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We study the origin, consequences, and testability of a hypothesis of “partial μ-τ” reflection symmetry.
This symmetry predicts jUμij ¼ jUτijði ¼ 1; 2; 3Þ for a single column of the leptonic mixing matrix U.
Depending on whether this symmetry holds for the first or second column of U, different correlations
between θ23 and δCP can be obtained. This symmetry can be obtained using discrete flavor symmetries.
In particular, all of the subgroups of SU(3) with three-dimensional irreducible representation, which are
classified as class C or D, can lead to partial μ-τ reflection symmetry. We show how the predictions of this
symmetry compares with the allowed area in the sin2θ23-δCP plane as obtained from the global analysis of
neutrino oscillation data. Furthermore, we study the possibility of testing these symmetries at the proposed
DUNE and Hyper-Kamiokande (HK) experiments (T2HK, T2HKK), by incorporating the correlations
between θ23 and δCP that are predicted by the symmetries. We find that when the simulated data of DUNE
and HK are fitted with the symmetry predictions, the θ23 − δCP parameter space gets largely restricted
near the charge parity conserving values of δCP. Finally, we illustrate the capability of these experiments
to distinguish between the two cases leading to partial μ-τ symmetry, namely jUμ1j ¼ jUτ1j and
jUμ2j ¼ jUτ2j.

DOI: 10.1103/PhysRevD.98.075031

I. INTRODUCTION

Considerable theoretical and experimental efforts are
being devoted towards predicting and determining the
unknowns of the leptonic sectors, namely the charge
parity (CP) violating phase, octant of the atmospheric
mixing angle θ23 [i.e., θ23 < 45°, named as lower octant
(LO) or θ23 > 45° named as upper octant (HO)], and the
neutrino mass hierarchy [i.e., the sign of Δm2

31, Δm2
31 > 0

known as normal hierarchy (NH) and Δm2
31 < 0 known as

inverted hierarchy (IH)]. Symmetry based approaches have

been quite successful in predicting the interrelations
among these quantities and the structure of the leptonic
mixing matrix as discussed in Refs. [1–5] and the
references therein. General approaches along this line
assume some individual residual symmetries of the lep-
tonic mass matrices that could arise from the breaking of
some of the bigger symmetry of the leptonic interactions.
One such symmetry, called μ-τ reflection symmetry,
originally discussed by Harrison and Scott in Ref. [6],
leads to very successful predictions of mixing angles that
are close to the present experimental knowledge. This
symmetry may be stated as an equality of moduli of the
leptonic mixing matrix U:

jUμij ¼ jUτij; ð1Þ

for all of the columns i ¼ 1, 2, 3. Both the origin and
consequences of this relation have been discussed in
[7–22].
Using the standard Particle Data Group (PDG) [23]

parametrization of the matrix U
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U ¼ Uðθ23ÞUðθ13; δCPÞUðθ12Þ ¼

2
64

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

3
75; ð2Þ

one finds two well-known predictions

θ23 ¼
π

4
; s13 cos δCP ¼ 0: ð3Þ

Equation (3) suggests a maximal θ23, which is allowed
within 1σ by the global fits to neutrino observables
[24–26]. Additionally, it allows a nonzero θ13, unlike the
simple μ-τ symmetry that predicts vanishing θ13 [27–32],
see recent review [33] and references therein. Here, for
θ13 ≠ 0, one gets δCP ¼ � π

2
using Eq. (3). Both of these

predictions are in accord with the global fit of all neutrino
data. However, a sizeable range is still allowed at 3σ. Note
that, the best fit value of θ23 in the global fit deviates from
the maximal value for either mass hierarchy. Such devia-
tions can be regarded as a signal for the departure from the
μ-τ reflection symmetry. A theoretically well-motivated
possibility is to assume a “partial μ-τ” reflection symmetry
[34] and assume that Eq. (1) holds only for a single column1

of U. Assuming that it holds for the third column, one
gets the maximal θ23 and δCP remains unrestricted. These
correlations are found from Eq. (2) in respective cases
i ¼ 1 and i ¼ 2 to be

cos δCP ¼ ðc223 − s223Þðc212s213 − s212Þ
4c12s12c23s23s13

;

ðjUμ1j ¼ jUτ1jÞ; C1; ð4Þ

cos δCP ¼ ðc223 − s223Þðc212 − s212s
2
13Þ

4c12s12c23s23s13
;

ðjUμ2j ¼ jUτ2jÞ; C2: ð5Þ

These equations correlate the sign of cos δCP to the
octant of θ23. θ23 in the first (second) octant leads to a
negative (positive) value of cos δCP in the case of Eq. (4).
It exactly predicts the opposite behavior for Eq. (5). The
exact quadrant of δ is still not fixed by these equations, but
it can also be determined from symmetry considerations
[20]. These correlations were also obtained in [35,36] in the
context of Z2 and Z2 symmetries.2 Henceforth, we refer to
these correlations as C1 and C2, respectively. The above
equations also indirectly lead to information on the neutrino
mass hierarchy since the best fit values of θ23 lie in the first

(second) octant in the case of the normal (inverted)
hierarchy, according to the latest global fits reported in
[24–26]. Thus, precise verification of the above equations is
of considerable importance, and the long baseline experi-
ments can provide a way for such study. A similar study has
been performed in the context of the NOνA and T2K
experiments in [38–40].
In this paper, we consider the testability of these relations

at the forthcoming long baseline experiments of the Deep
Under-ground Neutrino Experiment (DUNE) and Hyper-
Kamiokande (HK). These potential high-statistics experi-
ments will overcome the parameter degeneracies faced by
the current experiments and lead us in to an era of precision
measurements of the oscillation parameters [41–50].
Because of this, these experiments are ideal to test the
parameter correlations like the ones given in the Eqs. (4),
(5). In the following, we obtain the allowed parameter
range in the δCP-sin2θ23 plane by fitting the symmetry
relations embodied in Eqs. (4), (5) to the simulated DUNE
and HK data. We also discuss whether the correlations C1

[Eq. (4)] and C2 [Eq. (5)] can be distinguished at DUNE
and HK. Recent studies on testing various models from
future experiments can be found, for instance, in [51–59].
We begin by first discussing the origin of partial μ-τ

reflection symmetry. After which, in Sec. II, we elaborate
on the robustness of the resulting predictions in a large class
of models based on flavor symmetry. We give a brief
overview of the experiments and simulation details in
Sec. III. In Sec. IV, we perform a phenomenological analysis
of the testability of the above symmetries in the DUNE and
HK data. We use the extra correlations predicted by the
symmetry in fitting the simulated data of these experiments,
and we obtain the allowed areas in the δCP-sin2θ23 plane.
In subsection IV B, we discuss the possibility of differ-
entiating between the two symmetries—C1 andC2.We draw
our conclusions in Sec. V.

II. PARTIAL μ-τ REFLECTION SYMMETRY
AND DISCRETE FLAVOR SYMMETRIES

Here, we briefly review the general approach based on
flavor symmetry to emphasize that partial μ-τ reflection
symmetry is a generic prediction of almost all such schemes,
barring a few exceptions. Basic approaches assume groups
Gν and Gl as the residual symmetries of the neutrino mass
matrix Mν and the charged lepton mass matrix MlM

†
l ,

respectively. Both of these groups are assumed to arise from
the breaking of some unitary discrete group Gf. The UPMNS

matrix U gets fixed up to the neutrino Majorana phases if

1If it holds for any two columns, then by unitarity, it holds for
the third as well.

2See the review article [37] for references on other similar sum
rules and their testability.

KAUSTAV CHAKRABORTY et al. PHYS. REV. D 98, 075031 (2018)

075031-2



it is further assumed thatGν ¼ Z2 × Z2 andGl ¼ Zn, n ≥ 3.
In addition, if we demand that all of the predicted mixing
angles are nonzero, then the following unique form is
predicted for almost all the discrete groups Gf [60,61],

U≡ UgenðθnÞ

¼ 1ffiffiffi
3

p

0
BBB@

ffiffiffi
2

p
cos θn 1

ffiffiffi
2

p
sin θnffiffiffi

2
p

cos
�
θn − 2π

3

�
1

ffiffiffi
2

p
sin

�
θn − 2π

3

�

cos
�
θn − 4π

3

�
1

ffiffiffi
2

p
sin

�
θn − 4π

3

�

1
CCCA;

ð6Þ

where θn ≡ πa
n is a discrete angle with a ¼ 0; 1; 2… n

2
. Here,

we have not shown the unphysical phases that can be
absorbed in defining charged lepton fields and unpredicted
Majorana phases. All of the discrete subgroups of SU(3)with
three dimensional irreducible representation are classified as
class C or D and five exceptional groups [62]. Equation (6)
follows in all of the type D groups taken as Gf. Type C
groups lead instead to democratic mixing, which shows full
μ-τ reflection symmetry but predicts a large reactor angle.
Equation (6) arises even if Gf is chosen as a discrete
subgroup of Uð3Þ, having the same textures as class D
groups [61].
Equation (6) displays partial μ-τ reflection symmetry for

the second column for all the values of θn ≠ 0, π
2
. In the

latter case, one gets total μ-τ reflection symmetry, but at
the same time, one of the mixing angles is predicted to be
zero and one would need to break the assumed residual
symmetries to get the correct mixing angles. More impor-
tantly, Eq. (6) essentially being a real matrix also predicts a
trivial Dirac CP phase δCP ¼ 0 or π. Equation (5) in this
case implies a correlation among angles. A nonzero CP
phase and partial μ-τ symmetry in other columns can arise
in an alternative but less predictive approach, in which the
residual symmetry of the neutrino mass matrix is taken as
Z2 instead of Z2 × Z2. In this case, one can obtain the

following mixing matrix U with a proper choice of residual
symmetries

U ¼ Ugenð0ÞUij; ð7Þ
where Uij denotes a unitary rotation either in the ijth plane
corresponding to partial symmetry in the kth (i ≠ j ≠ k)
column. Examples of the required residual symmetries are
discussed in [1–5], and a minimal example of this occurs
with Gf ¼ S4.
The partial μ-τ symmetries obtained this way also lead to

additional restrictions

c212c
2
13 ¼

2

3
ð8Þ

and

s212c
2
13 ¼

1

3
; ð9Þ

where Eqs. (8) and (9) follow from the partial symmetries
of the first and second columns, respectively. These
predictions arise here from the requirement that Gν and
Gl are embedded in the Discrete Subgroup of SU(3) and
need not arise in a more general approach. It is then
possible to obtain specific symmetries [35,36] in which the
solar angle is a function of a continuous parameter.
Figure 1, shows the correlation plots (thick blue lines)

between sin2 θ23 and δCP as given by Eqs. (4), (5). Here, the
red solid(dashed) contours represent the 3σ allowed region
for NH(IH) as obtained from the global-fit data by the Nu-
fit Collaboration [63]. Equations (4), (5) give two values of
the CP phase (namely, δCP and 360° − δCP) for each value
of θ23 except for δCP ≡ 180°. The width of the blue lines is
due to the uncertainty of the angles θ12 and θ13, subject to
the conditions given in Eqs. (8) and (9), corresponding to
Eqs. (4) and (5), respectively. The correlation between
sin2 θ23 and δCP is opposite in the class of symmetries that
give Eq. (4), vis-à-vis those that give Eq. (5). The parameters,
sin2 θ23 and δCP, are correlated between 0°–180° and are

FIG. 1. The thick blue lines show the correlation plots in the sin2θ23-δCP plane as predicted by the symmetry relations. The left (right)
panel correspond to Eq. (4) [Eq. (5)]. The solid(dashed) red curves represent the 3σ allowed parameter space as obtained by the global
analysis of data by the Nu-fit Collaboration [26,63] considering the hierarchy to be NH(IH), respectively.
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anticorrelated between 180°–360° for Eq. (4). The opposite is
true for Eq. (5). We also notice here that Eq. (5) rules out
regions around CP conserving (i.e., 0°, 180°, 360°) values.
Additionally, we observe that, at 3σ, some of the allowed
regions of sin2 θ23 and δCP, as predicted by the symmetries,
are disfavored by the current global-fit data. From the global-
fit data, we observe that the region 39° < δCP < 125° is
completely ruled out at 3σ for the NH and the region
δCP < 195° for the IH. The symmetry predictions can
further constrain the values of δCP presently allowed by
the global data.
In the next section, we study how far the allowed areas

in the δCP-sin2θ23 plane can be restricted if the simulated
experimental data confronts the symmetry predictions.

III. EXPERIMENTAL SPECIFICATIONS

In this paper, we have simulated all of the experiments
using the GLoBES package [64,65] along with the required
auxiliary files [66,67]. We have considered the experimen-
tal setup and the detector performance of DUNE and HK in
accordance with Refs. [68] and [69], respectively.

(i) Deep Underground Neutrino Experiment (DUNE):
The DUNE is a Fermilab based next generation long
baseline superbeam experiment. This experiment
will utilize the upcoming leading edge facility—
the Long Baseline Neutrino Facility (LBNF)—
which will provide a high intensity neutrino beam
and the infrastructure required for DUNE. In this
experiment, the muon-neutrino beam from Fermilab
will travel a baseline of 1300 km before it gets
detected at the far detector, situated at the Sanford
Underground Research Facility (SURF) in Lead,
South Dakota. The proposed far detector for
DUNE is a liquid argon time-projection chamber
(LARTPC) detector with a volume of 40 kT. The
beam power will be initially 1.2 MW, and later, it
will be increased to 2.3 MW [70]. In our simulation,
we consider the neutrino flux [71] corresponding to
1.2 MW beam power, which gives 1 × 1021 protons
on target (POT) per year. This corresponds to a proton
energy of 120 GeV. We also consider a total run time
of (5νþ 5ν̄) years as proposed by the experiment.

(ii) Hyper-Kamiokande Experiment: The Hyper-
Kamiokande experiment [69] is a Japanese based
long baseline experiment that will use the Japan
Proton Accelerator Research Complex (J-PARC)
neutrino beam facility. The primary goal of the
HK experiment is to determine CP violation.
However, it is also capable of observing nucleon
decay, atmospheric neutrinos, and neutrinos of
astronomical origin. Recently, the collaboration
has proposed two alternatives for the location of
the far detector. The first one is Tokai-to-Hyper-
Kamiokande (T2HK), which plans on constructing
twowater-cherenkov detectors (cylindrical tanks) of

fiducial volume 187 kt at 295 km in Kamioka.
Alternatively, T2HKK proposes to have one tank of
187 kt at 295 km in Kamioka and the other 187 kt
tank at 1100 km in Korea [69]. In our simulations,
we have considered the off axis angle (OAA) for
this detector in Korea as 1.5°, a proposed run time
ratio to be 1∶3 in neutrino and antineutrino modes
(total run time 10 years), and the proton beam power
of 1.3 MW, giving a total of 27 × 1021 protons on
target (POT).

IV. PHENOMENOLOGICAL ANALYSIS

In this section, we perform a phenomenological analysis
exploring the possibility of probing the correlations C1

and C2 at DUNE, T2HK, and T2HKK. This is discussed in
terms of correlation plots in the sin2θ23-δCP plane. We also
discuss the possibility of distinguishing between the two
models at these experiments.
We perform a χ2 test with χ2 defined as,

χ2tot ¼ min
ξ;ω

fχ2statðω; ξÞ þ χ2pullðξÞ þ χ2priorg: ð10Þ

χ2stat is the statistical χ2, whereas χ2pull signifies the system-
atic uncertainties, which are included using the method of
pulls with ξ denoting the pull variable [72–74]. Here, ω
represents the oscillation parameters: fsin2θ23; sin2θ12;
δCP;Δm2

21;Δm2
31g. χ2prior captures the knowledge of the

oscillation parameters from other experiments and is
defined as,

χ2priorðpÞ ¼
ðp0 − pÞ2

σ20
; ð11Þ

p denotes the parameter for which the prior is added, and
p0 and σ0 correspond to its best fit value and 1σ error,
respectively. In our analysis we have considered the effect
of the prior on the parameters θ13 and θ12. We assume a
Poisson distribution to calculate the statistical χ2stat,

χ2stat ¼
X
i

2

�
Ntest

i − Ntrue
i − Ntrue

i log
Ntest

i

Ntrue
i

�
: ð12Þ

Here, ‘i’ refers to the number of bins and Ntest
i , Ntrue

i are the
total number of events due to test and true sets of oscillation
parameters, respectively. Ntest

i is defined as follows, includ-
ing the effect of systematics

NðkÞtest
i ðω; ξÞ ¼

X
k¼s;b

NðkÞ
i ðωÞ

�
1þ cðkÞnormi ξðkÞnorm

þ cðkÞtilti ξðkÞtilt
Ei − Ē

Emax − Emin

�
; ð13Þ

where k ¼ sðbÞ represent the signal(background) events.
cnormi ðcitiltÞ corresponds to the change in the number of
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events due to the pull variable ξnormðξtiltÞ. In the above
equation, Ei denotes the mean reconstructed energy of the
ith bin with Emin and Emax representing the maximum and
minimum energy in the entire energy range and Ē ¼
ðEmax þ EminÞ=2 is the mean energy over this range. The
systematic uncertainties (normalization errors) and effi-
ciencies corresponding to signals and backgrounds of
DUNE and HK are taken from [41,69]. For DUNE, the
signal normalization uncertainties on νe=ν̄e and νμ=ν̄μ are
considered to be 2% and 5% respectively. While a range of
5% to 20% background uncertainty along with the corre-
lations among their sources have also been included. On the
other hand, for T2HK the signal normalization error on
νeðν̄eÞ and νμðν̄μÞ are considered to be 3.2% (3.9%) and
3.6%(3.6%) respectively. In the case of T2HKK, 3.8%
(4.1%) and 3.8% (3.8%) are taken as the signal normali-
zation errors on νeðν̄eÞ and νμðν̄μÞ respectively. The back-
ground normalization uncertainties range from 3.8% to 5%.
Ni

true in Eq. (12) is obtained by adding the simulated signal
and background events i.e., Ni

true ¼ Ns
i þ Nb

i .
In Table I, we list the values for the neutrino oscillation

parameters that we have used in our numerical simulation.
These values are consistent with the results obtained from
the global fit of world neutrino data [24–26].

A. Testing the sin2θ23-δCP correlation predicted by the
symmetries at DUNE, T2HK, and T2HKK

The numerical analysis is performed as follows.
(i) The data corresponding to each experiment is

generated by considering the true values of the
oscillation parameters given in Table I. Note that
the true values of θ23 and δCP are spanned over the
range (39–51°) and (0–360°), respectively.

(ii) In the theoretical fit, we calculate the test events by
marginalizing over the parameters sin2 θ13, jΔm2

31j,
sin2 θ23 and sin2 θ12 in the test plane using the ranges
presented in Table I.

(iii) The test values of δCP used are as predicted by the
symmetries specified in Eq. (4) for C1 and Eq. (5)
in C2.

(iv) In addition we impose the conditions given in Eq. (8)
for the symmetry relation C1 and Eq. (9) for
symmetry relation C2 in the test. Note that given
the current range of sin2 θ13 these relations restrict
the value of sin2 θ12 to 0.316 < sin2 θ12 < 0.319 for
C1 and sin2 θ12 to 0.34 < sin2 θ12 < 0.342 for C2.
These values of sin2 θ12 are within the current 3σ
allowed range. Note that these ranges exclude the
current best-fit value of sin2 θ12. Precise measure-
ment of θ12, for instance, in the reactor neutrino
experiment JUNO [75], can provide a stringent test
of these scenarios.

(v) We have not added any prior in this analysis. We
have checked that the prior on θ13 does not play any
role when the constraints represented by Eqs. (8) and
(9) are applied. In addition, since the best-fit θ12 is
excluded already by the constraints, the imposition
of θ12 prior will disfavor the scenarios.

(vi) We minimize the χ2 and plot the regions in the
sin2θ23ðtrueÞ-δCPðtrueÞ plane for which χ2 ≤ χ2min þ
Δχ2 where Δχ2 values used correspond to 1σ, 2σ,
and 3σ.

The resultant plots are shown in Fig. 2 for true hierarchy
as NH and Fig. 3 for true hierarchy as IH. We assume the
hierarchy to be known, and we do not marginalize over
hierarchy.3 The blue, gray, and yellow bands in Figs. 2
and 3 represent 1σ, 2σ, 3σ regions in the sin2θ23-δCP plane,
respectively. The red contours show the 3σ allowed area
obtained by the Nu-fit Collaboration [26,63]. These plots
show the extent to which these three experiments can test
the correlations between the two yet undetermined varia-
bles sin2 θ23 and δCP in conjunction with the symmetry
predictions. The red contours show the 3σ allowed area
obtained by the Nu-fit Collaboration [26,63]. The topmost
panel corresponds to DUNE 40 kT detector whereas the
middle and the lowest panels correspond to T2HK and
T2HKK experiments, respectively. The left plots in all the
rows are for testing C1 whereas the right plots are for
testing C2.
The figures show that, because of the correlations

predicted by symmetries, certain combinations of the true
θ23 and δCP values get excluded by DUNE, T2HK and
T2HKK. Owing to their high sensitivity to determine CP
violation, T2HK and T2HKK constrain the range of δCP
better than that of DUNE. This can be seen from the figures
(see Figs. 2,3) which show that, as we go from top to
bottom the contours gets thinner with respect to δCP. For
instance, for the C1 correlation, the CP conserving values
0° and 360° get excluded at 3σ for both of the octants by all
three experiments, as can be seen from the plots in the left
panels. However, for the C2, these values are allowed at 3σ

TABLE I. Values of oscillation parameters that are considered
in this study unless otherwise mentioned. We vary the true values
of θ23 in the whole allowed range, and marginalization for each
θtrue23 is done over the full allowed range of θ23. See text for more
details.

Osc. param. True values Test values

sin2 θ13 0.0219 0.0197–0.0244
sin2 θ12 0.306 0.272–0.346
θ23 39°–51° 39°–51°
Δm2

21ðeV2Þ 7.50 × 10−5 Fixed
Δm2

31ðeV2Þ 2.50 × 10−3 ð2.35–2.65Þ × 10−3

δCP (0–360)° Symmetry predictions

3We verified that there is less of an effect of marginalizing over
the hierarchy. Hence, to save the computation time, we have
presented the plots by assuming that the hierarchy is known.
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for all three experiments. Whereas, δCP ¼ 0° and 360° are
excluded by DUNE and HK experiments at 1σ and 2σ,
respectively. Again, one can see from the right panels that
for C2, δCP ¼ 180° is allowed for sin2 θ23 > 0.55 (i.e.,
higher octant) by DUNE but barely gets excluded at 2σ by

the T2HK and T2HKK experiments. The correlations
predicted by the symmetry considerations being indepen-
dent of hierarchy, the allowed regions are not very different
for NH and IH, but the region of parameter space allowed
by the current data for IH is more constrained and the

FIG. 2. Contour plots in the true: sin2θ23ðtrueÞ-δCPðtrueÞ plane for DUNE, T2HK, and T2HKK. The left(right) panel represents the
prediction from the symmetry relation C1ðC2Þ which corresponds to the Eq. (4) [Eq. (5)]. The hierarchy is fixed as NH. The red contour
in each panel represents the 3σ allowed area from the global analysis of neutrino oscillation data as obtained by the Nu-fit Collaboration
[26,63] for the normal hierarchy. The blue, gray, and yellow shaded contours correspond to 1σ, 2σ, and 3σ respectively.
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symmetry predictions restrict it further, as can be seen from
Fig. 3. Some of the parameter space allowed by the current
data can also be disfavored by incorporating the correla-
tions due to symmetry relations.
In Sec. II, it was discussed that the additional restrictions,

Eqs. (8) and (9), are obtained when the partial μ-τ
symmetry is derived in the specific approach discussed.
However, possibilities exist where partial μ-τ symmetry can

be generated without the additional restrictions. In this
context, we analyzed the changes in the allowed areas when
the additional restrictions are not imposed. This is done
only for DUNE, which captures the essential trend of the
impact of not imposing the extra constraints. This is shown
in Fig. 4. We have studied this for the representative case
of the symmetry relation C2. The procedure for generating
the plots is the same as outlined earlier, except with the

FIG. 3. Same as Fig. 2 but for inverted hierarchy.
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inclusion of the priors. While the earlier plots were
generated without any prior, for these cases, we have
studied the following scenarios:
(1) No prior on θ13 and θ12.
(2) Prior on θ13 and θ12.
(3) Prior on θ12 and no prior θ13.

(4) Prior on θ13 and no prior θ12.
The first plot of top row is without any prior on the
parameters θ12 and θ13 and no additional constraints
imposed. We find that the allowed area increases in size
as compared to the cases where the extra constraints
embodied in Eqs. (8) and (9) are not imposed. The second

FIG. 4. Contour plots in the true: sin2θ23ðtrueÞ-δCPðtrueÞ plane for DUNE, assuming the symmetry relation C2 in the test. The
additional constraints, Eq. (9), have not been applied in generating this plot. The first panel represents the plot without including any
prior. The second panel in the first row shows the effect of the prior on θ12 and θ13. The first plot in the second row shows the effect of the
inclusion of the θ12 prior, whereas the second plant shows the effect of the inclusion of the θ13 prior. The hierarchy is fixed as NH. The
red contour in each panel represents the 3σ allowed area of the Nu-fit Collaboration.

FIG. 5. The sensitivity of DUNE, T2HK, and T2HKK experiments to differentiate between C1 and C2 correlations for known normal
hierarchy.
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plot of top row is without imposing these additional
restrictions, but including the prior on θ12 and θ13. In this
case, the allowed regions are more restricted and certain
combinations of θ23 and δCP get disfavored. We proceed
further to show the impact of the prior considering a single
mixing angle at a time in the second row. In the first plot of
the bottom row, we show the effect of including the prior on
θ12 but no prior on θ13. In this case, the shape of the allowed
regions are same but they reduce in size. The effect of
certain combination of θ23 and δCP values getting disfa-
vored are seen more at the 1σ level. Similarly, the second
plot of the bottom row shows the effect of the θ13 prior.
In this case also, the allowed regions reduce in size as
compared to the case where no priors are included (first
panel of top row).

B. Differentiating between the C1
and C2 symmetries

In this subsection, we explore the possibility of differ-
entiation between the symmetries C1 and C2. This is
presented in Fig. 5, where we plot Δχ2 vs true θ23. To find
χ2stat [as defined in Eq. (12)], true events are calculated by
varying the true values of θ23 in the range (39°–51°). For each
true θ23, true values of sin2 θ13 and sin2 θ12 are allowed to
vary in their 3σ range such that the condition as given in
Eq. (8) is satisfied. Using these true values of the angles the
true δCP values are calculated using the correlation C1. This
leads to two sets of true events corresponding to δCP and
(360° − δCP), respectively. The remaining oscillation param-
eters are kept fixed at their best-fit values as shown in Table I.
In the theoretical fit, to calculate test events, we marginalize
over sin2 θ13, jΔm2

31j, sin2 θ23 in the range given in Table I,
and test δCP values are calculated using the C2. In addition,
we impose the condition as given in Eq. (9), connecting test
sin2 θ23 and sin2 θ13 and compute the χ2. For each choice of
true sin2 θ23, the χ2 is marginalized over the true sin2 θ13 and
sin2 θ12, and theminimum χ2 for each true sin2 θ23 is taken as
the value of χ2. This process is done for both δCP and
360°–δCP separately. We have performed the analysis con-
sidering the true hierarchy asNH.We have checked that if we
assume the IH as the true hierarchy, we obtain similar results.
The three panels from left to right represent DUNE, T2HK,
and T2HKK, respectively. The solid blue curves in the plots
are for thepredicted range δCP ∈ ð0° < δCP < 180°Þ, and the
dashed blue curves in the plots are for complementary range
360°–δCP ∈ ð180° < δCP < 360°Þ as predicted by the cor-
relations. The brown solid line shows the 3σ C.L.Weobserve

from the figure that at the maximal θ23, both of the
correlations are indistinguishable by all the three experiments
as is expected from Eqs. (4), (5).
The capability of the experiments to differentiate

between the two correlations increases as we move away
from the maximal value. The range of θ23, for which the
three experiments can differentiate between the correlations
at 3σ, is given in Table II. The lower limits signify the
values of θ23 below which the correlations can be differ-
entiated at 3σ, and the upper limits are for the values above
which the same can be achieved.

V. CONCLUSION

We study here partial μ-τ reflection symmetry of the
leptonic mixing matrix, U, which can arise from discrete
flavor symmetry. Specific assumptions which lead to this
symmetry were reviewed here. This symmetry implies
jUμij ¼ jUτijði ¼ 1; 2; 3Þ for a single column of the lep-
tonic mixing matrix U. If this is true for the third column of
U, then it leads to maximal value of the atmospheric mixing
angle and CP phase δCP. However, if this is true for the first
or the second column, then one obtains definite correlations
among θ23 and δCP. We call these scenarios C1 (equality for
the first column) and C2 (equality of the second column).
We find that almost all the discrete subgroups of SU(3),
except a few exceptional cases having three dimensional
irreducible representations, display the form of partial μ-τ
symmetry. We study the correlations among θ23 and δCP in
the two scenarios. Each scenario gives two values of δCP for
a given θ23—one belonging to 0° < δCP < 180° and the
other belonging to 180° < δCP < 360°. The models also
give specific correlations between θ23 and δCP and these are
opposite for C1 and C2. We study how the allowed areas in
the sin2θ23-δCP plane obtained by the global analysis of
neutrino oscillation data from the Nu-Fit Collaboration
compare with the predictions from the symmetries.
We also expound the testability of these symmetries

considering next generation accelerator based experiments,
DUNE and Hyper-Kamiokande. This is illustrated in terms
of plots in the sin2θ23ðtrueÞ-δCPðtrueÞ plane obtained by
fitting the simulated experimental data with the symmetry
predictions for δCP. The values of θ23 are found to be more
constrained for the CP conserving values namely δCP ¼ 0°,
180°, 360°. For the C2 correlation, the θ23 is found to be in
the higher octant for δCP ¼ 180° and in the lower octant for
δCP ¼ 0° and 360°. For the correlation C1, values of δCP

TABLE II. The limits of θ23 in degrees below and above which the correlations C1 and C2 can be differentiated at
3σ C.L. for two different ranges of δCP.

Range of δCP DUNE T2HK T2HKK

0° ≤ δCP ≤ 180° θ23 ≤ 41.5° θ23 ≥ 48° θ23 ≤ 41.8° θ23 ≥ 48.5° θ23 ≤ 42.6° θ23 ≥ 47.5°
180° ≤ δCP ≤ 360° θ23 ≤ 41.8° θ23 ≥ 49° θ23 ≤ 42° θ23 ≥ 48.7° θ23 ≤ 42.8° θ23 ≥ 47.7°
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around all the three CP conserving values δCP ¼ 0°, 180°,
and 360° are seen to be disfavored. Finally, we illustrate the
capability of DUNE and Hyper-Kamiokande to distinguish
between the predictions of the two correlations. We observe
that both the experiments can better differentiate between
these two as one moves away from the maximal θ23 value.
In conclusion, the future experiments provide testing

grounds for various symmetry relations, specially those
connecting θ23 and δCP.
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