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We explore a general framework to treat coupled-channel systems in the presence of overlapping
left- and right-hand cuts as well as anomalous thresholds. Such systems are studied in terms of a
generalized potential, where we exploit the known analytic structure of t- and u-channel forces as the
exchange masses approach their physical values. Given an approximate generalized potential the
coupled-channel reaction amplitudes are defined in terms of nonlinear systems of integral equations.
For large exchange masses, where there are no anomalous thresholds present, conventional N=D
methods are applicable to derive numerical solutions to the latter. At a formal level a generalization to
the anomalous case is readily formulated by use of suitable contour integrations with amplitudes to be
evaluated at complex energies. However, it is a considerable challenge to find numerical solutions to
anomalous systems set up on a set of complex contours. By suitable deformations of left-hand and
right-hand cut lines we manage to establish a framework of linear integral equations defined for real
energies. Explicit expressions are derived for the driving terms that hold for an arbitrary number of
channels. Our approach is illustrated in terms of schematic three-channel systems. It is demonstrated
that despite the presence of anomalous thresholds the scattering amplitude can be represented in terms
of three phase shifts and three inelasticity parameters, as one would expect from the coupled-channel
unitarity condition.
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I. INTRODUCTION

A reliable and systematic treatment of coupled-
channel systems subject to strong interactions is still
one of the remaining fundamental challenges of modern
physics. So far effective field theory approaches with
hadronic degrees of freedom (d.o.f.) that reflect QCD
properties are established only for particular corners of
the strong interaction world. At energies where QCD
forms bound states or resonances there is a significant
lack of profound theory that connects to experimental
data directly. Despite the tremendous efforts and suc-
cesses of experimental accelerator facilities and emerg-
ing lattice gauge theory simulations there is a significant
gap in what theory can accomplish and experimental
groups would need to be properly guided in new
searches for exotic matter [1–4].

To unfold the underlying physics of this nonpertur-
bative domain of QCD novel approaches are required
that combine the power of coupled-channel unitarity
together with the microcausality condition for hadronic
d.o.f. [5–24]. While such frameworks exist for coupled-
channel interactions that are dominated by short-range
forces matters become significantly more challenging
in the presence of t- or u-channel long-range forces
[20–28]. In particular coupled-channel systems involv-
ing the nonet of vector mesons with JP ¼ 1− or the
baryon decuplet states with JP ¼ 3

2
þ can only be studied

with significant results after such a framework has been
developed. The latter play a crucial role in the hadro-
genesis conjecture that expects the low-lying resonance
spectrum of QCD with up, down and strange quarks
only, to be generated by final-state interactions of
the lowest SU(3) flavor multiplets with JP ¼ 0−; 1−

and JP ¼ 1
2
þ; 3

2
þ [13,14,16,17,29–35]. The coupled-

channel interaction of such d.o.f. leads to a plethora
of subtle effects, like numerous anomalous thresholds
[36–38].
The physical relevance of anomalous threshold effects

has been discussed recently in Refs. [39–44]. To the best of
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our knowledge there is no established approach available
that can treat such phenomena in coupled-channel sys-
tems reliably. In the previous works which attempted to
deal with such systems the strategy was to perform an
analytic continuation of an N=D ansatz for the reaction
amplitudes in the external mass parameters so as to
smoothly connect a normal system to an anomalous
system. This was studied for two-channel systems only
[37,38]. Even there the first study of Ball, Frazer and
Nauenberg [37] was determined by the later work of
Greben and Kok to be incorrect [38]. So far we have not
been able to track any numerical implementation of
either of the two schemes [37,38]. Following this strategy
an extension to a truly multichannel system appears
prohibitively cumbersome.
A powerful framework to study coupled-channel sys-

tems is based on the concept of a generalized potential. A
partial-wave scattering amplitude TabðsÞwhere the channel
indices a and b stand for the final and the initial state
respectively is decomposed into contributions from left-
and right-hand cuts where all left-hand cut contributions are
collected into the generalized potential UabðsÞ. For a given
generalized potential the right-hand cuts are implied by the
nonlinear integral equation

TabðsÞ ¼ UabðsÞ þ
X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
T†
acðs̄Þρcdðs̄ÞTdbðs̄Þ

s̄ − s
;

ð1Þ

where ρcdðsÞ is a channel-dependent phase-space function
and all integrals are for s̄ on the real axis. By con-
struction any solution of Eq. (1) does satisfy the coupled-
channel s-channel unitarity condition for normal systems.
Typically, the matching scale μ2 in Eq. (1) is to be
chosen in a kinematical region where the reaction
amplitude can be computed in perturbation theory
[13,17,20]. For normal systems the nonlinear and coupled
set of equations (1) can be solved by an N=D ansatz
[20,21,45–52]. Although the general framework has been
known since the 1960s, it was only recently successfully
integrated into an effective field theory approach based
on the chiral Lagrangian [20–26]. As it stands Eq. (1)
breaks down once a coupled-channel system involves
unstable particles or anomalous thresholds arise. In this
work we will construct a suitable adaptation that over-
comes this gap.
Our formal developments will be illustrated by a

schematic three-channel model where explicit numerical
results for key quantities will be presented along the way. In
Secs. II and III we discuss the analytic structure of the
coupled-channel reaction amplitudes and propose an effi-
cient deformation of the left- and right-hand cut lines such
that anomalous systems can be dealt with. In addition our
schematic model is specified. In Sec. IV an ansatz for the

solution of the nonlinear integral equations on the complex
contour lines is derived. In the next step in Sec. V we
consider the limit where the complex contour lines are
deformed back towards the real energy line. The main
formal result of our work is derived in Sec. VI, where a set
of linear integral equations for anomalous systems that is
suitable for numerical implementations is established. We
close with a summary and outlook in Sec. VII.

II. ANALYTIC STRUCTURE OF PARTIAL-WAVE
SCATTERING AMPLITUDES

In a first step we will recall a spectral representation for a
generic t-channel and u-channel term as shown in Fig. 1. In
our previous work [28] we established the following
general form:

Uðt−ch:Þ
ab ðsÞ¼

X
i¼�

Z
∞

−∞

dm2

π

ϱðtÞi;abðm2;m2
t Þ

s−cðtÞi;abðm2Þ

�
d

dm2
cðtÞi;abðm2Þ

�
;

Uðu−ch:Þ
ab ðsÞ¼

X
i¼�

Z
∞

−∞

dm2

π

ϱðuÞi;abðm2;m2
uÞ

s−cðuÞi;abðm2Þ

�
d

dm2
cðuÞi;abðm2Þ

�
;

ð2Þ

with properly constructed spectral weights ϱðtÞ�;abðm2; m2
t Þ

and ϱðuÞ�;abðm2; m2
uÞ. The contour functions cðtÞ�;abðm2Þ and

cðuÞ�;abðm2Þ depend on the masses of initial and final particles
of the given reaction ab for which we use the convenient
notation

q2¼m2
b; q̄2¼m2

a; p2¼M2
b; p̄2 ¼M2

a: ð3Þ

While the derivation of the spectral weights ϱðtÞ�;abðm2; tÞ
and ϱðuÞ�;abðm2; uÞ is quite cumbersome the identification of

the contour functions cðtÞ� ðm2Þ and cðuÞ� ðm2Þ is straightfor-
ward. Owing to the Landau equations any possible branch
point of a partial-wave amplitude must be associated with
an end-point singularity of the partial-wave projection
integral that involves some Legendre polynomials in
cos θ of the scattering angle θ. This leads to the well-
known result

FIG. 1. Generic t- and u-channel exchange processes.
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cðuÞ�;abðm2Þ ¼ 1

2
ðM2

a þm2
a þM2

b þm2
b −m2Þ þM2

a −m2
bffiffiffi

2
p

m

M2
b −m2

affiffiffi
2

p
m

�m2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2

M2
a þm2

b

m2
þ ðM2

a −m2
bÞ2

m4

��
1 − 2

M2
b þm2

a

m2
þ ðM2

b −m2
aÞ2

m4

�s
;

cðtÞ�;abðm2Þ ¼ 1

2
ðM2

a þm2
a þM2

b þm2
b −m2Þ −M2

a −M2
bffiffiffi

2
p

m

m2
a −m2

bffiffiffi
2

p
m

�m2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2

M2
a þM2

b

m2
þ ðM2

a −M2
bÞ2

m4

��
1 − 2

m2
a þm2

b

m2
þ ðm2

a −m2
bÞ2

m4

�s
: ð4Þ

An anomalous system arises if either of the spectral
weights ϱðtÞi ðm2; m2

t Þ or ϱðuÞi ðm2; m2
uÞ is nonvanishing at an

exchange mass m where the associated contour cðtÞi ðm2Þ or
cðuÞi ðm2Þ approaches any of the thresholds or pseudothres-
holds of the given reaction ab. In this case the decom-
position (1) breaks down: an anomalous threshold behavior
is encountered. The latter is characterized by a particular
branch point μAab of the partial-wave amplitude

μAab < Minfma þMa;mb þMbg; ð5Þ

that is associated with the given amplitude ab. For
simplicity of the presentation we consider in Eq. (5) an
anomalous threshold behavior at a normal threshold point
only. A similar phenomenon may occur at a pseudothres-
hold. Also the case μAab > Maxfma þMa;mb þMbg is not
excluded in general. For both cases, our approach can be
adapted in a straightforward manner. However, the fact that
an anomalous threshold arises for a diagonal reaction with
a ¼ b has been excluded from general considerations.
In the previous works an analytic continuation in the

external mass parameters was attempted so as to smoothly
connect a normal two-channel system to an anomalous
two-channel system [37,38]. After all using this method
Mandelstam gave a transparent presentation of the anoma-
lous threshold phenomenon in a typical one-loop diagram
[36]. However, we feel that an application of this method
directly to multichannel reaction amplitudes, as attempted
in Refs. [37,38], appears futile due to the proliferation of
branch points and cut structures that need to be properly
deformed and followed up in various limits.
We argue that there is a significantly more transparent

path to arrive at a framework that is capable of treating
coupled-channel systems in the presence of anomalous
thresholds. Given a multichannel system various anoma-
lous thresholds may appear in different reactions. Our
starting point, is based directly on the general representa-
tion (2), which already established a suitable analytic
continuation of the tree-level potential terms valid for
arbitrary exchange masses. As was emphasized in our
previous work [28] the reason why a one-loop diagram

develops an anomalous threshold can be read off easily
from its driving tree-level potential terms.
We need to be somewhat more specific regarding the

generic form of the generalized potential. The tree-level
potential takes the generic form

Utree−level
ab ðsÞ ¼

Z
Lab

ds̄
π

ρUabðs̄Þ
s̄ − s

; ð6Þ

where the left-hand contour, Lab, is a union of contours
required for the spectral representation of a general t- or u-
channel exchange process as in Eq. (2). In order to achieve
our goal it is instrumental to separate the left-hand contour
into a normal and an anomalous part

Lab ¼ ΔLab ∪ Aab; ð7Þ

where the part Aab starts at the anomalous threshold ðμAabÞ2
slightly above the real axis, extends to the normal threshold
point Minfðma þMaÞ2; ðmb þMbÞ2g and returns at ðμRabÞ2
to the anomalous one slightly below the real axis. This is
illustrated in Fig. 2. Note that according to the general
representation (2) the anomalous contour line would be on
the real axis only. With Fig. 2 such a contour is deformed
into the complex plane in a manner that leaves its con-
tribution to the generalized potential unchanged for s
outside the area encircled by the dashed line. While the
values for μAab are determined by the specifics of the
coupled-channels interactions, there is some freedom in
choosing the location of the return points μRab. Given the

FIG. 2. Left-hand cut line of an anomalous contribution to the
generalized potential. The two crosses show the locations of the
threshold points at ðma þMaÞ2 and ðmb þMbÞ2 where we
assume a < b without loss of generality. The filled and open
red circles indicate the location of the anomalous threshold point
ðμAabÞ2 and a return point ðμRabÞ2 respectively.
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analytic structure of the spectral weight ρUabðs̄Þ the gener-
alized potential Utree−level

ab ðsÞ does not depend on the choice
of the return point μRab at energies s outside the dashed line
of Fig. 2.
We point out a subtle issue such a contour separa-

tion is based on. Here we tacitly assumed that the
anomalous threshold μAab is real. However, from the
general representation (2) there is the possibility of a
pair of complex-conjugate anomalous points μA�ab . In this
case the associated contour lines have to be followed until
both reach the common pseudothreshold point at s ¼
ðμAabÞ2 ¼ Maxfðma −MaÞ2; ðmb −MbÞ2g. The latter we
take as the anomalous threshold value in our work. This
can be justified since in this case the spectral weight
ρUabðs̄Þ can be shown to be analytic in ϵ to the left of the
pseudothreshold point at s̄ ¼ ðμAabÞ2 − ϵ.
It is useful to identify an anomalous threshold value μa

associated with a given channel a. To clarify the procedure
we assume in the following a strict channel ordering
according to the nominal threshold value, i.e., we insist on

ma þMa ≤ maþ1 þMaþ1 for all a; ð8Þ

where for later convenience we permit the equal sign for
channels with the same two-particle states in different spin
configurations only. We can now identify the desired
anomalous threshold value. It is the minimum of all
accessible anomalous branch points

μa ≡ Min|{z}
b>a

fμAab; ma þMag; ð9Þ

where the value μAab gives the anomalous threshold value of
the partial-wave amplitude ab. Note that it does not
necessarily follow that the channel ordering (8) implies
μaþ1 ≥ μa. If such a channel crossing with μa > μb for any
pair ab with a < b occurs, we will further move the point
μa with μa → μb − ϵ such that we ultimately arrive at a
strict channel ordering

μa ≤ μaþ1 for all a; ð10Þ

where again the equal sign is permitted for channels with
the same two-particle states in different spin configurations
only. It is useful to similarly streamline the plethora of
return points. We choose universal return points μ̂a of the
particular form

μRab ¼ μ̂a < mb þMb for all b > a; ð11Þ

where we consider a and b with μAab < ðma þMaÞ2 only.
We can now introduce our anomalous contour Aa that

starts at μ2a slightly above the real axis, passes ðma þMaÞ2
and returns at μ̂2a to μ2a below the real axis. In turn we can
now write

UabðsÞ¼
Z
ΔLab

ds̄
π

ρnormal
ab ðs̄Þ
s̄− s

þ
Z
AMinða;bÞ

ds̄
π

ρanomalous
ab ðs̄Þ
s̄− s

þ�� � ;

ð12Þ

where we will exploit the fact that the first term in
Eq. (12) is uncritical to the extent that it is analytic in
the vicinity of any normal or anomalous threshold point.
The challenging term is the second one, which is associated
with a contour that entangles the normal threshold point
Minfðma þMbÞ2; ðmb þMbÞ2g. The dots in Eq. (12)
remind us that we have yet to discuss the generic form
of contributions to the generalized potential from loop
effects.
The key starting point is an adaptation of the nonlinear

integral equation (1). The integral in Eq. (1) starts at the
point where the phase-space matrix ρcdðs̄Þ vanishes at s̄ ¼
ðmc þMcÞ2 ¼ ðmd þMdÞ2 and remains on the real axis
going to infinity. In the anomalous case the integral must
also start at s̄ ¼ ðmc þMcÞ2 ¼ ðmd þMdÞ2 but will leave
the real axis following suitable paths on higher Riemann
sheets. The integral on the real axis has to be replaced by a
contour integral. Eventually, somewhere on its way the
contour path will touch the anomalous threshold at s̄ ¼ μ2c.
Note that the case c ≠ d appears only for systems with
nonvanishing spin.
This complication is a consequence of the anomalous

threshold behavior of the generalized potential. If we wish
to separate the left- from the right-hand cuts in the reaction
amplitudes, it is necessary to apply suitable deformations of
the cut lines. In the normal case the separation of left- from
right-hand cuts is trivially implied by Eq. (1). The second
term on the right-hand side has a cut on the real axis
extending from s̄ ¼ ðm1 þM1Þ2 to infinity. This is the
right-hand cut. All left-hand cuts sit in UðsÞ. As long as the
cut lines of the generalized potential do not cross any of
the right-hand cut lines on the real axis the nonlinear integral
equation (1) is well defined and can be solved numerically
using conventional methods. This is not the case if the
generalized potential develops an anomalous threshold.
Without an appropriate adaptation the associated left-hand
cut lines would cross the right-hand cut lines. An avoidance
is possible only if the integral on the real lines in Eq. (1) is
replaced by contour integrals in the complex plane.
In Fig. 3 we illustrate the analytic structure of the reaction

amplitudes defined with respect to suitably deformed left-
and right-hand cut lines. The dashed red lines show the
locations of the anomalous left-hand cuts. We suggest a
deformation of the right-hand cut lines as illustrated by the
solid lines in the figure. Now, none of the anomalous left-
hand cut linesAa cross anyof the right-hand contour linesCa.
Before writing down the generalization of Eq. (1) we

need some more notation. The reaction amplitudes TabðsÞ
need to be evaluated slightly below and above any of the
many different contour lines,
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Tc�
ab ðs̄Þ ¼ Tabðs�Þ with s̄ ∈ Cc; ð13Þ

where the points sþ and s− are an ϵ0 distance above and
below the contour Cc at s̄ respectively. The value of ϵ0 is
chosen smaller than the minimal distance of any of the
horizontal lines in Fig. 3.
With this notation we can write down the desired

generalization

TabðsÞ¼UabðsÞþ
X
c;d

Z
Cc

ds̄
π

s−μ2

s̄−μ2
Tc−
ac ðs̄Þρcdðs̄ÞTcþ

db ðs̄Þ
s̄−s

;

ð14Þ
where Cc ¼ Cd holds by construction. We consider the
phase-space matrix ρcdðsÞ to be analytic on the real axis at

s > ðmc þMcÞ2. This implies that at s < ðmc þMcÞ2 the
function ρcdðsÞ has a cut line. Note that none of the
contour paths Cc cross any of the cut lines of the phase-
space functions. It is emphasized that in the absence of
an anomalous threshold in the generalized potential
our generalization (14) reproduces the conventional
expression (1).
The representation (14) appears deceivingly simple and

ad hoc; however, we derived it by an analytic continuation
in the t- and u-channel exchange mass parameters. The
starting point for this is provided by the general represen-
tation (2). First we assume all exchange particles to have a
very large mass, so that all left-hand branch cuts are well
separated from the right-hand branch cuts. Already at this
stage we can deform the right-hand cuts from their conven-
tional choice to take the form as indicated in Fig. 3 by the
solid lines. This contour deformation cannot change the
value of any of the coupled-channel reaction amplitudes
TabðsÞ at Ims > 0, simply because along the cut deforma-
tions the reaction amplitudes are analytic by assumption.
Here we exploit the fact that in the limit of very large
exchange masses all left-hand branch cuts are moved
outside the figure. In a second step we follow the left-
hand cuts as they move right in Fig. 3 as the exchange
masses approach their physical values [36–38,48,52]. At
the end we claim that they can be presented by the dashed
lines in the figure. In turn we take Eq. (14) as a transparent
starting point of our presentation.
Our numerical examples will rest on a minimal model as

it is implied by schematic tree-level interactions. Along the
formal derivations in the next few sections we will illustrate
the important auxiliary quantities in terms of a schematic
three-channel model specified with

ρabðsÞ ¼
pþ
a ðsÞ

8π
ffiffiffi
s

p δab; p�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs − ðma þMaÞ2Þ

s − ðma −MaÞ2
4s

r
;

ρAabðsÞ ¼
20m2

π

pþ
a ðsÞip−

b ðsÞ
Θ½s − μ2a�Θ½μ̂2a − s� ¼ ρAbaðsÞ for a < b;

Umodel
ab ðsÞ ¼

Z
AMinða;bÞ

ds̄
π

ρAabðs̄Þ
s̄ − s

;

m1 ¼ m2 ¼ m3 ¼ mπ; μ2 ¼ 20m2
π;

M1 ¼ 4.2mπ; M2 ¼ 4.5mπ; M3 ¼ 4.8mπ;

μ21 ¼ 25m2
π; μ̂21 ¼ 28m2

π; μ22 ¼ 29m2
π; μ̂22 ¼ 32m2

π: ð15Þ

In Fig. 4 we plot the tree-level generalized potential for two
kinematical cases. The left-hand panel shows the non-
vanishing elements with s strictly on the real axis. Here the
potentials are characterized by significant variations close
to the anomalous threshold points with s ¼ μ2a and at the
return points with s ¼ μ̂2a and μ2a < ðma þMaÞ2 < μ̂2a. The

potentials are always real and smooth at the threshold
points s ¼ ðma þMaÞ2. The right-hand panel shows the
corresponding potentials evaluated at s − iϵ, just below the
double-cut structures as illustrated in Fig. 2. In this case
the potentials have an imaginary part and in addition are
singular at the threshold points s ¼ ðma þMaÞ2.

FIG. 3. Deformed left- and right-hand cut lines for the reaction
amplitudes. The crosses show the locations of the threshold
points at ðma þMaÞ2. While the anomalous left-hand cut lines
are shown with dashed red lines, the deformed right-hand cut
lines are represented by blue solid lines. The filled and open red
circles indicate the locations of the anomalous threshold points μ2a
and the return points μ̂2a respectively.
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In Fig. 5 we anticipate the usefulness of our formal
developments and present the solution to the nonlinear
integral equation (14) as implied by Eq. (15). It is noted that
our results do not depend on the particular choices for the
return points μ̂a in Eq. (15). The reaction amplitudes show
significant and nontrivial structures that are implied by the
presence of the anomalous threshold effects in the gener-
alized potential. While the amplitudes at subthreshold
energies show various singular structures, they are smooth
and well behaved in the physical region. We emphasize that
the subthreshold structures are not driven exclusively by the
contribution from the generalized potential as shown in
Fig. 4. There are in addition significant structures generated
by the right-hand cut contributions. To the best of our
knowledge with Fig. 5 we encounter the first numerical
solution of such an anomalous three-channel system in the
published literature.

III. ANOMALOUS THRESHOLDS AND
COUPLED-CHANNEL UNITARITY

Before we explain how to find numerical solutions to the
nonlinear integral equations (14) in the presence of

anomalous threshold effects it is useful to pause and
discuss a critical issue that we will be confronted with.
Given a specific approximation for the generalized poten-
tial, a solution of Eq. (14) does not necessarily imply that
the coupled-channel unitarity condition is fulfilled. From
the latter we expect a representation of the reaction
amplitudes TabðsÞ in terms of a set of real quantities,
i.e., the channel-dependent phase shift and inelasticity
parameters ϕaðsÞ and ηaðsÞ. It should hold that

ImTabðsþ iϵÞ¼
X
c;d

T�
caðsþ iϵÞρcdðsÞTdbðsþ iϵÞ

×Θ½s− ðmcþMcÞ2�
for s>MaxfðmaþMaÞ2;ðmbþMbÞ2g;X

c

TacðsÞρcaðsÞ¼
1

2i
½ηaðsÞe2iϕaðsÞ−1�; ð16Þ

where on general grounds one expects 0 ≤ ηa ≤ 1. While
any solution to Eq. (14) satisfies the time-reversal invari-
ance condition TabðsÞ ¼ TbaðsÞ, the Schwarz reflection
principle,

ab=12

−300

0

300 ab=12

ab=13

U
tr

ee
-l
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el

ab
(s

)

−300

0

300 ab=13

ab=23

s [mπ
2]

−300

0

300

25 30 35

ab=23

25 30 35

FIG. 4. The generalized potential Utree−level
ab ðsÞ (left panels) and Utree−level

ab ðs − iϵÞ (right panels) in the schematic model as defined in
Eq. (15). Only nonvanishing elements are considered. Real and imaginary parts are shown with solid blue and dashed red lines
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M. F. M. LUTZ and C. L. KORPA PHYS. REV. D 98, 076003 (2018)

076003-6



T�
abðsÞ ¼ Tabðs�Þ; ð17Þ

cannot be derived in general for right-hand cut lines
off the real axis. It is not surprising then that the
coupled-channel unitarity condition is not necessarily
obtained.
Let us be specific and identify the generalized potential

by tree-level t- and u-channel exchange processes, a typical
strategy in hadron physics. Though we may solve the
nonlinear system (14) in this case, the unitarity condition
(14) will not be fulfilled once an anomalous threshold effect
is encountered. A supposedly related problem was noted in
the previous studies [37,38]. It was argued that the problem
is caused by the neglect of second-order contributions to
the generalized potential. A minimal ansatz for a physical
approximation to the generalized potential requires some
additional terms

UabðsÞ ¼ Utree−level
ab ðsÞ þ Ubox

ab ðsÞ; ð18Þ

to be constructed properly. However, no conclusive form
of the latter has been presented and illustrated in the

literature so far. Conflicting suggestions were put forward
in Refs. [37,38] for two-channel systems. Whether such
forms lead to physical results remains an open challenge.
So far there is no numerical implementation for a specific
example worked out, at hand of which one may judge the
significance of any of the two approaches. Unfortunately,
for us both works [37,38] are rather difficult to follow.
Nevertheless, we tend to agree with the conclusions of
Ref. [38] that the approach advocated in Ref. [37] is
incorrect.
An important achievement of the current work is the

construction of a minimal second-order term applicable for
systems of arbitrarily high dimensions. Our approach is
based on the request that we arrive at the coupled-channel
unitarity condition (16) and recover the Schwarz reflection
principle (17). The key observation is that in the absence of
the anomalous box term Ubox

ab ðsÞ the second-order reaction
amplitude TabðsÞ, as it would follow from Eq. (14), is at
odds with Eq. (17). The extra term is unambiguously
determined by the condition that its inclusion restores the
Schwarz reflection principle (17). This leads to the follow-
ing form:
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FIG. 5. Reaction amplitudes Tabðsþ iϵÞ ¼ Tbaðsþ iϵÞ in the schematic model of Eq. (15). Real and imaginary parts are shown with
solid blue and dashed red lines respectively.
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Utree−level
ab ðsÞ¼

Z
ΔLab

ds̄
π

ρtree−levelab ðs̄Þ
s̄−s

þ
Z
AMinða;bÞ

ds̄
π

ρAabðs̄Þ
s̄−s

;

Ubox
ab ðsÞ¼2

X
c;d<Minða;bÞ

Z
Ac

ds̄
π

ρAacðs̄Þρcdðs̄ÞρAcbðs̄Þ
s̄−s

; ð19Þ

where the spectral weight ρAabðs̄Þ characterizes the anoma-
lous behavior of the tree-level potential. It is identified in
analogy to the general representation (12). Unfortunately, a
direct comparison of our result with the ansatz in
Refs. [37,38] is not so easy. Nevertheless, we note that
for the two-channel case our result (19) appears quite
compatible with the ansatz discussed in Ref. [38].
We anticipate the phase shifts and inelasticities as

implied by our schematic model (15) as properly supple-
mented by the anomalous box term (18)–(19). We affirm
that the reaction amplitudes as already shown in Fig. 5 are
compatible with the coupled-channel unitarity condition
(16) and the phase shifts and inelasticity parameters of
Fig. 6. Without an explicit computation the authors would
not have been in a position to even roughly guess the
nontrivial behavior seen in that figure.
It is instrumental to realize the quite different nature of the

two contributions in Eq. (18). Consider first the tree-level
term in Eqs. (18)–(19). The spectral weight ρAabðsÞ is real as s
approaches the real line below s < Minfðma þMaÞ2;
ðmb þMbÞ2g. In contrast it is purely imaginary for
s > Minfðma þMaÞ2; ðmb þMbÞ2g. This follows from
the general results presented in Ref. [28]. The corresponding
generalized potential satisfies the Schwarz reflection prin-
ciple with

½Utree−level
ab ðsÞ�� ¼ Utree−level

ab ðs�Þ: ð20Þ

We turn to the second-order term in Eqs. (18)–(19). While
for Res < ðmc þMcÞ2 ¼ ðmd þMdÞ2 the two factors,
ρAacðsÞ and ρAcbðsÞ, are real quantities as s approaches the
real line, the phase-space factor ρcdðsÞ turns purely imagi-
nary in this case. This leads to the property

½Ubox
ab ðsÞ�� ¼ −Ubox

ab ðs�Þ; ð21Þ

and illustrates the particular feature of the anomalous box
term our construction is based on. Given our schematic
model (15) the anomalous box term Ubox

ab ðsÞ is illustrated
with Fig. 7. Like in Fig. 6 the left-hand panels show the
nonvanishing potentials on the real axis, while the right-
hand panels show the corresponding potentials slightly
below the real axis at s − iϵ.
It should be emphasized that there are further second-

order contributions to the generalized potential; however,
they add to the “normal” spectral weight ρnormal

ab ðs̄Þ in
Eq. (12) only. Since the latter terms do not jeopardize the
coupled-channel unitarity condition, there is no stringent
reason to consider such effects in an initial computation.
Typically one may hope that the effect of the latter is
suppressed in some suitable power-counting scheme.
This should be so since higher-loop effects are character-
ized by left-hand branch cuts that are further separated from
the right-hand cuts. In turn such contributions to the
generalized potential cannot show any significant varia-
tions at energies where the generalized potential is needed
in Eq. (14).
We would speculate, that the ansatz (18) is quite generic,

i.e., it should hold also for contributions including higher-
loop effects
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UabðsÞ ¼
Z
ΔLab

ds̄
π

ρnormal
ab ðs̄Þ
s̄ − s

þ
Z
AMinða;bÞ

ds̄
π

ρanomalous
ab ðs̄Þ
s̄ − s

þ
X

c<Minða;bÞ

Z
Ac

ds̄
π

ρanomalous
ab;c ðs̄Þ
s̄ − s

; ð22Þ

where we expect ρanomalous
ab;c ðs̄Þ to be determined by

ρanomalous
ac ðs̄Þ and ρanomalous

cb ðs̄Þ in analogy to Eq. (19).

IV. NONLINEAR INTEGRAL EQUATION ON
COMPLEX CONTOURS

The key issue is how to numerically solve the nonlinear
set of equations (14) and cross-check its physical correct-
ness. After all one may consider it merely as a definition of
the generalized potential in the presence of anomalous
thresholds. For a given approximated generalized potential
UabðsÞ we will devise an appropriate N=D-like ansatz that
will eventually lead to a framework which is amenable to
numerical simulations of Eq. (14).

We introduce a set of contour functions ςabðs̄Þ defined
initially on distinct contours Cb, the choice of which
depends on the channel index b

ςabðs̄Þ ¼ −
X
c;d

Dbþ
ac ðs̄ÞTbþ

cd ðs̄Þρdbðs̄Þ

¼ −
X
c;d

Db−
ac ðs̄ÞTb−

cd ðs̄Þρdbðs̄Þ for s̄ ∈ Cb;

DabðsÞ ¼ δab þ
Z
Cb

ds̄
π

s − μ2

s̄ − μ2
ςabðs̄Þ
s̄ − s

; ð23Þ

where we apply the convenient � notation introduced
already in Eq. (13). Assuming the existence of such a set of
functions ςabðs̄Þ we seek to express the reaction amplitude
TabðsÞ in terms of them. This requires a few steps. Like in
the previous sections we anticipate with Fig. 8 the form of
theD functions as they are implied in our schematic model.
This may help the reader to fight through the various
abstract arguments presented in the following. It is empha-
sized that none of the functions Dabðsþ iϵÞ depend on the
particular choice of the return points μ̂ab in Eq. (15). The
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FIG. 7. The box contributions Ubox
ab ðsÞ (left panels) and Ubox

ab ðs − iϵÞ (right panels) as defined in Eq. (19) with our model
input (15). Only nonvanishing elements are considered. Real and imaginary parts are shown with solid blue and dashed red lines
respectively.
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functions have a significant imaginary part starting at the
anomalous threshold s ≥ μ2b.
In the first step we study the analytic properties of the

function

BabðsÞ≡
X
d

DadðsÞ½UdbðsÞ − TdbðsÞ�

¼ −
X
c;d;e

DadðsÞ
Z
Cc

ds̄
π

s − μ2

s̄ − μ2
Tc−
dc ðs̄Þρceðs̄ÞTcþ

eb ðs̄Þ
s̄ − s

;

ð24Þ
where we applied the master equation (14). In Fig. 9 we
provide such functionsBabðsþ iϵÞ as implied by our model
(15) for s > ðmb þMbÞ2, a region which encompasses the
physical domain probed by the phase shifts and inelasticity
parameters in Eq. (16). Here we again do not encounter any
dependence on the return points μ̂a. However, the functions
Ba1ðsÞ show a strong variation close to the anomalous
threshold point at s ¼ μ22 ¼ 29m2

π . It is important to note that
this is not propagated into the amplitude T11ðsþ iϵÞ as is
evident from Fig. 5 and Fig. 6.

From Eq. (23) it follows that the function DabðsÞ is
analytic in the complex plane with the exception of a cut
along the contour Cb. A similar conclusion can be drawn for
the function BabðsÞ only that in this case the cut line is a
superposition of all right-hand contours Cc. Since the
contours Cc partially overlap it is useful to decompose the
contours with

Cc ¼Cþ
c þC−

c and CA ¼C−
1 →

X
c

Cc ¼CAþ
X
c

Cþ
c ;

ð25Þ
where the lower C−

c contours are all on the straight line
crossing the value s ¼ −iϵ. By construction the upper
contours Cþ

c do not overlap.
From this we conclude that a dispersion integral repre-

sentation of the form

BabðsÞ ¼
1

2i

X
c

Z
Cþ
c

ds̄
π

s − μ2

s̄ − μ2
Bcþ
ab ðs̄Þ − Bc−

abðs̄Þ
s̄ − s

þ 1

2i

Z
CA

ds̄
π

s − μ2

s̄ − μ2
BAþ
ab ðs̄Þ − BA−

ab ðs̄Þ
s̄ − s

; ð26Þ
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FIG. 8. The functions Dabðsþ iϵÞ of Eq. (23) in our schematic model (15). Real and imaginary parts are shown with solid blue and
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can be assumed. In the next step we compute the discontinuity along the contours Cþ
c with

1

2i
½Bcþ

ab ðs̄Þ−Bc−
abðs̄Þ�¼

1

2
ςacðs̄Þ½Ucþ

cb ðs̄ÞþUc−
cb ðs̄Þ�−

1

2
ςacðs̄Þ½Tcþ

cb ðs̄ÞþTc−
cb ðs̄Þ�−

1

2

X
d

½Dcþ
ad ðs̄ÞþDc−

adðs̄Þ�
X
e

Tc−
dc ðs̄Þρceðs̄ÞTcþ

eb ðs̄Þ

¼1

2
ςacðs̄Þ½Ucþ

cb ðs̄ÞþUc−
cb ðs̄Þ�; ð27Þ

where we observe the cancellation of most terms in Eq. (27). This follows from the defining equations for ςabðs̄Þ in Eq. (23)
together with the symmetry of the reaction amplitude

UabðsÞ ¼ UbaðsÞ & ρabðsÞ ¼ ρbaðsÞ;
→ TabðsÞ ¼ TbaðsÞ &

X
e

Tc−
dc ðs̄Þρceðs̄ÞTcþ

eb ðs̄Þ ¼
X
e

Tcþ
dc ðs̄Þρceðs̄ÞTc−

eb ðs̄Þ: ð28Þ

It is left to compute the discontinuity of the B functions along the straight contour CA, i.e., the second term in Eq. (26) is
considered. For any s̄ ∈ CA we derive

1

2i
½BAþ

ab ðs̄Þ − BA−
ab ðs̄Þ� ¼

1

2

X
c

ςacðs̄Þ½Ucþ
cb ðs̄Þ þ Uc−

cb ðs̄Þ�Θ½s̄þ iϵ − μ2c� −
1

2

X
c

ςacðs̄Þ½Tcþ
cb ðs̄Þ þ Tc−

cb ðs̄Þ�Θ½s̄þ iϵ − μ2c�

−
1

2

X
c;d

½Dcþ
ad ðs̄Þ þDc−

adðs̄Þ�
X
e

Tc−
dc ðs̄Þρceðs̄ÞTcþ

eb ðs̄ÞΘ½s̄þ iϵ − μ2c�

¼ 1

2

X
c

ςacðs̄Þ½Ucþ
cb ðs̄Þ þ Uc−

cb ðs̄Þ�Θ½s̄þ iϵ − μ2c�; ð29Þ
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FIG. 9. The functions Babðsþ iϵÞ of Eq. (24) in our schematic model (15) for s > μ2b or s > ðmb þMbÞ2. Real and imaginary parts are
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where the cancellations in Eq. (29) follow from Eqs. (23)
and (28). We observe that owing to the identities (27) and
(29) the two terms in Eq. (26) can be combined into a
dispersion integral written in terms of the partially over-
lapping contours Cc. It holds that

BabðsÞ ¼
X
c

Z
Cc

ds̄
π

s − μ2

s̄ − μ2
ςacðs̄Þ
s̄ − s

Ucbðs̄Þ;

with UabðsÞ ¼ Ucþ
ab ðsÞ ¼ Uc−

abðsÞ for

s ∈ Cc given any c; ð30Þ
where the crucial identity in the last line of Eq. (30) is a
consequence of the properly deformed contour lines as
illustrated in Fig. 3.
With this we arrive at the anticipated representation of

the scattering amplitude in terms of the spectral density
ςabðs̄Þ. It holds that
TabðsÞ¼UabðsÞ−

X
c

D−1
ac ðsÞBcbðsÞ

¼UabðsÞ−
X
c;d

D−1
adðsÞ

Z
Cc

ds̄
π

s−μ2

s̄−μ2
ςdcðs̄Þ
s̄− s

Ucbðs̄Þ:

ð31Þ
The functions DabðsÞ were already expressed in terms of
ςabðs̄Þ in Eq. (23).
We are one step away from a more practical form of the

defining requirement (23) and in particular checking the
consistency of the construction. After all we had to use both
equations in the first line of Eq. (23) to arrive at Eq. (31).
By inserting our result (31) into Eq. (23) we obtain two
distinct equations, which we must show to be equivalent.
We derive

ςabðsÞ¼−
X
d

UadðsÞρdbðsÞ

−
X
c;d

Z
Cc

ds̄
π

s−μ2

s̄−μ2
ςacðs̄Þ
s̄− s�

½UcdðsÞ−Ucdðs̄Þ�ρdbðsÞ;

ð32Þ
where s is strictly on the contour Cb. With s� we introduce
values of s slightly above and below the contour Cb, i.e., it
holds that js − s�j < ϵ0, where ϵ0 is chosen smaller than the
minimal distance of any of the horizontal lines in Fig. 3.
The two choices correspond to the two identities in the first
line of Eq. (23). Since the numerator in Eq. (32) strictly
vanishes at s̄ ¼ s both choices lead to identical results.
While with Eq. (32) we arrive at a mathematically well-

defined linear integral equation, it remains to construct a
numerical solution to it. This is not quite straightforward
and will require further developments. In the following we
will analyze the linear system (32) in more detail and
eventually establish a framework that can be used to
numerically solve it on a computer. The key issue is to

systematically perform the limit ϵ → 0 in the system of
complex contours.

V. FROM COMPLEX CONTOURS TO
REAL CONTOURS

We consider first the D function, whose definition is

DabðsÞ ¼ δab þ
Z
Cb

ds̄
π

s − μ2

s̄ − μ2
ςabðs̄Þ
s̄ − s

; ð33Þ

in terms of the spectral weight ςabðsÞ. We consider the limit
ϵ → 0, in which the complex contours Cc all approach the
real axis. If we are only interested in values of s that are
below or above all right-hand cut lines, we may simplify the
integral into Riemann sums on the real axis. This is
achieved as follows.
We first note that we may consider ςacðsÞ to be an

analytic function in s, with various branch cuts. This
follows from the integral representation (32). More pre-
cisely, if the linear system has a solution ςacðsÞ with s ∈ Cc
then Eq. (32) can be used to analytically continue ςacðsÞ
away from the contour line Cc. The branch cuts are readily
identified. First it carries the branch cuts of the phase-space
function ρccðsÞ that is strictly on the real axis in our
convention. Second, the cut lines of the generalized
potential UacðsÞ for any a are inherited. The important
observation is the absence of any right-hand cut lines.
According to the cut lines summarized in Fig. 3 there are

two critical points, μb and μ̂b, associated with a normal
threshold point at mb þMb. While μb denotes the smallest
anomalous threshold opening of the generalized potential
UabðsÞ with arbitrary a, the return point μ̂b, specifies the
point at which the left-hand contour line circles around the
point s ¼ ðmb þMbÞ2 in Fig. 3 and comes back. With this
in mind we introduce

DabðsÞ ¼ δab þ
Z

∞

ðmbþMbÞ2
ds̄
π

s − μ2

s̄ − μ2
ς̂abðs̄Þ
s̄ − s

þ
Z

μ̂2b

μ2b

ds̄
π

s − μ2

s̄ − μ2
Δςabðs̄Þ
s̄ − s

;

with ς̂abðs̄Þ ¼ ςþabðs̄ÞΘðμ̂2b − s̄Þ þ ς−abðs̄ÞΘðs̄ − μ̂2bÞ;
Δςabðs̄Þ ¼ ς−abðs̄Þ − ςþabðs̄Þ; ð34Þ

where the integrals over s̄ in Eq. (34) are strictly on the real
axis. In Eq. (34) we apply the useful notation

ς�abðs̄Þ ¼ ςabðs�Þ with Ims̄ ¼ 0 and s� ∈ Cb

and Imðsþ − s−Þ > 0 and Res� ¼ s̄; ð35Þ
which initially only defines ςþabðs̄Þ for s̄ < ðmb þMbÞ2, but
is naturally extended up to the point s̄ ¼ μ̂2b. Here we
assume the availability of the analytic continuation of
the function ςabðsÞ from the nominal threshold value at

M. F. M. LUTZ and C. L. KORPA PHYS. REV. D 98, 076003 (2018)

076003-12



s ¼ ðmb þMbÞ2 up to the return point of the left-hand cut
at s ¼ μ̂2b in Fig. 3. The particular location of μ̂b > mb þ
Mb is irrelevant. While the spectral weights ς̂abðs̄Þ and
Δςabðs̄Þ depend on it, by construction the D function does
not. Given Eq. (35) the limit ϵ → 0 in the right- and left-
hand contours of Fig. 3 can be applied without changing the
form of Eq. (34). In this limit the contributions of any
vertical parts of the contour lines vanish. Such terms are
already omitted altogether in Eq. (34). Note that modulo
those vertical lines Eq. (34) is nothing but a regrouping of
the various contour contributions in Eq. (33).

We illustrate the generic form of the spectral weight
ς̂abðsÞ in our model (15). As shown in Fig. 10 the complex
functions are nonzero for s > ðmb þMbÞ2 only. It is
important to note that the latter do depend on the choice
of the return point μ̂b. The functions ς̂abðsÞ are piecewise
continuous with the only discontinuous behavior being at
the return point s ¼ μ̂2b.
The result (34) is useful since in the limit ϵ → 0 the

anomalous spectral weight Δςacðs̄Þ can be linked back to
the D function as follows. A direct application of Eq. (32)
leads to

Δςabðs̄Þ ¼
X
c>b;d

½Dacðs̄þÞUcdðs̄þÞ −Dacðs̄− − iϵ0ÞUcdðs̄−Þ�Θ½ðμAcdÞ2 < s̄ < μ̂2b�ρdbðs̄Þ

¼ −
X
c>b;d

Dacðs̄þ iϵ0Þ½U−d
cd ðs̄Þ −Uþd

cd ðs̄Þ�Θ½ðμAcdÞ2 < s̄ < μ̂2b�ρdbðs̄Þ þ 2i
X
c>b;d

Δςacðs̄ÞU−d
cd ðs̄ÞΘ½μ2c < s̄ < μ̂2b�ρdbðs̄Þ;

U�b
cd ðs̄Þ ¼ Ucdðs̄�Þ with Ims̄ ¼ 0 and s̄� ∈ Cb and Imðs̄þ − s̄−Þ > 0 and Res̄� ¼ s̄; ð36Þ

where we used the crucial property that the generalized potential UabðsÞ may develop an anomalous threshold behavior at
the lower of the two nominal thresholds at s ¼ ðma þMaÞ2 or s ¼ ðmb þMbÞ2. Given our strict channel ordering the sum
in Eq. (36) over the channel index c is restricted to the case c > b.
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FIG. 10. The function ς̂abðsÞ of Eqs. (34) and (54) in our schematic model (15). Real and imaginary parts are shown with solid blue
and dashed red lines respectively.
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There is a subtle point as to where to evaluate the
Dacðs̄− − iϵ0Þ function in the first line of Eq. (36). Since
DacðsÞ has a branch cut along Cc and s̄− ∈ Cc for s̄ > μ2c it
is necessary to specify whether we should evaluate the
function below or above the cut. Our prescription follows
unambiguously if we slightly deform the contours Cc in
Eq. (32). In Fig. 3 the solid line passing through s̄− is
deformed a bit towards, but still avoids, the dashed lines
above. With this it is manifest from Eq. (32) that ςabðsÞ is
analytic along the horizontal line through s̄−. This should
be so since ςabðsÞ is analytic along all contours Cc by
construction. In turn our prescription Dacðs̄− − iϵ0Þ is
justified. Note that for the term Dacðs̄þÞ no further
specification is needed simply because s̄þ ∉ Cc. Here it
always holds that Dacðs̄þÞ ¼ Dacðs̄þ iϵ0Þ. We ask the
reader to carefully discriminate the objects Uc�

ab ðsÞ with
s ∈ Cc as introduced in Eq. (13) from the newly introduced
object U�c

ab ðs̄Þ with s̄ defined on the real axis only
in Eq. (36).
In the following we will show that given the function

ς̂abðs̄Þ only the DabðsÞ function can be computed unam-
biguously. Note that this requires the solution of a linear
integral equation since Δςabðs̄Þ requires the knowledge of
theDabðsÞ function. In order to solve this system it is useful
to introduce some notation

ρLabðs̄Þ ¼
X
c<a

½Uþc
ac ðs̄Þ − U−c

ac ðs̄Þ�ρcbðs̄ÞΘ½ðμAacÞ2 < s̄ < μ̂2b�

for a > b;

ρLabðs̄Þ ¼ 0 for a ≤ b and

ςabðs̄Þ ¼ 0 for s̄ < ðmb þMbÞ2; ð37Þ

where s̄ is strictly on the real axis. Note that due to the
particular form of the anomalous box term Ubox

ab ðsÞ in
Eq. (19) there is no contribution from the latter to ρLabðs̄Þ. In
the general case where the intervals fμ2b; μ̂2bg partially
overlap some additional notation is useful. We introduce

γabðs̄Þ ¼ 2i
X
c<a

U−c
ac ðs̄Þρcbðs̄ÞΘ½μ2c < s̄ < μ̂2b�;

ρ̄Labðs̄Þ ¼
X
c

ρLacðs̄Þ½1 − γðs̄Þ�−1cb ;

ρ̄Labðs̄Þ ¼ 0 ¼ γabðs̄Þ for a ≤ b; ð38Þ

where we note that now the box term Ubox
ab ðsÞ does

contribute to the matrix-valued function γabðs̄Þ. Our result
(34) and (36) is expressed in the notation (37)–(38) as
follows:

DabðsÞ ¼ δab þ
Z

ds̄
π

s − μ2

s̄ − μ2
ς̂abðs̄Þ
s̄ − s

þ
X
c

Z
ds̄
π

s − μ2

s̄ − μ2
Dacðs̄þ iϵ0Þρ̄Lcbðs̄Þ

s̄ − s
; ð39Þ

where all integrals over s̄ are on the real axis. The bounds
of the integrals are provided by the properties of ς̂abðs̄Þ
and ρ̄Lcbðs̄Þ as summarized in Eqs. (37)–(38). We observe
a simplification that arises if the intervals fμ2b; μ̂2bg are
nonoverlapping for different b. In this case the term in
the third line of Eq. (36) has no effect and thus we
find ρ̄Labðs̄Þ ¼ ρLabðs̄Þ.
It remains to express DabðsÞ in terms of ς̂abðsÞ and

ρ̄LabðsÞ. In the nonoverlapping case this is readily achieved
by an iteration in the index b. At b ¼ max the second term
in Eq. (39) does not contribute as a consequence of the
second condition in Eq. (37). In turn we can compute Dab
at b ¼ max for all a. In the next step we study DabðsÞ at
b ¼ max−1, where now the second term in Eq. (39)
becomes relevant. However, here only the previously
computed DabðsÞ at b ¼ max are needed. This process
can be iterated down to the computation of Da1ðsÞ. While
this strategy always leads to the correct result it is not very
efficient for the following developments.
A more powerful framework can be readily established

as follows. We introduce a Green’s function Lðx; yÞ via the
conditionZ

dy

�
δðx − yÞ − 1

π

ρ̄LðyÞ
x − y − iϵ0

�
Lðy; zÞ ¼ δðx − zÞ; ð40Þ

where we suppress the coupled-channel matrix structure for
notational clarity. All objects will be written in the correct
order, so that the matrix structure can be reconstructed
unambiguously for any identity presented below. The iϵ0
prescription in the definition of Lðx; yÞ in Eq. (40) is
inherited from the iϵ0 prescription in Eq. (39). Given the
Green’s function DabðsÞ can be expressed in terms of
ς̄abðsÞ with

DabðsÞ¼ δabþ
Z

ds̄
π

s−μ2

s̄−μ2
ςDabðs̄Þ
s̄− s

;

ςDabðsÞ¼
X
c

Z
ds̄

s−μ2

s̄−μ2
ðς̂acðs̄Þþ ρ̄Lacðs̄ÞÞLcbðs̄; sÞ: ð41Þ

The representation (41) does not look very promising for
numerical simulations since the Green’s function is a highly
singular object. However, a closed form can be derived in
terms of six analytic matrix functions uLn ðsÞ andUL

n ðsÞwith
n ¼ 1, 2, 3. The latter are determined by appropriate
integrals involving the anomalous spectral weight ρ̄LðsÞ
only. After some algebra we establish the following form
for the Green’s function:
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Lðx; yÞ ¼ δðx − yÞ þ 1

π

ρ̄LðyÞ
x − y − iϵ0

þ
X3
n¼1

uLn ðxÞ
UL

n ðxÞ −UL
n ðyÞ

x − y
1

π
ρ̄LðyÞ; ð42Þ

where

uL1 ðxÞ ¼ gLðxÞ −
Z

dz
π

ρ̄LðzÞgLðzÞ
z − x − iϵ0

; uL2 ðxÞ ¼ hLðxÞ −
Z

dz
π

ρ̄LðzÞhLðzÞ
z − x − iϵ0

;

ULðxÞ ¼
Z

dz
π

ρ̄LðzÞ
z − x − iϵ0

uL3 ðxÞ ¼ −1; with gLðxÞ ¼ ULðxÞ −
Z

dz
π
½ULðzÞ −ULðxÞ� ρ̄

LðzÞ
z − x

gLðzÞ;

hLðxÞ ¼ 1 −
Z

dz
π
½ULðzÞ −ULðxÞ� ρ̄

LðzÞ
z − x

hLðzÞ; ð43Þ

UL
1 ðxÞ ¼

Z
dz
π

ρ̄LðzÞ
z − x

½ULðzÞΔUL
1 ðz; xÞ þ ΔUL

2 ðz; xÞ�;

UL
2 ðxÞ ¼ −ULðxÞ −

Z
dz
π

ULðzÞρ̄LðzÞ
z − x

½ULðzÞΔUL
1 ðz; xÞ þ ΔUL

2 ðz; xÞ�;

UL
3 ðxÞ ¼

Z
dz
π

ρ̄LðzÞgLðzÞ
z − x

ΔUL
1 ðz; xÞ þ

Z
dz
π

ρ̄LðzÞhLðzÞ
z − x

ΔUL
2 ðz; xÞ; with ΔUL

n ðz; xÞ ¼ UL
n ðzÞ −UL

n ðxÞ: ð44Þ

We illustrate the general form of the complex objects uLn ðsÞ
and UL

n ðsÞ using our schematic model (15). In Fig. 11 and
Fig. 12 all elements are shown.
An important property of our result (41) is that the

imaginary part of the spectral weight ςDabðs̄Þ does not vanish
in the presence of anomalous threshold effects. This
follows from the results (41)–(44). In turn the functions
DabðsÞ do not satisfy the Schwarz reflection principle with

D�
abðsÞ ≠ Dabðs�Þ

↔ Imς̂abðs̄Þ ≠ −
X
c

Im½Dacðs̄þ iϵÞρ̄Lcbðs̄Þ�; ð45Þ

even in the limit with ϵ → 0. We emphasize that this is
unavoidable in our formulation. Nevertheless we expect that
our final reaction amplitudes T�

abðsÞ ¼ Tabðs�Þ will satisfy
the Schwarz reflection principle, which plays a crucial role
in the derivation of the coupled-channel unitarity condition.

n=1, ab=21

−1

0

1

n=1, ab=31 n=1, ab=32

uL n,
ab

(s
)

n=2, ab=21

−1

0

1

25 30 35

n=2, ab=31

s [mπ
2]

25 30 35

n=2, ab=32

25 30 35

FIG. 11. The nonvanishing functions uLn;abðsÞ of Eq. (44) for n ¼ 1, 2 in our schematic model (15). Real and imaginary parts are shown
with solid blue and dashed red lines respectively.

COUPLED-CHANNEL DYNAMICS IN THE PRESENCE OF … PHYS. REV. D 98, 076003 (2018)

076003-15



Note that Eq. (45) should not be surprising since we have
already discussed that the anomalous box termUbox

ab ðs̄Þ is at
odds with Eq. (17). The relation (45) can be confirmed
explicitly upon an expansion of theD function in powers of
the generalized potential. At second order there is a term that
confirms Eq. (45).
We continue with the B function, which is given by

BabðsÞ ¼
X
c

Z
Cc

ds̄
π

s − μ2

s̄ − μ2
ςacðs̄Þ
s̄ − s

Ucbðs̄Þ; ð46Þ

in terms of the spectral weight ςacðsÞ and the generalized
potential UacðsÞ. Again we perform the limit ϵ → 0, in
which the complex contours Cc all approach the real axis.
Following the decomposition of the contour lines Cc as

introduced in our study of the D function in Eq. (34) we
readily derive the corresponding form

BabðsÞ ¼
X
c

Z
∞

ðmcþMcÞ2
ds̄
π

s − μ2

s̄ − μ2
β̂cabðs̄Þ
s̄ − s

þ
X
c

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
Δβcabðs̄Þ
s̄ − s

;

with β̂cabðs̄Þ ¼ ςþacðs̄ÞUþc
cb ðs̄ÞΘðμ̂2c − s̄Þ

þ ς−acðs̄ÞU−c
cb ðs̄ÞΘðs̄ − μ̂2cÞ;

Δβcabðs̄Þ ¼ ς−acðs̄ÞU−c
cb ðs̄Þ − ςþacðs̄ÞUþc

cb ðs̄Þ; ð47Þ
where the integrals over s̄ in Eq. (47) are strictly on the real
axis. Again modulo contributions in Eq. (46) from vertical
parts of the contours Cc both representations (46) and (47)
are identical at any finite ϵ. In Eq. (47) we apply the
convenient notation ς�acðs̄Þ and U�c

cb ðs̄Þ introduced already
in Eqs. (35)–(36).
In the following we will express the spectral weights

β̂cabðs̄Þ and Δβcabðs̄Þ in terms of ς̂abðs̄Þ and Δςabðs̄Þ. For this
we will have to consider the limit ϵ → 0 again, in which we
find

β̂cabðs̄Þ¼ ς̂acðs̄ÞUcbðs̄Þ for s̄ > ðmcþMcÞ2; ð48Þ

where the generalized potential Ucbðs̄Þ is evaluated strictly
on the real axis. It is important to realize that Ucbðs̄Þ is
always needed in between the upper and lower anomalous
cut lines (dashed lines in Fig. 2) even after the limit ϵ → 0
has been performed. For the anomalous spectral weight
Δβcabðs̄Þ we derive three distinct contributions

Δβcabðs̄Þ ¼

8>><
>>:

Δςacðs̄ÞU−c
cb ðs̄Þ þ ςþacðs̄Þ½U−c

cb ðs̄Þ −Uþc
cb ðs̄Þ� b > c;

Δςacðs̄ÞUcbðs̄Þ b ≤ c;

Θ½s̄ − μ2c�Θ½μ̂2b − s̄�Δςacðs̄Þ½U−b
cb ðs̄Þ −Uþb

cb ðs̄Þ� b < c;

ð49Þ

which contribute depending on the various cases b > c, b < c or b ¼ c. We express our results (47)–(49) in the notation
(37)–(38) as follows:

BabðsÞ ¼
X
c

Z
∞

ðmcþMcÞ2
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ
s̄ − s

Ucbðs̄Þ þ
X
c≥b;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s
Ucbðs̄Þ

þ
X
c<b;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s
U−c

cb ðs̄Þ þ
X
c<b

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ς̂þacðs̄Þ
s̄ − s

½U−c
cb ðs̄Þ −Uþc

cb ðs̄Þ�

þ
X
c>b;d

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵÞρ̄Ldcðs̄Þ

s̄ − s
½U−b

cb ðs̄Þ − Uþb
cb ðs̄Þ�; ð50Þ

n=1, ab=31

−1

0

1

n=2, ab=21
U

L n,
ab

(s
)

s [mπ
2]

n=2, ab=31

−1

0

1

25 30 35

n=2, ab=32

25 30 35

FIG. 12. The nonvanishing functionsUL
n;abðsÞ of Eq. (44) in our

schematic model (15). Note the relation UL
3;31ðsÞ ¼ UL

1;31ðsÞ.
Real and imaginary parts are shown with solid blue and dashed
red lines respectively.
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where all integrals over s̄ are on the real axis.
The bounds of the integrals are provided directly
or by the properties of ρ̄Lcbðs̄Þ as summarized in
Eqs. (37)–(38).
We point out an important subtlety. While in the

previous section we managed to express DabðsÞ in terms
of ς̂abðsÞ, this is not possible for BabðsÞ: the term in
Eq. (50) involving ς̂þacðsÞ is required at s < ðmc þMcÞ2
outside the domain where ς̂acðsÞ was introduced in
Eq. (34). However, since ς̂acðsÞ ¼ ς̂þacðsÞ for s < μ̂2c we
can simply extend the domain of ς̂acðsÞ where it is
defined.
It is useful to provide a further rewriting of theB function

that uses the spectral weight of the D function ςDabðs̄Þ.
We find

BabðsÞ ¼
X
c

Z
ds̄
π

s − μ2

s̄ − μ2
ςDacðs̄Þ
s̄ − s

Ucbðs̄Þ

−
X
c<b

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ςDacðs̄Þ − ς̂acðs̄Þ

s̄ − s
ΔUcbðs̄Þ

−
X
c<b

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ς̂þacðs̄Þ
s̄ − s

ΔUcbðs̄Þ

−
X
c>b

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
ςDacðs̄Þ − ς̂acðs̄Þ

s̄ − s
ΔUcbðs̄Þ;

ð51Þ

with

ΔUabðs̄Þ ¼ Θ½a − b�½Uþb
ab ðs̄Þ − U−b

ab ðs̄Þ�
þ Θ½b − a�½Uþa

ab ðs̄Þ −U−a
ab ðs̄Þ�; ð52Þ

wherewe recall the particular notationU�c
ab ðs̄Þ as introduced

in Eq. (36).
It should not come as a surprise that like the D function

the B function also does not satisfy the Schwarz reflection
principle with

B�
abðsÞ ≠ Babðs�Þ; ð53Þ

even in the limit with ϵ → 0. This is readily verified.
If expanded to second order in powers of the general-
ized potential there must be an anomalous contribution
with Eq. (53) that cancels the effect of the anomalous
box contribution (21). This is so since by construction

the full reaction amplitude was constructed to satisfy
Eq. (17) at least to second order in a perturbative
expansion.

VI. LINEAR INTEGRAL EQUATION ON
REAL CONTOURS

In the previous two sections we have expressed the
DabðsÞ and BabðsÞ functions in terms of the spectral
weight ς̂abðs̄Þ. In this section we wish to establish a set
of linear integral equations for ς̂abðs̄Þ given a general-
ized potential UabðsÞ. These equations will serve as an
alternative formulation of Eq. (32), which is suitable for
numerical simulations. After some necessary steps
detailed in this section we will arrive at an integral
equation of the form

ς̂ðsÞ ¼ −ÛðsÞρðsÞ þ
X3
m;n¼1

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂ðs̄ÞuLmðs̄Þ

×
Ûmnðs̄Þ − ÛmnðsÞ

s̄ − s
uRn ðsÞ; ð54Þ

in terms of a set of analytic matrix functions ÛðsÞ,
ÛmnðsÞ and uLmðsÞ, uRmðsÞ. The latter will be expressed in
terms of the generalized potential UðsÞ. Note that in
Eq. (54) we suppressed the coupled-channel indices.
The terms are ordered properly so that the coupled-
channel structure is correctly implied by standard matrix
multiplication rules.
How can we cast the contour integral equation (32)

into an integral equation (54) where all integrals are
strictly on the real axis? Several steps are required. The
first task is to express ς�abðsÞ in terms of ςabðsÞ only. We
begin with the consideration of ς−abðsÞ, which we
evaluate according to the second identity in Eq. (23)
with

ςabðsÞ¼
X
d

�
Bb−
ad ðsÞ−

X
c

Db−
ac ðsÞUb−

cd ðsÞ
�
ρdbðsÞ at s∈Cb;

ð55Þ

for which we consider the contour limit ϵ → 0 in
Fig. 3. The reaction amplitude Tb−

cd ðs̄Þ in Eq. (23)
is expressed in terms of the Bb−

ab ðs̄Þ function as
evaluated in Eq. (50). Similarly for the required
Db−

ac ðs̄Þ function we use Eq. (39). Then for ϵ → 0

and s > μ̂2b we find
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ς̂abðsÞ ¼ ς−abðsÞ ¼ −
X
c

UacðsÞρcbðsÞ þ
X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ
s̄ − s

½Ucdðs̄Þ −UcdðsÞ�ρdbðsÞ

þ
X

c≥b;d;e

Z
ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵ0Þρ̄Lecðs̄Þ

s̄ − s
½Ucdðs̄Þ − UcdðsÞ�ρdbðsÞ

þ
X

c<b;d;e

Z
ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵ0Þρ̄Lecðs̄Þ

s̄ − s
½U−c

cd ðs̄Þ − UcdðsÞ�ρdbðsÞ

−
X
c<b;d

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ς̂þacðs̄Þ

s̄ − sþ iϵ0
ΔUcdðs̄ÞρdbðsÞ −

X
c>b;d;e

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵÞρ̄Lecðs̄Þ

s̄ − sþ iϵ0
ΔUcdðs̄ÞρdbðsÞ; ð56Þ

where we again use the particular notations ΔUabðs̄Þ and
U�c

ab ðs̄Þ as introduced in Eqs. (52) and (36). We emphasize
that s and s̄ in Eq. (56) are strictly on the real axis as is
implied by the limit ϵ → 0. It is important to realize that
UcbðsÞ is always evaluated in between the upper and lower
anomalous cut lines (the dashed lines in Fig. 2).
We continue with the more complicated case ςþabðsÞ at

s < μ̂2b. This time we start with the first identity in Eq. (23)
with

ςabðsÞ¼
X
d

½Bbþ
ad ðsÞ−

X
c

Dbþ
ac ðsÞUbþ

cd ðsÞ�ρdbðsÞ at s∈Cb;

ð57Þ

and again consider the contour limit ϵ → 0. For an
evaluation of ςþabðsÞ we will need the DacðsÞ and BabðsÞ

functions evaluated slightly above the contour Cb with
s ∈ Cb. The latter cannot be deduced directly from the
results of the previous two sections. This is so because
sometimes the functions are required in between two right-
hand cut lines, for which the results (39) and (50) cannot be
applied. Some intermediate steps are required. Consider
first the Bbþ

ab ðsÞ term [the first contribution in Eq. (57)]. In
the limit ϵ → 0 we can derive

Bbþ
ad ðsÞ ¼ Badðsþ iϵ0Þ −

X
c<b

2iςþacðsÞðUcdðsÞ

− ΔUcdðsÞÞΘ½s − μ2b�Θ½μ̂2c − s�; ð58Þ

where we consider s in Eq. (58) to be strictly real again. For
the required kinematics with s< μ̂2b and ϵ→ 0 it fol-
lows that

Bbþ
ab ðsÞ ¼

X
c<b

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ

s̄ − sþ iϵ0cb
Ucbðs̄Þ þ

X
c≥b

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ

s̄ − s − iϵ0
Ucbðs̄Þ

þ
X
c≥b;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s − iϵ0
Ucbðs̄Þ þ

X
c<b;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s − iϵ0
U−c

cb ðs̄Þ

−
X
c<b

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ς̂þacðs̄Þ

s̄ − sþ iϵ0cb
ΔUcbðs̄Þ −

X
c>b;d

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s − iϵ0
ΔUcbðs̄Þ; ð59Þ

where we applied Eq. (58) in combination with Eq. (50).
We point out the different prescriptions s� iϵ0 in the
various terms in Eq. (59) with

ϵ0cb ¼
�þϵ0 for μ2b < s < μ̂2c;

−ϵ0 otherwise:
ð60Þ

The change in prescription is caused by the terms on the
right-hand side of Eq. (58).
We proceed with the second term in Eq. (57). Here we

need to evaluateDbþ
ac ðsÞUbþ

cb ðsÞ in the limit ϵ → 0. Progress
is based on the identity

Dbþ
ac ðsÞ ¼ Dacðsþ iϵ0Þ þ

�
−2iςþacðsÞΘ½s − μ2b�Θ½μ̂2c − s� for b > c;

0 for b ≤ c;
ð61Þ
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which again follows in the limit ϵ → 0. From Eq. (61) it now follows thatX
c≥b

Dbþ
ac ðsÞUbþ

cb ðsÞ ¼
X
c≥b

Dacðsþ iϵ0ÞUcbðsÞ;

X
c<b

Dbþ
ac ðsÞUbþ

cb ðsÞ ¼ UabðsÞ þ
X
c<b

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ

s̄ − sþ iϵ0cb
UcbðsÞ þ

X
c<b;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dadðs̄þ iϵ0Þρ̄Ldcðs̄Þ

s̄ − s − iϵ0
UcbðsÞ; ð62Þ

where we assumed ðmb þMbÞ2 < s < μ̂2b and ϵ → 0. Combining our results (59) and (62) we arrive at the desired
expression

ς̂abðsÞ ¼ ςþabðsÞ ¼ −
X
c

UacðsÞρcbðsÞ þ
X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ
s̄ − s

½Ucdðs̄Þ − UcdðsÞ�ρdbðsÞ

þ
X
c;d;e

Z
ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵ0Þρ̄Lecðs̄Þ

s̄ − s
½Ūcdðs̄Þ − ŪcdðsÞ�ρdbðsÞ −

X
c<b

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ςþacðs̄Þ

s̄ − sþ iϵ0cb
ΔUcdðs̄ÞρdbðsÞ

−
X

c>b;d;e

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵÞρ̄Lecðs̄Þ

s̄ − s − iϵ0
ΔUcdðs̄ÞρdbðsÞ; for ðmb þMbÞ2 < s < μ̂2b;

Ūabðs̄Þ ¼ Uabðs̄Þ for a > b; Ūabðs̄Þ ¼ Uabðs̄ − iϵ0Þ for a < b; ð63Þ

where we exploited the corresponding prescription changes in Eqs. (59) and (62) that are related to the first line in Eq. (63).
Again we use that Ucdðs − iϵ0Þ ¼ UcdðsÞ for s > ðmd þMdÞ2 and c < d. We point out the formal similarity of Eq. (63)
with our result (56) derived previously at s > μ̂2b only. With the exception of the prescription in the last two terms the
expressions are identical. Moreover, since that prescription is relevant only for s < μ̂2b in those terms we arrive at one of the
cornerstones of this section

ς̂abðsÞ ¼ −
X
c

UacðsÞρcbðsÞ þ
X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
ς̂acðs̄Þ
s̄ − s

½Ucdðs̄Þ − UcdðsÞ�ρdbðsÞ

þ
X
c;d;e

Z
ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵ0Þρ̄Lecðs̄Þ

s̄ − s
½Ūcdðs̄Þ − ŪcdðsÞ�ρdbðsÞ

−
X
c<b;d

Z
μ̂2c

μ2c

ds̄
π

s − μ2

s̄ − μ2
ςþacðs̄Þ

s̄ − sþ iϵ0
ΔUcdðs̄ÞρdbðsÞ −

X
c>b;d;e

Z
μ̂2b

μ2c

ds̄
π

s − μ2

s̄ − μ2
Daeðs̄þ iϵÞρ̄Lecðs̄Þ

s̄ − s − iϵ0
ΔUcdðs̄ÞρdbðsÞ; ð64Þ

which is valid for any s > ðmb þMbÞ2.
It remains to rewrite our result (64) into a more practical form. This requires three steps. First we multiply Eq. (64) by the

pseudoinverse of the phase-space matrix

N̂abðsÞ¼UabðsÞþ
X
c;d

Z
ds̄
π

s−μ2

s̄−μ2
N̂acðs̄Þ
s̄− s

ρ̂cdðs̄Þ½Udbðs̄Þ−UdbðsÞ�−
X
c;d

Z
ds̄
π

s−μ2

s̄−μ2
Dacðs̄þ iϵ0Þρ̄Lcdðs̄Þ

s̄− s
½Ūdbðs̄Þ− ŪdbðsÞ�

−
X
c

Z
ds̄
π

s−μ2

s̄−μ2
N̂acðs̄ÞρRcbðs̄Þ
s̄− sþ iϵ0

þ
X

c>d>b

Z
ds̄
π

s−μ2

s̄−μ2
Dacðs̄þ iϵ0Þρ̄Lcdðs̄ÞΔUdbðs̄Þ

s̄− s− iϵ0
; ð65Þ

where the result is expressed in terms of the more convenient building blocks

ς̂abðsÞ ¼ −
X
c

N̂acðsÞρ̂cbðsÞ; ρRabðsÞ ¼ 0 for a > b;

ρRabðsÞ ¼
X
c

ρacðsÞΔUcbðsÞΘ½s − ðμAabÞ2�Θ½μ̂2a − s� for b > a;

ρ̂abðsÞ ¼ ρabðsÞ for s > ðma þMaÞ2; otherwise ρ̂abðsÞ ¼ 0: ð66Þ
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The integrals over s̄ in Eq. (65) are strictly on the real axis.
The integration domains for the various contributions are
implied by the region where their integrands are zero as
summarized in Eqs. (37) and (66). Note that N̂abðsÞ is given
by Eq. (65) for s > ðmb þMbÞ2 only where the pseudoin-
verse of the phase-space matrix ρ̂abðsÞ is defined unam-
biguously. From Eq. (32) it follows that N̂abðsÞ inherits the
cut lines of the generalized potential UcbðsÞ for any c only.
The cut lines of the phase-space functions are not present in
N̂abðsÞ. This implies that N̂abðsÞ has a unique analytic
continuation from s > ðmb þMbÞ2 down to s > μ2b, but
only as long as we keep ϵ finite in the contours of Fig. 3.
Note that the region μ2b < s < ðmb þMbÞ2 is accessed by
N̂abðsÞ in the third line of Eq. (65). Could it be justified to

use Eq. (65) at a s < ðmb þMbÞ2 for which it was not
derived? We will return to this issue further below.
We exemplify the form of the auxiliary functions N̂abðsÞ

with our model (15). In Fig. 13 the complex functions
are shown in the domain s > μ2b or s > ðmb þMbÞ2 only
as needed for the evaluation of the functions BabðsÞ
in Eqs. (50) and (59). It is important to note that the
latter do depend on the choice of the return point μ̂b.
The functions N̂abðsÞ are discontinuous at the return
points s ¼ μ̂2b.
In the following we perform a further simplification of

Eq. (65) valid at s > ðmb þMbÞ2. Our targets are the terms
in the last two lines. We begin with the very last term, for
which we obtain for c > b

X
d>b

Z
ds̄
π

s − μ2

s̄ − μ2
Dacðs̄þ iϵ0Þρ̄Lcdðs̄ÞΔUdbðs̄Þ

s̄ − s − iϵ0
¼ Xðc>bÞ

ab ðsÞ −
X
d>c

Z
ds̄
π

s − μ2

s̄ − μ2
ςDadðs̄Þ
s̄ − s

½Xðc>bÞ
db ðs̄Þ − Xðc>bÞ

db ðsÞ�;

with Xðc>bÞ
ab ðsÞ ¼

Z
μ̂2c

μ̂2b

ds̄
π

s − μ2

s̄ − μ2
ρ̄Lacðs̄ÞΔUcbðs̄Þ
s̄ − s − iϵ0

Θ½s̄ − ðμAacÞ2�; ð67Þ
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FIG. 13. The functions N̂abðsÞ of Eqs. (65), (66), and (78) for s > μ2b or s > ðmb þMbÞ2 in our schematic model (15). Real and
imaginary parts are shown with solid blue and dashed red lines respectively.
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where we made the integration domain for the

integral representation of Xðc>bÞ
ab ðsÞ explicit. This implies

that Xðc>bÞ
ab ðsÞ is analytic for s > μ̂2c > ðmb þMbÞ2 and

s < Maxðμ̂2b; μAacÞ.
The result (67) is useful since it shows that the net effect

of this last term is a renormalization of the generalized
potential of the form

Ueff
abðsÞ ¼ UabðsÞ þ

X
a>c>b

XðcÞ
ab ðsÞ and

Ūeff
abðsÞ ¼ ŪabðsÞ þ

X
a>c>b

XðcÞ
ab ðsÞ: ð68Þ

If we use Ueff
abðsÞ and Ūeff

abðsÞ instead of UabðsÞ and
ŪabðsÞ in the first two lines of Eq. (65) the very last
term in Eq. (65) can be dropped. We can combine our
results into

N̂abðsÞ ¼ Ueff
abðsÞ þ

X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
N̂acðs̄Þ
s̄ − s

ρ̂cdðs̄Þ

× ½Ueff
dbðs̄Þ −Ueff

dbðsÞ�

−
X
c;d

Z
ds̄
π

s − μ2

s̄ − μ2
Dacðs̄þ iϵ0Þρ̄Lcdðs̄Þ

s̄ − s

× ½Ūeff
dbðs̄Þ − Ūeff

dbðsÞ�

−
X
c

Z
ds̄
π

s − μ2

s̄ − μ2
N̂acðs̄ÞρRcbðs̄Þ
s̄ − sþ iϵ0

: ð69Þ

With Eq. (69) we derived a convenient basis for the
derivation of a suitable integral equation to numerically
solve for ς̂abðsÞ. After a few more steps we find

N̂abðsÞ¼ ÛabðsÞþ
X
c;d

Z
ds̄
π

s−μ2

s̄−μ2
N̂acðs̄Þρ̂cdðs̄ÞK̂dbðs̄; sÞ;

ð70Þ

with a well-behaved integral kernel K̂dbðs̄; sÞ and
potential term ÛabðsÞ. However, we first need to address
the necessary analytic continuation of the N̂abðsÞ func-
tions below s ¼ ðmb þMbÞ2. It is argued that Eq. (69)
can be used for that purpose. On general grounds we
expect the N̂abðsÞ functions to inherit the cut lines of the
generalized potential. The process of taking the limit
ϵ → 0 of all contour lines, can be visualized as a two-
step procedure. We first deform all lines in Fig. 3 such
that they are in an ϵ0 ≪ ϵ vicinity of the three parallel
lines passing trough the points s ¼ 0 and s ¼ �iϵ. It is
important that this is done without crossing any lines.
Within this picture all horizontal cut lines of N̂abðsÞ sit
on the two parallel lines that pass through s ¼ �iϵ. In
addition there are vertical cut lines. However, the

contribution of the latter will be negligible in the limit
ϵ → 0. In fact such contributions were already dropped
in our derivations. In the absence of such vertical cut
lines and at a still finite ϵ the functions N̂abðsÞ are
analytic in the strip defined by jImsj < ϵ. Given this
picture it is evident that Eq. (69) provides the desired
analytic continuation for N̂abðsÞ. The integrals in
Eq. (69) only generate cut lines that are on the
�iϵ lines.
The auxiliary functions ÛabðsÞ are presented in Fig. 14

as derived from our model (15). The complex functions are
shown in the domain s > μ2b or s > ðmb þMbÞ2 only as
needed for the evaluation of the functions N̂abðsÞ as shown
in Fig. 13. Note that the functions ÛabðsÞ are piecewise
continuous in the domain shown with the only discontinu-
ous behavior being at the return point s ¼ μ̂2b.
The derivation of the anticipated integral equation (70) is

done with the help of the Green’s functions Lðx; yÞ and
Rðx; yÞ. While we already introduced the “left” Green’s
function in Eq. (40), the “right” counterpart is readily
identified with

Z
dy

�
δðx − yÞ þ 1

π

ρRðxÞ
x − yþ iϵ0

�
Rðy; zÞ ¼ δðx − zÞ;

Rðx; yÞ ¼ δðx − yÞ − 1

π

ρRðxÞ
x − yþ iϵ0

þ
X3
n¼1

ρRðxÞU
R
n ðxÞ −UR

n ðyÞ
x − y

1

π
uRn ðyÞ; ð71Þ

where we emphasize that each of the objects uRn ðxÞ
and UR

n ðxÞ has a coupled-channel matrix structure at any
n ¼ 1, 2, 3. The formal expressions for uRn ðxÞ and UR

n ðxÞ
can be extracted from our previous expression for uLn ðxÞ
and UL

n ðxÞ in Eq. (44). The similarity between the two
Green’s functions (left and right) is a consequence of the
identity

ρRabðxÞ ¼ ρLbaðxÞ; ð72Þ

which is reflected in Eqs. (37) and (66). This implies that if
we evaluate uLn ðxÞ andUL

n ðxÞ in Eq. (44) at ρ̄LabðsÞ ¼ ρLabðsÞ
the desired objects follow with

uRn ðxÞ ¼ ½uLn ðxÞ�†; UR
n ðxÞ ¼ ½UL

n ðxÞ�†: ð73Þ

It remains to recall our previous result (41) and apply the
right Green’s function from the right side in Eq. (69). We
multiply the equation by Rðs; xÞ and integrate over s. This
leads to the identification of the potential term ÛabðsÞ and
the integral kernel K̂abðs̄; sÞ of the following form:
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ÛabðsÞ ¼
X
c

Z
ds̄

s − μ2

s̄ − μ2

�
Ueff

ac ðs̄ÞRcbðs̄; sÞ −
1

π
ρ̄Lacðs̄ÞK̄cbðs̄; sÞ

�
;

K̄abðs̄; sÞ ¼
X
c;d

Z
dx

Z
dy

Z
Lacðs̄; xÞ

Ūeff
cd ðxÞ − Ūeff

cd ðyÞ
x − y

Rdbðy; sÞ;

K̂abðs̄; sÞ ¼ K̄abðs̄; sÞ þ
Z

dy
Ueff

cd ðs̄Þ − Ueff
cd ðyÞ

s̄ − y
Rdbðy; sÞ −

Z
dy

Ūeff
cd ðs̄Þ − Ūeff

cd ðyÞ
s̄ − y

Rdbðy; sÞ; ð74Þ

with which we finally identify the ingredients of Eq. (70) in terms of the phase-space matrix ρ̂abðsÞ and the generalized
potential Ueff

abðsÞ introduced already in Eqs. (66) and (69).
It is useful to derive somewhat more explicit expressions. This is readily achieved in terms of the identity

Z
dz

ŪeffðxÞ − ŪeffðzÞ
x − z

Rðz; yÞ ¼
X3
n¼1

Ūeff
n ðxÞ − Ūeff

n ðyÞ
x − y

uRn ðyÞ;

Ūeff
1 ðxÞ ¼

Z
dz
π
½ΔŪeff

1 ðz; xÞURðzÞ þ ΔŪeff
2 ðz; xÞ� ρ

RðzÞ
z − x

;

Ūeff
2 ðxÞ ¼ ŪeffðxÞ −

Z
dz
π
½ΔŪeff

1 ðz; xÞURðzÞ þ ΔŪeff
2 ðz; xÞ� ρ

RðzÞ
z − x

URðzÞ;

Ūeff
3 ðxÞ ¼

Z
dz
π
ΔŪeff

1 ðz; xÞ g
RðzÞρRðzÞ
z − x

þ
Z

dz
π
ΔŪeff

2 ðz; xÞ h
RðzÞρRðzÞ
z − x

: ð75Þ
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FIG. 14. The functions ÛabðsÞ of Eqs. (70) (74), and (77) for s > μ2b or s > ðmb þMbÞ2 in our schematic model (15). Real and
imaginary parts are shown with solid blue and dashed red lines respectively.
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An analogous result holds for the action of the left Green’s function Lðx; yÞ on such a structure. This can then be applied to
derive the integral kernel

K̂ðs̄; sÞ¼
X3
m;n¼1

uLmðs̄Þ
Ûmnðs̄Þ− ÛmnðsÞ

s̄− s
uRn ðsÞ;

Û1nðxÞ¼
Z

dz
π

ρLðzÞ
z−x

½ULðzÞΔÛ1nðz;xÞþΔÛ2nðz;xÞ�;

Û2nðxÞ¼ Ūeff
n ðxÞ−

Z
dz
π

ULðzÞρLðzÞ
z−x

½ULðzÞΔÛ1nðz;xÞþΔÛ2nðz;xÞ�;

Û3nðxÞ¼
Z

dz
π

ρLðzÞ
z−x

½gLðzÞΔÛ1nðz;xÞþhLðzÞΔÛ2nðz;xÞ�þ Ūeff
n ðxÞ−Ueff

n ðxÞ; with ΔÛmnðz;xÞ¼ ÛmnðzÞ− ÛmnðxÞ;

ð76Þ

in terms of a set of analytic functions ÛmnðsÞ and uLmðsÞ, uRn ðsÞ. We note that gLðxÞ, hLðxÞ were already introduced in
Eqs. (44) and (75). The object Ueff

n ðxÞ is defined via Eq. (75) by replacing the source term with ŪeffðxÞ → UeffðxÞ. Using
similar algebra leads to an explicit form for the potential term with

ÛðsÞ ¼ UeffðsÞ −
Z

ds̄
π

s − μ2

s̄ − μ2
Ueffðs̄ÞρRðs̄Þ
s̄ − sþ iϵ0

þ
X3
n¼1

Z
ds̄
π

s − μ2

s̄ − μ2

�
Ueffðs̄ÞρRðs̄ÞU

R
n ðs̄Þ −UR

n ðsÞ
s̄ − s

−
X3
m¼1

ρLðs̄ÞuLa ðs̄Þ
Ûmnðs̄Þ − ÛmnðsÞ

s̄ − s

�
uRn ðsÞ: ð77Þ

Altogether the linear integral equation (70) is cast into the simple form

N̂ðsÞ ¼ ÛðsÞ þ
X3
m;n¼1

Z
ds̄
π

s − μ2

s̄ − μ2
N̂ðs̄Þρ̂ðs̄ÞuLmðs̄Þ

Ûmnðs̄Þ − ÛmnðsÞ
s̄ − s

uRn ðsÞ; ð78Þ

where with Eq. (66) we finally arrive at the anticipated
result (54).
We illustrate the role of the auxiliary matrices ÛmnðsÞ as

derived from our model (15). Since there are altogether 81
functions, we focus on the particular combinations

HL
n ðsÞ ¼

X3
m¼1

uLmðsÞÛmnðsÞ and

HR
n ðsÞ ¼

X3
m¼1

ÛnmðsÞuRmðsÞ; ð79Þ

as they are the relevant entities in Eq. (78). In Figs. 15–17
we show that each of the 27 elements of HR

n;abðsÞ are
piecewise continuous for s > μ2b or s > ðmb þMbÞ2. The
complex functions are shown in the domain s > μ2b or s >
ðmb þMbÞ2 only as needed for the evaluation of the
functions N̂abðsÞ as shown in Fig. 13. Note that
HR

n;abðsÞ are discontinuous only at the return points
s ¼ μ̂2b. The analogous property holds for the functions
HL

n;abðsÞ at s > ðma þMaÞ2.

We should briefly summarize the general procedure to
derive the phase shifts and inelasticity parameters for a given
model interaction. Given the driving terms ÛðsÞ and ÛnmðsÞ
together with uLn ðsÞ and uRn ðsÞ as specified in Eqs. (44), (73),
and (74)–(77) we use the linear set of equations (54) to
determine the function ς̂abðsÞ for s > ðmb þMbÞ2. This is a
numerically stable task since all driving terms in Eq. (54) are
sufficiently regular in the needed domain. In the next stepwe
can compute the functions Dabðsþ iϵÞ in application of
Eqs. (41)–(44). The functions Babðsþ iϵÞ are evaluated
from Eq. (59), which, however, requires the knowledge of
the functions ς̂þabðsÞ. This proceeds in two steps. First, given
the functions ς̂abðsÞwe can compute N̂abðsÞ fromEq. (78) at
subthreshold energies μ2b < s < ðmb þMbÞ2. Then with

ς̂þabðsÞ ¼ −
X
c

N̂acðsÞρcbðsÞ; ð80Þ

the desired object ς̂þabðsÞ is available and we can finalize the
derivation of the functions Babðsþ iϵÞ. In turn the reaction
amplitudes Tabðsþ iϵÞ can be reconstructed from Eqs. (24)
and (31) in terms of the functions Dabðsþ iϵÞ, Babðsþ iϵÞ
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and Uabðsþ iϵÞ. The phase shifts and inelasticity param-
eters are then given by Eq. (16).

VII. SUMMARY AND OUTLOOK

In this workwe presented a novel framework to deal with
coupled-channel systems in the presence of anomalous
threshold effects. The framework was formulated for
an arbitrary number of channels and is suitable for
numerical simulations. We list the main cornerstones of
our development.
(1) Given a generalized potential the coupled-channel

reaction amplitudes were defined in terms of a set of
nonlinear integral equations formulated on contours
in the complex plane.

(2) The analytic structure of the generalized potential in
the presence of anomalous threshold effects was
clarified. The key observation was the fact that the
latter must not satisfy the Schwarz reflection
principle.

(3) We confirmed previous results that a physical
approach must consider second-order terms in the
generalized potential. The minimal contributions
were identified with the terms that are odd under
a Schwarz reflection.

(4) The nonlinear integral equation can be solved
numerically by a suitable ansatz with Riemann
integrals over real energies only. The specific form

of the latter was derived for the first time. Explicit
expressions for the driving terms were presented for
an arbitrary number of channels.

(5) A schematic three-channel model was analyzed in
the presence of anomalous thresholds. Throughout
the development all key quantities were illustrated in
this model. In particular the reaction amplitudes as
well as the phase shifts and inelasticity parameters
were computed and discussed.

Given our framework it is now possible to investigate
coupled-channel systems including JP ¼ 1− and JP ¼ 3

2
þ

states using realistic interactions. Such systems are noto-
riously challenging since a plethora of anomalous threshold
effects are present. We expect such studies to shed more
light on the possible relevance of the hadrogenesis con-
jecture, which predicts that such computations could
generate a large part of the hadronic excitation spectrum
in QCD.
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