þ Σs2Þt1Þ�OV
8 g ¼ −2H−

μ : ðA32Þ

(ii) Diagram TCΔ
12 :

Hþ
μ ¼ hAb1

36Fπm2
Δðm2

Δ − uÞ f2½6m
3
ΔmN þ 3m2

Δð2m2
N −M2

π þ ΣuÞ�OV
1

þ 2½m2
ΔM

2
π þmΔmNðM2

π þ 2ΣuÞ þ Σuðm2
N þ uÞ�OV

2−1

− 2mΔðmNΣu þmΔΔuÞOV
3 þ 2½mΔðm2

Δ −M2
πÞ þmNðm2

Δ − ΣuÞ�OV
4

þ 2½2m2
ΔðmΔ þmNÞ þmNΣu þmΔM2

π�OV
5 þ 2mΔ½2mΔðmΔ þmNÞ − Σu�OV

6

− ½mΔmNð8m2
Δ þM2

π − t1 − 3ΣuÞ þm2
Δð8m2

N − 3tþ 2t1 þ ΣuÞ − ΣuΣ0
u�OV

7

þ ½m2
Δð2m2

N − 3s2 þ uÞðmΔ þmNÞ þmNΣuΣ0
u

−mΔððm2
N − uÞ2 − t1ðM2

π þ ΣuÞÞ�OV
8 g ¼ 2H−

μ : ðA33Þ

APPENDIX B: CHIRAL-EXPANSION-SUITED OPERATORS

As mentioned in Sec. III D, the vector and axial-vector operators given in Eqs. (10) and (11) are not suited to perform a
chiral expansion. In practice, we prefer to use the following axial-vector operators
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ÕA
μ;1 ¼ qμ; ÕA

μ;2 ¼ kμ; ÕA
μ;3 ¼ Pμ;

ÕA
μ;4 ¼

1

2
½=k; q�qμ; ÕA

μ;5 ¼
1

2
½=k; q�kμ; ÕA

μ;6 ¼
1

2
½=k; q�Pμ;

ÕA
μ;7 ¼

1

2
½γμ; q�; ÕA

μ;8 ¼
1

2
½γμ; =k�; ðB1Þ

with Pμ ≡ ðpμ
1 þ pμ

2Þ=2. For vector operators, we follow
the basis proposed in Ref. [40]:

ÕV
μ;1 ¼

1

2
γ5½γμ; =k�;

ÕV
μ;2 ¼ 2γ5ðPμq · k − P · kqμÞ;

ÕV
μ;3 ¼ γ5ðγμq · k − =kqμÞ;

ÕV
μ;4 ¼ 2γ5fðγμP · k − =kPμÞ −

1

2
mN ½γμ; =k�g;

ÕV
μ;5 ¼ γ5ðkμq · k − k2qμÞ;

ÕV
μ;6 ¼ γ5ðkμ=k − k2γμÞ; ðB2Þ

for which the vector-conservation assumption is automati-
cally implemented. The axial-vector amplitudes in the new
basis can be obtained through

Ã1 ¼ A1 þ
1

2
ðA2 − A3Þ þ A7 þ

s2 − u
8mN

ð2A4 þ A5 − A6Þ;

Ã2 ¼
1

2
ðA2 þ A3Þ −

s2 − u
8mN

ðA5 − A6Þ;

Ã3 ¼ A2 þ A3 þ
s2 − u
4mN

ðA5 þ A6Þ þ
1

mN
A8;

Ã4 ¼
1

4mN
ð2A4 þ A5 − A6Þ;

Ã5 ¼ −
1

4mN
ðA5 − A6Þ;

Ã6 ¼
1

2mN
ðA5 þ A6Þ;

Ã7 ¼ A7 þ
1

2mN
A8;

Ã8 ¼ −
1

2mN
A8; ðB3Þ

while the vector amplitudes are

Ṽ1 ¼
ðM2

π − tþ t1Þ
2ðm2

N − uÞ ðV1 − 2mNV4Þ þ
ðM2

π − t − t1Þ
4ðm2

N − uÞ ðV2 − V3Þ

þ ðs2 − uÞ
4ðm2

N − uÞ ðV2 þ V3Þ þ
mNðt −M2

πÞ
m2

N − u
V5 −

mNt1
m2

N − u
V6;

Ṽ2 ¼
1

m2
N − u

ð2mNV4 − V1Þ þ
ðM2

π − tÞð2mNV5 − V2Þ þ t1ð2mNV6 − V3Þ
ðM2

π − tþ t1Þðm2
N − uÞ ;

Ṽ3 ¼ V4 þ
1

2
ðV5 − V6Þ;

Ṽ4 ¼
1

2
ðV5 þ V6Þ;

Ṽ5 ¼
V3 − V2 þ 2mNðV5 − V6Þ

M2
π − tþ t1

;

Ṽ6 ¼
1

2
ðV5 − V6Þ: ðB4Þ

In the chiral expansion of Δ-less amplitudes, we treat

ÕA
μ;3 ∼Oð1Þ; ÕA

μ;1;2;7;8 ∼ ÕV
μ;1;4 ∼OðpÞ; ÕA

μ;6 ∼ ÕV
μ;3;6 ∼Oðp2Þ;

ÕA
μ;4;5 ∼ ÕV

μ;2 ∼Oðp3Þ; ÕV
μ;5 ∼Oðp4Þ; ðB5Þ

and

mN ∼Oð1Þ; s2 −m2
N ∼ u −m2

N ∼OðpÞ; M2
π ∼ t1 ∼ t ∼Oðp2Þ: ðB6Þ
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APPENDIX C: RENORMALIZATION FACTORS
AND β FUNCTIONS

1. Renormalization factors

The relevant scalar loop functions are defined by

A0½m2
a� ¼

ð2πμ4−dÞ
iπ2

Z
ddk

k2 −m2
a
;

B0½p2; m2
a; m2

b� ¼
ð2πμ4−dÞ

iπ2

Z
ddk

½k2 −m2
a�½ðkþ pÞ2 −m2

b�
;

ðC1Þ

with μ being the renormalization scale introduced in
dimensional regularization. The explicit form for the
one-point one-loop function reads

A0½m2
a� ¼ −m2

a

�
Rþ ln

m2
a

μ2

�
; ðC2Þ

and the scalar two-point one-loop integral has the following
analytical form,

B0½p2;m2
a;m2

b� ¼−Rþ 1− ln
m2

b

μ2
þm2

a−m2
bþp2

2p2
ln
m2

b

m2
a

þp2− ðma−mbÞ2
p2

ρabðp2Þ ln ρabðp
2Þ−1

ρabðp2Þþ 1
;

ðC3Þ

with

ρabðp2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ðma þmbÞ2
p2 − ðma −mbÞ2

s
: ðC4Þ

The UV divergence is contained in the quantity
R ¼ 2=ðd − 4Þ þ γE − 1 − lnð4πÞ, being γE the Euler con-
stant. We denote A0 and B0 loop integrals with removed
UV-divergent parts (multiples of R) by Ā0 and B̄0,
respectively.
To proceed, the nucleon and pion wave function renorm-

alization constants can be written as

ZN ¼ 1þ δð2ÞZN
; Zπ ¼ 1þ δð2ÞZπ

; ðC5Þ

respectively, where the Oðp2Þ parts are

δð2ÞZN
¼ −

3g2A
64π2F2

πðM2
π − 4m2

NÞ
fð12m2

N − 5M2
πÞA0½M2

π�

þ 4M2
πð−m2

N þ A0½m2
N �

þ ðM2
π − 3m2

NÞB0½m2
N;M

2
π; m2

N �Þg;

δð2ÞZπ
¼ −

2

3F2
π

�
3l4M2

π þ
A0½M2

π�
16π2

�
: ðC6Þ

The relations between the renormalized (or chiral limit)
masses and the physical ones read

mN ¼ m̃ − 4c̃1M2
π þ δð3ÞmN ; M2

π ¼ M2ð1þ δð2Þ
M2

π
Þ; ðC7Þ

with

δð2Þ
M2

π
¼ 2lr3M

2
π

F2
π

−
Ā0½M2

π�
32π2F2

π
;

δð3ÞmN ¼ 3g2AmNM2
π

32π2F2
π

�
B̄0½m2

N;M
2
π; m2

N � −
�
1þ Ā0½m2

N �
m2

N

��
:

ðC8Þ

Likewise, for the leading couplings gA and Fπ , one has

gA ¼ g̃

�
1þ 4dr16M

2
π

gA
þ δð2ÞgA

�
; Fπ ¼ Fð1þ δð2ÞFπ

Þ;

ðC9Þ

with

δð2ÞFπ
¼ lr4M

2
π

F2
π

þ Ā0½M2
π�

16π2F2
π
;

δð2ÞgA ¼ 1

16π2F2
πðM2

π − 4m2
NÞ

f½ð1þ 4g2AÞM2
π

− 4ð1þ 2g2AÞm2
N �Ā0½M2

π� þM2
π½4g2Am2

N

− 4g2AĀ0½m2
N � þ ð8ð1þ g2AÞm2

N

− ð2þ 3g2AÞM2
πÞB̄0½m2

N;M
2
π; m2

N ��g: ðC10Þ

2. UV-β functions

In Eq. (45), the β functions corresponding to the infinite
parts of counterterms for the pionic LECs li (i ¼ 3, 4, 6) are

βl3 ¼ −
1

4
; βl4 ¼ 1; βl6 ¼ −

1

6
: ðC11Þ

For the constants appearing in the LO πN Lagrangian,
we get

βm ¼ 3g2m3

2F2
; βg ¼

gð−2þ g2Þm2

F2
: ðC12Þ
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The ones for cj read

βc1 ¼ −
3g2m
8F2

; βc2 ¼
ð−1þ g2Þ2m

2F2
;

βc3 ¼
ð1 − 6g2 þ g4Þm

4F2
; βc4 ¼

ð−1 − 2g2 þ 3g4Þm
4F2

;

βc6 ¼ 0; ðC13Þ

and the ones for dk are given by

4βd1 ¼ βd14 ¼
1

2
βd15 ¼ βd23 ¼ −

ð−1þ g2Þ2
4F2

;

βd2 ¼
2 − 5g2 þ 3g4

24F2
;

βd3 ¼ βd8 ¼ βd18 ¼ βd20 ¼ βd21 ¼ βd22 ¼ 0;

4βd5 ¼ −βd6 ¼ −
1

3g
βd16 ¼ −

−1þ g2

12F2
: ðC14Þ

3. EOMS-β̃ functions

In Eq. (46), the EOMS-β̃ functions are responsible for
the finite shifts of the LECs, which as a result cancel the

PCB terms from loops. Only for the LECs in Lð1Þ
πN and Lð2Þ

πN
one needs to carry out finite shifts. For the LO pion-nucleon
parameters, the β̃ functions are

β̃gA ¼ g3mþ gð2 − g2Þ
m

Ā0½m2�;

β̃m ¼ −
3

2
g2Ā0½m2�; ðC15Þ

while the NLO ones read

β̃c1 ¼
3

8
g2 þ 3g2

8m2
Ā0½m2�;

β̃c2 ¼ −
2þ g4

2
−
ðg2 − 1Þ2
2m2

Ā0½m2�;

β̃c3 ¼
9

4
g4 −

1 − 6g2 þ g4

4m2
Ā0½m2�;

β̃c4 ¼ −
1

4
g2ð5þ g2Þ þ 1þ 2g2 − 3g4

4m2
Ā0½m2�;

β̃c6 ¼ 0: ðC16Þ

APPENDIX D: ISOBARIC-FRAME
AMPLITUDES

Following Ref. [40], the multipole expansion of the
scattering matrix element is performed in the isobaric
frame. The linear transformations expressing FV

i and GA
i ,

defined in Eq. (51), in terms of Vi and Ai, defined in
Eq. (9), are given below. For the vector amplitudes, they are

FV
1 ¼ −

N1

N2

fjq⃗j2V7 þ N2
2ðq0V7 − V8Þg;

FV
2 ¼ jk⃗jjq⃗j

N1N2

fðN2
2 þ q0ÞV7 þ V8g;

FV
3 ¼ −

jk⃗jjq⃗j
N1N2

fjq⃗j2ðV4 − V6Þ þ N2
2ðV1 − V3 þ q0V4 − q0V6 þ 2V7Þg;

FV
4 ¼ −

jq⃗j2N1

N2

fV3 − V1 þ ðN2
2 þ q0ÞðV4 − V6Þ − 2V7g;

FV
5 ¼ −

1

N1N2t1
fk0½jk⃗j2ðjq⃗j2V5 þ N2

2ðV2 þ q0V5ÞÞ þ k⃗ · q⃗ðjq⃗j2ð−V4 þ V6Þ

þ N2
2ð−V1 þ V3 − q0V4 þ q0V6 − 2V7ÞÞ − N2

1ðjq⃗j2V7 þ N2
2ðq0V7 − V8ÞÞ�

þ jk⃗j2½jq⃗j2ðq0V4 þ p10V5 þ p20V6 − V7Þ þ N2
2ðp10V2 þ p20V3

þ q0ðV1 þ q0V4 þ p10V5 þ p20V6 þ V7Þ þ V8Þ�g;

FV
6 ¼ jq⃗j

jk⃗jN1N2t1
fk0k⃗ · q⃗N2

1½−V1 þ V3 þ ðN2
2 þ q0ÞðV4 − V6Þ − 2V7�

− jk⃗j2½k0ððN2
2 þ q0ÞV7 þ V8Þ þ N2

1ðð−k0 − p10ÞV2 − p20V3 þ q20V4

þ q0ð−V1 þ N2
2V4 þ ðk0 þ p10ÞV5 þ p20V6 − V7Þ

þ N2
2ððk0 þ p10ÞV5 þ p20V6 þ V7Þ þ V8Þ�g; ðD1Þ
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with the normalization factorsN1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10 þmN

p
andN2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p20 þmN

p
. Likewise, for the axial-vector amplitudes, we have

GA
1 ¼ jq⃗j

N1N2

fA8N2
1 þ A7½2k⃗ · q⃗þ N2

1ðN2
2 þ q0Þ�g;

GA
2 ¼ −

jk⃗j
N1N2

fA7ðN2
2q0 þ jq⃗j2Þ − A8N2

2g;

GA
3 ¼ −

jk⃗jjq⃗j2
N1N2

fA3 − A1 þ ðA4 − A6ÞðN2
2 þ q0Þg;

GA
4 ¼ −

jq⃗jN1

N2

fN2
2ðA1 − A3 þ 2A7 þ A4q0 − A6q0Þ þ ðA4 − A6Þjq⃗j2g;

GA
5 ¼ jq⃗j

jk⃗jN1N2

fjk⃗j2k0½−A2 þ A5ðN2
2 þ q0Þ� − k0k⃗ · q⃗½−A1 þ A3

þ ðA4 − A6ÞðN2
2 þ q0Þ� þ jk⃗j2½A8 − A2p10 − A3p20 þ A7ðN2

2 − q0Þ
− A1q0 þ ðN2

2 þ q0ÞðA5p10 þ A6p20 þ A4q0Þ� þ k0½A8N2
1 þ A7ð2k⃗ · q⃗þ N2

1ðN2
2 þ q0ÞÞ�g;

GA
6 ¼ 1

jk⃗j2N1N2

fA8jk⃗j2ðk0 þ N2
1ÞN2

2 þ A2jk⃗j2N2
1N

2
2ðk0 þ p10Þ

þ N2
2½N2

1ððA3 − A1 − 2A7Þk0k⃗ · q⃗þ A3jk⃗j2p20Þ þ ðA7jk⃗j2ðN2
1 − k0Þ

þ N2
1ðA1jk⃗j2 − A4k0k⃗ · q⃗þ A6k0k⃗ · q⃗þ A5jk⃗j2ðk0 þ p10Þ þ A6jk⃗j2p20ÞÞq0

þ A4jk⃗j2N2
1q

2
0� þ ð−A7jk⃗j2ðk0 þ N2

1Þ þ N2
1ð−A4k0k⃗ · q⃗þ A6k0k⃗ · q⃗

þ A5jk⃗j2ðk0 þ p10Þ þ A6jk⃗j2p20 þ A4jk⃗j2q0ÞÞjq⃗j2g;

GA
7 ¼ jk⃗jjq⃗j

N1N2

fA8 − A2p10 − A3p20 þ A7ðN2
2 − q0Þ − A1q0 þ ðN2

2 þ q0ÞðA5p10 þ A6p20 þ A4q0Þg;

GA
8 ¼ N1

N2

fN2
2½A8 þ A2p10 þ A3p20 þ q0ðA1 þ A7 þ A5p10 þ A6p20 þ A4q0Þ�

þ ð−A7 þ A5p10 þ A6p20 þ A4q0Þjq⃗j2g: ðD2Þ

The above expressions are deduced in the CM of the outgoing pion-nucleon pair. Therefore, the energies and momenta can
be written as functions of W ¼ ffiffiffiffiffi

s2
p

and t1:

p10 ¼
W2 þm2

N − t1
2W

; k0 ¼
W2 −m2

N þ t1
2W

; jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − t1

q
;

p20 ¼
W2 þm2

N −M2
π

2W
; q0 ¼

W2 −m2
N þM2

π

2W
; jq⃗j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 −M2

π

q
: ðD3Þ
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