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We explore a general framework to treat coupled-channel systems in the presence of overlapping
left- and right-hand cuts as well as anomalous thresholds. Such systems are studied in terms of a
generalized potential, where we exploit the known analytic structure of - and u-channel forces as the
exchange masses approach their physical values. Given an approximate generalized potential the
coupled-channel reaction amplitudes are defined in terms of nonlinear systems of integral equations.
For large exchange masses, where there are no anomalous thresholds present, conventional N/D
methods are applicable to derive numerical solutions to the latter. At a formal level a generalization to
the anomalous case is readily formulated by use of suitable contour integrations with amplitudes to be
evaluated at complex energies. However, it is a considerable challenge to find numerical solutions to
anomalous systems set up on a set of complex contours. By suitable deformations of left-hand and
right-hand cut lines we manage to establish a framework of linear integral equations defined for real
energies. Explicit expressions are derived for the driving terms that hold for an arbitrary number of
channels. Our approach is illustrated in terms of schematic three-channel systems. It is demonstrated
that despite the presence of anomalous thresholds the scattering amplitude can be represented in terms
of three phase shifts and three inelasticity parameters, as one would expect from the coupled-channel

unitarity condition.
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I. INTRODUCTION

A reliable and systematic treatment of coupled-
channel systems subject to strong interactions is still
one of the remaining fundamental challenges of modern
physics. So far effective field theory approaches with
hadronic degrees of freedom (d.o.f.) that reflect QCD
properties are established only for particular corners of
the strong interaction world. At energies where QCD
forms bound states or resonances there is a significant
lack of profound theory that connects to experimental
data directly. Despite the tremendous efforts and suc-
cesses of experimental accelerator facilities and emerg-
ing lattice gauge theory simulations there is a significant
gap in what theory can accomplish and experimental
groups would need to be properly guided in new
searches for exotic matter [1-4].
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To unfold the underlying physics of this nonpertur-
bative domain of QCD novel approaches are required
that combine the power of coupled-channel unitarity
together with the microcausality condition for hadronic
d.o.f. [5-24]. While such frameworks exist for coupled-
channel interactions that are dominated by short-range
forces matters become significantly more challenging
in the presence of #- or u-channel long-range forces
[20-28]. In particular coupled-channel systems involv-
ing the nonet of vector mesons with J” =1~ or the
baryon decuplet states with J¥ = %* can only be studied
with significant results after such a framework has been
developed. The latter play a crucial role in the hadro-
genesis conjecture that expects the low-lying resonance
spectrum of QCD with up, down and strange quarks
only, to be generated by final-state interactions of
the lowest SU(3) flavor multiplets with J© =07,1~
and JP =1%3% [13,14,16,17,29-35]. The coupled-
channel interaction of such d.o.f. leads to a plethora
of subtle effects, like numerous anomalous thresholds
[36-38].

The physical relevance of anomalous threshold effects
has been discussed recently in Refs. [39—44]. To the best of
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our knowledge there is no established approach available
that can treat such phenomena in coupled-channel sys-
tems reliably. In the previous works which attempted to
deal with such systems the strategy was to perform an
analytic continuation of an N/D ansatz for the reaction
amplitudes in the external mass parameters so as to
smoothly connect a normal system to an anomalous
system. This was studied for two-channel systems only
[37,38]. Even there the first study of Ball, Frazer and
Nauenberg [37] was determined by the later work of
Greben and Kok to be incorrect [38]. So far we have not
been able to track any numerical implementation of
either of the two schemes [37,38]. Following this strategy
an extension to a truly multichannel system appears
prohibitively cumbersome.

A powerful framework to study coupled-channel sys-
tems is based on the concept of a generalized potential. A
partial-wave scattering amplitude 7', (s) where the channel
indices a and b stand for the final and the initial state
respectively is decomposed into contributions from left-
and right-hand cuts where all left-hand cut contributions are
collected into the generalized potential U, (s). For a given
generalized potential the right-hand cuts are implied by the
nonlinear integral equation

s
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(1)

where p.,(s) is a channel-dependent phase-space function
and all integrals are for 5 on the real axis. By con-
struction any solution of Eq. (1) does satisfy the coupled-
channel s-channel unitarity condition for normal systems.
Typically, the matching scale y? in Eq. (1) is to be
chosen in a kinematical region where the reaction
amplitude can be computed in perturbation theory
[13,17,20]. For normal systems the nonlinear and coupled
set of equations (1) can be solved by an N/D ansatz
[20,21,45-52]. Although the general framework has been
known since the 1960s, it was only recently successfully
integrated into an effective field theory approach based
on the chiral Lagrangian [20-26]. As it stands Eq. (1)
breaks down once a coupled-channel system involves
unstable particles or anomalous thresholds arise. In this
work we will construct a suitable adaptation that over-
comes this gap.

Our formal developments will be illustrated by a
schematic three-channel model where explicit numerical
results for key quantities will be presented along the way. In
Secs. II and III we discuss the analytic structure of the
coupled-channel reaction amplitudes and propose an effi-
cient deformation of the left- and right-hand cut lines such
that anomalous systems can be dealt with. In addition our
schematic model is specified. In Sec. IV an ansatz for the
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FIG. 1. Generic - and u-channel exchange processes.

solution of the nonlinear integral equations on the complex
contour lines is derived. In the next step in Sec. V we
consider the limit where the complex contour lines are
deformed back towards the real energy line. The main
formal result of our work is derived in Sec. VI, where a set
of linear integral equations for anomalous systems that is
suitable for numerical implementations is established. We
close with a summary and outlook in Sec. VII.

II. ANALYTIC STRUCTURE OF PARTIAL-WAVE
SCATTERING AMPLITUDES

In a first step we will recall a spectral representation for a
generic 7-channel and u-channel term as shown in Fig. 1. In
our previous work [28] we established the following
general form:

e ELEEG
v =3 [T ‘j“b(’"( ‘j( : fzz,<mz>),

with properly constructed spectral weights Qi)ab(mz, m?)

and o\ ab(mz m?2). The contour functions ci)ab(m2) and

c(i)a ,(m?) depend on the masses of initial and final particles

of the given reaction ab for which we use the convenient
notation

p?=Mj, p*=M;. (3)

While the derivation of the spectral weights Qi).ab(mQ, 1)
(u)

and ¢}, (m? u) is quite cumbersome the identification of

the contour functions ¢’ (m?) and | (m?) is straightfor-

ward. Owing to the Landau equations any possible branch
point of a partial-wave amplitude must be associated with
an end-point singularity of the partial-wave projection
integral that involves some Legendre polynomials in
cos@ of the scattering angle 0. This leads to the well-
known result
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An anomalous system arises if either of the spectral
weights o\” (m2, m?) or o\ (m?, m2) is nonvanishing at an
exchange mass m where the associated contour CE” (m?) or

¢ (m?) approaches any of the thresholds or pseudothres-
holds of the given reaction ab. In this case the decom-
position (1) breaks down: an anomalous threshold behavior
is encountered. The latter is characterized by a particular
branch point p, of the partial-wave amplitude

uhy < Min{m, + M, my + My}, (5)
that is associated with the given amplitude ab. For
simplicity of the presentation we consider in Eq. (5) an
anomalous threshold behavior at a normal threshold point
only. A similar phenomenon may occur at a pseudothres-
hold. Also the case y, > Max{m, + M,, m;, + M, } is not
excluded in general. For both cases, our approach can be
adapted in a straightforward manner. However, the fact that
an anomalous threshold arises for a diagonal reaction with
a = b has been excluded from general considerations.

In the previous works an analytic continuation in the
external mass parameters was attempted so as to smoothly
connect a normal two-channel system to an anomalous
two-channel system [37,38]. After all using this method
Mandelstam gave a transparent presentation of the anoma-
lous threshold phenomenon in a typical one-loop diagram
[36]. However, we feel that an application of this method
directly to multichannel reaction amplitudes, as attempted
in Refs. [37,38], appears futile due to the proliferation of
branch points and cut structures that need to be properly
deformed and followed up in various limits.

We argue that there is a significantly more transparent
path to arrive at a framework that is capable of treating
coupled-channel systems in the presence of anomalous
thresholds. Given a multichannel system various anoma-
lous thresholds may appear in different reactions. Our
starting point, is based directly on the general representa-
tion (2), which already established a suitable analytic
continuation of the tree-level potential terms valid for
arbitrary exchange masses. As was emphasized in our
previous work [28] the reason why a one-loop diagram

|
develops an anomalous threshold can be read off easily
from its driving tree-level potential terms.

We need to be somewhat more specific regarding the
generic form of the generalized potential. The tree-level
potential takes the generic form

U:lrze—level(s) _/
Ly

where the left-hand contour, L,,, is a union of contours
required for the spectral representation of a general #- or u-
channel exchange process as in Eq. (2). In order to achieve
our goal it is instrumental to separate the left-hand contour
into a normal and an anomalous part

d5 pg,(3)
T 5—5

(6)

Lab = ALab U Aabv (7)
where the part A, starts at the anomalous threshold (u4,)?
slightly above the real axis, extends to the normal threshold
point Min{(m, + M,)?, (m, + M})*} and returns at (u%,)?
to the anomalous one slightly below the real axis. This is
illustrated in Fig. 2. Note that according to the general
representation (2) the anomalous contour line would be on
the real axis only. With Fig. 2 such a contour is deformed
into the complex plane in a manner that leaves its con-
tribution to the generalized potential unchanged for s
outside the area encircled by the dashed line. While the
values for u#, are determined by the specifics of the
coupled-channels interactions, there is some freedom in
choosing the location of the return points xX,. Given the

r \
é X O X
\ J

FIG. 2. Left-hand cut line of an anomalous contribution to the
generalized potential. The two crosses show the locations of the
threshold points at (m, + M,)?> and (m, + M,)*> where we
assume a < b without loss of generality. The filled and open
red circles indicate the location of the anomalous threshold point
(u4,)? and a return point (uX,)? respectively.
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analytic structure of the spectral weight pU (5) the gener-
alized potential U1Vl () does not depend on the choice
of the return point ufb at energies s outside the dashed line
of Fig. 2.

We point out a subtle issue such a contour separa-
tion is based on. Here we tacitly assumed that the
anomalous threshold u4, is real. However, from the
general representation (2) there is the possibility of a
pair of complex-conjugate anomalous points x. In this
case the associated contour lines have to be followed until
both reach the common pseudothreshold point at s =
(uh,)? = Max{(m, — M,)?, (m, — M,)*}. The latter we
take as the anomalous threshold value in our work. This
can be justified since in this case the spectral weight
pY (5) can be shown to be analytic in € to the left of the
pseudothreshold point at 5 = (u4,)? —e.

It is useful to identify an anomalous threshold value y,,
associated with a given channel a. To clarify the procedure
we assume in the following a strict channel ordering
according to the nominal threshold value, i.e., we insist on

my+ M, <m . +M,., foralla, (8)
where for later convenience we permit the equal sign for
channels with the same two-particle states in different spin
configurations only. We can now identify the desired
anomalous threshold value. It is the minimum of all
accessible anomalous branch points

Ha = \Min,{:u‘;‘b’ ma + Mu}’ (9)

b>a

where the value y#, gives the anomalous threshold value of
the partial-wave amplitude ab. Note that it does not
necessarily follow that the channel ordering (8) implies
Har1 = Mg If such a channel crossing with y,, > u,;, for any
pair ab with a < b occurs, we will further move the point
u, with p, — p, — € such that we ultimately arrive at a
strict channel ordering

Ug S pgyq  forall a, (10)

where again the equal sign is permitted for channels with
the same two-particle states in different spin configurations
only. It is useful to similarly streamline the plethora of
return points. We choose universal return points /i, of the
particular form

R =fi, <my,+M, forall b>a, (11)

where we consider a and b with p?, < (m, + M,)* only.

We can now introduce our anomalous contour A, that
starts at 2 slightly above the real axis, passes (m, + M,)?
and returns at /12 to u2 below the real axis. In turn we can
now write

ds normal 5 A5 anomalous 5
Uab(s):/ M+/ 7"%_7()4_...’
AL, T S—S AmMin(ap) §=S

(12)

where we will exploit the fact that the first term in
Eq. (12) is uncritical to the extent that it is analytic in
the vicinity of any normal or anomalous threshold point.
The challenging term is the second one, which is associated
with a contour that entangles the normal threshold point
Min{(m, + M,)?, (m, + M,)*}. The dots in Eq. (12)
remind us that we have yet to discuss the generic form
of contributions to the generalized potential from loop
effects.

The key starting point is an adaptation of the nonlinear
integral equation (1). The integral in Eq. (1) starts at the
point where the phase-space matrix p.4(3) vanishes at 5 =
(m, +M,)*> = (my + M,)* and remains on the real axis
going to infinity. In the anomalous case the integral must
also start at § = (m, + M_)> = (my + M,)? but will leave
the real axis following suitable paths on higher Riemann
sheets. The integral on the real axis has to be replaced by a
contour integral. Eventually, somewhere on its way the
contour path will touch the anomalous threshold at 5 = 2.
Note that the case ¢ # d appears only for systems with
nonvanishing spin.

This complication is a consequence of the anomalous
threshold behavior of the generalized potential. If we wish
to separate the left- from the right-hand cuts in the reaction
amplitudes, it is necessary to apply suitable deformations of
the cut lines. In the normal case the separation of left- from
right-hand cuts is trivially implied by Eq. (1). The second
term on the right-hand side has a cut on the real axis
extending from 5 = (m; + M,)? to infinity. This is the
right-hand cut. All left-hand cuts sit in U(s). As long as the
cut lines of the generalized potential do not cross any of
the right-hand cut lines on the real axis the nonlinear integral
equation (1) is well defined and can be solved numerically
using conventional methods. This is not the case if the
generalized potential develops an anomalous threshold.
Without an appropriate adaptation the associated left-hand
cut lines would cross the right-hand cut lines. An avoidance
is possible only if the integral on the real lines in Eq. (1) is
replaced by contour integrals in the complex plane.

In Fig. 3 we illustrate the analytic structure of the reaction
amplitudes defined with respect to suitably deformed left-
and right-hand cut lines. The dashed red lines show the
locations of the anomalous left-hand cuts. We suggest a
deformation of the right-hand cut lines as illustrated by the
solid lines in the figure. Now, none of the anomalous left-
hand cutlines A, cross any of the right-hand contour lines C,.

Before writing down the generalization of Eq. (1) we
need some more notation. The reaction amplitudes 7' (s)
need to be evaluated slightly below and above any of the
many different contour lines,
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FIG. 3. Deformed left- and right-hand cut lines for the reaction

amplitudes. The crosses show the locations of the threshold
points at (m, + M,)?. While the anomalous left-hand cut lines
are shown with dashed red lines, the deformed right-hand cut
lines are represented by blue solid lines. The filled and open red
circles indicate the locations of the anomalous threshold points 2
and the return points ji2 respectively.

T5(5) = Ty(s) with 5€C,, (13)
where the points s, and s_ are an ¢’ distance above and
below the contour C, at § respectively. The value of ¢’ is
chosen smaller than the minimal distance of any of the
horizontal lines in Fig. 3.

With this notation we can write down the desired

generalization

Tab(s) /dSS H Tac )pcd(g)TZ’;yr(g)’

5 —u? S—s
(14)
where C. = C,; holds by construction. We consider the

phase-space matrix p.4(s) to be analytic on the real axis at
|

s > (m, + M_)?. This implies that at s < (m. + M,)? the
function p.4(s) has a cut line. Note that none of the
contour paths C,. cross any of the cut lines of the phase-
space functions. It is emphasized that in the absence of
an anomalous threshold in the generalized potential
our generalization (14) reproduces the conventional
expression (1).

The representation (14) appears deceivingly simple and
ad hoc; however, we derived it by an analytic continuation
in the #- and u-channel exchange mass parameters. The
starting point for this is provided by the general represen-
tation (2). First we assume all exchange particles to have a
very large mass, so that all left-hand branch cuts are well
separated from the right-hand branch cuts. Already at this
stage we can deform the right-hand cuts from their conven-
tional choice to take the form as indicated in Fig. 3 by the
solid lines. This contour deformation cannot change the
value of any of the coupled-channel reaction amplitudes
T,,(s) at Ims > 0, simply because along the cut deforma-
tions the reaction amplitudes are analytic by assumption.
Here we exploit the fact that in the limit of very large
exchange masses all left-hand branch cuts are moved
outside the figure. In a second step we follow the left-
hand cuts as they move right in Fig. 3 as the exchange
masses approach their physical values [36-38,48,52]. At
the end we claim that they can be presented by the dashed
lines in the figure. In turn we take Eq. (14) as a transparent
starting point of our presentation.

Our numerical examples will rest on a minimal model as
it is implied by schematic tree-level interactions. Along the
formal derivations in the next few sections we will illustrate
the important auxiliary quantities in terms of a schematic
three-channel model specified with

pj{(S) + \/ 2 s_(ma_Ma)z
= 0ubs a — +(s — a Ma - . >
pab(s) 87‘[\/5 ab V4 (S (m + ) ) 4s
20m2
A z 213082 A
Pap(8) = — == Ols — pa|®lfaz — 5] = py,, (s) fora <b,
W) = gy s) O T HalOa sl =i
Ugl;del(s) —/ @fm
Amtinapy T 5SS
m; = my = my = my,, /12 = 20m,2,,
Ml = 4.2mﬂ, M2 == 4.5m”, M3 == 4.8m,,,
ur =25m2, a3 =28m2, U3 =29m2, A3 = 32m?. (15)

In Fig. 4 we plot the tree-level generalized potential for two
kinematical cases. The left-hand panel shows the non-
vanishing elements with s strictly on the real axis. Here the
potentials are characterized by significant variations close
to the anomalous threshold points with s = y2 and at the
return points with s = 2 and 2 < (m, + M,)?> < ji2. The

|

potentials are always real and smooth at the threshold
points s = (m, + M,)?. The right-hand panel shows the
corresponding potentials evaluated at s — ie, just below the
double-cut structures as illustrated in Fig. 2. In this case
the potentials have an imaginary part and in addition are
singular at the threshold points s = (m, + M,)?.

076003-5



M.F. M. LUTZ and C.L. KORPA

PHYS. REV. D 98, 076003 (2018)
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s [m3]

FIG. 4. The generalized potential UT~'vl(s) (left panels) and UTe71¢¥¢l(s — je) (right panels) in the schematic model as defined in
Eq. (15). Only nonvanishing elements are considered. Real and imaginary parts are shown with solid blue and dashed red lines

respectively.

In Fig. 5 we anticipate the usefulness of our formal
developments and present the solution to the nonlinear
integral equation (14) as implied by Eq. (15). It is noted that
our results do not depend on the particular choices for the
return points j1, in Eq. (15). The reaction amplitudes show
significant and nontrivial structures that are implied by the
presence of the anomalous threshold effects in the gener-
alized potential. While the amplitudes at subthreshold
energies show various singular structures, they are smooth
and well behaved in the physical region. We emphasize that
the subthreshold structures are not driven exclusively by the
contribution from the generalized potential as shown in
Fig. 4. There are in addition significant structures generated
by the right-hand cut contributions. To the best of our
knowledge with Fig. 5 we encounter the first numerical
solution of such an anomalous three-channel system in the
published literature.

III. ANOMALOUS THRESHOLDS AND
COUPLED-CHANNEL UNITARITY

Before we explain how to find numerical solutions to the
nonlinear integral equations (14) in the presence of

anomalous threshold effects it is useful to pause and
discuss a critical issue that we will be confronted with.
Given a specific approximation for the generalized poten-
tial, a solution of Eq. (14) does not necessarily imply that
the coupled-channel unitarity condition is fulfilled. From
the latter we expect a representation of the reaction
amplitudes T,,(s) in terms of a set of real quantities,
i.e., the channel-dependent phase shift and inelasticity
parameters ¢,(s) and n,(s). It should hold that

ImT (s + i€) ZTW s+i€)peq(s)T g (s +i€)
X @[S - (mc +MC)2]
for s > Max{(m, +M,)?, (m, +M,)*},
1 .
S T (ea() = 5152 1] (16)

c

where on general grounds one expects 0 <#, < 1. While
any solution to Eq. (14) satisfies the time-reversal invari-
ance condition 7', (s) = Tp,(s), the Schwarz reflection

principle,
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FIG. 5.
solid blue and dashed red lines respectively.

Tiy(s) = Tap(s”), (17)
cannot be derived in general for right-hand cut lines
off the real axis. It is not surprising then that the
coupled-channel unitarity condition is not necessarily
obtained.

Let us be specific and identify the generalized potential
by tree-level 7- and u-channel exchange processes, a typical
strategy in hadron physics. Though we may solve the
nonlinear system (14) in this case, the unitarity condition
(14) will not be fulfilled once an anomalous threshold effect
is encountered. A supposedly related problem was noted in
the previous studies [37,38]. It was argued that the problem
is caused by the neglect of second-order contributions to
the generalized potential. A minimal ansatz for a physical
approximation to the generalized potential requires some
additional terms

Uap(s) = USeoel(s) 4 UX(s). (18)
to be constructed properly. However, no conclusive form
of the latter has been presented and illustrated in the

s [m] 25 30 35

Reaction amplitudes T, (s + ie) = T}, (s + i€) in the schematic model of Eq. (15). Real and imaginary parts are shown with

literature so far. Conflicting suggestions were put forward
in Refs. [37,38] for two-channel systems. Whether such
forms lead to physical results remains an open challenge.
So far there is no numerical implementation for a specific
example worked out, at hand of which one may judge the
significance of any of the two approaches. Unfortunately,
for us both works [37,38] are rather difficult to follow.
Nevertheless, we tend to agree with the conclusions of
Ref. [38] that the approach advocated in Ref. [37] is
incorrect.

An important achievement of the current work is the
construction of a minimal second-order term applicable for
systems of arbitrarily high dimensions. Our approach is
based on the request that we arrive at the coupled-channel
unitarity condition (16) and recover the Schwarz reflection
principle (17). The key observation is that in the absence of
the anomalous box term U9 (s) the second-order reaction
amplitude T, (s), as it would follow from Eq. (14), is at
odds with Eq. (17). The extra term is unambiguously
determined by the condition that its inclusion restores the
Schwarz reflection principle (17). This leads to the follow-
ing form:
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FIG. 6. Phase shifts and inelasticity parameters of Eq. (16) in our schematic model (15).
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We turn to the second-order term in Eqgs. (18)—(19). While
for Res < (m, +M_.)* = (my+ M,)?* the two factors,

U (s) =2 Z d5pl (5)pea(3)P2, (3) (19) pg‘c(s> and p?, (s), are real quantities as s approaches th'e
ab : n S—s ) real line, the phase-space factor p.,(s) turns purely imagi-
¢.d<Min(a,b) ¢ nary in this case. This leads to the property

where the spectral weight p?, (5) characterizes the anoma-
lous behavior of the tree-level potential. It is identified in
analogy to the general representation (12). Unfortunately, a
direct comparison of our result with the ansatz in
Refs. [37,38] is not so easy. Nevertheless, we note that
for the two-channel case our result (19) appears quite
compatible with the ansatz discussed in Ref. [38].

We anticipate the phase shifts and inelasticities as
implied by our schematic model (15) as properly supple-
mented by the anomalous box term (18)—(19). We affirm
that the reaction amplitudes as already shown in Fig. 5 are
compatible with the coupled-channel unitarity condition
(16) and the phase shifts and inelasticity parameters of
Fig. 6. Without an explicit computation the authors would
not have been in a position to even roughly guess the
nontrivial behavior seen in that figure.

Itis instrumental to realize the quite different nature of the
two contributions in Eq. (18). Consider first the tree-level
term in Egs. (18)—(19). The spectral weight p, (s) isreal as s
approaches the real line below s < Min{(m, + M,)?,
(m, + M)?}. In contrast it is purely imaginary for
s > Min{(m, + M,)?, (m, + M,)*}. This follows from
the general results presented in Ref. [28]. The corresponding
generalized potential satisfies the Schwarz reflection prin-
ciple with

[Ugie—level (S)] o U;r;e—level (S* ) . (20)

(U (s)]* = —UR(s™), (21)
and illustrates the particular feature of the anomalous box
term our construction is based on. Given our schematic
model (15) the anomalous box term U (s) is illustrated
with Fig. 7. Like in Fig. 6 the left-hand panels show the
nonvanishing potentials on the real axis, while the right-
hand panels show the corresponding potentials slightly
below the real axis at s — ie.

It should be emphasized that there are further second-
order contributions to the generalized potential; however,
they add to the “normal” spectral weight p"9™a(5) in
Eq. (12) only. Since the latter terms do not jeopardize the
coupled-channel unitarity condition, there is no stringent
reason to consider such effects in an initial computation.
Typically one may hope that the effect of the latter is
suppressed in some suitable power-counting scheme.
This should be so since higher-loop effects are character-
ized by left-hand branch cuts that are further separated from
the right-hand cuts. In turn such contributions to the
generalized potential cannot show any significant varia-
tions at energies where the generalized potential is needed
in Eq. (14).

We would speculate, that the ansatz (18) is quite generic,
i.e., it should hold also for contributions including higher-
loop effects
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FIG. 7.
respectively.
ds pnormal( ) ds panomalous( S)
vato)- | L
IR Antinap) T §—s

A5 anomalous 5
+ Z / p_—()’ (22)
c<Min(a,b) A T §=S

where we expect pUomlos(s) to be determined by
pimomalous (5) and panomalous (5) in analogy to Eq. (19).

IV. NONLINEAR INTEGRAL EQUATION ON
COMPLEX CONTOURS

The key issue is how to numerically solve the nonlinear
set of equations (14) and cross-check its physical correct-
ness. After all one may consider it merely as a definition of
the generalized potential in the presence of anomalous
thresholds. For a given approximated generalized potential
U, (s) we will devise an appropriate N /D-like ansatz that
will eventually lead to a framework which is amenable to
numerical simulations of Eq. (14).

We introduce a set of contour functions ¢,,(5) defined
initially on distinct contours C;, the choice of which
depends on the channel index b

gab ZD
= _ZD de

@S—/Jl Gab(E)
c, TS—p*s5—s’

(5)T%5 (5)pas(3)

(5)pap(5) for 5 € Cp,

Dp(s) = Bap + (23)
where we apply the convenient £ notation introduced
already in Eq. (13). Assuming the existence of such a set of
functions ¢, (5) we seek to express the reaction amplitude
T, (s) in terms of them. This requires a few steps. Like in
the previous sections we anticipate with Fig. 8 the form of
the D functions as they are implied in our schematic model.
This may help the reader to fight through the various
abstract arguments presented in the following. It is empha-
sized that none of the functions D (s + ie) depend on the
particular choice of the return points ji,, in Eq. (15). The
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FIG. 8.
dashed red lines respectively.

functions have a significant imaginary part starting at the
anomalous threshold s > 2.

In the first step we study the analytic properties of the
function

Byy(s) = ZDad(S)[Udb(s> = Tap(s)]
d
_ s ﬁs _/"2 T;;G)pce(i)ng_(g)
o C.;?Dad()/cvﬂ'.f—ﬂz 5—§ ’

(24)

where we applied the master equation (14). In Fig. 9 we
provide such functions B, (s + i¢) as implied by our model
(15) for s > (m, + M,)?, a region which encompasses the
physical domain probed by the phase shifts and inelasticity
parameters in Eq. (16). Here we again do not encounter any
dependence on the return points f,. However, the functions
B,i(s) show a strong variation close to the anomalous
threshold pointats = y3 = 29m2. Itis important to note that
this is not propagated into the amplitude 7', (s + i€) as is
evident from Fig. 5 and Fig. 6.

s [mg]

The functions Dy, (s + ie) of Eq. (23) in our schematic model (15). Real and imaginary parts are shown with solid blue and

From Eq. (23) it follows that the function D, (s) is
analytic in the complex plane with the exception of a cut
along the contour C,,. A similar conclusion can be drawn for
the function B, (s) only that in this case the cut line is a
superposition of all right-hand contours C,.. Since the
contours C, partially overlap it is useful to decompose the
contours with

Co=Ci+C; and Cy=Ci =Y C.=Cy+» C/.

(25)
where the lower C7 contours are all on the straight line
crossing the value s = —ie. By construction the upper

contours C{ do not overlap.
From this we conclude that a dispersion integral repre-
sentation of the form

ds s —p Bf*( ) - B (5)
Ban( 212/0* TS - 5—s
21 T s—y 5—s
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FIG.9. The functions B, (s + i€) of Eq. (24) in our schematic model (15) for s > y2 or s > (m;, + M,)* Real and imaginary parts are
shown with solid blue and dashed red lines respectively.

can be assumed. In the next step we compute the discontinuity along the contours C with

371855 ) B35 5)] =35 (VS )+ U5 ()] a7 () + T35 )] (D53 )+ DEg )] STz O 755 )

=SB () + UG 6] (27)

where we observe the cancellation of most terms in Eq. (27). This follows from the defining equations for ¢, (5) in Eq. (23)
together with the symmetry of the reaction amplitude

Uab(s) = Uba(s> & pab( ) :pba(s)
- Tab( ) Tba & ZT S)/)ce S TZZ_ ZT pce Tgb <§> (28)

It is left to compute the discontinuity of the B functions along the straight contour Cj,, i.e., the second term in Eq. (26) is
considered. For any § € C, we derive

1

5 B (5) = B, 5 Zgac (U (5) + Uy (3)][5 + ie — 2] - Zgac )T (5) + TG (5)1O[5 + ie — 2]
—EZ[DZZ(E) ZT 5)pee(5)Tey (5)OF5 + ie — ]
2Zgac (3)[U(5) + U (5)]O[5 + ie — 2], (29)
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where the cancellations in Eq. (29) follow from Egs. (23)
and (28). We observe that owing to the identities (27) and
(29) the two terms in Eq. (26) can be combined into a
dispersion integral written in terms of the partially over-
lapping contours C.,. It holds that

dss =y gac(3)
U, ,
ab S) Z/ 7Z'S—,L£ S—s Lb(s)
with U, (s) = U (s) = US,(s) for
s € C, givenanyc, (30)

where the crucial identity in the last line of Eq. (30) is a
consequence of the properly deformed contour lines as
illustrated in Fig. 3.

With this we arrive at the anticipated representation of
the scattering amplitude in terms of the spectral density
¢ap(5). It holds that

Tab ZDac S)Bcb

ds
:Ugb / §8= /'4 gdc )Ucb<§)

TS5—u*s-—

(31)

The functions D (s) were already expressed in terms of
¢up(5) in Eq. (23).

We are one step away from a more practical form of the
defining requirement (23) and in particular checking the
consistency of the construction. After all we had to use both
equations in the first line of Eq. (23) to arrive at Eq. (31).
By inserting our result (31) into Eq. (23) we obtain two
distinct equations, which we must show to be equivalent.
We derive

Sab (s ZUad $)Pan (s

/ 955~ sl 5) -

TS—p5—s,

(32)

where s is strictly on the contour C;,. With s, we introduce
values of s slightly above and below the contour C,,, i.e., it
holds that |s — s..| < €/, where €’ is chosen smaller than the
minimal distance of any of the horizontal lines in Fig. 3.
The two choices correspond to the two identities in the first
line of Eq. (23). Since the numerator in Eq. (32) strictly
vanishes at § = s both choices lead to identical results.
While with Eq. (32) we arrive at a mathematically well-
defined linear integral equation, it remains to construct a
numerical solution to it. This is not quite straightforward
and will require further developments. In the following we
will analyze the linear system (32) in more detail and
eventually establish a framework that can be used to
numerically solve it on a computer. The key issue is to

systematically perform the limit ¢ — O in the system of
complex contours.

V. FROM COMPLEX CONTOURS TO
REAL CONTOURS

We consider first the D function, whose definition is

ds s = p* ¢ (3)
D =6 — 33
ab(s) ab T chE—,qu“—s ( )

in terms of the spectral weight ¢,,;,(s). We consider the limit
€ — 0, in which the complex contours C, all approach the
real axis. If we are only interested in values of s that are
below or above all right-hand cut lines, we may simplify the
integral into Riemann sums on the real axis. This is
achieved as follows.

We first note that we may consider ¢,.(s) to be an
analytic function in s, with various branch cuts. This
follows from the integral representation (32). More pre-
cisely, if the linear system has a solution ¢,,.(s) with s € C.
then Eq. (32) can be used to analytically continue ¢, (s)
away from the contour line C,. The branch cuts are readily
identified. First it carries the branch cuts of the phase-space
function p..(s) that is strictly on the real axis in our
convention. Second, the cut lines of the generalized
potential U,.(s) for any a are inherited. The important
observation is the absence of any right-hand cut lines.

According to the cut lines summarized in Fig. 3 there are
two critical points, y; and fi;,, associated with a normal
threshold point at m;, + M. While y; denotes the smallest
anomalous threshold opening of the generalized potential
U, (s) with arbitrary a, the return point f,, specifies the
point at which the left-hand contour line circles around the
point s = (m;, + M,)? in Fig. 3 and comes back. With this
in mind we introduce

e dES—/,{z &ah(g)
Dab(s) :501) _'_/ — 2=
(my4M,2 T 5= p? S =8

. / dss =4 Acuy(5)
"

Ts—y 5—s

with &, (5) = :(3) (ﬂb_s) + (S )Q(E_ﬁi)’
A6uy(3) = 63(5) = ¢ (5). (34)

where the integrals over § in Eq. (34) are strictly on the real
axis. In Eq. (34) we apply the useful notation

¢5(5) =cup(s:) with Ims=0 and s.€C,

and Im(s, —s_) >0 and Res. =73, (35)

which initially only defines ¢}, (5) for 5 < (mj;, + M},)% but
is naturally extended up to the point § = /},2, Here we
assume the availability of the analytic continuation of
the function ¢,,(s) from the nominal threshold value at
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FIG. 10. The function &,,(s) of Egs. (34) and (54) in our schematic model (15). Real and imaginary parts are shown with solid blue

and dashed red lines respectively.

s = (my, + M})? up to the return point of the left-hand cut
at s = 7 in Fig. 3. The particular location of fi, > m,, +
M,, is irrelevant. While the spectral weights &,,(5) and
Acg,,(5) depend on it, by construction the D function does
not. Given Eq. (35) the limit € — O in the right- and left-
hand contours of Fig. 3 can be applied without changing the
form of Eq. (34). In this limit the contributions of any
vertical parts of the contour lines vanish. Such terms are
already omitted altogether in Eq. (34). Note that modulo
those vertical lines Eq. (34) is nothing but a regrouping of
the various contour contributions in Eq. (33).

|

We illustrate the generic form of the spectral weight
&, (s) in our model (15). As shown in Fig. 10 the complex
functions are nonzero for s > (m;, + M,)> only. It is
important to note that the latter do depend on the choice
of the return point f1;,. The functions &,,(s) are piecewise
continuous with the only discontinuous behavior being at
the return point s = 3.

The result (34) is useful since in the limit ¢ — O the
anomalous spectral weight A¢,.(5) can be linked back to
the D function as follows. A direct application of Eq. (32)
leads to

Aap(5) = Y Dae(51)Uca(54) = D (5= = i€ ) Uea(5)]0(ufy)* < 5 < i)pan(5)

c>b,d

== Duc(5+i€) U (5) = UL (®)O[(1l))* <5 < iflpas(5) +2i Y Acac(S)U(5)OpE <5 < ilpas(5),

c>b,d

UN(5) = U.y(5L) with Ims=0 and 5.€C,

c>b,d

and Im(5;,—5_) >0 and Res. =35, (36)

where we used the crucial property that the generalized potential U, (s) may develop an anomalous threshold behavior at
the lower of the two nominal thresholds at s = (m, + M,)? or s = (m, + M,,)?. Given our strict channel ordering the sum
in Eq. (36) over the channel index c is restricted to the case ¢ > b.
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There is a subtle point as to where to evaluate the
D,.(5_ —i¢’) function in the first line of Eq. (36). Since
D,.(s) has a branch cut along C, and 5_ € C, for 5 > 2 it
is necessary to specify whether we should evaluate the
function below or above the cut. Our prescription follows
unambiguously if we slightly deform the contours C,. in
Eq. (32). In Fig. 3 the solid line passing through 5_
deformed a bit towards, but still avoids, the dashed lines
above. With this it is manifest from Eq. (32) that ¢, (s) is
analytic along the horizontal line through 5_. This should
be so since ¢,,(s) is analytic along all contours C,. by
construction. In turn our prescription D,.(5_ —i€') is
justified. Note that for the term D,.(5,) no further
specification is needed simply because 5, & C.. Here it
always holds that D,.(5,) = D,.(5 + i€/). We ask the
reader to carefully discriminate the objects U< (s) with
s € C.. asintroduced in Eq. (13) from the newly introduced
object UZf(5) with 5 defined on the real axis only
in Eq. (36).

In the following we will show that given the function
¢.,(5) only the D, (s) function can be computed unam-
biguously. Note that this requires the solution of a linear
integral equation since Ag,,(5) requires the knowledge of
the D, () function. In order to solve this system it is useful
to introduce some notation

Phy(5) = D _[ULEB) = Uzt ®po (5)O1(ufe) < 5 < f}]
c<a
for a > b,
pl(5)=0 fora<b and
cap(5) =0 for 5 < (my, +M,)?, (37)

where s is strictly on the real axis. Note that due to the
particular form of the anomalous box term U%*(s) in
Eq. (19) there is no contribution from the latter to p%, (5). In
the general case where the intervals {u?,fi7} partially
overlap some additional notation is useful. We introduce

}/ah - ZZZUac pr )6[/’42 <5< ﬁ%]v

c<a

/_)5;)(3') = Zpac( )[1 - (E)L_bl’

Phy(3) =0=7,(5) for a<b, (38)

where we note that now the box term US%(s) does
contribute to the matrix-valued function y,;(5). Our result
(34) and (36) is expressed in the notation (37)—(38) as
follows:

@S _/'{2 &ab(g)

Dab(s>:6ab+ ﬂ§—ﬂ2 S—g
ds s —u?> D,.(5 + ie')pL, (5)
@~ (39
D (9)

where all integrals over 5 are on the real axis. The bounds
of the integrals are provided by the properties of &,,(5)
and p%, (5) as summarized in Egs. (37)—(38). We observe
a simplification that arises if the intervals {u7,A;} are
nonoverlapping for different . In this case the term in
the third line of Eq. (36) has no effect and thus we
find pL, (5) = o, ().

It remains to express D, (s) in terms of &,,(s) and
Pk (s). In the nonoverlapping case this is readily achieved
by an iteration in the index b. At b = max the second term
in Eq. (39) does not contribute as a consequence of the
second condition in Eq. (37). In turn we can compute D,
at b = max for all a. In the next step we study D, (s) at
b = max —1, where now the second term in Eq. (39)
becomes relevant. However, here only the previously
computed D,,(s) at b = max are needed. This process
can be iterated down to the computation of D, (s). While
this strategy always leads to the correct result it is not very
efficient for the following developments.

A more powerful framework can be readily established
as follows. We introduce a Green’s function L(x, y) via the
condition

/dy{ﬁ(x y) - lﬂ

P L(y,z) =6(x—2z2), (40)
where we suppress the coupled-channel matrix structure for
notational clarity. All objects will be written in the correct
order, so that the matrix structure can be reconstructed
unambiguously for any identity presented below. The i’
prescription in the definition of L(x,y) in Eq. (40) is
inherited from the ie’ prescription in Eq. (39). Given the
Green’s function D,,(s) can be expressed in terms of

Sab (S) with

ﬁs—ﬂ sy (5)
ﬂ'S‘—ﬂ -5

gac )+ﬁgc(§))l‘cb(§’s)‘ (41)

Dab(s) :5ab+

gab Z/ds

The representation (41) does not look very promising for
numerical simulations since the Green’s function is a highly
singular object. However, a closed form can be derived in
terms of six analytic matrix functions u%(s) and UL (s) with
n =1, 2, 3. The latter are determined by appropriate
integrals involving the anomalous spectral weight p~ (s)
only. After some algebra we establish the following form
for the Green’s function:
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n=1, ab=31

n=2, ab=31

FIG. 11. L

with solid blue and dashed red lines respectively.

Lix.y) = 6(x—y) + 1 20)

where

uf(x) = gt(x) - /%ﬁL(Z)gL(Z)

VIR)
T Z—X—1€

rx—y—ic

s [mg]

The nonvanishing functions u}, ., (s) of Eq. (44) for n = 1, 2 in our schematic model (15). Real and imaginary parts are shown

3 L(y) — UL
+ZurLz(x)Un() Un()’)l/—)L(y), (42)

n=1 xX=y g

ué(x) _ hL(x) _ /%ﬁL(Z)hL(Z)

V)
T Z—X—1€

UL (x) = / de D@ rGy =1 with gh(x) = UR(r) - / %oty - vt ) g,

mz—x—i€
_L

p) = 1- [ Eut) - Ut )7 pe ),

—X

vt = [ L2 e avt e + a0k

T —X

(43)

UL (x) = —UL(x) - / %%[UL(@AU%(ZJ) AU (z )],

UL (x) = /%ﬁL(Z)ng(Z)AUf(z,x) +/%/‘JL(z)hL(z)

—X

T =

We illustrate the general form of the complex objects u% (s)
and U%((s) using our schematic model (15). In Fig. 11 and
Fig. 12 all elements are shown.

An important property of our result (41) is that the
imaginary part of the spectral weight gfh (5) does not vanish
in the presence of anomalous threshold effects. This
follows from the results (41)—(44). In turn the functions
D, (s) do not satisfy the Schwarz reflection principle with

AU%(z,x),

with AUL(z,x) = Uk(z) = Uk(x).  (44)

DZb(S> ?é Dab(s*)
< Img,(5) # - _ImD,.(5+ ie)ph,(3)].  (45)

even in the limit with ¢ — 0. We emphasize that this is
unavoidable in our formulation. Nevertheless we expect that
our final reaction amplitudes 77, (s) = T, (s*) will satisfy
the Schwarz reflection principle, which plays a crucial role
in the derivation of the coupled-channel unitarity condition.
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n=1, ab=31

FIG. 12. The nonvanishing functions UL , (s ) of Eq. (44) in our
schematic model (15). Note the relation Uy (s) = Uf5,(s).
Real and imaginary parts are shown with solid blue and dashed
red lines respectively.

Note that Eq. (45) should not be surprising since we have
already discussed that the anomalous box term U9 (5) is at
odds with Eq. (17). The relation (45) can be confirmed
explicitly upon an expansion of the D function in powers of
the generalized potential. At second order there is a term that
confirms Eq. (45).

We continue with the B function, which is given by

W Sac(5)

ab S) Z/ Cj:i_ﬂ 5—g Ucb(g)’ (46)

Ag. . (3)U7

Aﬁgb(g) = Agac(s> cb(s>

O[5 — u21®[a7 — 5]Ac,.(5)[UZL(5) —

5(8) + i (®UFE) - UL ()]

in terms of the spectral weight ¢,.(s) and the generalized
potential U,.(s). Again we perform the limit ¢ — 0, in
which the complex contours C,. all approach the real axis.

Following the decomposition of the contour lines C,. as
introduced in our study of the D function in Eq. (34) we
readily derive the corresponding form

o dss— P By (5)
neX [T S
P (me+M > &S — 4~ §—S
i dss— u? Aﬂab( 5)
+ Z / 2 TS — 5—s
with  f5,(5) = e () ULy (5)®(m —5)
+ 5 (UZ ()0 - £12),

AR, () = cac(B) U (5) — sl (B)UL(5).  (47)
where the integrals over 5 in Eq. (47) are strictly on the real
axis. Again modulo contributions in Eq. (46) from vertical
parts of the contours C,. both representations (46) and (47)
are identical at any finite €. In Eq. (47) we apply the
convenient notation ¢, (5) and U%¢(5) introduced already
in Egs. (35)-(36).

In the following we will express the spectral weights

B, (5) and ABC, (5) in terms of &,,(5) and Ag,, (5). For this
we will have to consider the limit ¢ — 0 again, in which we
find

Bou(s) = MR (48)
where the generalized potential U, (5) is evaluated strictly
on the real axis. It is important to realize that U,,(5) is
always needed in between the upper and lower anomalous
cut lines (dashed lines in Fig. 2) even after the limit ¢ — 0
has been performed. For the anomalous spectral weight
ApS,(5) we derive three distinct contributions

6ac(§)Uch(§) for 5> (m

b>c,
b<ec, (49)
Ui () b<ec,

which contribute depending on the various cases b > ¢, b < ¢ or b = ¢. We express our results (47)—(49) in the notation

(37)—(38) as follows:

dSS—M gac() <
abs) Z/m(+M77[S_ 2S—SUCb(S)+Z

c>b.d

/dss—/t D (5 + i€')p5.(3)
c<b,d TS 5=

s—

By dss — p* Dog(5 +ie)ph (5) .,
+Z/ B0 2 DadG IR ) -
c>bd TS—H

U@+

/ﬁf _ﬂi Dad(s' —_i_ ’5/),55L(§) Ucb(g)
TS—p 5—s

i dss —p? S (3) .- o
[r et E ) - v o)
<D ”% TSsS—HU sS—S
Ul 3, (50)
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where all integrals over 5 are on the real axis.
The bounds of the integrals are provided directly
or by the properties of pL (5) as summarized in
Egs. (37)—(38).

We point out an important subtlety. While in the
previous section we managed to express D, (s) in terms
of &,,(s), this is not possible for B,,(s): the term in
Eq. (50) involving &}.(s) is required at s < (m. + M,.)?
outside the domain where &,.(s) was introduced in
Eq. (34). However, since &,.(s) = &/.(s) for s < g2 we
can simply extend the domain of &,.(s) where it is
defined.

It is useful to provide a further rewriting of the B function
that uses the spectral weight of the D function ¢?,(5).
We find

Z/fj:ﬂ Oy, 5
/ﬂ?ﬁs—ﬂ gac(sz Sac(5)

< _ 2
pe TS—H

AUcb (3)

c<b

2d5 s — 12 &t (5
/” Ss—p gac(S)AUcb(E)
c<b

> ﬂi—/ﬂE—s

/ﬂ;, dss — (sz ) AU (5).
c>b § §

2 JTS—

with

AU, (5) = Ola — b][USP(5) = UL (5)]

+O[b—al[Ug'(s) - Uz (). (52)

where we recall the particular notation UZ£ (5) as introduced
in Eq. (36).

It should not come as a surprise that like the D function
the B function also does not satisfy the Schwarz reflection
principle with

By, (s) # Bup(s7). (53)

even in the limit with ¢ — 0. This is readily verified.
If expanded to second order in powers of the general-
ized potential there must be an anomalous contribution
with Eq. (53) that cancels the effect of the anomalous
box contribution (21). This is so since by construction

the full reaction amplitude was constructed to satisfy
Eq. (17) at least to second order in a perturbative
expansion.

VI. LINEAR INTEGRAL EQUATION ON
REAL CONTOURS

In the previous two sections we have expressed the
D, (s) and B, (s) functions in terms of the spectral
weight &,,(5). In this section we wish to establish a set
of linear integral equations for &,,(5) given a general-
ized potential U,,(s). These equations will serve as an
alternative formulation of Eq. (32), which is suitable for
numerical simulations. After some necessary steps
detailed in this section we will arrive at an integral
equation of the form

2(s) = ~0(s)p(s) / 955 I o5y (5)

ﬂ'S—

§l\
“l

m,n=1

% f] (E; ?mn uﬁ(s)’ (54)

in terms of a set of analytic matrix functions U(s),
U, (s) and uk(s), uR (s). The latter will be expressed in
terms of the generalized potential U(s). Note that in
Eq. (54) we suppressed the coupled-channel indices.
The terms are ordered properly so that the coupled-
channel structure is correctly implied by standard matrix
multiplication rules.

How can we cast the contour integral equation (32)
into an integral equation (54) where all integrals are
strictly on the real axis? Several steps are required. The
first task is to express ¢ (s) in terms of ¢, (s) only. We
begin with the consideration of ¢, (s), which we
evaluate according to the second identity in Eq. (23)
with

San(s Z[BZd s)— ZD
d

}pdbu) at s€C,
(55)

for which we consider the contour limit € — 0 in
Fig. 3. The reaction amplitude 7%;(5) in Eq. (23)
is expressed in terms of the B’ (5) function as
evaluated in Eq. (50). Similarly for the required
D’ (5) function we use Eq. (39). Then for ¢ — 0
and s > 7 we find
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dis_ﬂzéac(g) _
= U U(5)-U
gab( ) gab Z ac pcb / e —/12 Fpp [ Cd(s) cd(s)]de(S)
S 7o Uea(5) = Ueal5)panls)
c>b.d,e TS— ”2 S—s cd\’ cd Pdb
ds s — ji* D, (5 + i€')pg.(5)
— U=(5) - U,
D e G U LG
st Gy s 5 5 = Do+ 10P55) )y (o
- T iostietl - — 56
L;d/u% 55— 125 —s+ i€ cd(3)pav(s) c;b,;e/ﬂ? P =2 S—stic cd(S)pan(s),  (56)

where we again use the particular notations AU ,,(5) and
U7 (5) as introduced in Eqgs. (52) and (36). We emphasize
that s and 5 in Eq. (56) are strictly on the real axis as is
implied by the limit € — 0. It is important to realize that
U, (s) is always evaluated in between the upper and lower
anomalous cut lines (the dashed lines in Fig. 2).

We continue with the more complicated case ¢/, (s) at
s < p2. This time we start with the first identity in Eq. (23)
with

gab(s):ZBZ; ZD (U2 ()lpap(s) at s€Cy,
]

(57)

and again consider the contour limit ¢ — 0. For an
evaluation of ¢, (s) we will need the D,.(s) and B (s)

|
functions evaluated slightly above the contour C, with
s € C,. The latter cannot be deduced directly from the
results of the previous two sections. This is so because
sometimes the functions are required in between two right-
hand cut lines, for which the results (39) and (50) cannot be
applied. Some intermediate steps are required. Consider
first the BZ;;(S) term [the first contribution in Eq. (57)]. In
the limit ¢ — O we can derive

=) 2ict.(s)(

c<b

= AU y(s))®ls — up]®laz — s].

szir( )_ ad S+l€
(58)
where we consider s in Eq. (58) to be strictly real again. For

the required kinematics with s <f? and e¢—0 it fol-
lows that

dss—p*  5,(5) S d5s =1 _&uc(S) 5
BZ;‘ / — _a+ Ucb(s)+2/_ — 2__a _ /Ucb<s)
2| m5—@i5—s+ie, ) mS—ps—-s—ie
dSS —ﬂ Dad s+ le/)ﬁ(lj(,(g) U T dss _'MZ Dad(§ + lel)ﬁSC(g) —C(=
TS—p 5—s—i€e °b(s)+z x5—pE  5—s—ie o (5)
c>bd c<b.d
#Ld > (s iy ds s — D )P (5
Y [ S -y [P DO s
c<b TS—U S—S+l€cb c>b,d 7/ He TS p STeTe

where we applied Eq. (58) in combination with Eq. (50).
We point out the different prescriptions s & i¢’ in the
various terms in Eq. (5§9) with

_ {+€’

—6/

2 n2
, for py;, <'s < jig,

€eb (60)

otherwise.
|

DE(s) = Dyo(s + i€') + {0

076003-
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|
The change in prescription is caused by the terms on the
right-hand side of Eq. (58).

We proceed with the second term in Eq. (57). Here we
need to evaluate D57 (s)U%/(s) in the limit € — 0. Progress
is based on the identity

)O[s — u2]®[p2 —s] for b > c,

61
for b <c, (61)
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which again follows in the limit € — 0. From Eq. (61) it now follows that

> DEE(S)UL(s) =Y Dycls + i€ ) Uy (s),

c>b c>b

dss—u*  &,.(5) dss — 2D J(5 +i€")pL (5)
S DL U () = Ua(s) + Y [ T2 S8 vy ()4 Y [ TIPS y ), (62)
c<b c<b ,l,t 5= L€y, ‘<bd s — §—S5—1€

where we assumed (m; + M,)* < s < 7 and € — 0. Combining our results (59) and (62) we arrive at the desired
expression

. dss—y 24 (5) _
= U U -U
2uls) =(0) = =S Uclshpals) + 3 [ LT - U)ol
dss—/,t D, (5 +i€)pt.(5) .~ . - Bdss —p* gh(s _
/ ) ) [Uca(5) = Uca(s)lpan(s) = / ) AU ca(5)pap(s)
de TS—u s—s = ﬂs—,u s—s+l€
Py dss —pu>D,, (5 + ie)pk.(5 _ R
- /zb—_ 3 E ) ; ( )AUcd(S)de(S)’ for (my + M,)* < s < ji3,

c>b.d.e” He TS—H §—Ss—i1e

Uup(5) = Uy (s5) fora> b, Uuwp(5) = Ugyy(5 —i€’) for a < b, (63)

where we exploited the corresponding prescription changes in Eqs. (59) and (62) that are related to the first line in Eq. (63).
Again we use that U,,(s — i€') = U, 4(s) for s > (my + M,)? and ¢ < d. We point out the formal similarity of Eq. (63)
with our result (56) derived previously at s > fi> only. With the exception of the prescnptlon in the last two terms the
expressions are identical. Moreover, since that prescrlptlon is relevant only for s < ji? » in those terms we arrive at one of the
cornerstones of this section

Euls) = =S Uulshpas) + 3 [2= K20 1 5) = Uea()loan(s)

T5—urs—s

/‘f:j :ﬂ 2D, (5 Jsries)pec( 5) [0,4(5) = Toa()pan(s)
cde

_ Z /ﬁ%ﬁs_'quAUcd(i)ﬂdb(S) - Z /ﬁidgf_ﬂzl)aeg )[)eC(E)AULd( pan(s),  (64)
c<b,d

TS—pu-s—s—+1ie et TS—H 5—s—i€

which is valid for any s > (m, + M)
It remains to rewrite our result (64) into a more practical form. This requires three steps. First we multiply Eq. (64) by the
pseudoinverse of the phase-space matrix

dss— pt 2NL(B) . dss —p* Dy (5+i€)pty(3) - . -
U U & U -U
Nap(s)=Uap S)+Z/ 2T 5—s Pea($)[Uap(5) = Uap( /”s my” o [Ua(5) = Uap(s)]
_Z/dss WN,.(5 R (5 /dss U2 D, (3 —ﬁ—ie’)plgd(i)AUdb(E) (65)
75—y’ s—s—l—le L) m s 5—s—ie ’

where the result is expressed in terms of the more convenient building blocks

gab ZNac(s pcb ,05;,(5) =0 fora> b,
pR (s Zpac JAU ., (5)Bs — (u4,)?]®[32 — 5] for b > a,

Pan(s) = pap(s) for s > (m, + M,)?; otherwise P, (s) = 0. (66)
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FIG. 13.

s [m7]

The functions N, (s) of Egs. (65), (66), and (78) for s > u3 or s > (my + My)? in our schematic model (15). Real and

imaginary parts are shown with solid blue and dashed red lines respectively.

The integrals over 5 in Eq. (65) are strictly on the real axis.
The integration domains for the various contributions are
implied by the region where their integrands are zero as
summarized in Egs. (37) and (66). Note that N, (s) is given
by Eq. (65) for s > (m,, + M) only where the pseudoin-
verse of the phase-space matrix p,,(s) is defined unam-
biguously. From Eq. (32) it follows that N, (s) inherits the
cut lines of the generalized potential U, (s) for any ¢ only.
The cut lines of the phase-space functions are not present in
N, (s). This implies that N,,(s) has a unique analytic
continuation from s > (m;, + M,)? down to s > p2, but
only as long as we keep e finite in the contours of Fig. 3.
Note that the region y7 < s < (my, + M,)? is accessed by
N, (s) in the third line of Eq. (65). Could it be justified to

|

_Xc>b

/dss—u D, (5 + ie")pt d( 5)AU 4, (5)
~ | n5- 5—s—i€

c> i dss — AU
with X( b)( ):/” _s:v H Plc(5)AU ., (5)
g TS—H

use Bq. (65) at a s < (m, + M,)?* for which it was not
derived? We will return to this issue further below.

We exemplify the form of the auxiliary functions N, (s)
with our model (15). In Fig. 13 the complex functions
are shown in the domain s > y2 or s > (m;, + M,)? only
as needed for the evaluation of the functions B, (s)
in Eqs. (50) and (59). It is important to note that the
latter do depend on the choice of the return point ji,.
The functions N,,(s) are discontinuous at the return
points s = 3.

In the following we perform a further simplification of
Eq. (65) valid at s > (mj, + M,,)?. Our targets are the terms
in the last two lines. We begin with the very last term, for
which we obtain for ¢ > b

/dss—u o $) x> 5) = x(e9) (4],

= Ts—p*s—s

3 O[5 — (ua.)’]. (67)

s—s—ie
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where we made the integration domain for the

integral representation of XE;;/’)(S) explicit. This implies

that Xl(f;b)(s) is analytic for s > g2 > (m;, + M,,)? and
s < Max(fiy, pfe ).
The result (67) is useful since it shows that the net effect

of this last term is a renormalization of the generalized
potential of the form

Ush(s) + > X{j(s) and
a>c>b

Ush(s) + > XGs (68)
a>c>b

If we use Uclf(s) and U®f(s) instead of U,,(s) and
U,(s) in the first two lines of Eq. (65) the very last
term in Eq. (65) can be dropped. We can combine our
results into

Sute) = U5+ 3 [ B2 Rl
X [UZIZ(_)—UZfbf( )]
dss — u? D, (5 + ie")pt,(5)
_Z/ﬂ's— 5—s N
x [Ugy(5) = Ugy (s)]
dss — p* N (5)pR (5
_Z/ﬂs— 2 E—s)ﬁ—Cbli)' (69)

With Eq. (69) we derived a convenient basis for the
derivation of a suitable integral equation to numerically
solve for &,,(s). After a few more steps we find

ab(s ab S)+Z/d7:j Z ac(s> ( )kdb(g’s)’

(70)

with a well-behaved integral kernel K,(5,s) and
potential term Uab(s). However, we first need to address
the necessary analytic continuation of the Nab(s) func-
tions below s = (m;, + M,)% It is argued that Eq. (69)
can be used for that purpose. On general grounds we
expect the N, (s) functions to inherit the cut lines of the
generalized potential. The process of taking the limit
€ — 0 of all contour lines, can be visualized as a two-
step procedure. We first deform all lines in Fig. 3 such
that they are in an ¢ < ¢ vicinity of the three parallel
lines passing trough the points s = 0 and s = F-ie. It is
important that this is done without crossing any lines.
Within this picture all horizontal cut lines of N, (s) sit
on the two parallel lines that pass through s = +ie. In
addition there are vertical cut lines. However, the

contribution of the latter will be negligible in the limit
€ — 0. In fact such contributions were already dropped
in our derivations. In the absence of such vertical cut
lines and at a still finite ¢ the functions N, (s) are
analytic in the strip defined by |[Ims| <e. Given this
picture it is evident that Eq. (69) provides the desired
analytic continuation for N,,(s). The integrals in
Eq. (69) only generate cut lines that are on the
+ie lines.

The auxiliary functions U/, (s) are presented in Fig. 14
as derived from our model (15). The complex functions are
shown in the domain s > y2 or s > (m;, + M,)?* only as
needed for the evaluation of the functions N, (s) as shown
in Fig. 13. Note that the functions U/, (s) are piecewise
continuous in the domain shown with the only discontinu-
ous behavior being at the return point s = fi7.

The derivation of the anticipated integral equation (70) is
done with the help of the Green’s functions L(x,y) and
R(x,y). While we already introduced the “left” Green’s
function in Eq. (40), the “right” counterpart is readily
identified with

/dy[(x S I OB Y

ax—y+ie
1 pf(x)
R(x,y) =6(x—y) Tax—ytid
3 R R
l]n X _'l/n y 1
+3 LU0 ey
n=1 x=Yy d

where we emphasize that each of the objects uf(x)
and UR(x) has a coupled-channel matrix structure at any
n =1, 2, 3. The formal expressions for uX(x) and UR(x)
can be extracted from our previous expression for u%(x)
and UL(x) in Eq. (44). The similarity between the two
Green’s functions (left and right) is a consequence of the
identity

Pap(X) = Pha(%), (72)
which is reflected in Egs. (37) and (66). This implies that if
we evaluate u% (x) and UL (x) in Eq. (44) at L, (s) = pL, (s)
the desired objects follow with
uy(x) = [u;(x)]",  URx) = [Uz()]". (73)
It remains to recall our previous result (41) and apply the
right Green’s function from the right side in Eq. (69). We
multiply the equation by R(s, x) and integrate over s. This
leads to the identification of the potential term {7, (s) and
the integral kernel K, (5, s) of the following form:
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FIG. 14. The functions l7ab(s) of Egs. (70) (74), and (77) for s > 2 or s > (m; + M},)? in our schematic model (15). Real and
imaginary parts are shown with solid blue and dashed red lines respectively.

s—u? =
0(5) = 3 [ a5 32 | U510 Ra(5:5) = l5)R 5|
[Tt () — freft
Kup(5,5) :Z/dx/dy/Lac(S,x) Vea ) UCd(y)Rdb()’,S)y
cd

x—y
U (5) — UStH(y)
S—y

eft (5) — et
Rdb(y7s)_/dyMRdb(yvs)’ (74)

N

kab<§’ S) = I_{ab<5’ S) + / dy

with which we finally identify the ingredients of Eq. (70) in terms of the phase-space matrix p,;(s) and the generalized
potential U (s) introduced already in Egs. (66) and (69).
It is useful to derive somewhat more explicit expressions. This is readily achieved in terms of the identity

reff x) — reff 3 freff x) — reff
/dZU ( ) U (Z)R(z,y) :ZUn ( ) Un (y)uff(y)’

X—2Z n=1 'x_y

Us(x) = /ciz[AU‘iff(z,x)UR(z) + AUgff(z,x)]'zR_(Z)z,

051(0) = 07() - [ a0 ()00 + AT5 e, 0122 UR(o),

Ut (x) = /%AU?H(Z’X)QR(Z)PR(Z) +/dz AT (2, x) hR(Z)PR(Z)' (75)

—X v/ —X
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An analogous result holds for the action of the left Green’s function L(x, y) on such a structure. This can then be applied to

derive the integral kernel

m,n=1 §=S

000 = [0 e (080 e+ 20 ),

T Z—X
/ U 2)p"(3)

T —X

Una(x) = U5 () -

T Z—X

U, (x) = / Lt )[ H(2)AT,(z.x) + hE(2) AU, (2.0)] +

in terms of a set of analytic functions U, (s) and u%(s),

U5t (x) =

Ut (2)AU,,(z.x) + AU, (z,x)],

Uit (x), with AU, (z,x) =0

(76)

ul(s). We note that g*(x), ht(x) were already introduced in

Egs. (44) and (75). The object US"(x) is defined via Eq. (75) by replacing the source term with U®"(x) — U (x). Using
similar algebra leads to an explicit form for the potential term with

. dss — > Ut (s dss—u* UR(35) — UR(s)
U = Ueff - — / Ueff <) R —n
(s) (s) xs—u? s—s—i—ze Z TS—u (5)p"(3) 5—s
3 .
- _ U (5)=U,u(s
=Stk = I ), )
— 5—s
Altogether the linear integral equation (70) is cast into the simple form
. dss _ Un(3) = Uy (5)
N N L mn mn R , 78
=06+ 3 l/“_ o)y (5) L= Tl (78)

where with Eq. (66) we finally arrive at the anticipated
result (54).

We illustrate the role of the auxiliary matrices U, (s) as
derived from our model (15). Since there are altogether 81
functions, we focus on the particular combinations

3
= Z uﬁ(s)i\]mn(s) and

1

3
=5 D)k (s), (79)

m=1

as they are the relevant entities in Eq. (78). In Figs. 15-17
we show that each of the 27 elements of HX  (s) are
piecewise continuous for s > p? or s > (m;, + M,)?. The
complex functions are shown in the domain s > /4% ors >
(m, + M})? only as needed for the evaluation of the
functions N,,(s) as shown in Fig. 13. Note that
HR® ,(s) are discontinuous only at the return points
s = ji3. The analogous property holds for the functions
HE (s) at s > (m, + M,)%.

n,ab

We should briefly summarize the general procedure to
derive the phase shifts and inelasticity parameters for a given
model interaction. Given the driving terms U (s) and U, (s)
together with u (s) and u® (s) as specified in Eqs. (44), (73),
and (74)—(77) we use the linear set of equations (54) to
determine the function &, (s) for s > (m;, + M,)* Thisis a
numerically stable task since all driving terms in Eq. (54) are
sufficiently regular in the needed domain. In the next step we
can compute the functions D, (s + ie) in application of
Egs. (41)—(44). The functions B, (s + i¢) are evaluated
from Eq. (59), which, however, requires the knowledge of
the functions &/, (). This proceeds in two steps. First, given
the functions &, (s) we can compute N, (s) from Eq. (78) at
subthreshold energies y7 < s < (m;, + M,)*. Then with

ZNHL pch (80)

gab(s

the desired object &, () is available and we can finalize the
derivation of the functions B, (s + i€). In turn the reaction
amplitudes 7', (s + i€) can be reconstructed from Egs. (24)
and (31) in terms of the functions D, (s + i€), By, (s + i€)
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FIG. 15. The nonvanishing functions Hf ,(s) = Y>> |

Uy(s)uR (s) for s > u? or s > (m;, + M,,)* in our schematic model (15).
Real and imaginary parts are shown with solid blue and dashed red lines respectively.
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3 Us(s)uB (s) for s > p or s > (my, + M,)? in our schematic model (15).

FIG. 16. The nonvanishing functions HY , (s) = >> |
Real and imaginary parts are shown with solid blue and dashed red lines respectively.
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FIG. 17. The nonvanishing functions HX ,,(s) = >3 _| U, (s)uf(s) for s > y? or s > (m;, + M,)? in our schematic model (15).
Real and imaginary parts are shown with solid blue and dashed red lines respectively.

and U, (s + i€). The phase shifts and inelasticity param-
eters are then given by Eq. (16).

VII. SUMMARY AND OUTLOOK

In this work we presented a novel framework to deal with
coupled-channel systems in the presence of anomalous
threshold effects. The framework was formulated for
an arbitrary number of channels and is suitable for
numerical simulations. We list the main cornerstones of
our development.

(1) Given a generalized potential the coupled-channel
reaction amplitudes were defined in terms of a set of
nonlinear integral equations formulated on contours
in the complex plane.

The analytic structure of the generalized potential in
the presence of anomalous threshold effects was
clarified. The key observation was the fact that the
latter must not satisfy the Schwarz reflection
principle.

We confirmed previous results that a physical
approach must consider second-order terms in the
generalized potential. The minimal contributions
were identified with the terms that are odd under
a Schwarz reflection.

The nonlinear integral equation can be solved
numerically by a suitable ansatz with Riemann
integrals over real energies only. The specific form

2

3

“

of the latter was derived for the first time. Explicit
expressions for the driving terms were presented for
an arbitrary number of channels.

A schematic three-channel model was analyzed in
the presence of anomalous thresholds. Throughout
the development all key quantities were illustrated in
this model. In particular the reaction amplitudes as
well as the phase shifts and inelasticity parameters
were computed and discussed.

Given our framework it is now possible to investigate
coupled-channel systems including J* =1~ and J = 3*
states using realistic interactions. Such systems are noto-
riously challenging since a plethora of anomalous threshold
effects are present. We expect such studies to shed more
light on the possible relevance of the hadrogenesis con-
jecture, which predicts that such computations could
generate a large part of the hadronic excitation spectrum
in QCD.
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