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Weak pion production off the nucleon at low energies has been systematically investigated in manifestly
relativistic baryon chiral perturbation theory with explicit inclusion of the A(1232) resonance. Most of the
involved low-energy constants have been previously determined in other processes such as pion-nucleon
elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few
remaining constants are set to be of natural size. As a result, the total cross sections for single pion
production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results
are consistent with the scarce existing experimental data except in the v,n — p~nz*t channel, where
higher-order contributions might still be significant. The A resonance mechanisms lead to sizeable
contributions in all channels, especially in v, p — u~ pz*t, even though the considered energies are close to
the production threshold. The present study provides a well-founded low-energy benchmark for
phenomenological models aimed at the description of weak pion production processes in the broad
kinematic range of interest for current and future neutrino-oscillation experiments.
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I. INTRODUCTION

Neutrino interactions with matter are at the heart of many
relevant phenomena in astrophysics, nuclear physics, and
particle physics. Among them, neutrino oscillations have
revealed that neutrinos are massive, providing evidence of
physics beyond the standard model. Precision studies of
neutrino-oscillation parameters demand a good understand-
ing and accurate modeling of neutrino interactions with
nucleons and nuclei [1-3]. In this context, weak pion
production has been actively investigated.

Single-pion production amounts to one of the leading
contributions to the inclusive (anti)neutrino-nucleus cross
section in the energy range of interest for ongoing and
future oscillation experiments. As such, it can be part of
the signal or a background that should be precisely con-
strained. Single charged pion production in charged-current
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interactions is a source of events that can be misidentified
as quasielastic [v;(7;)N — [TN'] if the pion is not identi-
fied, introducing a bias in the kinematic neutrino energy
reconstruction.' Furthermore, neutral-current z° production
events in Cherenkov detectors contribute to the electronlike
background in v, — v, measurements. In spite of the
progress, 20%—-30% errors are currently taken for single-
pion production in oscillation analyses due to conflicts
between data sets and models [4].

It was acknowledged early that, at low and intermediate
energies, weak pion production should proceed predomi-
nantly through the excitation of the A(1232)3/2" reso-
nance (see Ref. [5] and references therein). Isobar models
accounting for heavier nucleon resonances were sub-
sequently developed [6,7]. The nucleon-to-resonance tran-
sitions were parametrized in terms of real form factors
obtained from quark models [7-10] or phenomenology. In
the later case, owing to the symmetry of the conserved
vector current under isospin rotations, vector transition
form factors can be related to electromagnetic ones
extracted from electron scattering data, while the partial

'Neutrino fluxes are not monochromatic. Therefore, the
neutrino energy, on which oscillation probabilities depend, is
not known on an event-by-event basis but can be approximately
reconstructed from the final-lepton kinematics in quasielastic
events.
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conservation of the axial current (PCAC) allows us to
derive the off-diagonal Goldberger-Treiman (GT) relation
for the leading axial couplings [6,11-13]. Additional, but
rather limited, information on the transition axial form
factors can be obtained from available weak pion-produc-
tion bubble-chamber data on hydrogen and deuterium
[14—16]. Nonresonant mechanisms were added to the
resonant ones in Refs. [6,17,18] and further extended to
fulfill chiral symmetry constraints at threshold in Ref. [19].
In these studies, the range of applicability of the Born terms
is expanded by the introduction of form factors. In the
approach of Ref. [19] (denoted as HNV from now on), a
good agreement with bubble chamber data was achieved at
the price of introducing tensions in the value of the leading
N — A(1232) axial coupling, Cg‘ in the notation of Ref. [5],
with respect to the GT value at a 20 level [15].2 The two
values could be reconciled by imposing Watson’s theorem
in the dominant partial wave [22]. The importance of a
consistent treatment of the A(1232) was stressed in
Refs. [23,24], also accounted for in the HNV model by
the introduction of new contact terms that absorb the
unphysical spin-1/2 components in the A propagator
[25]. Extensions of the HNV model to higher energies
have been developed by enlarging the resonant content of
the model beyond the A(1232) [26-28] and by applying
Regge phenomenological corrections to the nonresonant
contribution [27]. A power counting was introduced in
Ref. [29] in an effective model with pion, nucleons,
A(1232) but also scalar (¢) and vector (p, @) mesons as
degrees of freedom. Next-to-leading order (NLO) (but only
tree-level) corrections to weak pion production were
investigated. In the dynamical model of Ref. [30], the
amplitudes are obtained by solving the Lippmann-
Schwinger equation in coupled channels, fulfilling
Watson’s theorem by construction. In this model, PCAC
is used to partially constrain the axial current in terms of the
pion-nucleon scattering amplitude fitted to data.

Chiral perturbation theory (ChPT) [31-34], the effective
field theory of QCD at low energies, plays a prominent role
in the systematic and model independent study of modern
hadronic physics. Initially developed for the description of
the interactions among the Goldstone bosons originating
from the spontaneous breaking of the SU(3), x SU(3),
chiral symmetry of QCD, it has achieved a remarkable level
of precision in the description of a multitude of low-energy
observables involving mesons and baryons [35,36]. Amid
the large collection of processes successfully described by
ChPT, we should mention pion photo- and electroproduc-
tion off the nucleon. The wealth of precise data available for

*Deviations from the N — A(1232) off-diagonal GT relation
are expected only at the few-% level, as they arise from chiral
symmetry breaking. Systematic studies of the corrections to this
GT relation using chiral perturbation theory have been reported in
Refs. [20,21].

these reactions has led to intense theoretical research,
reaching a very sophisticated and accurate description of
the low-energy data; see, e.g., Ref. [37] and references
therein for a recent experimental and theoretical review.

However, beyond leading-order (LO) tree-level ampli-
tudes, the systematic application of ChPT to neutrino-
induced pion production has been rare. To our knowledge,
it is limited to several low-energy theorems that have been
derived for weak pion production, including one-loop
corrections, using the heavy-baryon formalism [38]. We
report here the first systematic study of weak pion
production up to next-to-next-to-leading order (NNLO)
in covariant ChPT with nucleons and A(1232). The
information gathered in the study in pion production with
electromagnetic probes and pion-nucleon scattering within
the same framework provides valuable input for weak pion
production. By construction, the amplitudes obtained in
ChPT fulfill perturbative unitarity and Watson’s theorem.
As emphasized in Ref. [38], ChPT brings about corrections
to the axial current that cannot be derived using PCAC.
Furthermore, unlike most phenomenological models, it
does not require ad hoc assumptions about the form factors
to enforce the (partial) conservation of the (axial) vector
current [39]. The predictive power of ChPT calculations is
limited to the threshold region but nonetheless they can be
very valuable for the neutrino cross-section program [3] as
a benchmark for phenomenological models that aim to
describe weak pion production in wider energy regions.

This paper is organized as follows. In Sec. II, the generic
formalism of weak pion production is presented. In Sec. III,
the hadronic tensor is systematically studied in the ChPT
framework. Specifically, we discuss the power-counting rule
in subsection III A and then display all the relevant pieces of
the Lagrangian in subsection III B. The calculation of the
hadronic transition amplitude and its renormalization are
carried out in subsections IIIC and IIID, respectively.
Section IV comprises numerical results: the total cross
sections are shown in subsection IV B after the parameter
values are specified. Pion angular distributions and multipole
amplitudes are briefly discussed in subsections IV C and IV
D, respectively. We summarize in Sec. V. Furthermore, the
explicit expressions of the transition amplitude at tree level
are compiled in Appendix A. We also display the axial-
vector operators in an alternative basis, well suited for chiral
expansions, in Appendix B and the renormalization factors
as well as f functions are in Appendix C. The amplitudes in
the isobaric frame, defined in terms of the Lorentz vector and
axial-vector amplitudes and well suited to perform multipole
expansions, are shown in Appendix D.

II. FORMALISM

A. Kinematics, Lorentz and isospin decompositions

Charged-current weak pion production off the nucleon
consists of processes of the type
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induced either by neutrinos v, or antineutrinos U,; see
Ref. [40] for a classic review of electroweak pion produc-
tion. This reaction is described by the Lorentz-invariant
amplitude 7 ;;, which is defined by

ljfﬁi]% } +N(py) -

Ve(Kq

}+N’<m>+n< T

(€N (p2)2" (@) [ve (k)N (P1))in
= i(2n)*W (ky + py - ky—=pr=q)Tys.  (2)
In the antineutrino case, one replaces v, — U, and

¢~ = ¢ in the above definition. The amplitude 7 ; is a
function of the following six Mandelstam variables,

s=(ki+p1)?  si=(kh+p)*  sa=(q+ pa)?
h = (ky = k), = (ki —q)?, t=(p1— pa)*
3)
which fulfill the constraint
my s+t +t,=t+s +s, (4)

where the neutrino mass has been approximated to zero. We
work in the isospin limit so the mass of all nucleons (pions)
has been set to my (M,). Henceforth, ¢ is always given in
terms of the other five invariants.

In the limit |#,| < M%,, where My, is the vector W-boson
mass, the scattering amplitude 7 ;; can be written as

T = |L*H,, (5)

\/—‘Vud

where the leptonic and hadronic currents, denoted by L

and H,, respectively, are given by
ip(ky)y* (1 —ys)u, (k;), neutrino
L= { _f( (L =ys)u,, (k) ' ' (6)
v, (ky)y*(1 = ys)ve(ky), antineutrino

Hp=(N'(p2)7"(q)|Vii(0) = A5 (0)[N(py1)),  (7)
in terms of the isovector vector and axial-vector currents Vi
and Aj; H, depends only on variables s,, #; and 7. Its

isospin structure has the form

1
E[Tb»Tu]H; Xio  (8)

1
HZ“(Sz, Z tl) :Z; E {Th’ ﬁl’-a}I_I/Jtr +
where y; and y, are isospinors of the initial and final
nucleon states, respectively. Furthermore, the Lorentz
decomposition reads

u(s2.0.11) (P{AT(

S, 1, fl)O,/j,i

HMOC

+Vi (52,1, 1) Oy Jun (1), )

with the Lorentz axial-vector operators3

Oﬁ.] = qﬂ’ OAZ = pl,/u OA} - pZ,M’

K, 3
02,4 :qqln Oﬁj :qpl,/w Oﬁ,(, :qPZ,yv
03,7 = yﬂ'q’ 02.8 - 7/,47 (10)
and Lorentz vector operators
OV, =0lys., i=1..8 (11)

The set of vector operators is complete but they are not
independent if the conservation of the vector current is
imposed. To be specific, there exist two constraints on V;:

k-qVi+k-p\Va+k-p,Vs+ (M2—2p,-q)V;
+2mNV8 :O,
k'qV4+k'p1V5+k‘p2V6+V8:O, (12)

with k = k; — k,. Eventually, once the functions H;f are
determined, the hadronic transition amplitudes for the
various physical weak pion production processes can be
readily obtained through

H,(vep - ¢ n'p)
H,(vyn — ¢~ n'n)

=H,(on— ¢"nn)=HS —H,,

=H} + H,,

—V2H;.
(13)

= Hﬂ(ﬂfp - f+7r_p)

H,(ven » ¢~2°p) = H,(0sp — ¢ 2'n) =

B. Cross section

Unless otherwise stated, the energies and momenta are
defined in the center-of-mass frame (CM) of the initial
(anti)neutrino and nucleon. The directions of pion and
lepton three-momenta directions are specified in the refer-
ence frame depicted in Fig. 1. By construction, Oxz is the
lepton scattering plane.

The total cross section reads

1 w;d w,fd +1dx
) =Gy, o o [, o
XA d¢12|Tfi|2v (14)

where x; = cos#; and ¢, is the angle between the Oxz

plane and the one spanned by 122 and g. Here, the limits for
the lepton energy w,; are given by

3This simple basis can be easily related to the ones in Ref. [40]
or Ref. [19], if needed.
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FIG. 1. Kinematics and reference frame.
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w; =my, 60; _ (\/_ ﬂ) 14 N (15)

2(\/— - Mﬂ) ’
and the ones for the pion energy w, are

1
+_ —
@ 2(s — 2wyp/s + m?) {<\/E @c)
X (s = 2wp\/s + m:+ M2 —m%) £ (0% — m2)
X \/[S—Za)f\/;"—i—mf M2 — m%)* —4M2m }

(16)

In the above, m, denotes the outgoing-lepton mass. The
invariant amplitude squared can be written as

Gi

TP = ZEVaaPL ™, (17)
in terms of the conventional leptonic and hadronic tensors.
From Eq. (6), the leptonic tensor for a neutrino-induced
process is given by

L;w = Tr[kly;t(l - y5)(k2 + m/)]/,,(l - ]/5)]
= S[kl,ﬂkZ.l/ + kl,vkz,u - g/wkl : k2 + ie,uvaﬂk7k/21}’ (18)

with €y123 = +1. For the corresponding antineutrino reac-
tion, the term proportional to the fully antisymmetric tensor
gets a minus sign. On the other hand, the hadronic tensor
H,, reads

1 N
H, = ETr[(ﬁl +my)H,(p, +my)H,],  (19)

where H u= yOH,T,yO. The hadronic transition amplitudes
H,, are those introduced in Eq. (13).

The total cross section is a function of only s, so that the
other four Mandelstam variables should be expressed in
terms of s and the integration variables,

s51(s, ;) = 5 = 2v/sw, + M2,
sa(s. @) = 5 = 2+/sw; + m3,
f(s g xp) = m +m2 = 2m,0, + 2|k || x;.
(8, W, g, X1, p1a) = my + M7 = 20,0, + 2|l;1||§|x2,

(20)

where x; = cos 6; and the moduli of the three momenta are
4] =\ w7 — M3, ki =,
(1)

with @, = (s —m3)/(2y/s). Furthermore, x, = x;x;, +
V(1 =x2)(1 = x2,) cos ¢, and x,, is obtained from

|ky| = £/} — m2,

- 1
ko |q]x12 :E(m§’+M721_mZ2V+s)_\/E(wf+wﬂ) +wpw,.
(22)

The invariant s can be related to the energy of the neutrino
in the laboratory frame, E,, by

s =m3 +2myE,, (23)

so that the total cross section can be expressed as a function
of E,.

III. SYSTEMATIC ANALYSIS OF THE
HADRONIC TENSOR IN ChPT

In this section, the different ingredients required to
obtain the hadronic current in ChPT are presented.

A. Power counting

As an expansion in powers of momenta and light-quark
masses, ChPT relies on a hierarchy of the contributions
(diagrams) known as power counting. The presence of
matter fields as explicit degrees of freedom introduces new
scales that do not vanish in the chiral limit, causing the
presence of power-counting-breaking (PCB) terms [41] in
the diagrams with loops. To remedy this problem, various
approaches have been proposed in the past thirty years:
e.g., the heavy baryon (HB) formalism [42,43], the infrared
regularization (IR) prescription [44,45], and the extended-
on-mass-shell (EOMS) scheme [46—48].4

For ChPT in the one-baryon sector, denoted in short as
BChPT, the EOMS scheme has proven to be a very

*See also Refs. [36,49] for further discussion on this topic.
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effective tool. It is covariant and preserves the analytic
structure of the calculated physical quantities with correct
power counting. When the proper limits are taken, EOMS
reproduces the results obtained using the HB or the IR
formalisms but usually offers a faster chiral convergence
because covariance and the analytic structure of the loops
are maintained [50-52]. Due to the above-mentioned facts,
the EOMS scheme is gaining a widespread acceptance and
has been applied to many relevant processes, e.g., pion-
nucleon scattering [53-56] and pion photoproduction [57—
59], among others. It has also been used to describe heavy-
light systems [60-62]. Furthermore, there have been
attempts to create a new framework based on EOMS to
extend the applicability beyond the low-energy region but
restricted to small scattering angles [63].

The explicit inclusion in BChPT of baryon states heavier
than the nucleon, such as the A resonance, is not trivial. The
A(1232) excitation is the lightest baryon resonance, located
only ~200 MeV above the zN threshold, and hence crucial
for a good description of the zN physics even at low
energies. In BChPT with A(1232), apart from the external
momenta p and the pion mass M, an additional small
parameter appears, namely the mass difference 6 = mp—
my ~ 300 MeV. Different assumptions about the expan-
sion parameters lead to different power-counting rules. In
the small scale expansion (SSE) scheme proposed in
Refs. [64,65], both § and M, are counted as O(p). Instead,
in the so-called d-counting, developed in Ref. [66], a different
counting, & ~ O( p%), is introduced in order to preserve the
hierarchy p/A)(SB ~ Mﬂ'/A)(SB ~ (5//\}(5]3)2, with A){SB ~
1 GeV being the chiral symmetry breaking scale.

In the present work, we are interested in the energy range
from the production threshold E"r. (~276.5 MeV for
£ =p) to EM*~EY 4 M (~415 MeV for £ = ). With
such a choice, Q% = —t, is always smaller than 0.02 GeV?>
and the pion momentum is smaller than 0.18 GeV.
Furthermore, the invariant mass of the final hadronic zN
system, denoted as W = /s,, is < 1.18 GeV, well below
the A-resonance peak. Hence, we prefer to employ the -
counting rule. Specifically, for a given Feynman diagram
with L loops, V¥ vertices of O(p*), I, internal pions, I
nucleon propagators and [, A-propagators, its chiral
dimension D is obtained according to the rule

1
D=4L+> kv —21, — Iy - Sla (29
k

Here, we aim to perform a calculation of the hadronic
transition amplitude up to the chiral order O(p?), i.e.,
O(pP/Alsp) with D = 3.

B. Chiral effective Lagrangians

Given our working accuracy and according to the power-
counting rule (24), the following chiral Lagrangians are
needed for our calculation,

2 3 2
2i j k k
Lo =D L+ L+ 3 (Ll + Lol (29
= J= =

where superscripts represent chiral orders while subscripts
denote the relevant degrees of freedom. For clarity, the
effective Lagrangian is classified in three parts: the purely
pionic sector, the pion-nucleon sector, and the one involv-
ing A resonances.

1. Pionic interactions

The required terms in the purely pionic sector are given
by [32,41]

F2
£ — ZTr[DMU(DMU)T + U + Uy, (26)

O3+7
L ===
16

¢ . . .
+§4Tr[D”U(D/‘U)']Trb(U' + Uy

[Tr(eU" + Uy

Z ,
+ szr[Fﬁ,,(D”U)TD Ul (27)

where Ff, = 0,1, — 0,1, —i[l,.1,] is the left-handed field-
strength tensor; [, = —gyV,4li7%/2 is the left-handed
external field and ¢ (a = 1, 2, 3) are the Pauli matrices.’
Here, y = diag{M?, M?} is the mass matrix with M being
the pion mass in the isospin limit. Tr[- - -] denotes the trace
in flavor space. Furthermore, F is the pion decay constant
in the chiral limit and #;4¢ are mesonic low-energy
constants (LECs). The Goldstone pion fields are collected
in the 2 x 2 matrix U

ith b
U=u?=
u exp< 7

), DU =09,U+iUl, — (28)

where the corresponding covariant derivative has also been
defined.

2. Interactions with nucleons

The relevant terms describing the interactions between
pions, or external fields l”, and nucleons read [67]

) :WN{iD—m+g¢y5}‘PN, (29)

*We identify I} = W), 22 =W2 and 3 =0, to which the

physical weak-boson fields Wff are related via Wf =
(W}, F zWﬁ) /+/2. Note that, to be consistent with Eq. (5), we
always factorize out the combination —gy/ (2\/5) V.4 from the
hadronic transition amplitude H,, calculated in subsection III C.
Furthermore, the factor gy, /(2v/2), together with an identical
one from the lepton sector, is absorbed in the Fermi constant

2

2
as Gp = V25
FE Vg

where My, denotes the mass of the vector W

boson.
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£,(3\)/ = ‘I‘N{clTrbM - %Tr[u/‘uv](DﬂDy +H.c.) + %Tr[u”uﬂ]
m

[ ] + g5 o b, (30)

4 8

3) d )
Em\)/ = ‘PN{_% ([l/lﬂ, [Dy, M'MHD + HC)

ds

_2
2m

% (1, [D*)|D* + He.)

d
+—= ([, [Dy, u)])(D*D*D* + sym.) + H.e.) + ﬁ (ily_, u,)D* + H.c.)

12m

d ~ d ~
+ ﬁ (i[D*, F},)D* + Hee) + ﬁ (i Tr[F,u,)Dy + Hec.)

14

15

d d
tam (ic"Tr[[D;, u,|u,)D* +H.c.) + Am (i6"Trlu,[D,, u;])D* + H.c.)

d dis . d 0
+ S0P Tl Juy + i Dy ) = g2 iy sl F s w) D+ He)

d 8 d d
+ % irhys|F, u’] + %y"ys [D*, F;,] + % 7,15 P Tr[u, F ] }‘PN, (31)

with the nucleon doublet Wy = (p,n)’. Here, m and g are
the nucleon mass and axial charge in the chiral limit. The
LECs ¢; and d; have units of GeV~! and GeV~2, respec-
tively. The involved chiral blocks are given by

1 i
" MT,GMM] —5

D,=0,+T,, (32)

u, = iu'0,Uu’ + iul,u, r

u = E[ MlﬂMT,

ye=u'yu' £uyfu, Fi = fuFLu’,

~ 1
Fl, =F} - ETr[F;fy]. (33)

In practice, the Levi-Civita tensor can be expressed in terms
of Dirac gamma matrices: e/ = —L[{[y*,7*].y*}.v"lys.
In such a manner, the Lorentz structure of the hadronic
transition amplitude can be readily expressed in terms of
the operators given in Eqgs. (10) and (11).

3. Interactions with A

The A-resonance is a state of spin-3/2, which can be
represented by a vector-spinor W* in the Rarita-Schwinger
formalism [68]. It is also a field of isospin-3/2; thus, it can
be described by a vector-spinor isovector-isospinor field
Wi with u and i being the Lorentz vector and isovector
indices, respectively. We refer the reader to Ref. [65] for the
so-called isospurion formulation, where the relations
between the field W# and the physical A(1232) states,
A*T, AT, A% and A, are presented. The interactions of A
resonances with pions read

|
E(l) — @zﬂé:% ( Da,jk _ 5jk)§% q;l,z/ (34)
A ij ly;u/a mAy;w kl s
LR = P8 (aTrly 15% g, 8,9, (39)

where m, is the A bare mass and a; a bare coupling
constant; the covariant derivative is defined by

D,u,ij = (3ﬂ + Fﬂ)5lj - l.€l‘jkTr[TkFﬂ}. (36)

3
Furthermore, &;; = 6;; — %T[T ; is the isospin-3/2 projection
operator; the Dirac matrices with multiple Lorentz indices
are defined as

1 1
Yuwa = Z {[},;w 7/1/]’ Ya}’ Y = 5 [},/u 7/1/]' (37)

Finally, the effective Lagrangian for pion-nucleon-A inter-
action has the form [64,65,69]

__. 3 .
Ly = ha P8 wl¥y + He., (38)
) piag N BTy L
Lona = V8 _l?Faﬁ vsy” +ibyF o gy” 4 ibsw,gy
i o 4 %0 it bw, e (39)
i Foji I Dl N
where h, denotes the LO axial coupling constant, b, are

NLO LECs, and the chiral blocks with isovector index i are
defined as
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>l
(2)

FIG. 2. Topologies of tree-level diagrams. The solid, dashed and wiggled lines represent nucleons, pions and left-hand currents. The
letters in the circles mark the possible chiral orders of the vertices. Diagrams with A-exchange are obtained by replacing internal nucleon
lines by A propagators. Diagrams with mass insertions in the internal pion, nucleon and A propagators are not shown explicitly.

1 ) ) 1 )
Fi =STEFL) ol =5 Trlen,),

0l = 5 TIED, u,]] (40)
In fact, as pointed out in Ref. [70], the b, and b; terms can
be eliminated thanks to the identity, F,, = [D,.u,]—
[D,. u,]. Furthermore, the b5 and bg terms are redundant
too [70,71], which has been explicitly checked in zN
scattering [55], showing that their contributions can be
absorbed in the LO A-exchange and contact terms.

Therefore, for L’g\), A» we only need to take the b; term
into consideration.

C. Hadronic transition amplitudes

The tree-level diagrams relevant to our calculation up to
O(p?) are depicted in Fig. 2. They are labeled according to
the scheme shown in Table III in Appendix A. Therein, the
chiral order of each tree-level contribution is specified, as
well, for convenience. The explicit expressions for the
corresponding amplitudes are listed diagram by diagram in
this Appendix.

In Fig. 2, the diagrams with mass insertions in the
internal pion, nucleon and A propagators are not shown.
Such amplitudes with mass insertions in internal nucleon
and A lines, which are generated by terms proportional to

the ¢, term in £§3\), and the a, term in EEIZA), can be taken into
account by the following replacement in the nucleon and A
propagators:

m— m, = m—4c,M?,

ma —>mA’2:mA—4a1M2. (41)

On the other hand, the insertions in pion propagators,

generated by the /; and /, terms in [,,(3,), contain momen-
tum-dependent pieces. Hence, their contribution can not be
incorporated as in the nucleon and A cases. Instead, the
contribution of a diagram with one insertion in a pion line
results from the substitution

Hi — &(q2)Hx, (42)
with
2M? M?
&q2) = ~ <l4 + 13 Mz—qz> (43)

where ¢, is the momentum transferred in the pion propa-
gator. Note that, up to the order we are working in, the pion-
insertions for diagrams 7%, T%,,, TT, and T, need to be
taken into consideration only once, since &(g2) is of
order O(p?).

For the calculation of loop contributions, we need all the
diagrams generated from the topologies shown in Fig. 3. In
total, there are 89 diagrams. An example of how to generate
them from topology (b) of Fig. 3 is shown in Fig. 4. The
calculation of these one-loop amplitudes is straightforward
but yields lengthy analytical expressions, which we do not
show explicitly here,” but they can be obtained from the
authors upon request. Finally, the contributions of diagrams
corresponding to loop corrections on the external legs are
included through wave function renormalization, which is
discussed in the next section.

D. Renormalization

In the above subsection, we have described the calcu-
lation of the hadronic transition amplitudes up to O(p?),
corresponding to the Feynman diagrams excluding correc-
tions at external pion and nucleon legs. In fact, the sum of
all their contributions yields the amputated amplitude, A s
for which the superscripts ‘+’ are suppressed for brevity.
According to the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula [72], the full amplitude is related to the
amputated one through

HM(Sz,t, tl) :ZEHZNI:IM(Sz,t, tl)’ (44)

®The simpler expressions of the one-loop contributions ob-
tained for pion photoproduction can be found in Ref. [58].
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FIG. 3.

Topologies from which one-loop diagrams are generated. Topologies leading to corrections on the external pion and nucleon

legs are not shown because the corresponding contributions are taken into account by wave-function renormalization. The solid lines
represent nucleons, while the dashed ones stand for the pions. Vertices with crosses, circles and grey dots denote positions at which
incoming left-hand currents, incoming pions and outgoing pions, respectively, can be inserted. Incoming pions are always coupled to

left-hand currents.
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FIG. 4. One-loop diagrams generated from topology (b) of Fig. 3. The solid, dashed and wiggled lines represent nucleons, pions and
left-hand currents. Circled numbers mark the chiral orders of the vertices.

where Z, and Z, are wave function renormalization
functions of the pion and nucleon fields, respectively.
Their explicit expressions are given in Appendix C.

In the full amplitude, the loop contributions are evaluated
using dimensional regularization. The ultraviolet (UV)
divergences stemming from the loops are subtracted using
the modified minimal subtraction (MS — 1) scheme and
absorbed by the LECs appearing in the counterterms
generated by the effective Lagrangian. That is, we split
the bare LECs in the following way,

Px
167>

where R =2/(d —4) 4+ yg — 1 —In(4x), d the number of
space-time dimension, and y the Euler constant. We refer

X=X+

R, Xe{m,g.c.djl}, (45)

to the effective Lagrangians, in Egs. (30), (31), and (27), for
the values of the indices i, j, k. Furthermore, fy are beta
functions.

As already mentioned in the beginning of this section,
there exist PCB terms due to the appearance of nucleon
internal lines in the loop diagrams. To restore the power
counting, we apply the EOMS scheme. Therefore, after the
cancellation of the UV divergences, one has to perform
additional finite shifts for the O(p) and O(p?) UV
renormalized LECs as

r_ v mpx

T62F2 X € {m,g.c;}, (46)

with fy being the beta functions for this finite
renormalization.
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The verification of the cancellation of UV divergences
and PCB terms is delicate. The vector and axial-vector
operators given in Egs. (10) and (11) are not well suited to
perform a chiral expansion due to the fact that sometimes
the chiral order of their combination is underestimated. For
instance, the chiral orders of O%, and Oﬁ,e are both
assigned to be O(p). Consequently, the combination

O s — 04 is naively counted as O(p). However, its actual

chiral order should be O(p?), since (p;, — ps,) gives an
additional contribution of O(p). Therefore, to overcome
such issues during renormalization, we have chosen a
chiral-expansion-suited (CES) basis; see Eq. (B1) and
Eq. (B2) in Appendix B. Another advantage of the CES
basis is that vector current conservation is automatically
implemented. With the help of the CES basis, we remove
the UV divergences and PCB terms order by order in the
chiral expansion and obtain the explicit expressions for the
S functions, namely, By and Sy in Egs. (45) and (46), which
are relegated to Appendix C.

All the parameters in the renormalized full amplitude are
UV finite. For practical convenience, we write F, M, rit and
g in terms of their corresponding physical values, F,, M,
my and g, by using the relations specified in Eq. (C7) and
Eq. (C9). The terms of O(p*) and higher orders generated
by the above substitutions, as well as by the wave function
renormalization in Eq. (44) are neglected.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Low-energy constants

The available data for neutrino-induced charged-current
single pion production on nucleons at low energies are very
scarce. In fact, they are limited to the early experimental
measurements at the ANL [73,74] and the BNL [75,76]
hydrogen- and deuterium-filled bubble chambers. These
data have been recently reanalyzed for the flux uncertainty
in Ref. [77]. Muon neutrino beams were used for both ANL
and BNL with average energies around 1 GeV and 1.6 GeV,
respectively. Although events for all allowed channels
induced by muon neutrinos were detected, almost all the
data are beyond the energy region where ChPT is expected
to be valid. This is also the case for the data on muon
antineutrino-induced processes measured at CERN-PS
[78]. Therefore, the task of fixing the unknown LECs
present in the hadronic transition amplitudes calculated
above by fitting the above mentioned v —7 data is
unattainable. Nonetheless, most of the required LECs are
known, as they have been obtained in the analysis of other
processes or physical quantities. We take their values from
the studies of zN scattering [53—55]7 and the axial radius of

’A recent determination of some of the LECs has been
performed in Ref. [79] by making use of #N threshold and
subthreshold parameters, instead of partial wave phase shifts.

TABLE L. Values of the LECs determined from other processes.
Details on the different sources are explained in the text. Here
di, = dy +dy and dyy_j5 = dyy — dis.

LEC Value Source
cs) Z 165+ 1.1 (), 132]
£<2> ¢, —1.00 £0.04
™ ¢ 1.01 £ 0.04
2 . . .
& ~3.04 + 0.02 N scattering [53]
Cy 2.02 +0.01
G 1.35 £ 0.04 p, and g, [81,83]
57([3) di,, 0.15+£0.20
d; -0.23 +£0.27
d 0.47 +£0.07 N scattering [53]
di,_is —0.50 +0.50
i ~0.20 = 0.80
dy, 0.96 +0.03 (r3)y [80]
‘C’z(tzl\)’A b, (4.98 +0.27)/my re" [82]

the nucleon [80], which used the EOMS scheme as in the
present calculation.

For the parameters appearing in the LO Lagrangians, i.e.,
£, . W and £1, [Egs. (26), (29), (34), and (38)],
the values of their corresponding physical counterparts are
set to [81,82]

F,=9221 MeV, g, =127, h,=143=+0.02,
M, = 138.04 MeV, my = 938.9 MeV,
my = 1232 MeV, (47)

where h, is determined from the strong decay width of
A — N T3" =118+£2 MeV [81]). See Ref. [82] for
details.

In the higher-order effective Lagrangians relevant to our
calculation, there are in total 22 LECs. Three of them, ¢7%,
¢, and di,, become irrelevant after the procedure of
renormalization and replacement of the LO parameters
by their physical ones as discussed in the previous section.
Furthermore, as shown in Table I, most of them are pinned
down in processes other than weak pion production. The
so-called scale-independent parameter 7, was extracted
from the electromagnetic charge radius of the pion (r?), at
O(p*) in Ref. [32]. The value of Z, at the renormalization
scale y, denoted by £ in Eq. (45) can be obtained through
the following renormalization group equation [32]

. Pe | M?
f6:16]::2 f6+ln”—2, (48)

with M? = By(m, + m,;) ~ M2, where B, is a constant
related to the quark condensate and 3, = —1/6 as can be
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seen from Eq. (C11). As usual in BChPT, we set u = my,
which yields

£r = (~1.34+1.74) x 1072, (49)

LECs ¢;’s and d’s displayed in Table I, except ¢ and d,,
have been fixed in pion-nucleon scattering, calculated up to
O(p?) using the §-counting within the EOMS scheme [53].
This is exactly the same approach employed in the present
study. The model was fitted to the experimental phase shifts
from Ref. [84]. On the other hand, the value of ¢4 has been
obtained in Ref. [83] by adjusting the corresponding chiral
results for the magnetic moments of protons and neutrons,
Hpp and p,,, to their empirical values from Ref. [81]. There are
two determinations of this parameter in Ref. [83]: one is
obtained without and the other with explicit A’s which are
present only in loops. We have chosen the former determi-
nation as the central value for g, since in the adopted power-
counting rule loops with internal A’s are of higher order and
beyond our consideration. The difference between the two
determinations is then assigned to the error of ¢&.
Specifically, we have ¢ = (1.35+0.04) GeV~! in the
end.® As for d5,, it is pinned down in the extraction of
the nucleon axial charge and radius from lattice QCD results
in Ref. [80]. Similarly to ¢, the A resonance is involved in
the axial form factor only at loop level; hence, we employ its
value from the A-less fit therein.

Finally, as demonstrated in Ref. [82], the electromag-
netic width of the A resonance can be expressed in terms of
the NLO zNA coupling b;. Given that ™ /(™ + [S7) =
0.55% — 0.65% with I'}" = 118 £2 MeV [81], the value
of b, is fixed to be b; = (4.98 £ 0.27)/my. As mentioned
in Ref. [82], the sign of b remains undetermined, but here
we have chosen a positive sign as further discussed in the
next subsection.

Apart from the known parameters discussed above, there
are still seven unknown LECs: df, di, dg, di,, d5,, d;, and
d5s 2 In our numerical computation, we assume them to be of
natural size, namely, d; =0.0£1.0GeV? with j € {1,6,
8,14,20,21,23}. In view of the values of the known dj’s n
Table I, our assumption seems quite reasonable. Note that the
d; and d5 can be obtained from df_, and d7,_,5 in Table I
with the help of the assumed d| and d7, values, while the
errors are propagated in quadrature.

In Ref. [83], the p meson is explicitly included in the
calculation and the combination &g = ¢+ ¢f is determined,
where ¢g = —G,/(2g,) is the part saturated by the p, given in
terms of parameters G,, g,, related to p interactions. In our case,
without explicit p meson, this p contribution is absorbed by the
LEC. Therefore, we identify our &g with ¢¢ rather than cg.

Some of these LECs, dg, dy, d5, and d,;, also appear in pion
electroproduction on the nucleon. Their values have been
determined in the analysis of that process in Ref. [37]. Although
Ref. [37] uses the EOMS scheme, we cannot use their results
directly because the A is not included in the calculation.

B. Total cross sections

Once the parameters in the hadronic transition ampli-
tudes have been specified, we are now in the position to
make predictions for experimental observables. First, the
(anti)neutrino-induced pion-production cross sections are
calculated up to O(p?). The convergence properties of our
results are then discussed. We consider the muon flavor, for
which the available measurements have been performed.
As previously explained in subsection III A, we expect our
model to be reliable up to energies E, ~415 MeV, so that
we are relatively far from the A pole and the 6 counting is
appropriate.

In the left (right) column of Fig. 5, the results are shown
for neutrino (antineutrino)-induced pion production, res-
pectively. The plots are displayed up to E, = 450 MeV,
slightly above our validity limit, to better show the trends of
the curves. The A-width effect is taken into account as well
by means of Eq. (A4), though its contribution is of higher
order. Furthermore, its effects are really minor in the energy
region we are concerned with. Its implementation enables
us to eventually extend our results smoothly to higher
energies, even passing the A-peak. Due to the nearby
existence of the A pole, the A contribution (black dash-
dotted line) increases rapidly in the region above
E,~415 MeV, as can be observed especially from the
plot for the reaction v, p — u~ pz*. Meanwhile, except for
this latter channel, the nucleonic contribution (blue dashed
line) grows steadily and dominates the total cross sections
in the region below E, ~ 415 MeV. The bands in the plots
show the uncertainty associated to the error estimations of
the LECs discussed in the previous section.

In the considered energy region, there is only one
experimental data point from the ANL measurements
[73,74,77] for each neutrino-induced reaction channel. As
can be seen in Fig. 5, our full chiral predictions (red lines
with bands), at E, ~ 400 MeV, are in good agreement with
the ANL data in the channels of v,p — u~pz* and
v = U pr°. However, the theoretical cross section for
the v,n — u~na™ reaction is smaller than the central value
of the experiment. Nevertheless, the chiral calculation for
this latter channel is still consistent with data due to the large
experimental uncertainties. Unfortunately, for the antineu-
trino processes, so far there are no available data at low
energies, preventing us from assessing our predictions.

We also compare our results with those of the HNV
model [19], which allows for a simple but meaningful
comparison: the HNV phenomenological model, gives a
good description of the weak pion production process for a
wider range of neutrino energies well above 1 GeV. This
model incorporates both the contributions from the A pole
mechanisms and nonresonant terms constrained by chiral
symmetry and given by the tree diagrams of Fig. 2 at their
lowest order. The counterparts of those diagrams in ChPT
are represented by the LO A-less tree diagrams of O(p) and
the A-exchange ones of O(p/?) and O(p>/?). In particular,
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for the A contribution, we find the following correspon-
dence,

bymy
\/6 ’

where Cs, and Cjy are two of the Adler N — A axial and
vector form factors that are conventionally used in the
literature [5,86] including the HNV model. Imposing the
values of 1, and by specified in the above subsection, we
obtain Cs,4(0) ~1.17 £0.02 and C3y(0) ~2.01 £0.11,
which are comparable to the values Cs,(0) = 1.2, and
C3y(0) = 2.13 used in the HNV model and taken there
from Refs. [87] and [11], respectively. The small numerical
difference in Cs,(0) comes from a different choice of the A
width in Ref. [87]. This observation also supports the
choice of a positive b;. Note that while HNV does not obey
a systematic power counting or include loop diagrams,
some higher-order corrections are implemented through
phenomenological form factors for the vertices in the axial
and vector weak currents.'® Our results are systematically

C5A<0) = \/%hA» C3v<0) = (50)

"In particular, some additional higher order A couplings such
as Cyy, Cyy, or Csy are present. We do not consider them here as
they would appear, together with many other contributions, in a
higher order calculation.

larger than the HNV ones. This is mainly due to the
inclusion of the O(p?) terms coming both from tree and
loop diagrams. The enhancement improves the agreement
with data though the large error bars preclude any strong
claim. Particularly interesting is the v,n — y~nz* channel,
where there is a large contribution of the O(p?) terms but
the results are still below data.

In Fig. 6, we display the total cross sections for the
neutrino reactions order by order, in order to show the
convergence properties of the chiral series.'" For all
the channels, a calculation with a higher chiral order
brings the predictions closer to the experimental data.
Moreover, the resulting contribution when stepping from
O(p?) up to O(p?) is quite significant in the improvement
of the predictions. On the other hand, it seems clear that
next-order effects could still be relevant. In fact, it has been
shown for v,n — u~nmt, that the failure on the description
of the ANL data might be cured by partially restoring
unitarity [22]. This can be approximately done by imposing
Watson’s theorem for the dominant vector and axial
multipoles [22]. In a systematic ChPT calculation, this

11 . . . .
The same behavior is present in the case of the antineutrino
reactions because neutrinos and antineutrinos share the same
hadronic transition amplitude.
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corresponds to the inclusion of higher-order loops: espe-
cially those whose internal pion and nucleon lines can be
put on shell. Another possible solution has been suggested
in Ref. [25] and amounts to the need of extra higher-order
contact terms.

C. Pion angular distributions

Although for weak pion production differential cross
sections are only available in averages over broad spectra of
incoming neutrino energies, the low-energy predictions of
the present approach may nonetheless be valuable for the
comparison with future data and as benchmark for phe-
nomenological models. Here, we discuss pion angular
distributions in the so called isobaric frame, i.e., the CM
frame of the outgoing zN pair, usually considered for
pion electroproduction, see e.g., Ref. [88]. To this end, the
pion polar angle ; is defined with respect to the virtual W
boson direction £* = (kj — k3)/|k} — k3|, where the aster-
isk denotes a quantity in the zN pair CM frame. Besides,
the pion azimuthal angle ¢} is the angle between the
reaction plane spanned by I_cT, /23 and the production plane,
by G*, k*.

Numerical results for pion polar and azimuthal angular
distributions, do/(dWdQ?d cos 8;) and do/(dWdQ?d¢?),
are shown in Figs. 7 and 8, respectively. Three different sets
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Pion azimuthal angular distributions. Same definitions as in Fig. 7.

of {E,,W,Q?} inside the adopted validity region have
been chosen: (a) close to threshold, (b) at intermediate E,
value, and (c) at the upper neutrino-energy limit. In
Figs. 7 and 8, to render the comparison easy, the results
for case (a) and case (c) have been scaled by factors of
15 and 1/3, respectively. It can be observed that the
shapes of the cos@; distribution for the three different
cases in each channel are similar but there are differences
among channels. This observation also holds true for the
azimuthal ¢ distributions. One can also see from Fig. 8
that the ¢ distributions are almost symmetric around r,
indicating that the asymmetries proportional to sin ¢} and
sin2¢; identified in Ref. [19], are negligible at low
energies. Representatively, for case (b) we display the
error bands resulting from the propagation of the LEC
uncertainties.

D. Multipole expansion

Multipole amplitudes carry detailed information about
the hadronic transition induced by the weak interaction.
The formalism for the multipole expansion of the hadronic
matrix elements was developed in detail in Ref. [40], thus
here we only show the formulae needed to establish the
connection to our chiral amplitudes. Based on Ref. [40], we
can write (for any e€” o« L*)
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e”H = —zZF ni,

8
€”H Z

niat,, (51)

where HVA(®) stand for the second and first terms in
Eq. (9), in this order; »; and 7, are two-component Pauli
spinors of the initial and the final nucleons in the isobaric
frame. For the explicit expression of the Pauli operators, Z}/
and A;‘, we refer the reader to Ref. [40]. The above
equations allow us to relate the isobaric amplitudes ]:)-’
(Q‘}‘) to V; (A;). The resulting expressions are relegated to
Appendix D. It is convenient to introduce linear combi-
nations of H ,‘f 'A(i), which denote transitions to pure isospin
states of the final pion-nucleon pair

HYAU=12) _ VA | pgVac),
H}\:’A(1=3/2) _ H):A( ) _ HL/-,A(_). (52)

Equivalent combinations for the isobaric amplitudes obvi-
ously apply. It is now possible to write multipole expan-
sions of .7-';/(1) and gf(” for transitions to pion-nucleon
states with angular momentum ¢. They are given in
Ref. [40], as well as the corresponding inversion formulas.

In general, for any given angular momentum 7, there are
six vector multipole amplitudes, M,,, E;, and L;;, and
eight axial-vector ones, My, &4 and L. and H..

TABLE II.  S- and P-wave multipole amplitudes calculated at
W =1.13 GeV and Q2 = 0.05 GeV?2. Here, the multipole am-
plitudes are dimensionless by definition.

1=1/2 1=3/2
Eoy (29.5703°.4.79) (-15.6102,1.20)
Lo, (=197175,-32.1) (188733, —6.58)
Mo, (7.25%93,,0.116) (-1.031043,-0.219)
Loy, (7.147333,7.14) (=67.2177%,-0.219)
Ho (8.9011%7,5.37) (—48.67¢,—0.125)
My, (—=7.851142,0.107) (21.85,3,1.36)
Ey (3.271949,-0.0812) (=2.211924.~0.127)
Ly, (-27.9141,0.612) (24.47)9,1.54)
M,_ (-15.815-1,-0.500) (=7.271375,0.147)
L (—50.974%°,0.432) (47.0748,3.36)
My (1575,-0.796) x 1073 (=14.710%, —0.318) x 1072
Ery (1.421)79,-0.120) (=39.7113,-2.79)

Ly, (=1.091242.0.0744)
Hie  (=0.6417]5%9,0.0469)

(20.9%19.1.45)
(12.7737,0.881)

Ei_ (1.697747,1.68) (—1.99%169 0.140)
L (4.7413430.2.12) (=5.17178%.,0.121)
H_ (3.5213%. 1.34) (=3.4013:03,0.0683)

Specifically, for § (Z =0) and P (£ = 1) waves, there
are only 5 and 12 amplitudes, respectively. As illustration,
their values for both [ :% and / :% are displayed in

Table IT at W = 1.13 GeV and Q% = 0.05 GeV?, which is
a typical point of the available phase space in the energy
range considered in this work.'? The errors are propagated
from the uncertainties of the involved LECs. In the case of
the imaginary parts, they are negligible and, therefore, not
shown. One can see that the S-wave multipoles in Table II
are larger than the corresponding P-wave ones by one order
of magnitude.13 We have checked that the P-wave multi-
poles decrease rapidly to zero when W goes to threshold.

V. SUMMARY AND OUTLOOK

Charged current (anti)neutrino-induced pion production
off the nucleon at low energies has been systematically
studied for the first time within the framework of manifestly
relativistic baryon chiral perturbation theory up to O(p?),
(NNLO), for the low-energy chiral representation of the
hadronic-transition amplitude. The A(1232) resonance
has been included explicitly using the J-counting rule.
To tackle the power-counting violation of the nucleon loops
we have performed the renormalization in the EOMS
approach [46—48] in which the power counting is restored
by means of finite shifts of the LEC values in the chiral
effective Lagrangians after the conventional UV subtrac-
tion in the MS — 1 scheme.

Remarkably, at this order, most of the involved LECs
(15 out of 22) have been previously determined in other
processes such as pion-nucleon scattering. Furthermore,
another 4 of the remaining unknown LECs in the O(p?) zN
Lagrangian may be obtained in the future from available
pion electroproduction data. For numerical estimates, the
unknown LECs have been assumed to be of natural size.
Consequently, we have predicted the total cross sections in
all the physical reaction channels, both for neutrino- and
antineutrino-induced pion production. We have also esti-
mated the theoretical uncertainties due to the limited knowl-
edge of some LECs. Our results are expected to be reliable
up to the neutrino laboratory energy of E, = 415 MeV,
which is relatively close to the threshold and well below
the A peak. Hence, the energy range is well suited for the
adopted J-counting. Nonetheless, mechanisms involving
the A resonance contribute significantly to all production
channels, especially to the v, p—u~pz* one.

For the purpose of benchmarking other theoretical models,
multipole amplitudes at any other values of W and Q2 are
avallable from the first author (D. Y.) upon request.

PIn Ref. [38], the S-wave axial-vector multipole amphtudes
are calculated using HB ChPT but only at threshold and in the
approximation of zero lepton mass. Note also that those multipole
amplitudes are obtained with a different normalization with
respect to ours, and have dimensions of [mass]~!.
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TABLE III. Labels for tree diagrams.

A-less diagram A-exchange diagram
Topology Label O(p) o(p?) o(p?) o(p*?) o(p*?)
Type (2) T?j(A> T, 5 T4, Tt s it
Type (b) i T8 T8 T4
Type (¢) ¢ T Th 5,15, i T
Type (d) TI%Zn(A) >, T2, T2,
Type (e) Tﬁ-&f ) Tt Ty i T Tt
Type (f) Tféf) T T 5. Ti,
Type (2) 74 TV, T4 TS0, Tt %

Ithas been found that our predictions are consistent with the
few existing experimental ANL data for the neutrino-induced
processes except v,n — u~nz". This might indicate that
higher-order contributions are still relevant for this channel as
suggested by the more phenomenological study of Ref. [25].
Lacking a full calculation, such higher-order contributions
might be approximated by unitarity corrections or some extra
contact counterterms. So far there are no low-energy exper-
imental data for antineutrino-induced pion production on
nucleons. Our results for these processes provide a set of
theoretical predictions that fully rely on ChPT.

Finally, our chiral representation of weak pion production
can be applied to study various low-energy theorems in the
future. It can also be adapted to make a comprehensive
analysis of pion photo-, electro-production and neutral-
current induced weak production in all physical channels
by further incorporating the isoscalar vector part of the
hadronic currents. Most importantly, the present study
provides a well-founded low-energy benchmark for phe-
nomenological models aimed at the description of weak pion
production processes in the broad kinematic range of interest
for current and future neutrino-oscillation experiments.
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APPENDIX A: CHIRAL HADRONIC
AMPLITUDES AT TREE LEVEL

In what follows, all the tree amplitudes corresponding to
the diagrams specified in Table III are listed. We use the
abbreviations

o= x—m%+ M2, Yo=x—mk+1, (A1)

A, =x— mN M2, A;:x—mlzv—tl, (A2)
with x € {s,, u}. The Mandelstam variable u is defined as
= (p; — q)? and, hence, can be written in terms of the
variables in Eq. (3) via u = 2m% — s, — t — t,. Hereafter,
the Lorentz indices of the axial and vector operators are
suppressed. Furthermore, we shall use the shorthands:

AV AV AV AV
Ofjspe.. = 07" £07" £07" £+,

i,j,ked{l,...,8}. (A3)
As for the A-exchange diagrams, the A-width effect can
be included through the following substitution:

1 1 )
g , SA = .
3 i- imaTa(sa) = 5a A=A

(A4)

with the energy-dependent width given by [89]

hzﬂz(SA, 2 )
1927[F,2,sA
x@(m—mN —M”),

[Ca(sa) =

[(sa— Mz +m3)my + 25 my]
(AS)
being A(a,b,c) = a* + b> + ¢ —2ab — 2ac — 2bc  the

Killén function and 6(x) the step function.
In the following, Hy = —2v/2H;.

1. At O(p)
(i) Diagram T4:
Hy = m {gl(m + my)(207} - 07)
+ (my = $2)O0g] = [(m + my) (20} = OF)

8
+ (my = 52)Og ]} (A6)

076004-15



YAO, ALVAREZ-RUSO, BLIN, and VACAS

PHYS. REV. D 98, 076004 (2018)

(i)

(iii)

(iv)

)

(vi)

(vii)

®

(ii)

(iii)

@iv)

Diagram T%:

Diagram T¢;:

Diagram T,:

: E .
Diagram T |,:

Diagram T%,:

; G .
Diagram T7),:

1
Mi=0. M=, {0l - g0},

1%
_gmyOiy,_4

+ — I S
Mi=0 M= Trapey

) {2mN(m12v —Sz)o?-zw + (3m12\/+s2)02—5+6 .

H+ — 0 H— — _ O?—5+6
T TR -

H =

H8F(ty — M?)(m?* — u)

Diagram T%;:

Diagram T%:

: C.
Diagram T7,:

Diagram T},:

H+_

H—_

{2my(m3, —u)OL_, .5 — (B3my, + u)O4_s, ¢} = —H,.

2. At O(p?)
HE = Co {m3,(10) + O, = 30Y)
T 16F imy (s, — my) "
+2my[O) 5.6 + (my = 5) O] + 5,01, 5 5}
1
Hy = m{cz[%oé — A, 0] —4e3my O},
H, = {4camyOf_; 4 c6(Of_, 55 +2myO5)}.
8F,,mN
_ C69a
Hf =-H; = 6 20V 30Y
1 " 16F,,mN(m12\, “ ) {my (01,3 +303)
+ 2my(my, — u)Of —uOY 5 5 5 +2myOy_ 5 _c}.
01,45

b S E o (M _tl){16c1m12VM,2, —desmd (M2 —t+ 1))
"N T

— ¢o[(s2 + u)(t) + M7) = 2(sou + Mzt)) 4 2my (my, — 1)1},

C4
v = m{(sz — )0, 5 = 4myOi s o}
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3. At O(p%)
(i) Diagram T%:
9a
8F zmy (my = 55)
+ d[2(2my O + OF (my = 53))1; = A, (2myO) 5 ¢ + O, 5 (my = 57))]
— dyymy|0) s, (3my, + 53) + 2my (207 = Oty + (my = 55) 2my O, 5+ O]} (A7)

HE = -

{4d16mNM%[—2mN(2O? - 09) + O?(Sz - m12v)]

(i) Diagram T4;:

dig —2d,s)M?
HE = _%{%[M(zm — O8) 4 (m2 - 5,)O4]
4 N

~ [2my (20} = OY) + (m, — 52) O} ). (AI8)

(iii) Diagram T%:

H = Fomy {AS2(’)2 2myOY ¢ — OF_;(4my — 1) — OY (A}, + 1)
dis(sy —u)
+myOg (A, + AY, +1)} +W s
d
g (4mvOt g = O s a8, + A, 0} = 52 (201~ O} (8, + 8, + 1),
H_:_d](SQ )OA+ {OA(M—Sz) OA ( 2—t+t1)}
k 2Fﬂ. N 4F mN z+ T
d dsM7
- ﬁ{%z (24, +1)OF + (24], + 1) (A}, + )05} — FsmN 0545
ds (2d16 — dig) M7 O
A A _ N A T8
+ 4F”mN [( 85y + t)OZ XZOS] + 2Fﬂ.
d
- 16F2° 7 {22my 0% + OY)A,, +2(2my0Y + OY)(A}, + 1)
- Oé/((ASZ + A/sz)<Ax2 + A;z + 1+ mN) + ZASZ( 1 S2> - mN<M% - tl))}
d
- 4;} [4myOY +20] - OF (M2 — t + 1,)]
d
8;2 [4myOY 5 +20Y  — OY (M2 -1t —1,)]. (A19)
(iv) Diagram T¢;:
9a

Hy = - {4d\emyM3[2myOF — (my — u) O]

8F pmy (m3, — u)
+ dypmy[my (205t + my(2myO_ 5 = 3045, s — O§t1)) = 2myO_, 5 + Oll_s,6 — Ost1)u]
+ dﬁ[mN(mNO o3t 204 5+6) + mN(mNO1 23 T 204 s_6)ti
— 2my(myOY_y 5+ Of 5. ) + O, 3t))u+ O, su]} = —H,,. (A20)

(v) Diagram T%;:

_ (dyg—2ds)M;

+ A7 TR
Hﬂ 4Fﬂ(mN )

{gA[ZmNOA (my = w)Og] + 2myOF + (my — ) O]} = —Hj,. (A21)
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(vi) Diagram T%,:

H; - ()7
_ gam
Hy = Wg—l‘){%(t = M2)O 5 + (st = 21sM7)OF 3} (A22)
(vii) Diagram T%:
(2dyg = dig)MzmyOY 5 s
H+ = 0, H, =- + N A23
H K Fﬂ(Mlzr - t) ( )
(viii) Diagram T4, + T5, + Tty
[2g4F2(2dy6 — dys) + gA1s] M
My = - 2F3(m216_ sz;?MZ _Azf> {2my (my; = $2) Oty 5 + (52 + 3my) 045 6 }- (A24)
n N n
(ix) Diagram T%:
Hi—o, oy — - M0 (A25)

(x) Diagram T%,:
+_ (dig —dis)(u—s,)
Hy = 2
8F7sz(Mﬂ - tl)

_ U—35
Ho =
H16F m3 (M2 - 1))

{4myO_s. o + (A, + A, + O, .51,

Y2RME-1)

Ot {16dsmyM; + 4(d) + dy)my (M7 — t + 1) + d3[(255(s2 + 1) — (25, + 1)1

+ 267 = 2my (A, + AL, + 1+ my) — M2(—=2M3 + 25, + 1+ 21))]}. (A26)
(xi) Diagram T¢, +T%, + T§,,:
_ 294 F3(2d\6 — dyg) + gals)M7
My =—H, =~ @F3(M2 = 1) (m?, _Au)) {2my(mf — )O3 = Bmf + )05 6} (A27)
4. At O(p*?)
(i) Diagram T45:
h3 3 A A
H; =-2H, = 18F mi(mi —5) {ZmAO’[‘H - 2(’”’1N(f)1+3 + O4+6)zsz
+ MO} — 208 + 2my Ol + 044, )
+ my[Z, 205 + 07 = myOg) + 2M;01 5 + 2my O 6]} (A28)
(ii) Diagram TICIA:
H =2H, = h’% 2m3 (304 —04) =2 04 [0/ aM)>
u — u _18F,,mi(m2A—u){ mA( 1~ 7)_ (mN -2 4—5) u
+mi[2my (307 — 07) —2(204 + OF) - O3A,]
— Mmp [—ZM%O‘?_z + ZmN(')?_S
- (201, - 07 + myO4)Z, ]} (A29)
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(iii) Diagram T53:

h3
I8F my (m} — 55)(t; = M3)
— mj[AmyO_s ¢ + Oy 5(s2 + 3u — 4m3))]
—m3 [0} 5. (250 — 14 2u) — myO}_, 5(Bu + s, — 4m3)]
+ malmyOy s, (T, + 50 + 11 = my) + OF, 5 (Eg, 1y + Z,M3)]} (A30)

Hy =-2H, = {myOt 55+ Of s (|2 X,

(iv) Diagram T$5:

. I
I8Fm (m3 — u)(t, — M7)
+my[=4myOll s 6+ O 5 5(352 + u—4m3)]
+ m3[Of s, 6(1 =25 = 2u) + myO_, 5(3sy + u—4m3))| + mp[myOf_s ((Z, +u+ 1, —m3,)
— Ol 5 (Tt + ZUM3)]} (A31)

H; =2H, =

{my Oty 5 + O s (IZE,

5. At O(p°/?)
(i) Diagram T4p:
hab,
36F,m%(m3 — s7)
+ X, (1 = 2m3y) + mi (1 = 2u)]OY + 2mp(mpA, + my%,, ) O
—2[(my + my)(maM7 + myZ,)) + (55 + mamy)Z,,]OY
+ 2[my(m3 = Z,,) + mp(mg — M3)]O) + 2m,[E, = 2ma(my + my)]|OY
—2[mp(2m3 + M32) + my(2m3} + Z,))|OV + [8mimy(my + my)
—mamy (2%, + X)) =, %)+ m3 (Z,, — 31+ 21,)]OY
+ [mA (ma + my)(BA, + A} + 3t —21,) + myZ, 2
—mp((my = 52)* = (M7 + Z,,)1)]Og } = =2H;,. (A32)

Hy = {2[mamy (A, + 1 — 2my)

(ii) Diagram T$5:
H, = h;‘b‘z (2[6mimy + 3m3 (2m3, — M2 + =,)|OV
36F ,my(my — u)
+ 2[mAM7 + mamy (M7 + 2%,) + 2, (my + )]0,
= 2mp(myZ, +mpA,)OY + 2[my(mg — M3) + my(m3 — £,)|Of
+2[2m3 (my 4 my) + myE, + maMZ)OY + 2mp[2ma (my + my) = Z,JOf
— [mamy(8m% + M2 — 1, —3%,) + mi (8m% — 3t + 21, + £,) — £,%,]OY
+ [mA (2m%, = 35, + u)(mp + my) + my=, =,
= ma((m}y —u)* = 1,(M7 + X,))]O } = 21, (A33)

APPENDIX B: CHIRAL-EXPANSION-SUITED OPERATORS

As mentioned in Sec. III D, the vector and axial-vector operators given in Eqgs. (10) and (11) are not suited to perform a
chiral expansion. In practice, we prefer to use the following axial-vector operators
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02,1 =4 Oﬁl = k. 0;‘,3 =Py,

O =5 W di. Obs=3Walky Ol =1 1KalP,

1 = 1
5[7;4’@17 02,825[7/#7;(]’

Oy (BI)

with P* = (pi + p4)/2. For vector operators, we follow
the basis proposed in Ref. [40]:

1
OX,I = 575[7;47%]’
Oy»=2y5(Pyg-k—P-kq,).

Oy =vs(rua - k- Ka,).

- 1 Sy — U
A=A+ (A — A3) + Ar + =— (24, + As — Ag),
2 SmN
- 1 S)—u
A, == (A Az) — As — A
2 2( 2 +A43) 8 (As 6):

~ Sy — U
A3:A2+A3+ 2
4m

1
(As + Ag) +—Ag,
N my

- 1

Ay =—(2A As —Ag),
4 4mN( 4 1+ As 6)
~ 1

As=——(As—A
s = =g (45 = 40)

1
A =— (A Ag),
6 sz(er 6)

~ 1
- 1 A=A +—A
O;YA :zyS{(yuP'k_kPﬂ)_EmN[wa}’ ! 7+2mN 8
~ ~ 1
Ous = r5(kuq - k= Kq,), Ay = —5—Ag, (B3)
~ N
O,Y,G =75 (kuk - kzyﬂ)’ (B2)
for which the vector-conservation assumption is automati-
cally implemented. The axial-vector amplitudes in the new  while the vector amplitudes are
basis can be obtained through
‘7 (Mizz_t+t1)(v 2 V)—'—(M%_t_tl)(v V)
= — Zm —_— -
1 2(m]2\] —l/l) 1 NV 4 4(m12\]_u) 2 3
S)— U my(t — M2 myt
lrm) M)
4(my, —u) my —u my — u
- 1 M2 —1t)2myVs -V H(2myVe =V
V) =— (2mNV4—V1)+( 7= 1) mz;/ 5 2)+21< myVe 3>,
my, — u (M7 —t+1))(my —u)
_ 1
V=1V, +§(V5 = Vs),
- 1
Va=3 (Vs + Vo).
Ve — V3=V, +2my(Vs — V)
> M2 —1+1 ’
- 1
Ve =75 (Vs = V). (B4)
In the chiral expansion of A-less amplitudes, we treat
@2,3 ~ 0(1)7 @;‘,1,2,7,8 ~ ~,‘4/,1,4 ~ O(P)7 @ﬁ.ﬁ ~ @;‘4/,3.6 ~ O(Pz)v
@;‘,4,5 ~ @,‘:,2 ~ O(P3)» @Xs ~ O(p4), (BS)
and
my ~O(1), s, —m% ~u—m% ~O(p), M2 ~t) ~t~O(p?). (B6)
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APPENDIX C: RENORMALIZATION FACTORS
AND g FUNCTIONS

1. Renormalization factors

The relevant scalar loop functions are defined by

2rut=) dk
A 2 :( / )
olmal in’ K> — m?
2mp) d?k
Bolp*. m2,m2] = ( / ,
ol el = | e =il ) - ]
(C1)

with p being the renormalization scale introduced in
dimensional regularization. The explicit form for the
one-point one-loop function reads

2
_m2 (R+1nm_;),
Y2/

and the scalar two-point one-loop integral has the following
analytical form,

Ag[m3] = (€2)

2

2 2
m; mi—mi+p> m:

Bylp?,m%,m3) = R+1—ln#—2+ T In—2 :
2 2
P _(ma_mb) pab(p) 1
5" pup(p?) NS,
P’ o(7°) Pas(P?)+ 17
(C3)
with
2 2
P _(ma+mb)
pus(p?) = @
’ \/Pz—(fna—'%b)2

The UV divergence is contained in the quantity
R=2/(d—-4)+yg—1—In(4r), being yr the Euler con-
stant. We denote A, and B, loop integrals with removed
UV-divergent parts (multiples of R) by A, and B,
respectively.

To proceed, the nucleon and pion wave function renorm-
alization constants can be written as

Zy=1+687,  Z,=1+6%, (C5)

respectively, where the O(p?) parts are

@ _ _ 393
2N 647> F2(M? — 4m%,)

+ 4M2(—m3, + Ag[m3]

{(12m;, — 5MZ)A M7

+ (M2 = 3m3,)Bo[m3,. M2, m3])},
@_ 2 Ao [M7]
o =~ {3I4M,2, e[ (C6)

The relations between the renormalized (or chiral limit)
masses and the physical ones read

my = i — 45 M2+ 85, M2 =MA(1+62),  (CT)
with
5@ _ 21M7;  Ag[M7]
M F2  3272°F%°
(3) 3gimNM Ao[mlz\/]
Sy = W{Bo[’nw,ﬁflz 2] — (1 +—m12v .
(C8)

Likewise, for the leading couplings g, and F,, one has

4d" M
9 g‘(u e +5§i>>, Fp=F(1+87),
9a i
(C9)
with
5(2)2121"1:2: Ag[M2]
Fe ™ P2 7 1622 F2’
(2) 1 2\ 12
oy, = 1+4¢5)M
9 167r2F,2,(M,2,—4m,2V){[( +4g3)M;
— 4(1 + 2g3)my|Ag[M7] + M [Agamy,
—4g3Ao[my] + (8(1 + g3)my
— (24 393 )M3) Bo[m3,, M7, my]]}. (C10)

2. UV-f functions

In Eq. (45), the f functions corresponding to the infinite
parts of counterterms for the pionic LECs /; (i = 3, 4, 6) are

1

P, == b, =1,

For the constants appearing in the LO zN Lagrangian,
we get

3¢°m? g2+ g)m?

Pm = 2F2 By = 2 (C12)
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The ones for ¢ j read

3g*m (-1+¢*)°m
o="%pm> Pea="op
(1-6g°+g")m (-1 -2¢% +3¢")m
fo=""gp = p
Pes =0, (C13)
and the ones for d; are given by
! (-1+¢°)
4ﬂd1 = ﬁdm = Eﬂd” = ﬂd23 = _T’
2 -5¢*+3g*
ﬂdz Y
24F
Ba, = Pay = Pay = Pary = Par, = Pa,, =0,
1 -1+
4. = Py = —— =- Cl4
Bu = ~Pa, = =3P =~ 3 (C14)

3. EOMS-§ functions
In Eq. (46), the EOMS-$ functions are responsible for
the finite shifts of the LECs, which as a result cancel the
PCB terms from loops. Only for the LECs in E;l,\), and E,(TZ,\;
one needs to carry out finite shifts. For the LO pion-nucleon
parameters, the / functions are

By, = g'm + 9(27_92)150[’”2]»

B = 2P Aolm?), (c15)
while the NLO ones read
e, = %92 +§—f:2 o[m?],
ﬁcz -2 j;g“ (922;121)2 Ag[m?],
]
Be, = —%92(5 +9°) + 1 +249;2_ 3 olm?],
fey =0 (C16)

APPENDIX D: ISOBARIC-FRAME
AMPLITUDES

Following Ref. [40], the multipole expansion of the
scattering matrix element is performed in the isobaric
frame. The linear transformations expressing 7! and G%,
defined in Eq. (51), in terms of V; and A;, defined in
Eq. (9), are given below. For the vector amplitudes, they are

Ny -
FY = =3PV + NiaVs = Vi),

_ IRl
NN,

Fy {(N3 +q0)V; + Vs},

k|l |-
Fy= —%ﬂqﬁ(w = V) +N3(Vi = V34 qoVs— qoVe +2V7)},

=1
q|°N
F = | 1|V2 L{V3 = Vi + (N3 + qo)(Vy = V) = 2V3},
1 e - Zos o
FY{=- {ko[IK|*(GI*V's + N3 (V2 + qoVs)) + k- G(|)* (= V4 + V)
N Nat;
+ N3(=Vi + V53— qVa+ qoVs —2V7)) = N1(|G]*V7 + N3(q0V7 — Vs))]
+ [k*[[G*(q0Va4 + P10Vs + P2oVe — V1) + N3(p1oV2 + P20V
+ qo(Vi 4+ qoVa + p1oVs + paoVe + V1) + Vs)l},
q .
F§ = 4 {kok - GNT[=V| + V3 + (N3 + q) (Vs — Vi) — 2V4]

KIN{Not,
— |k[*[ko((N3 + qo)V7 + V) + Ni((—ko = P10)V2 = P20V3 + 45V
+ qo(=V1 + N3Vy + (ko + p1o)Vs + paoVe — V7)

+ N3((ko + P10)Vs + P2oVe + V1) + Vi)l }, (D1)
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with the normalization factors Ny = /po + my and N, = /pyg + my. Likewise, for the axial-vector amplitudes, we have

i .
i — il {AsN?} + A7[2k - G + N3 (N3 + q0)]}.

NN,

68 = -4 (W20 + 2 - AsN2),

> NN, 5 >

4 KldP,, B 2
g5 = {A5 = A + (A4 = Ag) (N3 + q0)}

NN,

2= AN 245 + Auqo — A A, — Ag)|q?

gy = N, {N3(A) — A3 4247 + Ayqp — Aeqo) + (As — Ag)|d|}.
i .

gt = |12|]|V1|N2 {[k[*ko[—As 4+ As(N3 + qo)] — kok - G[-A; + A;

+ (Ay — Ag) (N3 + q0)] + [K[P[As — Aspio — Aspao + A7 (N3 — qo)
— A1qo + (N3 + 90) (Aspro + Aspao + Asqo)] + ko[AsN? + A7 (2Kk - G + N3 (N3 + o))}
1
RPN,
+ N3INH((As = A1 = 247)kok - G+ As[K]2pao) + (A7 k(N = ko)
+ N3(A K[> = Agkok - G + Agkok - G+ As[K[* (ko + pio) + Ag[KI p20)) g0
+ Ay [KPN3G] + (—AglkP (ko + N3) + N3 (=Agkok - G + Agkok -
+ As[KP (ko + pro) + As kP p2o + A4lkP0)) ).
_ [K]ld|

Gy = W{AS — Aypio — A3pa + A7 (N3 — q9) — A1go + (N3 4 qo)(Aspio + Aspao + Asqo) }

{Ag|k|* (ko + NT)N3 + A, [k|*NIN3 (ko + p1o)

2

N
G = N—; {N3[Ag + Asp1o + Aspao + qo(A1 + A7 4+ Aspio + Aspao + Auqo))]
+ (A7 + Aspio + AsPao + Asqo)|q)*}- (D2)

The above expressions are deduced in the CM of the outgoing pion-nucleon pair. Therefore, the energies and momenta can
be written as functions of W = /s, and ¢;:

W2 +m3 -t W2 —m% +1, -
= k =, k — kz—t 5
P1o W 0 W | | \/ %o 1
W2 + m3, — M2 W2 —m3 + M2 . 5
=— N 7 =— N 7 = - M2, D3
P20 W ) qo W Iq] 90 P (D3)
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