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In models where the Higgs is realized as a pseudo-Nambu-Goldstone boson (pNGB) of some global
symmetry breaking, there are often remaining pNGBs of some U(1) groups (called “pseudoaxions”) which
could lead to smoking-gun signatures of such scenarios and provide important clues on the electroweak
symmetry breaking mechanism. As a concrete example, we investigate the phenomenology of the
pseudoaxion in the anomaly-free simplest little Higgs (SLH) model. After clarifying a subtle issue related
to the effect of symmetric vector-scalar-scalar vertices [e.g., Zﬂ(H 0" + no*H)], we show that for a natural
region in the parameter space, the SLH pseudoaxion is top-philic, decaying almost exclusively to a pair of
top quarks. The direct and indirect (i.e., via heavy particle decay) production of such a pseudoaxion at the
14 TeV (HL-)LHC turn out to suffer from either large backgrounds or small rates, making its detection
quite challenging. A pp collider with higher energy and luminosity, such as the 27 TeV HE-LHC, or even
the 100 TeV FCC-hh or SppC, is therefore motivated to capture the trace of such a pNGB.
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I. INTRODUCTION

Despite the great success of the Standard Model (SM),
marked by the discovery of the 125 GeV Higgs-like boson
[1,2] and the ongoing measurements of its properties, how
the SM is embedded into a larger theory still remains a
mystery. Since the Higgs boson mass parameter is in
general not protected under radiative correction, a naive
embedding would signal a high sensitivity of infrared (IR)
parameters (the electroweak scale and the Higgs boson
mass) to ultraviolet (UV) parameters (i.e., physical param-
eters defined at a high scale). Although this fine-tuned
situation is logically possible, or might be explained to
some extent by anthropic reasoning [3,4], it is nevertheless
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natural to conjecture the existence of some systematic
mechanism which protects the Higgs boson mass parameter
from severe radiative instability. A well-known example of
such a systematic mechanism is supersymmetry, which has
the merit of being weakly coupled and thus offers better
calculability compared to scenarios based on strong
dynamics. However, supersymmetry requires the introduc-
tion of a large number of new degrees of freedom (d.o.f.),
and a large number of new parameters associated with
them, making the model quite cumbersome. None of the
new d.o.f. have been observed. It is therefore well moti-
vated to consider alternative but simpler mechanisms with
weakly coupled dynamics in their range of validity.

One candidate of such an alternative is the little
Higgs mechanism [5-8]," in which the Higgs boson is a
Goldstone boson of some spontaneous global symmetry
breaking. The global symmetry is also explicitly broken in
a collective manner” such that the Higgs boson acquires a

'We refer the reader to Refs. [9,10] for reviews of little Higgs
models and Refs. [11-14] for some recent phenomenological
analyses of little Higgs models.

*More specifically, the global symmetry is completely
(explicitly) broken by a collection of spurions but not by any
single spurion [8].
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mass and at the same time the model is radiatively more
stable. A very simple implementation of this collective
symmetry breaking (CSB) idea is the simplest little Higgs
(SLH) model [15,16], in which the electroweak gauge
group is enlarged to SU(3), x U(1l)y, and two scalar
triplets are introduced to realize the global symmetry-
breaking pattern

[SUB), x U(1);] x [SU(3), x U(1),]
= [SUQ2), x U] x [SU2), x U(1),). (1)

The global symmetry is also explicitly broken by gauge and
Yukawa interactions, but in a collective manner to improve
the radiative stability of the scalar sector. The particle content
is quite economical. In particular, in the low-energy scalar
sector there exists only two physical d.o.f., one of which
(denoted H) could be identified with the 125 GeV Higgs-like
particle, while the other is a CP-odd scalar # which is
referred to as a pseudoaxion in the literature [17,18].

In the SLH, the pseudoaxion 7 is closely related to the
electroweak symmetry breaking (EWSB) and therefore
studying its phenomenology is well motivated. According
to the hidden mass relation derived in Ref. [19], the # mass
m,, is anticorrelated with the top partner mass my, which is in
turn related to the degree of fine-tuning in the model. The
hidden mass relation is derived within an approach con-
sistent with the continuum effective field theory (CEFT) and
does not rely on the assumption on the contribution from the
physics at the cutoff. Although the phenomenology of the #
particle has been studied in quite a few papers (e.g.,
Refs. [14,17,18,20,21]), their treatment was not based on
the hidden mass relation, and also most of the papers were
written before the 125 GeV boson was discovered. It is thus
timely to revisit the status of # phenomenology in light of
the discovery of the 125 GeV boson, taking into account the
properly derived hidden mass relation and focusing on the
parameter space favored by naturalness considerations.

There is another important reason that warrants a
reanalysis of the # phenomenology. The SLH is usually
written as a gauged nonlinear sigma model, in which the
EWSB can be parametrized through vacuum misalignment.
However, the vacuum misalignment also leads to the fact
that, in the usual parametrization of the two scalar triplets,
there exist scalar kinetic terms that are not canonically
normalized, and vector-scalar two-point transitions that are
“unexpected” [22]. A further field rotation, including an
appropriate gauge-fixing procedure, is thus required to
properly diagonalize the vector-scalar sector of the SLH
model. This subtlety was overlooked in all related papers
before Ref. [22], and if one carries out a proper diagonal-
ization of the bosonic sector of the SLH, some of the
n-related couplings will turn out to be different from what
has been obtained in previous literature. This is the case for
both the ZH# coupling and the coupling of # to a pair of
SM fermions. The occurrence of the mass eigenstate

antisymmetric ZHpy vertex [ie., Z,(HO"n—no*H)] is
postponed to O(&3) [where & = % v~ 246 GeV and f is
the global symmetry-breaking scale of Eq. (1)], and the
couplings of # to a pair of SM charged leptons, and to bb,
c¢, ui are found to vanish to all orders in &£. This leads to
significant changes in the # phenomenology, which will be
studied in detail in this work.

When one tries to derive the 5-related Lagrangian in the
SLH, symmetric vector-scalar-scalar (VSS) vertices, e.g.,
Z,(H0"n + no*H) naturally appear, which is a feature that
is often present in models based on a nonlinearly realized
scalar sector. The effects of such symmetric VSS vertices
contain some subtleties which, to our knowledge, have not
been discussed before in the literature. Therefore, we
devote one section to the analysis of symmetric VSS
vertices, which could also be helpful to clarify similar
situations in other nonlinearly realized models.

In this work we do not aim to give a complete charac-
terization of the n# phenomenology, which could be very
complicated in certain corners of parameter space. Instead,
we focus our attention on the parameter space favored by
naturalness considerations. More specifically, we will con-
sider an n mass in the region 2m, < m, <1 TeV, which is
favored by naturalness. We then calculate the # decay and
production at future high-energy hadron colliders in various
channels. It turns out that at the 14 TeV (HL)-LHC the
detection of 1 is quite challenging due to various suppression
mechanisms. A pp collider with higher energy and lumi-
nosity, such as the 27 TeV HE-LHC, or even the 100 TeV
FCC-hh or SppC, is therefore motivated to capture the trace
of such a pNGB.

The paper is organized as follows. In Sec. II we review
the basic ingredients of the SLH, including the crucial
hidden mass relation obtained from a CEFT analysis, and
present the mass eigenstate Lagrangian relevant for phe-
nomenological studies. In Sec. Il we clarify the effect of
symmetric VSS vertices. Then, in Sec. IV we derive
important constraints from electroweak precision observ-
ables relevant for the pseudoaxion phenomenology.
Section V is dedicated to the study of 5 decay and
production at hadron colliders. In Sec. VI we present the
discussion and conclusions.

II. THE SIMPLEST LITTLE HIGGS

A. Overview of the simplest little Higgs

In the SLH, the electroweak gauge group is enlarged to
SU(3); x U(1)y. Two scalar triplets @, ®, are introduced
to realize the spontaneous global symmetry breaking
pattern in Eq. (1). They are parametrized as

0
@, = exp (?) exp (?) 0 |, (2)
fCﬁ
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0
D, =exp (%) exp <— ;%) 0 1. (3)

Here we have introduced the shorthand notation sz = sin f3,
cp = cos 3, t; = tan B. f is the Goldstone decay constant. ©
and O are 3 x 3 matrix fields, parametrized as

o 020 & , ¢ 0, k
o=+ (% o) = (3 o)
(4)

n is the pseudoaxion, and 4 and k are parametrized as [v
denotes the vacuum expectation value (VEV) of the Higgs
doublet]

h= (Zi) hO:%(v—i—H—i;{), (5)

k:('}ﬁ) koz\}i(o——ia)). (6)

For future convenience, we introduce the notation
h=(hth)\/2. (7)

We note that the spontaneous global symmetry breaking (1)
should deliver ten Goldstone bosons, which are parame-
trized here in terms of ® and @’. The electroweak gauge
group SU(3), x U(1)y will eventually break to U(1)gy.
and therefore eight Goldstone bosons will be eaten to make
the associated gauge bosons massive. Only two Goldstone
bosons remain physical, denoted here as 7 and 7. The
parametrization of these Goldstone fields actually has some
freedom; we refer the reader to Ref. [19] for an explanation.

In the SLH, under the full gauge group SU(3). x
SU3), xU(1)y, ®; and ®, have quantum number
(1.3)_1. The gauge kinetic term of ®; and ®, can thus

be written as’
Ly = (D,®,)"(D'®y) + (D,®,)"(D'®,),  (8)

. . . . . 4
in which the covariant derivative can be expressed as

glw 9)

= i

D, =0, —igA;T" + ig,Q,By,

*We note that Eq. (8) automatically satisfies the requirement
of CSB.

In this paper our convention agrees with Ref. [23] but differs
from Ref. [24]. The conversion between the two conventions is
discussed in Appendix A.

In the above equation, A5, and B;; denote SU(3), and U(1)y
gauge fields, respectively. g and g, denote the coupling
constants of SU(3), and U(1)y gauge groups, respectively.
It is convenient to trade g, for tyy = tan@y,. T = % where
A a=1,...,8 denote the Gell-Mann matrices. For @,
D,, 0, = —%, Following Ref. [23], we parametrize the
SU(3), gauge bosons as

/1 0 0 L /100
are =0 21 oMo 1 o
0 0 0 00 —2
0 Wi ¥
1
r w0 x;|. 10
\/z OP; H ( )
Y9 Xt 0

with the first-order neutral gauge boson mixing relation
(cw = cos By, sy = sinBy)

Cw —Sw

Z/
w Swlw Sw.

A8 | = == z

V3 V3
B* —t—\/v% Sw\/l—% Cw\ll—% A
(11)

Since the electroweak gauge group is enlarged to
SU(3), x U(1)y, itis also necessary to enlarge the fermion
sector in order that fermions transform properly under the
enlarged group. We adopt the elegant anomaly-free embed-
ding proposed in Refs. [16,25,26]. In the lepton Yukawa
sector, the SM left-handed lepton doublets are enlarged
to SU(3), triplets L, = (vy,¢;,iNy)l with O, = —1
(m=1,2,3 is the family index). There are also right-
handed singlet lepton fields £, with O, = —1 and N,
with Q, = 0. The lepton Yukawa Lagrangian can be
written as [23]

s1mn
i1y

Ly =N g, ®iL,, + X

Crmein @ PILE+He.  (12)
In the quark sector, we have the following field content:
0, = (dLv_”LviDL)T’ dg, ug, Dg, (13)

0, = (SLv_CL’iSL)T’ Sgs Cr» Sk, (14)

Q3 = (11, by, iT,)",  1g, bg, Tk (15)

Here Q,, Q, transform under the 3 representation of

SU(3), with Q, =0. Q3 transforms under the 3 repre-
sentation of SU(3), with Q, = 1. The right-handed quark

fields are all SU(3); singlets with various U(1)y charges.
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More specifically, ug, cg, tg, Tg carry Q, = % while dg, sg,
bg, Dy, Sg carry Q, = —% The quark Yukawa Lagrangian
can be written as [23]

Loy = iMig,®] Qs + il i3, P05
A L _
+ ixbdRmeijk<D’1<I>§Q’§ + ixndy, Ol @,
mn

) amn -
+ l/?.gndénQZq)Q + iTuRmeijk®Tl®2]Q];l =+ H.c.
(16)

In the above equation, n = 1, 2 is the family index for
the first two generations of quark triplets. dg,, runs over
(dR’ SR, bRs DR! SR) and Uug,, runs over (MR, CRr, IR, TR)
Uk, Uk, are linear combinations of 7 and Tk. d,, d%, are
linear combinations of di and Dy for n = 1 and of sy and
Sk for n = 2. It is worth noting that in the dimension-four
part of Eqgs. (12) and (16) CSB is formally preserved. In
contrast, in Egs. (12) and (16), the dimension-five part
formally violates CSB. Nevertheless, the amount of vio-
lation is proportional to light fermion Yukawas and is thus
negligible.

We now turn to the scalar potential. Using a CEFT
approach and combining tree-level’ and one-loop contri-
butions, the scalar effective potential in the SLH is
calculated to be [19]

V = -2 (@@, + ®J0,) + A0 D, 2 + A(R)A*.  (17)

u? and A could be regarded as parameters to be determined

from experiments, while A(%) is automatically finite, and
could be expressed in terms of the Lagrangian parameters
in the model,

. 3 M2 1
A(h)——{/l‘)[ln = —5}

167 m; (h)
1 Mm% 1
——g4[ln 2XA ——]
8 miy(h) 2
M, 1
Y ) 2[111 z __}} 3
TTACREOH Liowr et D
A, 1s defined as
A2
11=#’ (19)

- 22 22
\/ATcp A5 s

At tree level we do not include a (<I>T<I>2)2+H.c. term
because it formally violates CSB. We note that introducing such
a term may lead to spontaneous CP violation [27]. Furthermore,
if both the (®]®,)? + H.c. term and Majorana mass terms for
Np’s are introduced, the SLH light neutrino masses can be
radiatively generated [28].

where A}, A} are the two Yukawa couplings in the top sector,
introduced in Eq. (16). M7, M%, M2, are defined as

M2 = (ﬂ’lchj + ﬂgzsf})fz, (20)
1

My =17 1)

M%/ = S 7. (22)

They are related to the physical mass squared of the
relevant particles as follows:

M2 = m% + m?, (23)
M% = m% + m3, (24)
M2 = m2, + m%, (25)

in which my, m, denote the physical mass of the heavy top T
and the top quark #, my, my denote the physical mass of the
X boson and W boson, and my, m, denote the physical
mass of the Z' boson and Z boson, respectively. m,z(fz)
m2,(h), m%(h) are field-dependent masses squared, for
which we use the following leading-order (LO) expressions:

m}(h) = 230°, (26)
~ 1 A
miy (h) = Egzhz, (27)
~ 1 ~
m>(h) = Eg2<1 + 13, 2. (28)

With the above expressions for the scalar effective potential
we are able to compute the electroweak VEV, Higgs mass,
pseudoaxion mass, etc., as functions of u?, A, and other
Lagrangian parameters in the model.

Finally, we note that there of course exists a gauge-
invariant kinetic Lagrangian for the SU(3), x U(1)y gauge
fields and the fermion fields in the model, according to their
representations.

B. Hidden mass relation, unitarity, and naturalness

Before starting the phenomenological analysis in the
SLH, it is important to notice that there exist certain
constraints that we have to take into account [19].

First, there exists a hidden mass relation which follows
from an analysis of the scalar effective potential (17). This
is because if we consider g, ty, 4, as fixed, then the scalar
effective potential (17) is fully determined by five param-
eters, say, w A f, tg, mr. Requiring the electroweak VEV
to be 246 GeV and the CP-even Higgs mass to be 125 GeV
should eliminate two parameters, leaving only three

075023-4



PHENOMENOLOGY OF A LITTLE HIGGS PSEUDOAXION

PHYS. REV. D 98, 075023 (2018)

parameters as independent. For instance, we may choose f,
15, mr as the three independent parameters; then, any other
observable could be expressed in terms of these three
parameters. In particular, the pseudoaxion mass m, is

determined from the following hidden mass relation
derived in Ref. [19]:

m2 = [m3 — v*A,(3 = 2015)) + v*A(5 — 2015 )]s5°.

(29)
Here t;) = tan(120)’ 5p% = Si#g, and 0, A, A, are defined by
v
0=———, 30
T (30)
3 g 4
Azﬁ[ﬂ?—g—ﬁ<l+t%‘/)2 s (31)
RN A
162 | mZ 8 mi
g' 232 M,
—=— (141t In—%|. 32
R 32)

The basic feature of this mass relation is that the pseu-
doaxion mass is anticorrelated with the top partner mass.

Second, the SLH is meant to be only an effective field
theory valid up to some energy scale, which could be
revealed by an analysis of partial-wave unitarity. This was
done in Ref. [19] and the unitarity cutoff was determined
to be

Ay = V8x x min{fcg, fss}. (33)

Apart from the lepton Yukawa part, the SLH Lagrangian
is manifestly symmetric with respect to the exchange
O, < @, (with the corresponding exchange of all related
coefficients), and therefore without loss of generality we
may restrict to 73 > 1. The resulting formulas have the

tl/; invariance. Nevertheless, the lepton Yukawa

tﬂ <>
Lagrangian (12) does not share this exchange symmetry,
and the 75 < i invariance could be lost. However, if we do

1
s
invariance violation could only come from input parameter

not deal directly with lepton-related vertices, the 75 <>

corrections, which are all suppressed by ;—; [19], which is a
very small quantity if we consider current bounds on f.
Therefore in the following, unless otherwise specified, we
will assume 75 > 1. (Moreover, in Sec. IV we will show that
the 75 <1 case is disfavored by electroweak precision
measurements for natural regions of parameter space.)
Then we can express the unitarity cutoff as

Ay = V8zfcy (34)

and we require all particle masses be less than A;. We note
that since Ay is determined by the smaller of the triplet
VEVs, while my is determined by the quadrature of the
triplet VEVs, requiring m, < Ay leads to an upper bound
on 7 (besides our assumption 7z > 1)

4n(3 - 13)

2

1<t <
Sl s
g

—1~89. (35)

Third, the parameter M7y has a lower bound derived
simply from the structure of the Yukawa Lagrangian [24]

m
My > \/ijlfszﬁ N fSap (36)

where s,45 = sin(2f8). My is also bounded from above by
either Ay, or the requirement that m% obtained from Eq. (29)
should be positive.

Finally, from the LHC search for the Z' boson in the
dilepton channel [29,30], we estimate the lower bound on f
as [27]

f275TeV, (37)

We note that when combined with Egs. (36) and (35) this
also leads to a lower bound on the top partner mass of
around 1.7 TeV, which is much more stringent than
constraints from top partner searches at the LHC.

It is remarkable that the naturalness issue can also be
analyzed in a CEFT approach, which was done in Ref. [19].
We define the total degree of fine-tuning at a certain
parameter point as

Aqor = maX{A/{or A%OT}’ (38)

where Ay, Ak are defined by

A

Ay Om?
TOT = ‘ L, TOT = . (39)

m2 Dy

2 Om2
s ‘ Hy Om,

m3, O,

Here Ay, 3 denote the A, u?> parameters defined at the
unitarity cutoff. The above definitions obviously reflect
how the IR parameters (e.g., m%l) are sensitive to UV
parameters (e.g., Ay, ,u%]), and thus may serve as a measure
of the degree of fine-tuning in the allowed parameter space.
We may follow Ref. [19] to compute the degree of fine-
tuning, and find several general features. One feature which
is easy to understand is, generally speaking, with smaller f
and my we could get a smaller degree of fine-tuning.

In Fig. 1 we present the density plot of LogArqt in the
m,-my plane for f =8 TeV. Only the colored region is
allowed by various constraints. From the figure it is clear
that the parameter region favored by naturalness consid-
erations is featured by a small my, with m, around
500 GeV. A light #, with a mass less than 2m,, is
unfortunately disfavored.
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mr

(TeV)

FIG. 1. Density plot of LogAtor in the m
f =8 TeV. Log means log,,.

,-mr plane for

C. Fermion mass diagonalization and
flavor assumption

Fermion mass diagonalization has been studied in
Refs. [23,24]. In the lepton sector, the fermion mass matrices
can be diagonalized by the following field rotations:

(NLn> (Ca S5 )(NLn>
_) 9
Un S5 —Cs Vln

v
n=1,2,3, = , (40)
\/Eftﬂ
er, er €Rr €Rr
py | = Ul e | pr | = Wil ue |, (41)
L L TR TR

where U,;, W, are both 3 x 3 unitary matrices. In this work,
for simplicity we will assume that U;, W, are both identity
matrices. This leads to a simplification of some Feynman
rules associated with the heavy neutrino N.

In the quark sector, first of all we perform field rotations
in the right-handed sector as follows:

I —ﬁtSﬂtR +/1tCﬂTR

Ups = ) R3
\ /}L’zc2 + ﬂ’zsﬂ

o /It CﬁtR + /VSﬂTR

/21202 4 /112 ’

(42)
dl . —ﬂgSﬂdR +/1({iCﬁDR d2 ﬂ. CﬁdR ‘|‘)~ sﬂDR
Rl — , Rl = )
/I‘lﬂcf; +/1§2s§ /1‘112cﬂ /1‘212sﬂ
(43)
dl _—AES/}SR +A’icﬁSR d2 _ﬂiCﬂSR +/1§sﬁSR
R 22 22 r2 22 22
A cﬂ+/1§ 8% A o + 23 S5

(44)

For simplicity, the phenomenological studies done in this
work will be carried out under the following flavor
assumptions on the quark Yukawa Lagrangian (16):

M=l =R =2 =23 =22 =0, (45)

W =25=2,=2=0. (46)

These flavor assumptions turn off all of the generation-
crossing quark flavor transitions and lead to a trivial
Cabibbo-Kobayashi-Maskawa matrix, i.e., Ve = 1343,
which is not realistic. Nevertheless, in this paper we are
concerned with the direct production of new physics
particles at high-energy colliders rather than quark flavor
observables. Also, for the parameter region that we are
interested in, the phenomenology is not sensitive to the
flavor assumptions adopted here, if the A’s in Egs. (45) and
(46), which characterize the generation-crossing quark
flavor changing effects, are small.

With the above flavor assumptions, it is then straightfor-
ward to show that, up to (’)( ), after right-handed sector
field rotations we only need to perform the following field
rotations in the left-handed sector to diagonalize the quark
mass matrices:

()G ) @
(0) 7 (e 7))
()= TG @

In the above equations, the field rotation parameters 6,, dpy,
Ogs can be expressed using f, f# and the corresponding
heavy fermion mass as follows®:

5 =—" 2+ 8—2f—2s202 (50)
! 2\/_fSﬂCﬁ M Bep

v m2 f2
Spa = ;1 =8—f=5s3ch |
Dd 2\/_fsﬁcﬁ< \/ 2 MZD pop
(51)
2f2
Ogs = (32 + /1 —-8— 2552
S. fosﬁcﬂ (/ \/ 2M2 B /})
(52)

®Qur expressions for 5,, 8p, 8, differ from the corresponding
expressions in Eq. (2.63) of Ref. [23]. The expressions of &;, 6py,
Ogs given in Ref. [23] are not consistent with their counterparts in
Ref. [24]. Our calculation agrees with Ref. [24].

075023-6



PHENOMENOLOGY OF A LITTLE HIGGS PSEUDOAXION

PHYS. REV. D 98, 075023 (2018)

Note that in the above equations, before the square root,
both the plus sign and minus sign give possible solutions,
which leads to a total of eight sign combinations. When we
refer to the sign combination in these equations, we will list
them according to the order &,, §py, sy, as, €., (+, +, +),
(+,+,-), etc., my, my, M, Mg correspond to the mass of
d, s, D, S, respectively. In the following we will simply
neglect the small m,, mg; then, the expressions of dpy, g
become identical, apart from a possible sign difference
before the square root. Then, we obtain the simple
expression

vt
+ st _ 14 — —
5Dd*5Ss

v
T e N 5 p— 5 s = — N
\/Ef bd 5 \/zft 5

where the superscripts indicate the sign choice for the
corresponding rotation parameter. The rotation parameters
04, Opas Osg are important since they appear directly in the
coefficients of various interaction vertices which affect the
n phenomenology, as we will see.

(53)

D. Lagrangian in the mass basis

We are now prepared to present the Lagrangian in the
mass basis which is relevant for the investigation of 7
phenomenology. However, let us first note that there is a
subtle issue regarding the diagonalization in the bosonic
sector. After EWSB, it can be shown that the CP-odd sector
scalar kinetic matrix in terms of the #, {, y, w fields is not
canonically normalized. Also, there exist “unexpected”
two-point vector-scalar transition terms like Z#0,n after
expanding the covariant derivative terms of the scalar
fields. Therefore, a further field rotation (including a proper
gauge fixing) is needed to diagonalize the bosonic sector.
This subtle issue had been overlooked for a long time in the
literature, and was only remedied in a recent paper [22]. In
Ref. [22], an expression for the fraction of mass eigenstate 7
field contained in the 7, {, y, w fields originally introduced
in the parametrization (4)—(6) was obtained, valid to all
orders in & = %, as follows (we collect the four fraction
values into a four-component column vector T):

Cy+5

—cyj{s(sgtﬂ — s%t;l)

T = v _ _ ’ (54)
f—QnyJlﬂs(Czaf/; - Czyf/;l)
%C;}_(S(Szgt/} + SZyIEl)
where
vtﬂ v
y=—=-, 5= . (55)
V2f V2ft

The T vector is involved in the derivation of all #-related
mass eigenstate vertices. In particular, from the expression
of T we see that there is an O(¢) component of thw mass
eigenstate n contained in y. This has the following
consequences. If we parametrize the mass eigenstate
ZHn vertex as

[’ZHn = C%;Inzﬂ (nayH - Haﬂ’?)
+ ¢y 2 (n0,H + HO,n), (56)

where cZ, denotes the coefficient of the antisymmetric
ZHn vertex, and ¢y, denotes the coefficient of the
symmetric ZHpn vertex, then it was shown in Ref. [22] that

I 540@), (57)

S ——
1 4\/§C%Vt2ﬂ

o 9 g { 8
ZHn ﬂcwtzﬁ 24\ﬁcws2ﬁ Saplap

Cy C

w

We see that the antisymmetric ZH7 vertex only shows up
from O(£%), in contrast to the results presented in
Refs. [17,18] which claimed the existence of antisymmetric
ZHn vertex at O(¢) due to the lack of an appropriate
diagonalization in the bosonic sector.

This subtle issue of diagonalization in the bosonic sector
also has an impact on the # coupling to fermions. For
instance, if we consider the expansion of ¢; jkCD’i CDé, with the
help of the expression for the T vector in Eq. (54), we could
find the following result for the neutral component:

0
eijkd)’icbé D —if | [SpCpSyss +%Cy+5H - (59)
0

An important message from this is that ¢;;, ®f (Dé does not
contain any fraction of the mass eigenstate # field, to all
orders in £. Therefore, from Eq. (12) we immediately
conclude that 77 does not couple to a pair of charged leptons
to all orders in &. This point was overlooked in previous
studies [21,31] which relied on 1 — 77.

In the following, let us collect the other mass eigenstate
vertices that are relevant for # phenomenology, to the first
nontrivial order in £. In the Yukawa sector, we have the
following couplings of H and # to a pair of fermions.

075023-7



CHEUNG, HE, MAO, TSENG, and ZHANG PHYS. REV. D 98, 075023 (2018)

(1) H and 5 couplings to the lepton sector:

LiyD-— Higyly, + HNpg,v
LY Z\/ifSﬁCﬂt},_;,ﬁ Rn'Ln Z\/— ﬂ Rn¥Ln

n=1

}'+§77NRnNLn i Z y+677NRnULn + H.c. (60)
f f f
(2) H and 5 couplings to the up-type quark sector:

m _ m _
EQY D —TMHMRML —TCHCRCL

2 _ My
——HRL+—<Q+5>HtRTL+ 5HTRtL+ HTRTL
fz/a
m My My
—_ ” 5}'][RIL ntRTL+l » 2_f2+5 ”TRtL+l ’/[TRTL +HC (61)

(3) H and 5 couplings to the down-type quark sector:
v

2

20

_d HdeL +— ( V2 + 5Dd> HdgD, + —5DdHDRdL + ™ gp.p,
v f 25 M

2 Mg 2
—%HS_'RSL +n/ls<—\/_v+5ss)HSRSL+ 5S\HSRSL+ m HSRSL
v v ftap

.my - RUTEE M v — M —
- 175Dd’7deL - ITWdRDL + ITD <2_f2 + 5%»1) nDgd, + 17D5Dd’1DRDL

m mg Mg M -
—is 2 54 NSRSL — l—l’[SRSL +i— 5 (2_f2 + 5S‘>I’[SRSL 4+ S5Ss;1SRSL + H.c. (62)
In the above equations, m,, n = 1, 2, 3 denote the masses of e, u, 7 leptons, M,,, n = 1, 2, 3 denote the masses of the three
heavy neutral leptons N,,, and m,,, m. denote the masses of the u, ¢ quarks, respectively.  can also be a decay product of the

heavy fermions N, T, D, S, and therefore we also list the relevant Lagrangian for the heavy fermion gauge interaction which
enters the heavy fermion decays,

gv >
L. W N wV i ———=——Z, N7 Vi
matter 2f Lm? L 2\/§CWft/)’ ulNLmY VL
go, g6 -
\/2£W+TL7/ﬂbL 2 ! ZﬂTL}/”tL
_ 9pd i - 90pa 9Oss _ 9O,
WJr y“D; +—— Zd “D ——W+ "S —|— Zs “S; + H.c. 63
\/§ ury" 2ew LY L \/5 LY 9L 2w LY OL ( )

A further interesting possibility is that # might come from the decay of a Z’ boson. The Z'-related parts of the interaction
Lagrangian are listed below.
(1) Z' couplings to leptons:

-7 - -
L matter 2 QZ\/T—Wt%Van}’”anZL - QJ%—%VZRMMR;:ZL

2

— 1 _
Z, — 9—=—=N1.V"N1.Z,,. (64)

W 5 ouu
g Vin¥V"'Vin "
2,/3 -2, 3-14,
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(2) Z' couplings to third-generation quarks:

3- 213 -
Lonatter D —g—T PTLZ), + g——2—Try"TrZ,
matter 3\/3_— L L 3m R R%y
3+4, 2,
git Y2y, + g —F——=1rV"1rZ,
6/3-1, " 3/3-1,
+ ngL ”bLZ/ iBR}/ﬂbRZ, (65)
6/3 — I3./3- 2 !
(3) Z' couplings to first- and second-generation quarks:
Lo g2 Wp p, 7 W5 “DypZ,
matter g 3 LY L%pu g3m RY R
_gﬂj vd, 7 _gij dpZ
6 L L% 3m R R%u
PR Z,+ 26y z,
ML}’ ur, 97“13}’ Ug
6 3./3 —
+terms with u — c,d - s,D — S. (66)
(4) Z' couplings to bosons (relevant for Z’ decay):
Logmge O —igy/3 — 13, (1 = 53 ) 32 {(8ﬂzg)(w—ﬂw+v - WHW™)
+ZM[(OWW™ = (0, Wy )W + Z¥[(0, W7 )W — (9, W, ) W]}, (67)
2gv 3-1
LD —f—z'ﬂ(na H = HOn) — Y= — W92 740 H + HO )
\/ bl thIZﬂ \/zft2/}
0F 0 2
g v T (Y/‘ + Y[l) g vty HZ/”ZM. (68)

- n
2,4 /3 -1} V2

III. SYMMETRIC VSS VERTICES

In the derivation of the SLH Lagrangian in the mass
basis we obtained the ZHny vertex in the form of
Eq. (56), which contains two parts: the antisymmetric part
[Z"(no, H HO,n)] and the symmetric part [Z*(n0,H +
HO, )] An antisymmetric VSS vertex often appears in
models based on a linearly realized scalar sector, such as
the usual two-Higgs-doublet model (2HDM). It is natural to
ask whether the symmetric VSS vertices can have any

"The Hermiticity requirement on the Lagrangian does not
forbid the symmetric part. Z,, H,  are all real fields. 9, does not
lead to an additional minus sign under Hermitian conjugation
because in quantum field theory x*’s are labels, not operators.
This is not to be confused with the situation in ordinary quantum

mechanics.

+
2e3,\/3 - 13

physical effect. We note that in a Lorentz-invariant ZHn
vertex, the J, may act on any of the three fields (Z*, H, n).
However because a total derivative term 0,(Z*Hn) has no
physical effects, we therefore expect at most two indepen-
dent contributions from the interaction of one vector field
with two scalar fields. If symmetric VSS vertices are
allowed and present in a general theory and could lead
to distinct physical effects, it would mean that a vector field
could interact with two scalar fields in a manner different
from the usually expected antisymmetric pattern, which
may further reveal interesting features of the enlarged scalar
sector.

Let us first note that the symmetric VSS Lagrangian
Z'(nd,H + HO,n) can be written as

Z,0"(Hn) (69)

075023-9



CHEUNG, HE, MAO, TSENG, and ZHANG

PHYS. REV. D 98, 075023 (2018)

via Leibniz’s rule and is therefore (via integration by parts)
equivalent to

—(0"2,)(Hn) (70)

in the Lagrangian formulation of the theory. A reflective
reader might at this moment wonder whether terms like
Eq. (70) indeed contribute to S-matrix elements if canonical
quantization is adopted. Note that what matters in canonical
quantization is the interaction Hamiltonian in the inter-
action picture (denoted Hi,m), and if Z* is a massive spin-1
field, then the corresponding interaction picture field
operator Z; (the subscript “I” denotes interaction picture)
will automatically satisfy [32]

0,7" = 0. (71)

It is tempting to arrive at the conclusion that terms like
Eq. (70) cannot contribute to S-matrix elements due to
Eq. (71). Actually, this is not quite correct. The correct
procedure to go from the classical Lagrangian to the
interaction Hamiltonian in the interaction picture H™ is
to (i) identify appropriate canonical coordinates and their
conjugate momenta, (ii) perform a Legendre transformation
to obtain the Hamiltonian and express it in terms of
canonical coordinates and their conjugate momenta,
(iii) promote the canonical variables to field operators
satisfying appropriate canonical commutation relations,
and finally (iv) split the Hamiltonian into a free part and
an interaction part and replace the Heisenberg-picture
quantities with their interaction-picture counterparts [32].
If this procedure is strictly followed, we would find that
only the spatial components of Z¥ can be treated as
independent canonical coordinates while Z° is dependent
because regardless of whether we start with Eq. (69) or
Eq. (70) the derivative of the Lagrangian with respect to ZO
cannot be made to satisfy canonical commutation relations.
To avoid the appearance of 9°Z in the Hamiltonian we
could start with Eq. (69), and then the problem turns out to
be the same as that treated in Sec. 7.5 of Ref. [32]. Using
the results there, we could see that Eq. (69) leads to a term

~249,(hyAy) (72)

in the interaction Hamiltonian in the interaction picture
(barring a Lorentz noncovariant term which is not shown
here). This will certainly lead to a vertex Feynman rule

—k*, (73)

where k* is the Z momentum flowing into the vertex. This
vertex Feynman rule could also be derived from Eq. (69)
via the path-integral method. Notice that it is not legitimate
to perform integration by parts in the interaction-picture
Hamiltonian H'™ to obtain

(0,27)(iAr) (74)

from Eq. (72).8

The appearance of 0,Z* in Eq. (70) is reminiscent
of covariant gauge fixing in gauge field theories.
Equation (70) is not gauge invariant; nevertheless, at this
moment let us suppose that it can be deduced from a gauge-
invariant operator. Because we are dealing with quantum
field theories it is important not to confuse them with
classical field theories. In a classical gauge field theory a
gauge-fixing condition (such as the Landau gauge con-
dition 9,Z* = 0) is employed so that the solutions of the
equation of motion are required to also satisfy the gauge-
fixing condition. In quantum field theory all classical field
configurations, regardless of whether they satisfy the
classical equation of motion, are to be integrated over in
the path integral. The usually adopted covariant gauge,
the general R; gauge, actually corresponds to a Gaussian
smearing of a class of covariant gauge conditions and does
not strictly force the classical field to satisfy a simple
gauge-fixing equation. However, the limit £ — 0 makes the
gauge-fixing functional act like a delta function imposing
the Landau gauge condition 9, 2" = 0 [32]. Therefore, it is
heuristic to guess that in the Landau gauge, symmetric VSS
vertices do not contribute to the S-matrix of the theory.
However, we should not forget that in the Landau gauge it
is necessary to take into account the Goldstone contribution
to the S-matrix, and also the associated ghost contribution
when we go beyond tree level in perturbation theory. This
observation suggests that at tree level, processes involving
symmetric VSS vertices can be seen as purely Goldstone
mediated.

Physical effects of antisymmetric VSS vertices have
been well studied in the literature. For example, in the
2HDM, a benchmark process which embodies the effect of
antisymmetric VSS vertices is

f—|—f—>A+h (75)

where A and & denote a generic CP-odd and CP-even
2HDM Higgs boson, respectively. The corresponding
Feynman diagram is shown in Fig. 2 in unitarity gauge.
Now suppose we replace the antisymmetric VSS ZhA
vertex in Fig. 2 by a completely symmetric VSS ZhA
vertex. It is obvious that if the Z boson is on shell, then the
amplitude should vanish since for an on-shell massive
vector boson we have the relation p-e¢ =0 for its

8More specifically, integration by parts for spatial components
of H™ should be fine if the fields are assumed to satisfy certain
boundary conditions, which is usually the case. However,
integration by parts for the temporal component of HIM is
problematic since in the expression for the scattering operator
S = Texp(—i [*® HMdt) the temporal integration is actually
twisted by the time ordering. No such problem exists if we adopt
the path-integral method.
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FIG. 2. Associated production of & and A.

momentum and polarization vectors. It is tempting to
proceed with the case where the Z boson is off shell.
The amplitude in this case can be examined from two
perspectives. First, we can perform the calculation in
unitarity gauge. In this gauge, the result of dotting the Z
momentum p at the ZhA vertex into its s-channel propa-
gator is again proportional to the Z momentum p at the
Zf f vertex. It is then obvious that only the axial-vector part
of the Zff vertex contributes to the amplitude, with a
contribution proportional to the fermion mass my.
Alternatively, we may perform the calculation in Landau
gauge (¢ = 0), in which the diagram shown in Fig. 2 does
not contribute to the amplitude; nevertheless, we need to
take into account the s-channel Goldstone-mediated ampli-
tude, which again gives a contribution proportional to the
fermion mass m;.

Although usually f is a light fermion with negligible
mass effects, we might be interested in the case where f is
heavy with important mass effects, e.g., the top quark. If in
this case the symmetric VSS vertex could lead to physical
effects, we would seem to produce a paradox in the SLH. In
the SLH there exists a symmetric ZHn vertex; however, if
we consider a linearly realized SLH as a UV completion,
then it cannot lead to symmetric VSS vertices and hence
there will be no related physical effects. Since the usual
nonlinearly realized SLH can be related to a linearly
realized SLH via an appropriate field redefinition, the
above discussion seems to violate the field redefinition
invariance of the S-matrix element” We can turn the
argument around to use the field redefinition invariance
to infer the existence of an additional contribution in the
SLH which also contributes to the ff — Hp process such
that the field redefinition invariance is maintained. In fact, if
we examine the Yukawa part of the SLH Lagrangian, we
would find the following four-point contact vertex (my
denotes the mass of f):

i2\/§9A myg

7.5
LD oy v Hufy f. (76)

°The radial mode does not help since it does not have the
required CP property.

! H [ H f H
/ / /
/
/ / Y
Z X A N
\ \ N
\ \ N
f U f U] f U
FIG. 3. Feynman diagrams in the SLH for ff — Hp in R;:
gauge.

Here g, is the axial coupling of the fermion f which also
appears in its interaction with the Z boson and the
associated Goldstone y as

9 oz 2gamy -
L> 50 Z'fru(gy + 9ar°)f + i /; Lty (77)
w

Now if we compute the amplitude for ff — Hp in R;
gauge, we need to include three contributions: s-channel Z
exchange, s-channel y exchange, and the ffH#n contact
interaction, as shown in Fig. 3. The amplitudes correspond-
ing to these three diagrams are computed to be (from left to
right)

V2 _em

1= 5 5
vfty q* —Em

V2 ¢

B vftyy q* — Em?

gamso(p7)y u(py), (78)

iMy ZgAmfﬁ(Pf)}’S”(Pf)v (79)

) V2 _
iMp = _%29Amfv<pf)75”(pf)' (80)

Here p; and p; are the four-momenta of f and 1,
respectively and g = py+ p;. When we add the three
contributions, we find

iMl+iM11+iM11[:0 (81)

which is exactly what we would expect from field redefi-
nition invariance. Moreover, we see that the Z and y
contributions add up to be gauge independent, while the
contact interaction contribution itself is gauge independent.

Here we would like to mention a further subtle point
related to the symmetric VSS vertex. It might still be
somewhat counterintuitive that the contribution from the
symmetric ZHpn vertex is canceled by the contribution from
the ffHn contact vertex, since the former contribution
should know the position of the Z pole and therefore vanish
for an on-shell Z boson, while the latter certainly does not
“feel” the Z pole. To illustrate this issue, we can include the
effect of the Z boson width I', so that the Z boson
propagator in the unitarity gauge is written as
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1% 9'q"
gv + s

. 82
q* — m% + imyI', (82)

When this propagator is dotted into ¢, coming from the
symmetric VSS Feynman rule, at g> = m? it will vanish,
which seems quite plausible given our previous argument
that a symmetric VSS vertex does not contribute to the
process in which the related vector boson is on shell.
However, this immediately leads to the paradoxical sit-
uation that near the on-shell region the field redefinition
invariance is again violated since the contribution from the
ffHn contact vertex certainly does not know about the
Z pole.

The resolution of this paradox consists in the treatment
of the particle width in its propagator. The naive treatment
in Eq. (82) is actually not quite correct and will in general
lead to results that violate the Ward-Takahashi identities. A
proper treatment can be made by, e.g., employing the
complex mass scheme which properly retains gauge invari-
ance. The final result is that, of course, no exotic structure
appears near the Z pole and the field redefinition invariance
is maintained.

IV. CONSTRAINTS FROM ELECTROWEAK
PRECISION OBSERVABLES

As discussed in Sec. II, in the study of the pseudoaxion
phenomenology there are eight sign combinations for the
rotation parameters &;, 6p,4, d5,. Moreover, when the lepton
sector is relevant, either tg > 1or ty < 1 could be possible,
leading to further complications. Nevertheless, as will be
shown in this section, the number of possibilities greatly
reduces if we require the following.

(1) The parameter space under consideration is favored

by naturalness considerations and thus embodies
(to some extent) the original motivation of the
SLH model.
(2) The parameter space under consideration is allowed
by electroweak precision measurements.
As discussed in Sec. II, the first requirement points to the
region characterized by a small top partner mass. In the
SLH, currently the lower bound on the top partner mass is
derived from Eq. (36) where f is stringently constrained by
dilepton resonance searches. Constraints from direct
searches for top partner production are not as competitive
at the moment. For given f, a small top partner mass could
be obtained by requiring a large 74 (or t;l forzz < 1), which
is in turn bounded by unitarity considerations. To summa-
rize, the first requirement points to the region characterized
by a small f and large 75 (or t;l for 15 < 1).

As for the second requirement, in the present work we
consider the following electroweak observables.

(1) The W boson mass my.

(2) R observables measured at the Z pole, R;, R., R,,

R”, R, which are defined by

R, =T'(bb)/T(had),
R, =T(had)/T(I*I7),

R.=T(c¢)/T(had),
l=e,u,r1, (83)

in which I"(had) denotes the total hadronic width of

the Z boson, and I'(bb), T'(c¢), T'(I*17) denote the

Z-boson partial widths into bb, ¢¢, It1~ channels.
To set up the calculation we choose the fine-structure
constant @, = % (defined at the Z pole), the Fermi
constant G, and Z boson mass m as the input parameters.
Expressed with the SM quantities, we have the tree-level
relations

Gr 92
€ = gsMSw,SM>» 75 = SmgM ’ (84)
W.SM
2 .2
Jam ¥
my = 451\;[ M, m%V,SM = ZgéMng' (85)
Cw sM

These relations are modified in the SLH to be

Gr_ ¢ <1 v )2, (86)

€= gSw,

V2 Sm%V,SLH 4f2t;2;

2 2 4
2:92” 9 23 _p2 _f 2 2|V g7
mz 4C%V 320%, |:CW< W) 3Sp’ Cp f27 (87)
2 I T 123 —2—21’4 38
mW,SLH_Zg v +ﬂg( —Sp Cp )JTz- (88)

Here we note that in the above equations, as in Sec. 11, g, v,
sy represent quantities in the SLH and are thus different
from the SM quantities gsy;, vsv, Sw.sm- From the above
two sets of relations we may derive

2 2 2

My SLH 1 ) L —cjysm 4\ v5u
=1 4=(1- —2r | 22 (89

My sm " 8 < wsm + 2cysm—115) f? (89)

2

2 2
Sw 1 2 Cwsm 4\ vsy
—1—(1-1¢ _wsm T ISM (g
S%V,SM 8< W’SM+2C%V,SM_1’%;> f? (50)

To calculate the R observables in the SLH we also need the
modified Z couplings to light fermions. Although the
corrections relative to the SM are of ;JT; order, they are still
relevant since the R observables have been measured to a
few per mille precision. In such a case the diagonal entries
in the rotational matrices in Eq. (49) should be understood
as1—16%,and 1 — 163, respectively. Then the modified Z
couplings to light fermions in the SLH can be written as
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g/L,Z.f =91z25t 02917 5

Irzys = 9Rzf + 029R 7 5+

for f =u,c,b,e,pu,r. (91)
In the above equations, &, is the O(;ﬁ—i) Z-7' mixing angle,
appearing in the mixing relation

7 =7 45,2,  Z=2Z,—08,70. (92

Here Z,,, Z,, denote the final mass eigenstates after the
O(]”Ti) rotation while Z, Z’ denote the states before the (9(}—2)

rotation, as defined via Eq. (11). In the process of gauge
boson mass diagonalization, d, is computed to be

52:_(1—@',)\/3—@12 (93)

8CW f2 ’

In Bq. O1), grz5 =2 (T = Qpsh)s grzy = =2 Qs

are leading-order coefficients of the Lagrangianw terms
fLy”fLZM, frY"frZ,, and T{;, Qy denote the third com-
ponents of the isospin and the electric charge of f,
respectively. g; 7 r, grz s are leading-order coefficients
of the Lagrangian terms f,y"f;Z,, fgy"frZ,, which are
given in Egs. (64)-(66). g ;. f, Irz. ¢ in Eq. (91) denote the
coefficients of the Lagrangian terms f; y* f, Z s frY*fRZ u
and T’; , Oy, to O(}i—i) precision.

For f = d the modified Z couplings in the SLH turn out
to be

91 74=9024+ 029074+ 6b4(9r.20 — 91.7.4)-

IR 7.4 = 9RZ.d T O2IR 7 a- (94)

Obviously the additional correction is due to the left-
handed D-d mixing. The corresponding formulas for f = s
can be obtained by the replacements d — s, D — S. g; 7 p,
gLz are leading-order coefficients of the Lagrangian
terms Dy y*D;Z,,, Sgy*SgZ,,

1
9rzp = 9Lzs = ggswfw- (95)

Now we have all of the SLH couplings that are necessary to
calculate the R observables. It should be noted that in the
above coupling formulas, sy, cy, ty are quantities in the
SLH and are therefore different from their SM counterparts
Sw.sms Cw.sMs> tw.sms see Eq. (90). Therefore, the modifi-
cation of Z couplings to light fermions relative to the SM is
caused by three factors: Z-Z' mixing, left-handed D-d, S-s
mixing, and the correction of the weak-mixing angle.

A 95% C.L. constraint can be obtained in the f-7; plane
by performing a y? fit of the five R observables. The y? is
defined by

TABLE 1. Experimental values and the SM predictions of the R
observables.

Quantity Value Standard Model
R, 20.804 £ 0.050 20.737 £0.010
R, 20.785 £ 0.033 20.737 £0.010
R, 20.764 £ 0.045 20.782 £0.010
R, 0.21629 £ 0.00066 0.21582 £ 0.00002
R, 0.1721 £ 0.0030 0.17221 £ 0.00003

(Rysim — Ry)?
8%, + O

Ry sm

2= )

f=b,cieur

(96)

In the above equation, R, denotes the experimental values
and Oy ’ denotes the associated experimental uncertainties.
Also, Ry s\ is the SM theory prediction and g . denotes
the associated theory uncertainty. Their values are listed in
Table I [33]. As for the constraint from the W-boson mass,
we treat it separately and consider two more precise
measurements [33],

my = 80.387 £0.016 GeV  (Tevatron),  (97)

my = 80.370 £0.019 GeV  (ATLAS),  (98)

while we note that the SM prediction for myy is [33]
my.sm = 80.358 = 0.004 GeV. (99)

In Fig. 4 the results of the electroweak precision analysis
of my, and R observables are shown. To clarify the situation
we present the results according to whether 75 > 1 and the
sign combination of the rotation parameters 6p,, dg, [see
Eq. (53)]. At first sight there are eight possibilities in total;
however, it is immediately recognized that 5;5 4 Ogy» and
8py» 84, make no difference in terms of constraints in the
f-t5 plane, reducing the number of possibilities to six.
Therefore we obtain the six panels in Fig. 4, with each
panel showing one possibility as described in the caption.

For all of the panels, the green and yellow regions
correspond to parameter points that are allowed by the y? fit
of R observables at 68% and 95% C.L., respectively. These
allowed regions do not exhibit a 73 — tEl symmetry (e.g.,
the allowed regions in the upper right panel and the lower
left panel still differ under the transformation 75 — tEl),
since in the computation of R observables, the correction of
s%v relative to its SM value has to be taken into account, as
was pointed out previously. When f is larger than about
17 TeV there will be a lower theoretical bound (from the
mass relation) on 74z or tl;l which is larger than 1,
corresponding to the white region at large f and small
tg or tlgl in each panel. The 20 constraints from my,
measurements are simply implemented by requiring
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lp lp
1 95% C.L.
8[ m68% CL.

195% C.L.
W 68% C.L.
— my (Tevatron)

6} — mw(ATLAS)
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1 95% C.L.
8 m 68% CL.

— my (Tevatron

— mw(ATLAS

'5 f(TeV)
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N .fT N N N .fT
30 35 [TV s 20 s 0 s [TV

+ 5+.

FIG. 4. Constraints from my, and R observables in the f-1; plane. Upper left: 15 > 1, 5}, 55, upper middle: 75 > 1, 5}, 65, ort5 > 1,
8pa» 85,s upper right: 15 > 1, 8y, 85, lower left: 1, < 1, 5}, 64 lower middle: 15 < 1, 5}, 85, or 15 > 1, 5y, 6¢;; lower right: 15 < 1,

Opg» Ogs- See the text for a detailed description.

2 2
|mW,SLH - mW| <2 \/ 5mW + 5mw,sM'

In the above equation my denotes the experimentally
measured W-boson mass and 6, and 6, , denote the
associated experimental and theoretical uncertainties,
respectively. We superimpose the constraint boundary on
the six plots as blue or red lines, representing constraints
from Tevatron or ATLAS measurements, respectively. For
all of these my, constraint boundary lines, the regions on
the right side of the lines are allowed at the 20 level.

As can be seen from Fig. 4, if 73 < 1, then the region
favored by naturalness consideration is disfavored by
constraints from both R observables and W-boson mass
measurements, regardless of the sign combination of the
rotation parameters 5y, Og,. If 73 > 1, then W-boson mass
measurements do not constrain the parameter region
favored by naturalness consideration. However, in this
case constraints from R observables are significant when
any of the rotation parameters dp,, dg, adopt the plus sign
in Eq. (53). This is because a plus sign leads to a large #4
enhancement of the rotation parameter and therefore a
larger deviation of Z couplings to the corresponding
fermion. Although the lower bound on f has been pushed
to around 7.5 TeV by LHC dilepton resonance searches, the
R observable constraints still force us to avoid this #;

(100)

enhancement, and consequently the only possibility left is
Opg» Osy With t5 > 1. This result has important conse-
quences for the pseudoaxion phenomenology since the sign
combinations of 8p,, dg, will determine how 7 interacts
with the D, S quarks which in turn influences the decay and
production of the # particle, as will be discussed in more
detail in the next section.

In previous literature on the SLH model the 75 > 1 and
tg < 1 cases are usually not distinguished, since a 7; — t'gl
symmetry is tacitly assumed. Then only the 75 > 1 case is
considered. However, strictly speaking this symmetry is
only valid when the leptonic sector is not considered. Here
we established clearly that if we consider the region favored
by naturalness considerations, the 75 < 1 case is disfavored
by measurements of my, and R observables. This is closely
related to the breakdown of the 7; — t;l symmetry in the
lepton sector. Moreover, in previous literature [12,24], the
sign combination of the rotation parameter &p,, 65, Was
simply assumed to be (effectively) 6,,, dg,, in order to
suppress contributions to the electroweak precision observ-
ables. Here we also firmly establish this choice based on
constraints from R observables, combined with my and
naturalness considerations, keeping in mind that the con-
straint on f has been pushed to around 7.5 TeV due to
updated LHC constraints.
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V. PRODUCTION AND DECAY OF THE
PSEUDOAXION

With the preparations made in the previous three
sections, we are now ready to calculate the production
and decay of the pseudoaxion. We will restrict ourselves to
the region 2m, < m, <1 TeV, which is favored by natu-
ralness considerations. All of the related partial width
formulas are given in Appendix B.

A. Decay of the pseudoaxion

For n in the mass range 2m, S<m, <1 TeV, it can
always decay into tf, gg, yy channels. (The WW, ZZ, Zy
channels are also possible and may have comparable
branching ratios compared to yy. However, from a detection
point of view, it is preferable to consider further decays into
leptons in these channels, leading to an additional sup-
pression by the leptonic branching. For simplicity we will
not consider these channels further in this work.) n - ZH

is highly suppressed, since the antisymmetric ZHn vertex is
suppressed to O(;i—:) while the symmetric ZHn vertex does

not contribute, as pointed out in Sec. IIl. If the new
fermions D, S, N are heavy enough such that they cannot
appear as decay products of 7, then we are left with only the
tt, gg, vy channels. Nevertheless, we should keep in mind
that when f and m, are given, the partial widths of these
channels still depend on the masses of the additional heavy
quarks 7, D, S which do not appear as decay products
of 5. First, the n — t7 decay is controlled by the rotation
parameter §,, which in turn depends on the top partner
mass. The loop-induced decays n — gg, yy have contribu-
tions from both the top quark and the heavy quark partners
T, D, S. The top quark contribution again depends on 9,
while the T, D, S contributions depend on the nTT, nDD,
7SS couplings which are proportional to the correspon-
ding rotation parameters times the quark partner mass.
Experimentally, the current lower bound for the light-flavor
quark partners D and S is around 700 GeV [34]. Thus, for a
heavy enough 7 the # — Dd, Ss channels are still possible

if the mass of D or § is close to the lower bound. To be
definite, we will consider four benchmark scenarios.

(1) Case A: f=8TeV, myr=mp=mg=23TeV,

all my > my,,.

(2) CaseB: f=8TeV, m, =500GeV, mp = mg = mr,

all my > my,.

(3) Case C: f =8 TeV, my =3 TeV, mp = 700 GeV,

mg =1 TeV, all my = 150 GeV.

(4) CaseD: f=8TeV, m, =500GeV, mp = mg = mr,

all my = 150 GeV.

For each case, there are two allowed sign combinations
for the rotation parameters (6;,8py, 8ss): (+,—,—) and
(—,—,—). Other choices are excluded by electroweak
precision measurements, if we are only interested in
parameter regions favored by naturalness considerations.
Therefore, in the following we will use Case A+, Case A—,
etc., to indicate the sign choice of §, in each case
[see Eq. (52)].

The total width and branching ratios of # are shown in
Figs. 5 and 6 for Case A and Case B, respectively. In these
two cases, the additional fermion partners D, S, N are not
light enough to appear as decay products of 7, and therefore
we are left with the standard  — 17, gg, yy channels. From
the figures it is clear that # can be viewed as a narrow-width
particle; however, the width is not small enough to give rise
to displaced vertices. In both Case A and Case B and for
both sign choices, 7 decays almost 100% to ¢z, with only
very small branching ratios to gg [O(0.1%)] and yy
[O(0.001%)]. Here (and in the following) all of the partial
widths are calculated at LO, but it is obvious that the
inclusion of higher-order radiative corrections has little
effect on the whole picture. From a detection point of view,
this situation is somewhat unfortunate since the dominant
channel 7 suffers from huge background at hadron col-
liders, while the clean channel yy has an extremely small
branching ratio. It is natural to ask how the situation will
change if any of D, §, N is light enough, such that
exotic channels like # - NN, Nv, Dd, Ss could be open.
This is embodied in Cases C and D and we show the

1.00 1 1
0.50 Case A+ Case A—
0.1 0.1
—tt —tt
0.20 —eg —8g
— Case A+ —vy —yy
% 0.10  Case A 0.01 0.01
3 R L — -
= 0.05
= 0.001 0.001
0.02
1074 107
0.01
0 ) 0 e

0.45 0.50 0.55 0.60 0.65 0.70 0.75
my, [TeV]

FIG. 5.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
my, [TeV]

0.45 0.50 0.55 0.60 0.65 0.70 0.75
my, [TeV]

Total width I" and decay branching ratios of # in Case A.
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FIG. 6. Total width I" and decay branching ratios of 7 in Case B.

corresponding branching ratio plots in Fig. 7. Nevertheless,
the exotic channels contribute at most a few percent in
terms of branching ratio, and therefore are of little use for 5
detection even if any of D, S, NV is light enough. This can be
understood from the interaction Lagrangian containing the
nDd, nSs and nNv, nINN vertices. The nDd vertex is shown
in Eq. (62). When  — Dd is open, @ is an O(1) quantity,
and therefore from Eq. (62) we may recognize that the #Dd
coupling can be considered as being relatively suppressed
by O(%) compared to the ntf vertex. This leads to the

suppression of the # — Dd channel. The #Nv coupling is

Case C+
0.1 —tt —— NyN;+N,N,+N3 N
—gg — N 7Ny +v3 N5
—YY —dD
0.01
- Iy
2 0,001 /
107
1073
1076
0.45 0.50 0.55 0.60 0.65 0.70 0.75
my,; [TeV]
1
Case D+
0.1
—tt — NN +N, N+ N3Ny
—gg — VN +,Ny+v3Ny
-y
0.01
S
m
0.001
S —
107
1079
2.0 2.5 3.0 3.5
mr [TeV]
FIG. 7.

relatively suppressed by (9(]—”,) compared to the yNN

coupling, as can be seen from Eq. (60). However, when
n — NN is open, My, can be at most O(v). Moreover, the
NN coupling suffers from a 75 suppression. Therefore,
numerically the # — NN channel is much more suppressed
compared to the n — tf channel.

B. Decay of the top partner

The pseudoaxion may appear as a decay product of some
additional heavy particles in the model. Among the addi-
tional particles in the SLH only Z’ and T are closely related

— 1t — NN +N;N»+N3N;

0.1} CaseC— —gg — viNi+»Np+wsN;
—yy —d
-
0.01 E—
- I
A 0.001
10*4\.
107
1076
0.45 0.50 0.55 0.60 0.65 0.70 0.75
my [TeV]
1
Case D—
0.1 —tt —— NyN;+NoNo+N3N;
—g2  —vNnNanN,
—YY
0.01
-
0.001
107
107
2.0 2.5 3.0 3.5
mr [TeV]

Decay branching ratios of # in Case C and Case D.
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considered mass range 7 — bX, tY channels are not open.

to EWSB and naturalness favors small Z' and T masses
within theoretical constraints. In this subsection we con-
sider the decay of the top partner. The possibility of 7 —
t + a (where T and a denote the top partner and a pNGB in
the context of composite Higgs models) has been inves-
tigated in the literature [35-37]. Here we focus on the
situation in the SLH. To be specific, we fix f = 8 TeV and
m, = 500 GeV and then plot the total width and branching
ratios of T as functions of the top partner mass my in Fig. 8.
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Total width I" and decay branching ratios of 7 in the SLH. We assume f = 8 TeV and m, = 500 GeV. Note that in the

Both &, and §; possibilities are considered. Note that when
mr is also given, according to the mass relation 74 can be
calculated, which in turn determines the total width and
branching ratios. The relation Br(7 — bW) = 2Br(T —
tH) = 2Br(T — tZ) holds to a good approximation. In the
5, case, Br(T — m) is small (not larger than 10% for
my > 2 TeV) and decreases with the increase of my. In the
57 case, Br(T — ) is sizable and becomes dominant
(larger than 50%) for my 2 2.2 TeV. Another interesting
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FIG.9. Gluon-fusion production cross section of 7 as a function of m, (upper panel, assuming my = my, = mg = 3TeV) or my (lower
panel, assuming my, = mg = my and m, = 500 GeV). The sign combination of (§,,8p,, Js,) is indicated in each plot.
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FIG. 10. Production cross section of pp — t#57 as a function of m,. We assume f =8 TeV and my; = 3 TeV.

and important feature concerns the total width of 7. In the
O; case, the total width is around 20 GeV which makes
the narrow-width approximation valid to high precision. In
the 5 case, the total width increases with my. For my &
3.5 TeV the total width increases to around 500 GeV. In
this case I'/M < 20% and the narrow-width approximation
still roughly holds, if the phase space is large enough.
However, the width will have an appreciable impact on the
invariant mass distribution of the 7 decay products.

C. Direct production of the pseudoaxion

The pseudoaxion can be directly produced via the gluon-
fusion mechanism at hadron colliders. The particles run-
ning in the loop now contain ¢, 7', D, S. In the calculation of
the production cross section,'” we consider the 14 TeV
(HL-)LHC, the 27 TeV HE-LHC, and the 100 TeV FCC-
hh. The production cross sections are plotted in Fig. 9 as
functions of m, or my, with other parameters described in
the figure caption. Although the production cross section
may reach O(pb) in certain regions of parameter space,
unfortunately when combined with # decay it becomes very
difficult to detect in the gluon-fusion channel. The dom-
inant ¢7 decay mode suffers from huge background, while
the yy decay mode has only a O(107>) branching ratio.

Another way to directly produce 7 is through the
pp — tin channel. We plot the production cross section
as a function of m, in Fig. 10, for three center-of-mass
energies and both §; and &; . Here we fix f = 8 TeV and
my = 3 TeV, and therefore for a given my, ig (and 5,*) 1s
also determined. The cross section in the §; case is much

For simplicity, in this work all of the cross sections are
calculated at LO using MADGRAPH5_AMC®@NLO [38] and
FEYNRULES [39]. We use the MSTW2008lo68cl parton dis-
tribution function [40]. For 2 — 1 production, the renormaliza-
tion and factorization scale is taken to be the rest mass of the
s-channel resonance. Otherwise, the renormalization and factori-
zation scale is taken to be the sum of the transverse masses of
final-state particles (before resonance decay) divided by 2.

smaller than that in the §; case. Even in the ;" case the
detection of the pp — tin process is still very difficult. For
instance, if we take m, = 450 GeV, then in the 5, case the
cross section reaches only about 0.6 fb at 14 TeV and 100 fb
at 100 TeV. When we consider n — tf decay, there exists
the SM four-top production as an irreducible background,
with a cross section of about 10 fb at 14 TeV and 5000 fb at
100 TeV. Unfortunately, since m,, is not far above the 2m;
threshold, we do not expect large differences in kinematical
features between the pp — tfn signal and the SM four-top
background, making the discrimination very difficult. With
larger m,, (say, 1 TeV), the top pair from 7 decay can be
boosted, with an invariant mass distribution that peaks
around a high value, which can facilitate the discrimination
from SM backgrounds. However, the cross section for such
a heavy 5 becomes very small. Therefore, we do not expect
pp — tin to be a promising channel for future 7 detection
in the SLH.

D. Pseudoaxion production from top partner decay

The above discussion shows that it is very difficult to
detect 5 via the gluon-fusion and r#r-associated production
channels. It is therefore natural to consider alternative #
production mechanisms, such as decay from heavier
particles. In the SLH, particles that can be heavier than
nare T, D, S, N, Z', X and Y. Here we will concentrate on
T, which is most tightly connected to EWSB. We will
briefly comment on the possibility of detecting # from other
heavy particle decays in the next subsection.

Under current constraints, the lower bound on my is
already larger than the largest possible value of m, plus m,,
and therefore the exotic decay channel T — t5 will always
be open. The branching fraction of T — t; has been
discussed (see Fig. 8). Here we focus on top partner
production. Two major production mechanisms are pair
production through QCD interaction, and single production
through the ThW vertex. Pair production has the virtue of
being model independent, while single production depends
on the value of §,. In Fig. 11 we present the cross sections of
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FIG. 11. Production cross sections of pp — TT and pp — Tj as functions of m;. We assume f = 8 TeV and m, = 500 GeV. For

pp — Tj, the contribution from pp — Tj is also included.

pp— TT and pp — Tj+Tj for both § and &;, as
functions of m; while we fix f=8TeV, m, = 500 GeV.
Three center-of-mass energies (14, 27, 100 TeV) are
considered. Whether pair or single production delivers a
larger cross section depends on the sign choice for §, and
the center-of-mass energy. In the ;" case, for all three
center-of-mass energies the single production cross section
is larger. In the §; case, at 14 TeV single production is
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o(pp—TT —n+anything) [fb]

0.01

0.001

107

2.5 3.0

mr [TeV]

35

100

10, — 14 TeV
—27TeV
— 100 TeV

o(pp—~Tj-m)) [fb]

0.01

2.0 2.5 3.0

mr [TeV]

35

larger since pair production is highly suppressed by phase
space. At 27 TeV pair production and single production
become comparable, while for 100 TeV collider energy pair
production dominates.

To detect # we would also like to consider the top partner
decay T — tn that follows the pair or single production of
T. The associated cross sections are plotted as functions of
my in Fig. 12, using the narrow-width approximation, for
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FIG. 12. Cross sections of pp — TT — 5 + anything and pp — Tj — 5 + anything as functions of n;. We assume f = 8 TeV and
m, = 500 GeV. For pp — T}j, the contribution from pp — Tj is also included.
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both & and &;. For definiteness we take f = 8 TeV,
m, = 500 GeV. To be precise, the plotted cross sections
are defined by (for pp — T, the contribution from pp —
Tj is also included)

o(pp — Tj—n+anything) =o(pp - Tj) xBr(T — 1),
(101)

o(pp — TT — n + anything)
=20(pp = TT) x Br(T — t)(1 = Br(T - 1))

+o(pp = TT) x Br*(T — ). (102)
For the purpose of 5 detection, let us consider using the
n — tt channel, which has an almost 100% branching
fraction. Then, the # production from top partner decays
generically leads to a multitop (>3) signature. Moreover,
the top quarks will be boosted since my > m, + m,. For
example, suppose a 2 TeV top partner is produced with
little boost in the lab frame and then decays into ¢ 4 7. At
this step, ¢ and n roughly share the rest energy of the top
partner and therefore will each have about 1 TeV energy.
The 7 boson then further decays into ¢ and 7, each of which
roughly has an energy of about 0.5 TeV. All three top
quarks are boosted: the first one will have a decay
(t » bW) cone size approximated by ~2m,/E, ~ 0.4, while
the second and third top have ~2m,/E, ~ 0.8. Furthermore,
the second and third top quark decaying from # are close to
each other, separated by approximated ~2m,/E, ~0.8.

In the single production case, the signature will be
3t + j, in which the first top is highly boosted while the
second and third are still somewhat boosted and close to
each other. One can make use of such kinematics to
discriminate from QCD backgrounds. The most serious
background is perhaps multitop production. One may be
able to reduce the background using the boosted techniques
[41]. In the pair production case, if we consider one top
partner decaying into t with the other decaying into bW,
we obtain a signature of 3¢+ b+ W in which the top
quarks and also the W boson will be boosted. In both the
single and pair production channels, the invariant mass
peaks at my and m, will also be helpful in discriminating
between the signal and background. Nevertheless, a full
signal-background analysis using boosted-top techniques is
beyond the scope of the present work.

From Fig. 12, we see that the cross sections at the 14 TeV
(HL-)LHC for all of these channels are very small (<1 fb),
making the detection very difficult. Nevertheless, with the
increase of collider energy, the signal cross sections
increase significantly. For example, at the 100 TeV
FCC-hh, for both §,” and §; and pair and single production
channels, at relatively small m; the cross sections could
reach O(100 fb). In the & case, the single production
(with the top partner decaying to tx) provides a cross

section of about 200 fb, which is larger than the pair
production channel. In the §; case, the pair production
(with one top partner decaying to 1) provides a cross
section of about 400 fb, which is however larger than the
single production channel.

In principle, top partner production and decay provide a
way to measure 74 (which is important for testing the SLH
mass relation) and also discriminate between the 8, and &,
cases. In practice, we may consider the partial-width ratio

R, = FF(<TT:1;;112) as both an indicator of the sign choice for §,

and a way to measure &,, which in turn determines #;. 6, can
also be determined from pp — Tj production since the
cross section is proportional to 7. Furthermore, in the &,
case the total width of T could reach O(100 GeV), which
may have an impact on the invariant mass distribution of T
decay products (e.g., bW). Measurement of the 7 total
width in principle could also help determine the value of 5,.
However, even if 6, is determined (including the sign
choice), the determination of 7; and the test of the mass
relation still require the measurement of f and m,, which
can be obtained if we are able to measure the masses of Z’
and # particles.

E. Comments on other channels

Currently the SLH is stringently constrained by the LHC
7' — 1l search; nevertheless, it also means that if the SLH
was realized in nature, the Z' — [l signature would be the
first place that we might expect the appearance of new
physics. Then it would also be important to consider
whether we may detect  as a decay product of Z'. Two
channels might be considered: Z' — nH and Z' — pY.
However, it turns out they give too small branching
fractions: Br(Z' — nH) < 0.01 and Br(Z' - nY) < 107*.
This is regardless of whether the Z' — DD, SS, NN
channels are kinematically allowed. Therefore, it is not
preferable to consider detecting # from Z' decay.

If kinematically allowed, we might also consider
D — dn, S — sn, N — vn decays. However, these decay
channels also suffer from small branching fractions, since
the nDd, nSs, nNv couplings are (’)(?) suppressed com-
pared to HDd, HSs, HNv couplings [see Egs. (60) and
(62)]. For example, D will dominantly decay to uW, dZ,
dH, with only Br(D — dn) < 1%, for the benchmark point
f=8TeV,my =2 TeV, m, =0.5 TeV and any value of
mp. Here &}, is assumed, to be consistent with electroweak
precision constraints. As for D production, for the 6, case,
there is a t;l suppression for single D production, and
therefore D pair production is more promising. Moreover,
current collider constraints on the D mass are not stringent,
such that mp = 700 GeV is still allowed [34]. Therefore, if
mp is as light as 700 GeV, the large pp — DD production
cross section could compensate for the small D — dp
branching fraction, leading to a sizable # production rate.
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FIG. 13. Production cross section of pp — DD — 5 + anything as a function of m, (left) and m,, (right). For the left plot, we assume
f=8TeV, my =3 TeV, m, = 500 GeV. For the right plot, we assume f = 8 TeV, m; = 3 TeV, mp = 700 GeV.

At the 100 TeV FCC-hh, the # production cross section
from D decay, o(pp — DD — 5 + anything) could also
reach more than 100 fb for mj not much larger than
700 GeV (see Fig. 13). This is comparable to the 7 cross
section from top partner production, and in principle could
also be used to measure 74. The expected signature would
be tt+2j+ W/Z/H, in which the W/Z/H should be
boosted. The existence of various intermediate resonances
would be helpful in discriminating signal and background.
Nevertheless, we should be aware that naturalness does not
offer any guidance on the preferred value of mp. This is
different from the case of my, in which naturalness clearly
favors a lighter top partner. The case of pp — SS pro-
duction with § — sy decay is completely similar to the
above discussion of D production and decay. For N,
Br(N — uvn) is also very small (less than 1% for the
benchmark point f =8 TeV, my=2TeV, m, = 0.5 TeV
and any value of my). Moreover, N does not have QCD
pair production channels like D, S, and therefore it is
difficult to detect # from N decay at hadron colliders.

The X, Y gauge bosons in the SLH may have decays like
X — nW and Y — Hn. However, the single production
cross sections of X, Y at hadron colliders are highly
suppressed, and we need to rely on production with other
heavy particles (heavy gauge bosons or quark partners)
[24]. Since X, Y bosons are quite heavy (with masses of
about 0.8m), their production with other heavy particles
would be limited by phase space while their decays are
expected to be dominated by fermionic final states.
Therefore, we do not consider # production from X, Y
decays as promising channels for # detection.

VI. DISCUSSION AND CONCLUSIONS

The simplest little Higgs model provides a simple way to
concretely realize the collective symmetry breaking mecha-
nism, in order to alleviate the Higgs mass naturalness
problem. In the scalar sector, its particle content is very
economical, since besides the CP-even Higgs which should

serve as the 125 GeV Higgs-like particle, the only addi-
tional scalar particle is the pseudo-Nambu-Goldstone
particle 5 associated with a remnant global U(1) symmetry.
The detection of # is important since its mass enters into the
crucial SLH mass relation and it will also play an important
role in discriminating SLH from other new physics scenar-
ios. In this work we have been concerned with the produc-
tion and decay of the # particle at future hadron colliders.
We found that for natural regions of parameter space, m,, is
larger than 2m, and decays almost exclusively to t7, and
Br(n — yy) is too small to be considered promising for
detection. Also, it is very difficult to detect # in the direct
production channels pp — # (gluon fusion) and pp — tin.
Channels that are worth further consideration include #
production from heavy quark partner (7, D, S) decays, in
which the heavy quark partner might be singly (for 7)) or
pair produced. The corresponding # production cross
section at the 100 TeV FCC-hh could reach O(100 fb)
for certain ranges of parameter space that are allowed by
current constraints, while at the 14 TeV (HL-)LHC the rate
might be too small for detection. However, the detection
prospects in these channels (at 100 TeV) might still be
challenging since the final states are quite complicated,
including multitop-associated production with other
objects, in which one or more of them could be boosted,
requiring sophisticated tagging techniques. At the same
time, the SM background also enjoys a large increase with
the collider energy, with more a complicated hadronic
environment. The aim of this paper was to examine the #
production channels with a LO estimate of the # cross
sections in the relatively promising ones as functions of the
model parameters, keeping in mind the most up-to-date
theoretical and experimental constraints (see Table II for a
summary). We did not attempt to give a quantitative
assessment of the collider sensitivities in these channels.
The phenomenology of the 7 particle in the SLH
was studied a long time ago in several papers (e.g.,
Refs. [17,18,20,21]). Compared to all of the previous
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TABLEII.  Summary of 5 production from 7', D(S) decays at the 100 TeV FCC-hh. For pp — T}, the contribution from pp — Tj is
also taken into account. For T'T, Tj channels, the benchmark pointis f = 8 TeV, my =2 TeV, m, = 500 GeV while for DD channels,
the benchmark point is f = 8 TeV, my = 3 TeV, m, = 500 GeV, mp = 700 GeV. When listing the signatures for TT, DD channels
we do not consider the situation in which both quark partners decay into 1 + ¢ or n + j, but this possibility is taken into account in the

cross section values and plots.

Channel Cross section at the benchmark point (/s = 100 TeV) (fb) Signature

pp = TT = 5 + anything 84(5;), 379(67) 3t+W+bordt+Z/H
pp — Tj — n + anything 209(5,), 133(57) 3t+j

pp — DD — n + anything 322 2t+W/Z/H +2j

studies, the present paper is different in a few crucial
aspects.

(1) Instead of working with the ad hoc assumption of no
direct contribution to the scalar potential from the
physics at the cutoff, we took into account in all
calculations the crucial SLH mass relation (29)
which is a reliable prediction of the SLH. Therefore,
our prediction preserves all of the correlations
required by theoretical consistency but does not
depend on the choice of any fixed cutoff value such
as 4nf.

(2) We have focused our attention on the parameter
region favored by naturalness considerations. This
region is characterized by small m; and large #; or
1/71. The favored n mass is larger than 2m,.

(3) We have taken into account the recent collider
constraint on f (f 2 7.5 TeV) which is much more
stringent than the constraints obtained a long time
ago. We also took into account the constraint from
perturbative unitarity which sets an upper bound on
the allowed value of 75 or tl}'. These two factors
determine the current lower bound on my and
crucially affect the largest cross section that can
be achieved in all channels.

(4) Our study is based on an appropriate treatment of the
diagonalization of the vector-scalar system in the
SLH, and especially the field redefinition related to
n. This affects the derivation of ZH#y vertices and
also 5 coupling to fermions, which were not treated
properly in previous works until Ref. [22].

(5) We also clarified the role played by the symmetric
VSS vertices that appear in the Lagrangian and
how they are compatible with the general principles,
like field redefinition invariance and gauge inde-
pendence.

From our study it turns out that the detection of 5 at the
14 TeV (HL-)LHC will be very difficult, and therefore a pp
collider with higher energy and larger luminosity, such as
the 27 TeV HE-LHC or even the 100 TeV FCC-hh or SppC,
is motivated to capture the trace of such an elusive particle.
Moreover, generally we would expect some other SLH
signatures (e.g., Z' = [, T - bW or D — uW) to show up
earlier than # signatures since # signatures are usually very

complicated (with multiple top quarks) and suffer from
small rates. It is nonetheless important to study # properties
since they are crucial in testing the SLH mass relation and
also provide a basis for model discrimination.
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APPENDIX A: CONVENTION CONVERSION

References [23,24] contain detailed treatments of the
anomaly-free SLH model. However, they used different
conventions and it is useful to establish a conversion
rule to relate formulas between the two conventions.
Reference [23] used the following covariant derivative
expression:

. . gt
D, =0, ~igAiT* +ig.Q.Bj.  g:= w—iWTB
w
(A1)
On the other hand, Ref. [24] used
. . gt
D” = 3ﬂ + lgAﬁTa + lngXB;j, gy = \/%72/3
w
(A2)

Therefore, to convert between the two conventions, we
need

g < —g, Iy < —ty (A3)
if we assume g, <> g, and A, < A, B, < B, T* < T,
0, < Q.. The transformations of sy and cy, are still not
determined. For convenience, we would like to identify the
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first-order gauge boson mass eigenstates Z, Z’, A in both
conventions, namely,
Z < Z, VAR A< A (A4)
Then, by comparing the first-order gauge boson mixing
formulas in the two papers we are led to the following
conversion rule for sy, and cyy:
cw < Cw, Sy <> —Sy. (A5)
Using these rules, it is straightforward to convert between
the two conventions. (Our present work adopts the same
convention as in Ref. [23].) Then, e.g., the Lagrangian
coefficient of Z'ff couplings will acquire a minus sign
during conversion since g <> —g. However, the expression
for o, [see Eq. (93)] remains the same since cy <> cy.

APPENDIX B: PARTIAL-WIDTH FORMULAS

Let us define

VI4x+y)(1=x—y)(1+x—y)(1-x+y).
(B1)

F(x,y)=

In particular, we have

m as
F’?—>99 1287 3 2|

8:Ax(7;) + 6,AL(tr) + OpaAi(tp) + Os55A1(ts)

F(0,x) =1-x% for |x| <. (B2)
The partial-width formulas related to , T, D, S, N, Z'
decays are listed as follows.

(1) #n decay: Tree-level decay channels (to fermion final

states):

r ~_3my (m6\? ! 4m?
8\ w m2’

3m, (mp)? v? 2 m2\ 2
Cop=—a(=2) (2, +— -2,
n—dD 871(1)) <Dd+2f2 m?

m, ((vmy \? m%\ 2
Lo :8_;:<—2 2S2> <1_W> - (B6)

p

Here we adopt the notation I', _;p =T, 45+ 1, pa
and F?’]—H./N = Fn—)l/N + Fr]_)le.
Loop-induced decay channels:

? (B7)

myaz,
Fq—)y}/ 2304 3 2 | 451A%(7’-l) + 451A%(TT) + éDdA%(TD) + 5SSA%(TS)|2' (Bg)
Here 7; = m;/4m7 and for f =T, D, S we have 7; < 1. The function Ay(7) = 2f(r)/7, where
arcsin’,/7 (r<1),
flz) = N ARV 2 ] (B9)
—i({In == —I_I/T—m (z>1)
(2) T decay:
257 m. my  2miy, o™ o &rms, (B10)
=W 64nm?3, 4 “my) 16w
T—Zt oimy 5 (1 22m12 + i + m%nz% =2y F ﬂ,ﬂ ~ 5,2m3T2 , (B11)
128xcyymy my my mr mr 32rv
r _ m38? m? —m?, m; myg\ &2ms3 (B12)
T=HE= 30 02 m? my my ) 327xv*’
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(©)

“

2 2 2 2 2\ 2

mym; my — my m, m, myms; m;,
Oy, ==t F2, ) ~ -1 B13
= 32n112< * m? ) <mT mT> 3271'112( m%) (B13)

D, S, N decays:

20 3 2 4 2 3

9 OpaMmp my  2my, my SpaMmp
I'pow, =—"=(1+—— Fl0,— | ~ , Bl14
DW= 64xm2, < er% mp, mp 16702 (B14)

260 3 2 4 2 3

9"0paMt mz _2my mz\ _ OpaMp
Tpoyy = —20d7T (4 Tz “TZ\p(o 72) ~"dTD B15
pozd 1287tc%,vm%< +m2D m$, mp 3270? (B15)

m3 52 m> m 5 m3
Tpopyg=-22d(1-—H)p(0,—) 2D B16
D=HA = 3002 ( m3, mp)  32m1? (B16)
m3, [ v? 2 mi\?

Upopa = 30702 <2f2+ 5%)d> (1 _m%)> < Upowuzd Ha- (B17)

The same formulas hold for S decay channels with the replacements 6p,; — g, mp = mg, D — S, d - s, u — c.
They also hold for N decay channels with the replacements mp — my, D - N, d > v, u— ¢ and

Spa = Opy = \/f}-,ﬁ-
Z' decay:

For Z' — ff decay modes, assuming the interaction Lagrangian £ > > fg(a{ fir'fr + a{e frY"fr)Z,, the decay
width is given by

N.g*my 2 2 mj my 4m;
gy =g (el + () (1~ ) + 6t ) [1 = (B18)

N, = 1forleptons and N, = 3 for quarks. For SM quarks, we can take m; = 0 since m, ~ O(f). a{ and a‘,’; can be
extracted from Egs. (64)—(66). Thus, the Z' — ff decay widths are

gmz (1= ty)* + 413

Tyopip = , B19
aoee 967(3 — 12,) (B19)
2 (1 — 2)2
FZ’—)DE = gz ( 2W) ) (BZO)
967(3 — ty)
2 2 4
g my 3— tW 4tW
I, =T, = , B21
Z'sun Z'=cce 12 < 4 + 3_ t%}v) ( )
2 2 4
gmz (3—ty w
Iy =Tz = B22
Fodd = EES T g < 4 +3—t%v>’ (522)
2 2 )2
g mg (3+1ty) 4
F d h — t N B23
2o T a(3 - 1) < 5 T (B23)
2 2 \2
g my B +1ty) 4
I'yLi= 41 ), B24
2T (3 - 1) ( ot (B24)
2 2 2
g mz my 4my
Tyny = (1 -~ > 1-—K (B25)
2NN 2471'(3 - t%)[/) m%/ m%/
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F d N e — 792’/”2/
Z —>DD,SS 7271_(3 _ t%v)

g'my
Decay widths in bosonic channels:

FZ’—>W*W‘ =
1922(3 — 13))

g'my (1 - 15)° (mz my

F N =
2T 19273 - 1)

FZ’—)Hn -

g'my(1-1) <1 _ 4ms,

my ’ my

2 2 2
mps mps 4mp g
[((3 _R)+ fv‘v)<1 - m%> — 63,3 -13) m%} 1= (B26)
2 2 4m?
Tygr=—212 322y +4c)(1-"1) 1223 -22) 22| [1 =211 B27
2= = a3 R) [(( w) + W)( "2, w( w) "2, ", (B27)
30 20mb,  12mb\  Pmp(1-£8)?
Y (T ) ey e
mZ/ mZ/ mZ/ 192”(3 - tw)
my my ms, 1927(3 — t3,)
(o o) -
2471'(3 - tW)tzp’ my My
2 2 o
ﬂ) (2+(mz’+nzly zm")> (B31)
My My 4m3,my

2 2
Ty = T2t /1) F<m—
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