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In models where the Higgs is realized as a pseudo-Nambu-Goldstone boson (pNGB) of some global
symmetry breaking, there are often remaining pNGBs of some Uð1Þ groups (called “pseudoaxions”) which
could lead to smoking-gun signatures of such scenarios and provide important clues on the electroweak
symmetry breaking mechanism. As a concrete example, we investigate the phenomenology of the
pseudoaxion in the anomaly-free simplest little Higgs (SLH) model. After clarifying a subtle issue related
to the effect of symmetric vector-scalar-scalar vertices [e.g., ZμðH∂μηþ η∂μHÞ], we show that for a natural
region in the parameter space, the SLH pseudoaxion is top-philic, decaying almost exclusively to a pair of
top quarks. The direct and indirect (i.e., via heavy particle decay) production of such a pseudoaxion at the
14 TeV (HL-)LHC turn out to suffer from either large backgrounds or small rates, making its detection
quite challenging. A pp collider with higher energy and luminosity, such as the 27 TeV HE-LHC, or even
the 100 TeV FCC-hh or SppC, is therefore motivated to capture the trace of such a pNGB.
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I. INTRODUCTION

Despite the great success of the Standard Model (SM),
marked by the discovery of the 125 GeV Higgs-like boson
[1,2] and the ongoing measurements of its properties, how
the SM is embedded into a larger theory still remains a
mystery. Since the Higgs boson mass parameter is in
general not protected under radiative correction, a naive
embedding would signal a high sensitivity of infrared (IR)
parameters (the electroweak scale and the Higgs boson
mass) to ultraviolet (UV) parameters (i.e., physical param-
eters defined at a high scale). Although this fine-tuned
situation is logically possible, or might be explained to
some extent by anthropic reasoning [3,4], it is nevertheless

natural to conjecture the existence of some systematic
mechanism which protects the Higgs boson mass parameter
from severe radiative instability. A well-known example of
such a systematic mechanism is supersymmetry, which has
the merit of being weakly coupled and thus offers better
calculability compared to scenarios based on strong
dynamics. However, supersymmetry requires the introduc-
tion of a large number of new degrees of freedom (d.o.f.),
and a large number of new parameters associated with
them, making the model quite cumbersome. None of the
new d.o.f. have been observed. It is therefore well moti-
vated to consider alternative but simpler mechanisms with
weakly coupled dynamics in their range of validity.
One candidate of such an alternative is the little

Higgs mechanism [5–8],1 in which the Higgs boson is a
Goldstone boson of some spontaneous global symmetry
breaking. The global symmetry is also explicitly broken in
a collective manner2 such that the Higgs boson acquires a
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1We refer the reader to Refs. [9,10] for reviews of little Higgs
models and Refs. [11–14] for some recent phenomenological
analyses of little Higgs models.

2More specifically, the global symmetry is completely
(explicitly) broken by a collection of spurions but not by any
single spurion [8].
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mass and at the same time the model is radiatively more
stable. A very simple implementation of this collective
symmetry breaking (CSB) idea is the simplest little Higgs
(SLH) model [15,16], in which the electroweak gauge
group is enlarged to SUð3ÞL ×Uð1ÞX, and two scalar
triplets are introduced to realize the global symmetry-
breaking pattern

½SUð3Þ1 ×Uð1Þ1� × ½SUð3Þ2 ×Uð1Þ2�
→ ½SUð2Þ1 ×Uð1Þ1� × ½SUð2Þ2 × Uð1Þ2�: ð1Þ

The global symmetry is also explicitly broken by gauge and
Yukawa interactions, but in a collective manner to improve
the radiative stability of the scalar sector. The particle content
is quite economical. In particular, in the low-energy scalar
sector there exists only two physical d.o.f., one of which
(denotedH) could be identified with the 125 GeVHiggs-like
particle, while the other is a CP-odd scalar η which is
referred to as a pseudoaxion in the literature [17,18].
In the SLH, the pseudoaxion η is closely related to the

electroweak symmetry breaking (EWSB) and therefore
studying its phenomenology is well motivated. According
to the hidden mass relation derived in Ref. [19], the η mass
mη is anticorrelated with the top partner massmT , which is in
turn related to the degree of fine-tuning in the model. The
hidden mass relation is derived within an approach con-
sistent with the continuum effective field theory (CEFT) and
does not rely on the assumption on the contribution from the
physics at the cutoff. Although the phenomenology of the η
particle has been studied in quite a few papers (e.g.,
Refs. [14,17,18,20,21]), their treatment was not based on
the hidden mass relation, and also most of the papers were
written before the 125 GeV boson was discovered. It is thus
timely to revisit the status of η phenomenology in light of
the discovery of the 125 GeV boson, taking into account the
properly derived hidden mass relation and focusing on the
parameter space favored by naturalness considerations.
There is another important reason that warrants a

reanalysis of the η phenomenology. The SLH is usually
written as a gauged nonlinear sigma model, in which the
EWSB can be parametrized through vacuum misalignment.
However, the vacuum misalignment also leads to the fact
that, in the usual parametrization of the two scalar triplets,
there exist scalar kinetic terms that are not canonically
normalized, and vector-scalar two-point transitions that are
“unexpected” [22]. A further field rotation, including an
appropriate gauge-fixing procedure, is thus required to
properly diagonalize the vector-scalar sector of the SLH
model. This subtlety was overlooked in all related papers
before Ref. [22], and if one carries out a proper diagonal-
ization of the bosonic sector of the SLH, some of the
η-related couplings will turn out to be different from what
has been obtained in previous literature. This is the case for
both the ZHη coupling and the coupling of η to a pair of
SM fermions. The occurrence of the mass eigenstate

antisymmetric ZHη vertex [i.e., ZμðH∂μη − η∂μHÞ] is
postponed to Oðξ3Þ [where ξ≡ v

f, v ≈ 246 GeV and f is
the global symmetry-breaking scale of Eq. (1)], and the
couplings of η to a pair of SM charged leptons, and to bb̄,
cc̄, uū are found to vanish to all orders in ξ. This leads to
significant changes in the η phenomenology, which will be
studied in detail in this work.
When one tries to derive the η-related Lagrangian in the

SLH, symmetric vector-scalar-scalar (VSS) vertices, e.g.,
ZμðH∂μηþ η∂μHÞ naturally appear, which is a feature that
is often present in models based on a nonlinearly realized
scalar sector. The effects of such symmetric VSS vertices
contain some subtleties which, to our knowledge, have not
been discussed before in the literature. Therefore, we
devote one section to the analysis of symmetric VSS
vertices, which could also be helpful to clarify similar
situations in other nonlinearly realized models.
In this work we do not aim to give a complete charac-

terization of the η phenomenology, which could be very
complicated in certain corners of parameter space. Instead,
we focus our attention on the parameter space favored by
naturalness considerations. More specifically, we will con-
sider an η mass in the region 2mt ≲mη ≲ 1 TeV, which is
favored by naturalness. We then calculate the η decay and
production at future high-energy hadron colliders in various
channels. It turns out that at the 14 TeV (HL)-LHC the
detection of η is quite challenging due to various suppression
mechanisms. A pp collider with higher energy and lumi-
nosity, such as the 27 TeV HE-LHC, or even the 100 TeV
FCC-hh or SppC, is therefore motivated to capture the trace
of such a pNGB.
The paper is organized as follows. In Sec. II we review

the basic ingredients of the SLH, including the crucial
hidden mass relation obtained from a CEFT analysis, and
present the mass eigenstate Lagrangian relevant for phe-
nomenological studies. In Sec. III we clarify the effect of
symmetric VSS vertices. Then, in Sec. IV we derive
important constraints from electroweak precision observ-
ables relevant for the pseudoaxion phenomenology.
Section V is dedicated to the study of η decay and
production at hadron colliders. In Sec. VI we present the
discussion and conclusions.

II. THE SIMPLEST LITTLE HIGGS

A. Overview of the simplest little Higgs

In the SLH, the electroweak gauge group is enlarged to
SUð3ÞL ×Uð1ÞX. Two scalar tripletsΦ1,Φ2 are introduced
to realize the spontaneous global symmetry breaking
pattern in Eq. (1). They are parametrized as

Φ1 ¼ exp

�
iΘ0

f

�
exp

�
itβΘ
f

�0B@
0

0

fcβ

1
CA; ð2Þ
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Φ2 ¼ exp

�
iΘ0

f

�
exp

�
−
iΘ
ftβ

�0B@
0

0

fsβ

1
CA: ð3Þ

Here we have introduced the shorthand notation sβ ≡ sin β,
cβ ≡ cos β, tβ ≡ tan β. f is the Goldstone decay constant.Θ
and Θ0 are 3 × 3 matrix fields, parametrized as

Θ ¼ ηffiffiffi
2

p þ
�
02×2 h

h† 0

�
; Θ0 ¼ ζffiffiffi

2
p þ

�
02×2 k

k† 0

�
:

ð4Þ

η is the pseudoaxion, and h and k are parametrized as [v
denotes the vacuum expectation value (VEV) of the Higgs
doublet]

h ¼
�
h0

h−

�
; h0 ¼ 1ffiffiffi

2
p ðvþH − iχÞ; ð5Þ

k ¼
�
k0

k−

�
; k0 ¼ 1ffiffiffi

2
p ðσ − iωÞ: ð6Þ

For future convenience, we introduce the notation

ĥ≡ ðh†hÞ1=2: ð7Þ

We note that the spontaneous global symmetry breaking (1)
should deliver ten Goldstone bosons, which are parame-
trized here in terms of Θ and Θ0. The electroweak gauge
group SUð3ÞL ×Uð1ÞX will eventually break to Uð1ÞEM,
and therefore eight Goldstone bosons will be eaten to make
the associated gauge bosons massive. Only two Goldstone
bosons remain physical, denoted here as h and η. The
parametrization of these Goldstone fields actually has some
freedom; we refer the reader to Ref. [19] for an explanation.
In the SLH, under the full gauge group SUð3ÞC ×

SUð3ÞL ×Uð1ÞX, Φ1 and Φ2 have quantum number
ð1; 3Þ−1

3
. The gauge kinetic term of Φ1 and Φ2 can thus

be written as3

Lgk ¼ ðDμΦ1Þ†ðDμΦ1Þ þ ðDμΦ2Þ†ðDμΦ2Þ; ð8Þ

in which the covariant derivative can be expressed as4

Dμ ¼ ∂μ − igAa
μTa þ igxQxBx

μ; gx ¼
gtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2W=3
p : ð9Þ

In the above equation, Aa
μ and Bx

μ denote SUð3ÞL andUð1ÞX
gauge fields, respectively. g and gx denote the coupling
constants of SUð3ÞL andUð1ÞX gauge groups, respectively.
It is convenient to trade gx for tW ≡ tan θW. Ta ¼ λa

2
where

λa, a ¼ 1;…; 8 denote the Gell-Mann matrices. For Φ1,
Φ2, Qx ¼ − 1

3
. Following Ref. [23], we parametrize the

SUð3ÞL gauge bosons as

Aa
μTa ¼ A3

μ

2

0
B@

1 0 0

0 −1 0

0 0 0

1
CAþ A8

μ

2
ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA

þ 1ffiffiffi
2

p

0
B@

0 Wþ
μ Y0

μ

W−
μ 0 X−

μ

Y0†
μ Xþ

μ 0

1
CA; ð10Þ

with the first-order neutral gauge boson mixing relation
(cW ≡ cos θW , sW ≡ sin θW)

0
B@

A3

A8

Bx

1
CA¼

0
BBB@

0 cW −sWffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
sWtWffiffi

3
p sWffiffi

3
p

− tWffiffi
3

p sW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
cW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
1
CCCA
0
B@

Z0

Z

A

1
CA:

ð11Þ

Since the electroweak gauge group is enlarged to
SUð3ÞL ×Uð1ÞX, it is also necessary to enlarge the fermion
sector in order that fermions transform properly under the
enlarged group. We adopt the elegant anomaly-free embed-
ding proposed in Refs. [16,25,26]. In the lepton Yukawa
sector, the SM left-handed lepton doublets are enlarged
to SUð3ÞL triplets Lm ¼ ðνL;lL; iNLÞTm with Qx ¼ − 1

3

(m ¼ 1; 2; 3 is the family index). There are also right-
handed singlet lepton fields lRm with Qx ¼ −1 and NRm
with Qx ¼ 0. The lepton Yukawa Lagrangian can be
written as [23]

LLY ¼ iλmNN̄RmΦ†
2Lmþ iλmn

l

Λ
l̄RmϵijkΦi

1Φ
j
2L

k
nþH:c: ð12Þ

In the quark sector, we have the following field content:

Q1 ¼ ðdL;−uL; iDLÞT; dR; uR; DR; ð13Þ

Q2 ¼ ðsL;−cL; iSLÞT; sR; cR; SR; ð14Þ

Q3 ¼ ðtL; bL; iTLÞT; tR; bR; TR: ð15Þ

Here Q1, Q2 transform under the 3̄ representation of
SUð3ÞL with Qx ¼ 0. Q3 transforms under the 3 repre-
sentation of SUð3ÞL with Qx ¼ 1

3
. The right-handed quark

fields are all SUð3ÞL singlets with various Uð1ÞX charges.

3We note that Eq. (8) automatically satisfies the requirement
of CSB.

4In this paper our convention agrees with Ref. [23] but differs
from Ref. [24]. The conversion between the two conventions is
discussed in Appendix A.
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More specifically, uR, cR, tR, TR carryQx ¼ 2
3
, while dR, sR,

bR, DR, SR carry Qx ¼ − 1
3
. The quark Yukawa Lagrangian

can be written as [23]

LQY ¼ iλt1ū
1
R3Φ

†
1Q3 þ iλt2ū

2
R3Φ

†
2Q3

þ i
λmb
Λ

d̄RmϵijkΦi
1Φ

j
2Q

k
3 þ iλdn1 d̄1RnQ

T
nΦ1

þ iλdn2 d̄2RnQ
T
nΦ2 þ i

λmn
u

Λ
ūRmϵijkΦ�i

1 Φ
�j
2 Q

k
n þ H:c:

ð16Þ

In the above equation, n ¼ 1, 2 is the family index for
the first two generations of quark triplets. dRm runs over
ðdR; sR; bR;DR; SRÞ and uRm runs over ðuR; cR; tR; TRÞ.
u1R3, u

2
R3 are linear combinations of tR and TR. d1Rn, d

2
Rn are

linear combinations of dR and DR for n ¼ 1 and of sR and
SR for n ¼ 2. It is worth noting that in the dimension-four
part of Eqs. (12) and (16) CSB is formally preserved. In
contrast, in Eqs. (12) and (16), the dimension-five part
formally violates CSB. Nevertheless, the amount of vio-
lation is proportional to light fermion Yukawas and is thus
negligible.
We now turn to the scalar potential. Using a CEFT

approach and combining tree-level5 and one-loop contri-
butions, the scalar effective potential in the SLH is
calculated to be [19]

V ¼ −μ2ðΦ†
1Φ2 þΦ†

2Φ1Þ þ λjΦ†
1Φ2j2 þ ΔðĥÞĥ4: ð17Þ

μ2 and λ could be regarded as parameters to be determined
from experiments, while ΔðĥÞ is automatically finite, and
could be expressed in terms of the Lagrangian parameters
in the model,

ΔðĥÞ ¼ 3

16π2

�
λ4t

�
ln

M2
T

m2
t ðĥÞ

−
1

2

�

−
1

8
g4
�
ln

M2
X

m2
WðĥÞ

−
1

2

�

−
1

16
g4ð1þ t2WÞ2

�
ln

M2
Z0

m2
ZðĥÞ

−
1

2

��
: ð18Þ

λt is defined as

λt ≡ λt1λ
t
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λt21 c
2
β þ λt22 s

2
β

q ; ð19Þ

where λt1, λ
t
2 are the two Yukawa couplings in the top sector,

introduced in Eq. (16). M2
T , M

2
X, M

2
Z0 are defined as

M2
T ≡ ðλt21 c2β þ λt22 s

2
βÞf2; ð20Þ

M2
X ≡ 1

2
g2f2; ð21Þ

M2
Z0 ≡ 2

3 − t2W
g2f2: ð22Þ

They are related to the physical mass squared of the
relevant particles as follows:

M2
T ¼ m2

T þm2
t ; ð23Þ

M2
X ¼ m2

X þm2
W; ð24Þ

M2
Z0 ¼ m2

Z0 þm2
Z; ð25Þ

in whichmT ,mt denote the physical mass of the heavy top T
and the top quark t,mX,mW denote the physical mass of the
X boson and W boson, and mZ0 ; mZ denote the physical
mass of the Z0 boson and Z boson, respectively. m2

t ðĥÞ,
m2

WðĥÞ, m2
ZðĥÞ are field-dependent masses squared, for

which we use the following leading-order (LO) expressions:

m2
t ðĥÞ ¼ λ2t ĥ

2; ð26Þ

m2
WðĥÞ ¼

1

2
g2ĥ2; ð27Þ

m2
ZðĥÞ ¼

1

2
g2ð1þ t2WÞĥ2: ð28Þ

With the above expressions for the scalar effective potential
we are able to compute the electroweak VEV, Higgs mass,
pseudoaxion mass, etc., as functions of μ2, λ, and other
Lagrangian parameters in the model.
Finally, we note that there of course exists a gauge-

invariant kinetic Lagrangian for the SUð3ÞL × Uð1ÞX gauge
fields and the fermion fields in the model, according to their
representations.

B. Hidden mass relation, unitarity, and naturalness

Before starting the phenomenological analysis in the
SLH, it is important to notice that there exist certain
constraints that we have to take into account [19].
First, there exists a hidden mass relation which follows

from an analysis of the scalar effective potential (17). This
is because if we consider g, tW , λt as fixed, then the scalar
effective potential (17) is fully determined by five param-
eters, say, μ2, λ, f, tβ, mT . Requiring the electroweak VEV
to be 246 GeVand the CP-even Higgs mass to be 125 GeV
should eliminate two parameters, leaving only three

5At tree level we do not include a ðΦ†
1Φ2Þ2 þ H:c: term

because it formally violates CSB. We note that introducing such
a term may lead to spontaneous CP violation [27]. Furthermore,
if both the ðΦ†

1Φ2Þ2 þ H:c: term and Majorana mass terms for
NR’s are introduced, the SLH light neutrino masses can be
radiatively generated [28].
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parameters as independent. For instance, we may choose f,
tβ, mT as the three independent parameters; then, any other
observable could be expressed in terms of these three
parameters. In particular, the pseudoaxion mass mη is
determined from the following hidden mass relation
derived in Ref. [19]:

m2
η ¼ ½m2

h − v2ΔAð3 − 2θt−12θ Þ þ v2Að5 − 2θt−12θ Þ�s−2θ :

ð29Þ
Here t−12θ ≡ 1

tanð2θÞ, s
−2
θ ≡ 1

sin2θ, and θ, A, ΔA are defined by

θ≡ vffiffiffi
2

p
fsβcβ

; ð30Þ

A≡ 3

16π2

�
λ4t −

g4

8
−
g4

16
ð1þ t2WÞ2

�
; ð31Þ

ΔA ≡ 3

16π2

�
λ4t ln

M2
T

m2
t
−
g4

8
ln
M2

X

m2
W

−
g4

16
ð1þ t2WÞ2 ln

M2
Z0

m2
Z

�
: ð32Þ

The basic feature of this mass relation is that the pseu-
doaxion mass is anticorrelated with the top partner mass.
Second, the SLH is meant to be only an effective field

theory valid up to some energy scale, which could be
revealed by an analysis of partial-wave unitarity. This was
done in Ref. [19] and the unitarity cutoff was determined
to be

ΛU ¼
ffiffiffiffiffiffi
8π

p
× minffcβ; fsβg: ð33Þ

Apart from the lepton Yukawa part, the SLH Lagrangian
is manifestly symmetric with respect to the exchange
Φ1 ↔ Φ2 (with the corresponding exchange of all related
coefficients), and therefore without loss of generality we
may restrict to tβ ≥ 1. The resulting formulas have the
tβ ↔

1
tβ

invariance. Nevertheless, the lepton Yukawa

Lagrangian (12) does not share this exchange symmetry,
and the tβ ↔ 1

tβ
invariance could be lost. However, if we do

not deal directly with lepton-related vertices, the tβ ↔
1
tβ

invariance violation could only come from input parameter
corrections, which are all suppressed by v2

f2 [19], which is a

very small quantity if we consider current bounds on f.
Therefore in the following, unless otherwise specified, we
will assume tβ ≥ 1. (Moreover, in Sec. IV wewill show that
the tβ < 1 case is disfavored by electroweak precision
measurements for natural regions of parameter space.)
Then we can express the unitarity cutoff as

ΛU ¼
ffiffiffiffiffiffi
8π

p
fcβ ð34Þ

and we require all particle masses be less than ΛU. We note
that since ΛU is determined by the smaller of the triplet
VEVs, while mZ0 is determined by the quadrature of the
triplet VEVs, requiring mZ0 ≤ ΛU leads to an upper bound
on tβ (besides our assumption tβ ≥ 1)

1 ≤ tβ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð3 − t2WÞ

g2
− 1

s
≈ 8.9: ð35Þ

Third, the parameter MT has a lower bound derived
simply from the structure of the Yukawa Lagrangian [24]

MT ≥
ffiffiffi
2

p mt

v
fs2β ≈ fs2β; ð36Þ

where s2β ≡ sinð2βÞ. MT is also bounded from above by
eitherΛU or the requirement thatm2

η obtained from Eq. (29)
should be positive.
Finally, from the LHC search for the Z0 boson in the

dilepton channel [29,30], we estimate the lower bound on f
as [27]

f ≳ 7.5 TeV; ð37Þ
We note that when combined with Eqs. (36) and (35) this
also leads to a lower bound on the top partner mass of
around 1.7 TeV, which is much more stringent than
constraints from top partner searches at the LHC.
It is remarkable that the naturalness issue can also be

analyzed in a CEFTapproach, which was done in Ref. [19].
We define the total degree of fine-tuning at a certain
parameter point as

ΔTOT ¼ maxfΔμ2

TOT;Δλ
TOTg; ð38Þ

where Δμ2

TOT, Δλ
TOT are defined by

Δλ
TOT ≡

				 λUm2
h

∂m2
h

∂λU
				; Δμ2

TOT ≡
				 μ2Um2

h

∂m2
h

∂μ2U
				: ð39Þ

Here λU, μ2U denote the λ, μ2 parameters defined at the
unitarity cutoff. The above definitions obviously reflect
how the IR parameters (e.g., m2

h) are sensitive to UV
parameters (e.g., λU, μ2U), and thus may serve as a measure
of the degree of fine-tuning in the allowed parameter space.
We may follow Ref. [19] to compute the degree of fine-
tuning, and find several general features. One feature which
is easy to understand is, generally speaking, with smaller f
and mT we could get a smaller degree of fine-tuning.
In Fig. 1 we present the density plot of LogΔTOT in the

mη-mT plane for f ¼ 8 TeV. Only the colored region is
allowed by various constraints. From the figure it is clear
that the parameter region favored by naturalness consid-
erations is featured by a small mT , with mη around
500 GeV. A light η, with a mass less than 2mt, is
unfortunately disfavored.
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C. Fermion mass diagonalization and
flavor assumption

Fermion mass diagonalization has been studied in
Refs. [23,24]. In the lepton sector, the fermion mass matrices
can be diagonalized by the following field rotations:

�
NLn

νLn

�
→

�
cδ sδ
sδ −cδ

��
NLn

νLn

�
;

n ¼ 1; 2; 3; δ≡ vffiffiffi
2

p
ftβ

; ð40Þ

0
B@

eL
μL

τL

1
CA → Ul

0
B@

eL
μL

τL

1
CA;

0
B@

eR
μR

τR

1
CA → Wl

0
B@

eR
μR

τR

1
CA; ð41Þ

where Ul, Wl are both 3 × 3 unitary matrices. In this work,
for simplicity we will assume that Ul, Wl are both identity
matrices. This leads to a simplification of some Feynman
rules associated with the heavy neutrino N.
In the quark sector, first of all we perform field rotations

in the right-handed sector as follows:

u1R3 ¼
−λt2sβtR þ λt1cβTRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λt21 c
2
β þ λt22 s

2
β

q ; u2R3 ¼
λt1cβtR þ λt2sβTRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λt21 c
2
β þ λt22 s

2
β

q ;

ð42Þ

d1R1 ¼
−λd2sβdR þ λd1cβDRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λd21 c2β þ λd22 s2β
q ; d2R1 ¼

λd1cβdR þ λd2sβDRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λd21 c2β þ λd22 s2β

q ;

ð43Þ

d1R2 ¼
−λs2sβsR þ λs1cβSRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs21 c
2
β þ λs22 s

2
β

q ; d2R2 ¼
λs1cβsR þ λs2sβSRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λs21 c
2
β þ λs22 s

2
β

q :

ð44Þ

For simplicity, the phenomenological studies done in this
work will be carried out under the following flavor
assumptions on the quark Yukawa Lagrangian (16):

λTuu ¼ λTcu ¼ λ12u ¼ λ21u ¼ λ31u ¼ λ32u ¼ 0; ð45Þ
λDb ¼ λSb ¼ λ1b ¼ λ2b ¼ 0: ð46Þ

These flavor assumptions turn off all of the generation-
crossing quark flavor transitions and lead to a trivial
Cabibbo-Kobayashi-Maskawa matrix, i.e., VCKM ¼ 13×3,
which is not realistic. Nevertheless, in this paper we are
concerned with the direct production of new physics
particles at high-energy colliders rather than quark flavor
observables. Also, for the parameter region that we are
interested in, the phenomenology is not sensitive to the
flavor assumptions adopted here, if the λ’s in Eqs. (45) and
(46), which characterize the generation-crossing quark
flavor changing effects, are small.
With the above flavor assumptions, it is then straightfor-

ward to show that, up to OðvfÞ, after right-handed sector
field rotations we only need to perform the following field
rotations in the left-handed sector to diagonalize the quark
mass matrices:�

tL
TL

�
→

�
1 −δt
δt 1

��
tL
TL

�
; ð47Þ

�
dL
DL

�
→

�
1 −δDd

δDd 1

��
dL
DL

�
; ð48Þ

�
sL
SL

�
→

�
1 −δSs
δSs 1

��
sL
SL

�
: ð49Þ

In the above equations, the field rotation parameters δt, δDd,
δSs can be expressed using f, β and the corresponding
heavy fermion mass as follows6:

δt ¼
v

2
ffiffiffi
2

p
fsβcβ

 
s2β − c2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

m2
t

v2
f2

M2
T
s2βc

2
β

s !
; ð50Þ

δDd ¼ −
v

2
ffiffiffi
2

p
fsβcβ

 
s2β − c2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

m2
d

v2
f2

M2
D
s2βc

2
β

s !
;

ð51Þ

δSs ¼ −
v

2
ffiffiffi
2

p
fsβcβ

 
s2β − c2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

m2
s

v2
f2

M2
S
s2βc

2
β

s !
:

ð52Þ

FIG. 1. Density plot of LogΔTOT in the mη-mT plane for
f ¼ 8 TeV. Log means log10.

6Our expressions for δt, δDd, δSs differ from the corresponding
expressions in Eq. (2.63) of Ref. [23]. The expressions of δt, δDd,
δSs given in Ref. [23] are not consistent with their counterparts in
Ref. [24]. Our calculation agrees with Ref. [24].
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Note that in the above equations, before the square root,
both the plus sign and minus sign give possible solutions,
which leads to a total of eight sign combinations. When we
refer to the sign combination in these equations, we will list
them according to the order δt, δDd, δSs, as, e.g., ðþ;þ;þÞ,
ðþ;þ;−Þ, etc., md, ms, MD, MS correspond to the mass of
d, s, D, S, respectively. In the following we will simply
neglect the small md, ms; then, the expressions of δDd, δSs
become identical, apart from a possible sign difference
before the square root. Then, we obtain the simple
expression

δþDd ¼ δþSs ¼ −
vtβffiffiffi
2

p
f
; δ−Dd ¼ δ−Ss ¼

vffiffiffi
2

p
ftβ

; ð53Þ

where the superscripts indicate the sign choice for the
corresponding rotation parameter. The rotation parameters
δt, δDd, δSs are important since they appear directly in the
coefficients of various interaction vertices which affect the
η phenomenology, as we will see.

D. Lagrangian in the mass basis

We are now prepared to present the Lagrangian in the
mass basis which is relevant for the investigation of η
phenomenology. However, let us first note that there is a
subtle issue regarding the diagonalization in the bosonic
sector. After EWSB, it can be shown that the CP-odd sector
scalar kinetic matrix in terms of the η, ζ, χ, ω fields is not
canonically normalized. Also, there exist “unexpected”
two-point vector-scalar transition terms like Zμ∂μη after
expanding the covariant derivative terms of the scalar
fields. Therefore, a further field rotation (including a proper
gauge fixing) is needed to diagonalize the bosonic sector.
This subtle issue had been overlooked for a long time in the
literature, and was only remedied in a recent paper [22]. In
Ref. [22], an expression for the fraction of mass eigenstate η
field contained in the η, ζ, χ, ω fields originally introduced
in the parametrization (4)–(6) was obtained, valid to all
orders in ξ≡ v

f, as follows (we collect the four fraction
values into a four-component column vector ϒ):

ϒ ¼

0
BBBBB@

c−1γþδ

−c−1γþδðs2δtβ − s2γ t−1β Þ
vffiffi
2

p
f
c−1γþδðc2δtβ − c2γt−1β Þ

1
2
c−1γþδðs2δtβ þ s2γt−1β Þ

1
CCCCCA; ð54Þ

where

γ ≡ vtβffiffiffi
2

p
f
; δ≡ vffiffiffi

2
p

ftβ
: ð55Þ

The ϒ vector is involved in the derivation of all η-related
mass eigenstate vertices. In particular, from the expression
of ϒ we see that there is an OðξÞ component of thw mass
eigenstate η contained in χ. This has the following
consequences. If we parametrize the mass eigenstate
ZHη vertex as

LZHη ¼ casZHηZ
μðη∂μH −H∂μηÞ

þ csZHηZ
μðη∂μH þH∂μηÞ; ð56Þ

where casZHη denotes the coefficient of the antisymmetric
ZHη vertex, and csZHη denotes the coefficient of the
symmetric ZHη vertex, then it was shown in Ref. [22] that

casZHη ¼ −
g

4
ffiffiffi
2

p
c3Wt2β

ξ3 þOðξ5Þ; ð57Þ

csZHη ¼
gffiffiffi

2
p

cWt2β
ξþ g

24
ffiffiffi
2

p
cWs2β

�
8

s2βt2β

þ 3c2β

�
8þ 6

c2W
−

1

c4W

��
ξ3 þOðξ5Þ: ð58Þ

We see that the antisymmetric ZHη vertex only shows up
from Oðξ3Þ, in contrast to the results presented in
Refs. [17,18] which claimed the existence of antisymmetric
ZHη vertex at OðξÞ due to the lack of an appropriate
diagonalization in the bosonic sector.
This subtle issue of diagonalization in the bosonic sector

also has an impact on the η coupling to fermions. For
instance, if we consider the expansion of ϵijkΦi

1Φ
j
2, with the

help of the expression for theϒ vector in Eq. (54), we could
find the following result for the neutral component:

ϵijkΦi
1Φ

j
2 ⊃ −if

0
B@

0

fsβcβsγþδ þ 1ffiffi
2

p cγþδH

0

1
CA: ð59Þ

An important message from this is that ϵijkΦi
1Φ

j
2 does not

contain any fraction of the mass eigenstate η field, to all
orders in ξ. Therefore, from Eq. (12) we immediately
conclude that η does not couple to a pair of charged leptons
to all orders in ξ. This point was overlooked in previous
studies [21,31] which relied on η → ττ.
In the following, let us collect the other mass eigenstate

vertices that are relevant for η phenomenology, to the first
nontrivial order in ξ. In the Yukawa sector, we have the
following couplings of H and η to a pair of fermions.
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(1) H and η couplings to the lepton sector:

LLY ⊃ −
X3
n¼1

mlnffiffiffi
2

p
fsβcβtγþδ

Hl̄RnlLn þ
X3
n¼1

MNnffiffiffi
2

p
ftβ

HN̄RnνLn

− i
X3
n¼1

MNnffiffiffi
2

p
ftβ

cγþδηN̄RnNLn − i
X3
n¼1

MNnffiffiffi
2

p
ftβ

sγþδηN̄RnνLn þ H:c: ð60Þ

(2) H and η couplings to the up-type quark sector:

LQY ⊃ −
mu

v
HūRuL −

mc

v
Hc̄RcL

−
mt

v
Ht̄RtL þmt

v

� ffiffiffi
2

p
v

ft2β
þ δt

�
Ht̄RTL þMT

v
δtHT̄RtL þ m2

t

vMT
HT̄RTL

− i
mt

v
δtηt̄RtL − i

mt

v
ηt̄RTL þ i

MT

v

�
v2

2f2
þ δ2t

�
ηT̄RtL þ i

MT

v
δtηT̄RTL þ H:c: ð61Þ

(3) H and η couplings to the down-type quark sector:

LQY ⊃ −
mb

v
Hb̄RbL

−
md

v
Hd̄RdL þmd

v

�
−

ffiffiffi
2

p
v

ft2β
þ δDd

�
Hd̄RDL þMD

v
δDdHD̄RdL þ m2

d

vMD
HD̄RDL

−
ms

v
Hs̄RsL þms

v

�
−

ffiffiffi
2

p
v

ft2β
þ δSs

�
Hs̄RSL þMS

v
δSsHS̄RsL þ m2

s

vMS
HS̄RSL

− i
md

v
δDdηd̄RdL − i

md

v
ηd̄RDL þ i

MD

v

�
v2

2f2
þ δ2Dd

�
ηD̄RdL þ i

MD

v
δDdηD̄RDL

− i
ms

v
δSsηs̄RsL − i

ms

v
ηs̄RSL þ i

MS

v

�
v2

2f2
þ δ2Ss

�
ηS̄RsL þ i

MS

v
δSsηS̄RSL þ H:c: ð62Þ

In the above equations,mln, n ¼ 1, 2, 3 denote the masses of e, μ, τ leptons,MNn, n ¼ 1, 2, 3 denote the masses of the three
heavy neutral leptonsNn, andmu,mc denote the masses of the u, c quarks, respectively. η can also be a decay product of the
heavy fermionsN, T,D, S, and therefore we also list the relevant Lagrangian for the heavy fermion gauge interaction which
enters the heavy fermion decays,

Lmatter ⊃
gv
2ftβ

Wþ
μ N̄Lmγ

μlLm −
gv

2
ffiffiffi
2

p
cWftβ

ZμN̄Lmγ
μνLm

−
gδtffiffiffi
2

p Wþ
μ T̄Lγ

μbL −
gδt
2cW

ZμT̄Lγ
μtL

−
gδDdffiffiffi

2
p Wþ

μ ūLγμDL þ gδDd

2cW
Zμd̄LγμDL −

gδSsffiffiffi
2

p Wþ
μ c̄LγμSL þ gδSs

2cW
Zμs̄LγμSL þ H:c: ð63Þ

A further interesting possibility is that η might come from the decay of a Z0 boson. The Z0-related parts of the interaction
Lagrangian are listed below.
(1) Z0 couplings to leptons:

Lmatter ⊃ g
1 − t2W

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p l̄LnγμlLnZ0
μ − g

t2Wffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p l̄RnγμlRnZ0
μ

þ g
1 − t2W

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p ν̄Lnγ
μνLnZ0

μ − g
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − t2W
p N̄Lnγ

μNLnZ0
μ: ð64Þ

CHEUNG, HE, MAO, TSENG, and ZHANG PHYS. REV. D 98, 075023 (2018)

075023-8



(2) Z0 couplings to third-generation quarks:

Lmatter ⊃ −g
3 − 2t2W

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p T̄Lγ
μTLZ0

μ þ g
2t2W

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p T̄Rγ
μTRZ0

μ

þ g
3þ t2W

6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p t̄LγμtLZ0
μ þ g

2t2W
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p t̄RγμtRZ0
μ

þ g
3þ t2W

6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p b̄LγμbLZ0
μ − g

t2W
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p b̄RγμbRZ0
μ: ð65Þ

(3) Z0 couplings to first- and second-generation quarks:

Lmatter ⊃ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p
3

D̄Lγ
μDLZ0

μ − g
t2W

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p D̄Rγ
μDRZ0

μ

− g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p
6

d̄LγμdLZ0
μ − g

t2W
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p d̄RγμdRZ0
μ

− g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p
6

ūLγμuLZ0
μ þ g

2t2W
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p ūRγμuRZ0
μ

þ terms with u → c; d → s;D → S: ð66Þ

(4) Z0 couplings to bosons (relevant for Z0 decay):

Lgauge ⊃ −ig
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

q
ð1 − t2WÞ

v2

8f2
fð∂μZ0

νÞðW−μWþν −WþμW−νÞ

þ Z0μ½ð∂μWþ
ν ÞW−ν − ð∂μW−

ν ÞWþν� þ Z0ν½ð∂μW−
ν ÞWþμ − ð∂μWþ

ν ÞW−μ�g; ð67Þ

Lgk ⊃ −
ffiffiffi
2

p
gvffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − t2W
p

ft2β
Z0μðη∂μH −H∂μηÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p
gvffiffiffi

2
p

ft2β
Z0μðη∂μH þH∂μηÞ

−
g2v

2c2W
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p ηZ0μ ðY0†
μ þ Y0

μÞffiffiffi
2

p þ g2vc2W
2c3W

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p HZ0μZμ: ð68Þ

III. SYMMETRIC VSS VERTICES

In the derivation of the SLH Lagrangian in the mass
basis we obtained the ZHη vertex in the form of
Eq. (56), which contains two parts: the antisymmetric part
[Zμðη∂μH −H∂μηÞ] and the symmetric part [Zμðη∂μHþ
H∂μηÞ].7 An antisymmetric VSS vertex often appears in
models based on a linearly realized scalar sector, such as
the usual two-Higgs-doublet model (2HDM). It is natural to
ask whether the symmetric VSS vertices can have any

physical effect. We note that in a Lorentz-invariant ZHη
vertex, the ∂μ may act on any of the three fields (Zμ, H, η).
However because a total derivative term ∂μðZμHηÞ has no
physical effects, we therefore expect at most two indepen-
dent contributions from the interaction of one vector field
with two scalar fields. If symmetric VSS vertices are
allowed and present in a general theory and could lead
to distinct physical effects, it would mean that a vector field
could interact with two scalar fields in a manner different
from the usually expected antisymmetric pattern, which
may further reveal interesting features of the enlarged scalar
sector.
Let us first note that the symmetric VSS Lagrangian

Zμðη∂μH þH∂μηÞ can be written as

Zμ∂μðHηÞ ð69Þ

7The Hermiticity requirement on the Lagrangian does not
forbid the symmetric part. Zμ, H, η are all real fields. ∂μ does not
lead to an additional minus sign under Hermitian conjugation
because in quantum field theory xμ’s are labels, not operators.
This is not to be confused with the situation in ordinary quantum
mechanics.
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via Leibniz’s rule and is therefore (via integration by parts)
equivalent to

−ð∂μZμÞðHηÞ ð70Þ

in the Lagrangian formulation of the theory. A reflective
reader might at this moment wonder whether terms like
Eq. (70) indeed contribute to S-matrix elements if canonical
quantization is adopted. Note that what matters in canonical
quantization is the interaction Hamiltonian in the inter-
action picture (denoted Hint

I ), and if Zμ is a massive spin-1
field, then the corresponding interaction picture field
operator Zμ

I (the subscript “I” denotes interaction picture)
will automatically satisfy [32]

∂μZ
μ
I ¼ 0: ð71Þ

It is tempting to arrive at the conclusion that terms like
Eq. (70) cannot contribute to S-matrix elements due to
Eq. (71). Actually, this is not quite correct. The correct
procedure to go from the classical Lagrangian to the
interaction Hamiltonian in the interaction picture Hint

I is
to (i) identify appropriate canonical coordinates and their
conjugate momenta, (ii) perform a Legendre transformation
to obtain the Hamiltonian and express it in terms of
canonical coordinates and their conjugate momenta,
(iii) promote the canonical variables to field operators
satisfying appropriate canonical commutation relations,
and finally (iv) split the Hamiltonian into a free part and
an interaction part and replace the Heisenberg-picture
quantities with their interaction-picture counterparts [32].
If this procedure is strictly followed, we would find that
only the spatial components of Zμ can be treated as
independent canonical coordinates while Z0 is dependent
because regardless of whether we start with Eq. (69) or
Eq. (70) the derivative of the Lagrangian with respect to _Z0

cannot be made to satisfy canonical commutation relations.
To avoid the appearance of ∂0Z0 in the Hamiltonian we
could start with Eq. (69), and then the problem turns out to
be the same as that treated in Sec. 7.5 of Ref. [32]. Using
the results there, we could see that Eq. (69) leads to a term

−Zμ
I∂μðhIAIÞ ð72Þ

in the interaction Hamiltonian in the interaction picture
(barring a Lorentz noncovariant term which is not shown
here). This will certainly lead to a vertex Feynman rule

−kμ; ð73Þ

where kμ is the Z momentum flowing into the vertex. This
vertex Feynman rule could also be derived from Eq. (69)
via the path-integral method. Notice that it is not legitimate
to perform integration by parts in the interaction-picture
Hamiltonian Hint

I to obtain

ð∂μZ
μ
I ÞðhIAIÞ ð74Þ

from Eq. (72).8

The appearance of ∂μZμ in Eq. (70) is reminiscent
of covariant gauge fixing in gauge field theories.
Equation (70) is not gauge invariant; nevertheless, at this
moment let us suppose that it can be deduced from a gauge-
invariant operator. Because we are dealing with quantum
field theories it is important not to confuse them with
classical field theories. In a classical gauge field theory a
gauge-fixing condition (such as the Landau gauge con-
dition ∂μZμ ¼ 0) is employed so that the solutions of the
equation of motion are required to also satisfy the gauge-
fixing condition. In quantum field theory all classical field
configurations, regardless of whether they satisfy the
classical equation of motion, are to be integrated over in
the path integral. The usually adopted covariant gauge,
the general Rξ gauge, actually corresponds to a Gaussian
smearing of a class of covariant gauge conditions and does
not strictly force the classical field to satisfy a simple
gauge-fixing equation. However, the limit ξ → 0 makes the
gauge-fixing functional act like a delta function imposing
the Landau gauge condition ∂μZμ ¼ 0 [32]. Therefore, it is
heuristic to guess that in the Landau gauge, symmetric VSS
vertices do not contribute to the S-matrix of the theory.
However, we should not forget that in the Landau gauge it
is necessary to take into account the Goldstone contribution
to the S-matrix, and also the associated ghost contribution
when we go beyond tree level in perturbation theory. This
observation suggests that at tree level, processes involving
symmetric VSS vertices can be seen as purely Goldstone
mediated.
Physical effects of antisymmetric VSS vertices have

been well studied in the literature. For example, in the
2HDM, a benchmark process which embodies the effect of
antisymmetric VSS vertices is

f þ f̄ → Aþ h ð75Þ

where A and h denote a generic CP-odd and CP-even
2HDM Higgs boson, respectively. The corresponding
Feynman diagram is shown in Fig. 2 in unitarity gauge.
Now suppose we replace the antisymmetric VSS ZhA
vertex in Fig. 2 by a completely symmetric VSS ZhA
vertex. It is obvious that if the Z boson is on shell, then the
amplitude should vanish since for an on-shell massive
vector boson we have the relation p · ϵ ¼ 0 for its

8More specifically, integration by parts for spatial components
of Hint

I should be fine if the fields are assumed to satisfy certain
boundary conditions, which is usually the case. However,
integration by parts for the temporal component of Hint

I is
problematic since in the expression for the scattering operator
S ¼ T expð−i Rþ∞

−∞ Hint
I dtÞ the temporal integration is actually

twisted by the time ordering. No such problem exists if we adopt
the path-integral method.
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momentum and polarization vectors. It is tempting to
proceed with the case where the Z boson is off shell.
The amplitude in this case can be examined from two
perspectives. First, we can perform the calculation in
unitarity gauge. In this gauge, the result of dotting the Z
momentum p at the ZhA vertex into its s-channel propa-
gator is again proportional to the Z momentum p at the
Zff̄ vertex. It is then obvious that only the axial-vector part
of the Zff̄ vertex contributes to the amplitude, with a
contribution proportional to the fermion mass mf.
Alternatively, we may perform the calculation in Landau
gauge (ξ ¼ 0), in which the diagram shown in Fig. 2 does
not contribute to the amplitude; nevertheless, we need to
take into account the s-channel Goldstone-mediated ampli-
tude, which again gives a contribution proportional to the
fermion mass mf.
Although usually f is a light fermion with negligible

mass effects, we might be interested in the case where f is
heavy with important mass effects, e.g., the top quark. If in
this case the symmetric VSS vertex could lead to physical
effects, we would seem to produce a paradox in the SLH. In
the SLH there exists a symmetric ZHη vertex; however, if
we consider a linearly realized SLH as a UV completion,
then it cannot lead to symmetric VSS vertices and hence
there will be no related physical effects. Since the usual
nonlinearly realized SLH can be related to a linearly
realized SLH via an appropriate field redefinition, the
above discussion seems to violate the field redefinition
invariance of the S-matrix element.9 We can turn the
argument around to use the field redefinition invariance
to infer the existence of an additional contribution in the
SLH which also contributes to the ff̄ → Hη process such
that the field redefinition invariance is maintained. In fact, if
we examine the Yukawa part of the SLH Lagrangian, we
would find the following four-point contact vertex (mf

denotes the mass of f):

L ⊃ i
2
ffiffiffi
2

p
gA

ft2β

mf

v
Hηf̄γ5f: ð76Þ

Here gA is the axial coupling of the fermion f which also
appears in its interaction with the Z boson and the
associated Goldstone χ as

L ⊃
g

2cW
Zμf̄γμðgV þ gAγ5Þf þ i

2gAmf

v
f̄γ5fχ: ð77Þ

Now if we compute the amplitude for ff̄ → Hη in Rξ

gauge, we need to include three contributions: s-channel Z
exchange, s-channel χ exchange, and the ffHη contact
interaction, as shown in Fig. 3. The amplitudes correspond-
ing to these three diagrams are computed to be (from left to
right)

iMI ¼
ffiffiffi
2

p

vft2β

−ξm2
Z

q2 − ξm2
Z
2gAmfv̄ðpf̄Þγ5uðpfÞ; ð78Þ

iMII ¼
ffiffiffi
2

p

vft2β

q2

q2 − ξm2
Z
2gAmfv̄ðpf̄Þγ5uðpfÞ; ð79Þ

iMIII ¼ −
ffiffiffi
2

p

vft2β
2gAmfv̄ðpf̄Þγ5uðpfÞ: ð80Þ

Here pf and pf̄ are the four-momenta of f and f̄,
respectively and q≡ pf þ pf̄. When we add the three
contributions, we find

iMI þ iMII þ iMIII ¼ 0 ð81Þ

which is exactly what we would expect from field redefi-
nition invariance. Moreover, we see that the Z and χ
contributions add up to be gauge independent, while the
contact interaction contribution itself is gauge independent.
Here we would like to mention a further subtle point

related to the symmetric VSS vertex. It might still be
somewhat counterintuitive that the contribution from the
symmetric ZHη vertex is canceled by the contribution from
the ffHη contact vertex, since the former contribution
should know the position of the Z pole and therefore vanish
for an on-shell Z boson, while the latter certainly does not
“feel” the Z pole. To illustrate this issue, we can include the
effect of the Z boson width ΓZ so that the Z boson
propagator in the unitarity gauge is written as

FIG. 3. Feynman diagrams in the SLH for ff̄ → Hη in Rξ

gauge.
FIG. 2. Associated production of h and A.

9The radial mode does not help since it does not have the
required CP property.
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−gμν þ qμqν

m2
Z

q2 −m2
Z þ imZΓZ

: ð82Þ

When this propagator is dotted into qν coming from the
symmetric VSS Feynman rule, at q2 ¼ m2

Z it will vanish,
which seems quite plausible given our previous argument
that a symmetric VSS vertex does not contribute to the
process in which the related vector boson is on shell.
However, this immediately leads to the paradoxical sit-
uation that near the on-shell region the field redefinition
invariance is again violated since the contribution from the
ffHη contact vertex certainly does not know about the
Z pole.
The resolution of this paradox consists in the treatment

of the particle width in its propagator. The naive treatment
in Eq. (82) is actually not quite correct and will in general
lead to results that violate the Ward-Takahashi identities. A
proper treatment can be made by, e.g., employing the
complex mass scheme which properly retains gauge invari-
ance. The final result is that, of course, no exotic structure
appears near the Z pole and the field redefinition invariance
is maintained.

IV. CONSTRAINTS FROM ELECTROWEAK
PRECISION OBSERVABLES

As discussed in Sec. II, in the study of the pseudoaxion
phenomenology there are eight sign combinations for the
rotation parameters δt, δDd, δSs. Moreover, when the lepton
sector is relevant, either tβ ≥ 1 or tβ < 1 could be possible,
leading to further complications. Nevertheless, as will be
shown in this section, the number of possibilities greatly
reduces if we require the following.
(1) The parameter space under consideration is favored

by naturalness considerations and thus embodies
(to some extent) the original motivation of the
SLH model.

(2) The parameter space under consideration is allowed
by electroweak precision measurements.

As discussed in Sec. II, the first requirement points to the
region characterized by a small top partner mass. In the
SLH, currently the lower bound on the top partner mass is
derived from Eq. (36) where f is stringently constrained by
dilepton resonance searches. Constraints from direct
searches for top partner production are not as competitive
at the moment. For given f, a small top partner mass could
be obtained by requiring a large tβ (or t−1β for tβ < 1), which
is in turn bounded by unitarity considerations. To summa-
rize, the first requirement points to the region characterized
by a small f and large tβ (or t−1β for tβ < 1).
As for the second requirement, in the present work we

consider the following electroweak observables.
(1) The W boson mass mW .
(2) R observables measured at the Z pole, Rb, Rc, Re,

Rμ, Rτ, which are defined by

Rb ≡ Γðbb̄Þ=ΓðhadÞ; Rc ≡ Γðcc̄Þ=ΓðhadÞ;
Rl ≡ ΓðhadÞ=Γðlþl−Þ; l ¼ e; μ; τ; ð83Þ

in which ΓðhadÞ denotes the total hadronic width of
the Z boson, and Γðbb̄Þ, Γðcc̄Þ, Γðlþl−Þ denote the
Z-boson partial widths into bb̄, cc̄, lþl− channels.

To set up the calculation we choose the fine-structure
constant αem ≡ e2

4π (defined at the Z pole), the Fermi
constantGF, and Z boson massmZ as the input parameters.
Expressed with the SM quantities, we have the tree-level
relations

e ¼ gSMsW;SM;
GFffiffiffi
2

p ¼ g2SM
8m2

W;SM
; ð84Þ

m2
Z ¼ g2SMv

2
SM

4c2W;SM
; m2

W;SM ¼ 1

4
g2SMv

2
SM: ð85Þ

These relations are modified in the SLH to be

e ¼ gsW;
GFffiffiffi
2

p ¼ g2

8m2
W;SLH

�
1 −

v2

4f2t2β

�
2

; ð86Þ

m2
Z ¼ g2v2

4c2W
þ g2

32c2W

�
c−2W ð3 − t2WÞ −

4

3
s−2β c−2β

�
v4

f2
; ð87Þ

m2
W;SLH ¼ 1

4
g2v2 þ 1

24
g2ð3 − s−2β c−2β Þ v

4

f2
: ð88Þ

Here we note that in the above equations, as in Sec. II, g, v,
sW represent quantities in the SLH and are thus different
from the SM quantities gSM, vSM, sW;SM. From the above
two sets of relations we may derive

m2
W;SLH

m2
W;SM

¼ 1þ 1

8

�
1 − t2W;SM þ 1 − c2W;SM

2c2W;SM − 1

4

t2β

�
v2SM
f2

; ð89Þ

s2W
s2W;SM

¼ 1 −
1

8

�
1 − t2W;SM þ c2W;SM

2c2W;SM − 1

4

t2β

�
v2SM
f2

: ð90Þ

To calculate the R observables in the SLH we also need the
modified Z couplings to light fermions. Although the
corrections relative to the SM are of v2

f2 order, they are still

relevant since the R observables have been measured to a
few per mille precision. In such a case the diagonal entries
in the rotational matrices in Eq. (49) should be understood
as 1 − 1

2
δ2Dd and 1 −

1
2
δ2Ss, respectively. Then the modified Z

couplings to light fermions in the SLH can be written as
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g0L;Z;f ¼ gL;Z;f þ δZgL;Z0;f;

g0R;Z;f ¼ gR;Z;f þ δZgR;Z0;f;

for f ¼ u; c; b; e; μ; τ: ð91Þ

In the above equations, δZ is the Oðv2f2Þ Z-Z0 mixing angle,

appearing in the mixing relation

Z0 ¼ Z0
m þ δZZm; Z ¼ Zm − δZZ0

m: ð92Þ

Here Zm, Z0
m denote the final mass eigenstates after the

Oðv2f2Þ rotation while Z, Z0 denote the states before theOðv2f2Þ
rotation, as defined via Eq. (11). In the process of gauge
boson mass diagonalization, δZ is computed to be

δZ ¼ −
ð1 − t2WÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p
8cW

v2

f2
: ð93Þ

In Eq. (91), gL;Z;f ¼ g
cW

ðTf
3 −Qfs2WÞ, gR;Z;f ¼ − g

cW
Qfs2W

are leading-order coefficients of the Lagrangian terms
f̄LγμfLZμ, f̄RγμfRZμ, and Tf

3 , Qf denote the third com-
ponents of the isospin and the electric charge of f,
respectively. gL;Z0;f, gR;Z0;f are leading-order coefficients
of the Lagrangian terms f̄LγμfLZ0

μ, f̄RγμfRZ0
μ, which are

given in Eqs. (64)–(66). g0L;Z;f, g0R;Z;f in Eq. (91) denote the
coefficients of the Lagrangian terms f̄LγμfLZμ, f̄RγμfRZμ

and Tf
3 , Qf, to Oðv2f2Þ precision.

For f ¼ d the modified Z couplings in the SLH turn out
to be

g0L;Z;d ¼ gL;Z;d þ δZgL;Z0;d þ δ2DdðgL;Z;D − gL;Z;dÞ;
g0R;Z;d ¼ gR;Z;d þ δZgR;Z0;d: ð94Þ

Obviously the additional correction is due to the left-
handedD-d mixing. The corresponding formulas for f ¼ s
can be obtained by the replacements d → s, D → S. gL;Z;D,
gL;Z;S are leading-order coefficients of the Lagrangian
terms D̄Lγ

μDLZμ, S̄RγμSRZμ,

gL;Z;D ¼ gL;Z;S ¼
1

3
gsWtW: ð95Þ

Now we have all of the SLH couplings that are necessary to
calculate the R observables. It should be noted that in the
above coupling formulas, sW , cW , tW are quantities in the
SLH and are therefore different from their SM counterparts
sW;SM, cW;SM, tW;SM; see Eq. (90). Therefore, the modifi-
cation of Z couplings to light fermions relative to the SM is
caused by three factors: Z-Z0 mixing, left-handed D-d, S-s
mixing, and the correction of the weak-mixing angle.
A 95% C.L. constraint can be obtained in the f-tβ plane

by performing a χ2 fit of the five R observables. The χ2 is
defined by

χ2 ¼
X

f¼b;c;e;μ;τ

ðRf;SLH − RfÞ2
δ2Rf

þ δ2Rf;SM

: ð96Þ

In the above equation, Rf denotes the experimental values
and δRf

denotes the associated experimental uncertainties.
Also, Rf;SM is the SM theory prediction and δRf;SM

denotes
the associated theory uncertainty. Their values are listed in
Table I [33]. As for the constraint from the W-boson mass,
we treat it separately and consider two more precise
measurements [33],

mW ¼ 80.387� 0.016 GeV ðTevatronÞ; ð97Þ

mW ¼ 80.370� 0.019 GeV ðATLASÞ; ð98Þ

while we note that the SM prediction for mW is [33]

mW;SM ¼ 80.358� 0.004 GeV: ð99Þ

In Fig. 4 the results of the electroweak precision analysis
ofmW and R observables are shown. To clarify the situation
we present the results according to whether tβ ≥ 1 and the
sign combination of the rotation parameters δDd, δSs [see
Eq. (53)]. At first sight there are eight possibilities in total;
however, it is immediately recognized that δþDd, δ

−
Ss, and

δ−Dd, δ
þ
Ss make no difference in terms of constraints in the

f-tβ plane, reducing the number of possibilities to six.
Therefore we obtain the six panels in Fig. 4, with each
panel showing one possibility as described in the caption.
For all of the panels, the green and yellow regions

correspond to parameter points that are allowed by the χ2 fit
of R observables at 68% and 95% C.L., respectively. These
allowed regions do not exhibit a tβ → t−1β symmetry (e.g.,
the allowed regions in the upper right panel and the lower
left panel still differ under the transformation tβ → t−1β ),
since in the computation of R observables, the correction of
s2W relative to its SM value has to be taken into account, as
was pointed out previously. When f is larger than about
17 TeV there will be a lower theoretical bound (from the
mass relation) on tβ or t−1β which is larger than 1,
corresponding to the white region at large f and small
tβ or t−1β in each panel. The 2σ constraints from mW

measurements are simply implemented by requiring

TABLE I. Experimental values and the SM predictions of the R
observables.

Quantity Value Standard Model

Re 20.804� 0.050 20.737� 0.010
Rμ 20.785� 0.033 20.737� 0.010
Rτ 20.764� 0.045 20.782� 0.010
Rb 0.21629� 0.00066 0.21582� 0.00002
Rc 0.1721� 0.0030 0.17221� 0.00003
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jmW;SLH −mW j < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2mW

þ δ2mW;SM

q
: ð100Þ

In the above equation mW denotes the experimentally
measured W-boson mass and δmW

and δmW;SM
denote the

associated experimental and theoretical uncertainties,
respectively. We superimpose the constraint boundary on
the six plots as blue or red lines, representing constraints
from Tevatron or ATLAS measurements, respectively. For
all of these mW constraint boundary lines, the regions on
the right side of the lines are allowed at the 2σ level.
As can be seen from Fig. 4, if tβ < 1, then the region

favored by naturalness consideration is disfavored by
constraints from both R observables and W-boson mass
measurements, regardless of the sign combination of the
rotation parameters δDd, δSs. If tβ ≥ 1, then W-boson mass
measurements do not constrain the parameter region
favored by naturalness consideration. However, in this
case constraints from R observables are significant when
any of the rotation parameters δDd, δSs adopt the plus sign
in Eq. (53). This is because a plus sign leads to a large tβ
enhancement of the rotation parameter and therefore a
larger deviation of Z couplings to the corresponding
fermion. Although the lower bound on f has been pushed
to around 7.5 TeV by LHC dilepton resonance searches, the
R observable constraints still force us to avoid this tβ

enhancement, and consequently the only possibility left is
δ−Dd, δ−Ss with tβ ≥ 1. This result has important conse-
quences for the pseudoaxion phenomenology since the sign
combinations of δDd, δSs will determine how η interacts
with theD, S quarks which in turn influences the decay and
production of the η particle, as will be discussed in more
detail in the next section.
In previous literature on the SLH model the tβ ≥ 1 and

tβ < 1 cases are usually not distinguished, since a tβ → t−1β
symmetry is tacitly assumed. Then only the tβ ≥ 1 case is
considered. However, strictly speaking this symmetry is
only valid when the leptonic sector is not considered. Here
we established clearly that if we consider the region favored
by naturalness considerations, the tβ < 1 case is disfavored
by measurements of mW and R observables. This is closely
related to the breakdown of the tβ → t−1β symmetry in the
lepton sector. Moreover, in previous literature [12,24], the
sign combination of the rotation parameter δDd, δSs was
simply assumed to be (effectively) δ−Dd, δ

−
Ss, in order to

suppress contributions to the electroweak precision observ-
ables. Here we also firmly establish this choice based on
constraints from R observables, combined with mW and
naturalness considerations, keeping in mind that the con-
straint on f has been pushed to around 7.5 TeV due to
updated LHC constraints.

FIG. 4. Constraints frommW and R observables in the f-tβ plane. Upper left: tβ ≥ 1, δþDd, δ
þ
Ss; upper middle: tβ ≥ 1, δþDd, δ

−
Ss or tβ ≥ 1,

δ−Dd, δ
þ
Ss; upper right: tβ ≥ 1, δ−Dd, δ

−
Ss; lower left: tβ ≤ 1, δþDd, δ

þ
Ss; lower middle: tβ ≤ 1, δþDd, δ

−
Ss or tβ ≥ 1, δ−Dd, δ

þ
Ss; lower right: tβ ≤ 1,

δ−Dd, δ
−
Ss. See the text for a detailed description.
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V. PRODUCTION AND DECAY OF THE
PSEUDOAXION

With the preparations made in the previous three
sections, we are now ready to calculate the production
and decay of the pseudoaxion. We will restrict ourselves to
the region 2mt ≲mη ≲ 1 TeV, which is favored by natu-
ralness considerations. All of the related partial width
formulas are given in Appendix B.

A. Decay of the pseudoaxion

For η in the mass range 2mt ≲mη ≲ 1 TeV, it can
always decay into tt̄, gg, γγ channels. (The WW, ZZ, Zγ
channels are also possible and may have comparable
branching ratios compared to γγ. However, from a detection
point of view, it is preferable to consider further decays into
leptons in these channels, leading to an additional sup-
pression by the leptonic branching. For simplicity we will
not consider these channels further in this work.) η → ZH
is highly suppressed, since the antisymmetric ZHη vertex is
suppressed to Oðv3f3Þ while the symmetric ZHη vertex does

not contribute, as pointed out in Sec. III. If the new
fermions D, S, N are heavy enough such that they cannot
appear as decay products of η, then we are left with only the
tt̄, gg, γγ channels. Nevertheless, we should keep in mind
that when f and mη are given, the partial widths of these
channels still depend on the masses of the additional heavy
quarks T, D, S which do not appear as decay products
of η. First, the η → tt̄ decay is controlled by the rotation
parameter δt, which in turn depends on the top partner
mass. The loop-induced decays η → gg, γγ have contribu-
tions from both the top quark and the heavy quark partners
T, D, S. The top quark contribution again depends on δt
while the T, D, S contributions depend on the ηTT̄, ηDD̄,
ηSS̄ couplings which are proportional to the correspon-
ding rotation parameters times the quark partner mass.
Experimentally, the current lower bound for the light-flavor
quark partnersD and S is around 700 GeV [34]. Thus, for a
heavy enough η the η → Dd, Ss channels are still possible

if the mass of D or S is close to the lower bound. To be
definite, we will consider four benchmark scenarios.
(1) Case A: f ¼ 8 TeV, mT ¼ mD ¼ mS ¼ 3 TeV,

all mN > mη.
(2) Case B: f¼8TeV,mη¼500GeV,mD ¼ mS ¼ mT ,

all mN > mη.
(3) Case C: f ¼ 8 TeV, mT ¼ 3 TeV, mD ¼ 700 GeV,

mS ¼ 1 TeV, all mN ¼ 150 GeV.
(4) Case D: f¼8TeV,mη¼500GeV,mD ¼ mS ¼ mT ,

all mN ¼ 150 GeV.
For each case, there are two allowed sign combinations
for the rotation parameters ðδt; δDd; δSsÞ: ðþ;−;−Þ and
ð−;−;−Þ. Other choices are excluded by electroweak
precision measurements, if we are only interested in
parameter regions favored by naturalness considerations.
Therefore, in the following we will use Case Aþ, Case A−,
etc., to indicate the sign choice of δt in each case
[see Eq. (52)].
The total width and branching ratios of η are shown in

Figs. 5 and 6 for Case A and Case B, respectively. In these
two cases, the additional fermion partners D, S, N are not
light enough to appear as decay products of η, and therefore
we are left with the standard η → tt̄, gg, γγ channels. From
the figures it is clear that η can be viewed as a narrow-width
particle; however, the width is not small enough to give rise
to displaced vertices. In both Case A and Case B and for
both sign choices, η decays almost 100% to tt̄, with only
very small branching ratios to gg [Oð0.1%Þ] and γγ
[Oð0.001%Þ]. Here (and in the following) all of the partial
widths are calculated at LO, but it is obvious that the
inclusion of higher-order radiative corrections has little
effect on the whole picture. From a detection point of view,
this situation is somewhat unfortunate since the dominant
channel tt̄ suffers from huge background at hadron col-
liders, while the clean channel γγ has an extremely small
branching ratio. It is natural to ask how the situation will
change if any of D, S, N is light enough, such that
exotic channels like η → NN, Nν, Dd, Ss could be open.
This is embodied in Cases C and D and we show the

FIG. 5. Total width Γ and decay branching ratios of η in Case A.
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corresponding branching ratio plots in Fig. 7. Nevertheless,
the exotic channels contribute at most a few percent in
terms of branching ratio, and therefore are of little use for η
detection even if any ofD, S, N is light enough. This can be
understood from the interaction Lagrangian containing the
ηDd, ηSs and ηNν, ηNN vertices. The ηDd vertex is shown
in Eq. (62). When η → Dd is open, MD

v is an Oð1Þ quantity,
and therefore from Eq. (62) we may recognize that the ηDd
coupling can be considered as being relatively suppressed
by OðvfÞ compared to the ηtt̄ vertex. This leads to the
suppression of the η → Dd channel. The ηNν coupling is

relatively suppressed by OðvfÞ compared to the ηNN
coupling, as can be seen from Eq. (60). However, when
η → NN is open, MNn can be at most OðvÞ. Moreover, the
ηNN coupling suffers from a tβ suppression. Therefore,
numerically the η → NN channel is much more suppressed
compared to the η → tt̄ channel.

B. Decay of the top partner

The pseudoaxion may appear as a decay product of some
additional heavy particles in the model. Among the addi-
tional particles in the SLH only Z0 and T are closely related

FIG. 7. Decay branching ratios of η in Case C and Case D.

FIG. 6. Total width Γ and decay branching ratios of η in Case B.
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to EWSB and naturalness favors small Z0 and T masses
within theoretical constraints. In this subsection we con-
sider the decay of the top partner. The possibility of T →
tþ a (where T and a denote the top partner and a pNGB in
the context of composite Higgs models) has been inves-
tigated in the literature [35–37]. Here we focus on the
situation in the SLH. To be specific, we fix f ¼ 8 TeV and
mη ¼ 500 GeV and then plot the total width and branching
ratios of T as functions of the top partner massmT in Fig. 8.

Both δþt and δ−t possibilities are considered. Note that when
mT is also given, according to the mass relation tβ can be
calculated, which in turn determines the total width and
branching ratios. The relation BrðT → bWÞ ¼ 2BrðT →
tHÞ ¼ 2BrðT → tZÞ holds to a good approximation. In the
δþt case, BrðT → tηÞ is small (not larger than 10% for
mT > 2 TeV) and decreases with the increase ofmT . In the
δ−t case, BrðT → tηÞ is sizable and becomes dominant
(larger than 50%) for mT ≳ 2.2 TeV. Another interesting

FIG. 8. Total width Γ and decay branching ratios of T in the SLH. We assume f ¼ 8 TeV and mη ¼ 500 GeV. Note that in the
considered mass range T → bX, tY channels are not open.

FIG. 9. Gluon-fusion production cross section of η as a function ofmη (upper panel, assumingmT ¼ mD ¼ mS ¼ 3TeV) ormT (lower
panel, assuming mD ¼ mS ¼ mT and mη ¼ 500 GeV). The sign combination of ðδt; δDd; δSsÞ is indicated in each plot.
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and important feature concerns the total width of T. In the
δ−t case, the total width is around 20 GeV which makes
the narrow-width approximation valid to high precision. In
the δþt case, the total width increases with mT . For mT ≈
3.5 TeV the total width increases to around 500 GeV. In
this case Γ=M ≲ 20% and the narrow-width approximation
still roughly holds, if the phase space is large enough.
However, the width will have an appreciable impact on the
invariant mass distribution of the T decay products.

C. Direct production of the pseudoaxion

The pseudoaxion can be directly produced via the gluon-
fusion mechanism at hadron colliders. The particles run-
ning in the loop now contain t, T,D, S. In the calculation of
the production cross section,10 we consider the 14 TeV
(HL-)LHC, the 27 TeV HE-LHC, and the 100 TeV FCC-
hh. The production cross sections are plotted in Fig. 9 as
functions of mη or mT, with other parameters described in
the figure caption. Although the production cross section
may reach OðpbÞ in certain regions of parameter space,
unfortunately when combined with η decay it becomes very
difficult to detect in the gluon-fusion channel. The dom-
inant tt̄ decay mode suffers from huge background, while
the γγ decay mode has only a Oð10−5Þ branching ratio.
Another way to directly produce η is through the

pp → tt̄η channel. We plot the production cross section
as a function of mη in Fig. 10, for three center-of-mass
energies and both δþt and δ−t . Here we fix f ¼ 8 TeV and
mT ¼ 3 TeV, and therefore for a given mη, tβ (and δ�t ) is
also determined. The cross section in the δ−t case is much

smaller than that in the δþt case. Even in the δþt case the
detection of the pp → tt̄η process is still very difficult. For
instance, if we take mη ¼ 450 GeV, then in the δþt case the
cross section reaches only about 0.6 fb at 14 TeVand 100 fb
at 100 TeV. When we consider η → tt̄ decay, there exists
the SM four-top production as an irreducible background,
with a cross section of about 10 fb at 14 TeVand 5000 fb at
100 TeV. Unfortunately, since mη is not far above the 2mt

threshold, we do not expect large differences in kinematical
features between the pp → tt̄η signal and the SM four-top
background, making the discrimination very difficult. With
larger mη (say, 1 TeV), the top pair from η decay can be
boosted, with an invariant mass distribution that peaks
around a high value, which can facilitate the discrimination
from SM backgrounds. However, the cross section for such
a heavy η becomes very small. Therefore, we do not expect
pp → tt̄η to be a promising channel for future η detection
in the SLH.

D. Pseudoaxion production from top partner decay

The above discussion shows that it is very difficult to
detect η via the gluon-fusion and tt̄η-associated production
channels. It is therefore natural to consider alternative η
production mechanisms, such as decay from heavier
particles. In the SLH, particles that can be heavier than
η are T, D, S, N, Z0, X and Y. Here we will concentrate on
T, which is most tightly connected to EWSB. We will
briefly comment on the possibility of detecting η from other
heavy particle decays in the next subsection.
Under current constraints, the lower bound on mT is

already larger than the largest possible value of mη plus mt,
and therefore the exotic decay channel T → tη will always
be open. The branching fraction of T → tη has been
discussed (see Fig. 8). Here we focus on top partner
production. Two major production mechanisms are pair
production through QCD interaction, and single production
through the TbW vertex. Pair production has the virtue of
being model independent, while single production depends
on the value of δt. In Fig. 11 we present the cross sections of

FIG. 10. Production cross section of pp → tt̄η as a function of mη. We assume f ¼ 8 TeV and mT ¼ 3 TeV.

10For simplicity, in this work all of the cross sections are
calculated at LO using MADGRAPH5_AMC@NLO [38] and
FEYNRULES [39]. We use the MSTW2008lo68cl parton dis-
tribution function [40]. For 2 → 1 production, the renormaliza-
tion and factorization scale is taken to be the rest mass of the
s-channel resonance. Otherwise, the renormalization and factori-
zation scale is taken to be the sum of the transverse masses of
final-state particles (before resonance decay) divided by 2.
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pp → TT̄ and pp → Tjþ T̄j for both δþt and δ−t , as
functions of mT while we fix f¼8TeV, mη ¼ 500 GeV.
Three center-of-mass energies (14, 27, 100 TeV) are
considered. Whether pair or single production delivers a
larger cross section depends on the sign choice for δt and
the center-of-mass energy. In the δþt case, for all three
center-of-mass energies the single production cross section
is larger. In the δ−t case, at 14 TeV single production is

larger since pair production is highly suppressed by phase
space. At 27 TeV pair production and single production
become comparable, while for 100 TeV collider energy pair
production dominates.
To detect η we would also like to consider the top partner

decay T → tη that follows the pair or single production of
T. The associated cross sections are plotted as functions of
mT in Fig. 12, using the narrow-width approximation, for

FIG. 12. Cross sections of pp → TT̄ → ηþ anything and pp → Tj → ηþ anything as functions of mT . We assume f ¼ 8 TeV and
mη ¼ 500 GeV. For pp → Tj, the contribution from pp → T̄j is also included.

FIG. 11. Production cross sections of pp → TT̄ and pp → Tj as functions of mT . We assume f ¼ 8 TeV and mη ¼ 500 GeV. For
pp → Tj, the contribution from pp → T̄j is also included.
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both δþt and δ−t . For definiteness we take f ¼ 8 TeV,
mη ¼ 500 GeV. To be precise, the plotted cross sections
are defined by (for pp → Tj, the contribution from pp →
T̄j is also included)

σðpp→Tj→ ηþ anythingÞ¼ σðpp→TjÞ×BrðT→ tηÞ;
ð101Þ

σðpp → TT̄ → ηþ anythingÞ
¼ 2σðpp → TT̄Þ × BrðT → tηÞð1 − BrðT → tηÞÞ
þ σðpp → TT̄Þ × Br2ðT → tηÞ: ð102Þ

For the purpose of η detection, let us consider using the
η → tt̄ channel, which has an almost 100% branching
fraction. Then, the η production from top partner decays
generically leads to a multitop (≥3) signature. Moreover,
the top quarks will be boosted since mT ≫ mt þmη. For
example, suppose a 2 TeV top partner is produced with
little boost in the lab frame and then decays into tþ η. At
this step, t and η roughly share the rest energy of the top
partner and therefore will each have about 1 TeV energy.
The η boson then further decays into t and t̄, each of which
roughly has an energy of about 0.5 TeV. All three top
quarks are boosted: the first one will have a decay
(t → bW) cone size approximated by∼2mt=Et ≃ 0.4, while
the second and third top have ∼2mt=Et ≃ 0.8. Furthermore,
the second and third top quark decaying from η are close to
each other, separated by approximated ∼2mη=Eη ≃ 0.8.
In the single production case, the signature will be

3tþ j, in which the first top is highly boosted while the
second and third are still somewhat boosted and close to
each other. One can make use of such kinematics to
discriminate from QCD backgrounds. The most serious
background is perhaps multitop production. One may be
able to reduce the background using the boosted techniques
[41]. In the pair production case, if we consider one top
partner decaying into tη with the other decaying into bW,
we obtain a signature of 3tþ bþW in which the top
quarks and also the W boson will be boosted. In both the
single and pair production channels, the invariant mass
peaks at mT and mη will also be helpful in discriminating
between the signal and background. Nevertheless, a full
signal-background analysis using boosted-top techniques is
beyond the scope of the present work.
From Fig. 12, we see that the cross sections at the 14 TeV

(HL-)LHC for all of these channels are very small (<1 fb),
making the detection very difficult. Nevertheless, with the
increase of collider energy, the signal cross sections
increase significantly. For example, at the 100 TeV
FCC-hh, for both δþt and δ−t and pair and single production
channels, at relatively small mT the cross sections could
reach Oð100 fbÞ. In the δþt case, the single production
(with the top partner decaying to tη) provides a cross

section of about 200 fb, which is larger than the pair
production channel. In the δ−t case, the pair production
(with one top partner decaying to tη) provides a cross
section of about 400 fb, which is however larger than the
single production channel.
In principle, top partner production and decay provide a

way to measure tβ (which is important for testing the SLH
mass relation) and also discriminate between the δþt and δ−t
cases. In practice, we may consider the partial-width ratio

Rη ≡ ΓðT→tηÞ
ΓðT→bWÞ as both an indicator of the sign choice for δt

and a way to measure δt, which in turn determines tβ. δt can
also be determined from pp → Tj production since the
cross section is proportional to δ2t . Furthermore, in the δþt
case the total width of T could reach Oð100 GeVÞ, which
may have an impact on the invariant mass distribution of T
decay products (e.g., bW). Measurement of the T total
width in principle could also help determine the value of δt.
However, even if δt is determined (including the sign
choice), the determination of tβ and the test of the mass
relation still require the measurement of f and mη, which
can be obtained if we are able to measure the masses of Z0
and η particles.

E. Comments on other channels

Currently the SLH is stringently constrained by the LHC
Z0 → ll search; nevertheless, it also means that if the SLH
was realized in nature, the Z0 → ll signature would be the
first place that we might expect the appearance of new
physics. Then it would also be important to consider
whether we may detect η as a decay product of Z0. Two
channels might be considered: Z0 → ηH and Z0 → ηY.
However, it turns out they give too small branching
fractions: BrðZ0 → ηHÞ < 0.01 and BrðZ0 → ηYÞ < 10−4.
This is regardless of whether the Z0 → DD, SS, NN
channels are kinematically allowed. Therefore, it is not
preferable to consider detecting η from Z0 decay.
If kinematically allowed, we might also consider

D → dη, S → sη, N → νη decays. However, these decay
channels also suffer from small branching fractions, since
the ηDd, ηSs, ηNν couplings are OðvfÞ suppressed com-
pared to HDd, HSs, HNν couplings [see Eqs. (60) and
(62)]. For example, D will dominantly decay to uW, dZ,
dH, with only BrðD → dηÞ < 1%, for the benchmark point
f ¼ 8 TeV, mT ¼ 2 TeV, mη ¼ 0.5 TeV and any value of
mD. Here δ−Dd is assumed, to be consistent with electroweak
precision constraints. As forD production, for the δ−Dd case,
there is a t−1β suppression for single D production, and
therefore D pair production is more promising. Moreover,
current collider constraints on the D mass are not stringent,
such thatmD ¼ 700 GeV is still allowed [34]. Therefore, if
mD is as light as 700 GeV, the large pp → DD̄ production
cross section could compensate for the small D → dη
branching fraction, leading to a sizable η production rate.
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At the 100 TeV FCC-hh, the η production cross section
from D decay, σðpp → DD̄ → ηþ anythingÞ could also
reach more than 100 fb for mD not much larger than
700 GeV (see Fig. 13). This is comparable to the η cross
section from top partner production, and in principle could
also be used to measure tβ. The expected signature would
be tt̄þ 2jþW=Z=H, in which the W=Z=H should be
boosted. The existence of various intermediate resonances
would be helpful in discriminating signal and background.
Nevertheless, we should be aware that naturalness does not
offer any guidance on the preferred value of mD. This is
different from the case of mT , in which naturalness clearly
favors a lighter top partner. The case of pp → SS̄ pro-
duction with S → sη decay is completely similar to the
above discussion of D production and decay. For N,
BrðN → νηÞ is also very small (less than 1% for the
benchmark point f ¼ 8 TeV, mT ¼2TeV, mη ¼ 0.5 TeV
and any value of mN). Moreover, N does not have QCD
pair production channels like D, S, and therefore it is
difficult to detect η from N decay at hadron colliders.
The X, Y gauge bosons in the SLH may have decays like

X → ηW and Y → Hη. However, the single production
cross sections of X, Y at hadron colliders are highly
suppressed, and we need to rely on production with other
heavy particles (heavy gauge bosons or quark partners)
[24]. Since X, Y bosons are quite heavy (with masses of
about 0.8mZ0), their production with other heavy particles
would be limited by phase space while their decays are
expected to be dominated by fermionic final states.
Therefore, we do not consider η production from X, Y
decays as promising channels for η detection.

VI. DISCUSSION AND CONCLUSIONS

The simplest little Higgs model provides a simple way to
concretely realize the collective symmetry breaking mecha-
nism, in order to alleviate the Higgs mass naturalness
problem. In the scalar sector, its particle content is very
economical, since besides the CP-even Higgs which should

serve as the 125 GeV Higgs-like particle, the only addi-
tional scalar particle is the pseudo-Nambu-Goldstone
particle η associated with a remnant global Uð1Þ symmetry.
The detection of η is important since its mass enters into the
crucial SLH mass relation and it will also play an important
role in discriminating SLH from other new physics scenar-
ios. In this work we have been concerned with the produc-
tion and decay of the η particle at future hadron colliders.
We found that for natural regions of parameter space, mη is
larger than 2mt and decays almost exclusively to tt̄, and
Brðη → γγÞ is too small to be considered promising for
detection. Also, it is very difficult to detect η in the direct
production channels pp → η (gluon fusion) and pp → tt̄η.
Channels that are worth further consideration include η
production from heavy quark partner (T, D, S) decays, in
which the heavy quark partner might be singly (for T) or
pair produced. The corresponding η production cross
section at the 100 TeV FCC-hh could reach Oð100 fbÞ
for certain ranges of parameter space that are allowed by
current constraints, while at the 14 TeV (HL-)LHC the rate
might be too small for detection. However, the detection
prospects in these channels (at 100 TeV) might still be
challenging since the final states are quite complicated,
including multitop-associated production with other
objects, in which one or more of them could be boosted,
requiring sophisticated tagging techniques. At the same
time, the SM background also enjoys a large increase with
the collider energy, with more a complicated hadronic
environment. The aim of this paper was to examine the η
production channels with a LO estimate of the η cross
sections in the relatively promising ones as functions of the
model parameters, keeping in mind the most up-to-date
theoretical and experimental constraints (see Table II for a
summary). We did not attempt to give a quantitative
assessment of the collider sensitivities in these channels.
The phenomenology of the η particle in the SLH

was studied a long time ago in several papers (e.g.,
Refs. [17,18,20,21]). Compared to all of the previous

FIG. 13. Production cross section of pp → DD̄ → ηþ anything as a function of mD (left) and mη (right). For the left plot, we assume
f ¼ 8 TeV, mT ¼ 3 TeV, mη ¼ 500 GeV. For the right plot, we assume f ¼ 8 TeV, mT ¼ 3 TeV, mD ¼ 700 GeV.
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studies, the present paper is different in a few crucial
aspects.
(1) Instead of working with the ad hoc assumption of no

direct contribution to the scalar potential from the
physics at the cutoff, we took into account in all
calculations the crucial SLH mass relation (29)
which is a reliable prediction of the SLH. Therefore,
our prediction preserves all of the correlations
required by theoretical consistency but does not
depend on the choice of any fixed cutoff value such
as 4πf.

(2) We have focused our attention on the parameter
region favored by naturalness considerations. This
region is characterized by small mT and large tβ or
t−1β . The favored η mass is larger than 2mt.

(3) We have taken into account the recent collider
constraint on f (f ≳ 7.5 TeV) which is much more
stringent than the constraints obtained a long time
ago. We also took into account the constraint from
perturbative unitarity which sets an upper bound on
the allowed value of tβ or t−1β . These two factors
determine the current lower bound on mT and
crucially affect the largest cross section that can
be achieved in all channels.

(4) Our study is based on an appropriate treatment of the
diagonalization of the vector-scalar system in the
SLH, and especially the field redefinition related to
η. This affects the derivation of ZHη vertices and
also η coupling to fermions, which were not treated
properly in previous works until Ref. [22].

(5) We also clarified the role played by the symmetric
VSS vertices that appear in the Lagrangian and
how they are compatible with the general principles,
like field redefinition invariance and gauge inde-
pendence.

From our study it turns out that the detection of η at the
14 TeV (HL-)LHC will be very difficult, and therefore a pp
collider with higher energy and larger luminosity, such as
the 27 TeV HE-LHC or even the 100 TeV FCC-hh or SppC,
is motivated to capture the trace of such an elusive particle.
Moreover, generally we would expect some other SLH
signatures (e.g., Z0 → ll, T → bW orD → uW) to show up
earlier than η signatures since η signatures are usually very

complicated (with multiple top quarks) and suffer from
small rates. It is nonetheless important to study η properties
since they are crucial in testing the SLH mass relation and
also provide a basis for model discrimination.
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APPENDIX A: CONVENTION CONVERSION

References [23,24] contain detailed treatments of the
anomaly-free SLH model. However, they used different
conventions and it is useful to establish a conversion
rule to relate formulas between the two conventions.
Reference [23] used the following covariant derivative
expression:

Dμ ¼ ∂μ − igAa
μTa þ igxQxBx

μ; gx ¼
gtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2W=3
p :

ðA1Þ
On the other hand, Ref. [24] used

Dμ ¼ ∂μ þ igAa
μTa þ igxQxBx

μ; gx ¼
gtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2W=3
p :

ðA2Þ
Therefore, to convert between the two conventions, we
need

g ↔ −g; tW ↔ −tW ðA3Þ
if we assume gx ↔ gx and Aa

μ ↔ Aa
μ, Bx

μ ↔ Bx
μ, Ta ↔ Ta,

Qx ↔ Qx. The transformations of sW and cW are still not
determined. For convenience, we would like to identify the

TABLE II. Summary of η production from T, DðSÞ decays at the 100 TeV FCC-hh. For pp → Tj, the contribution from pp → T̄j is
also taken into account. For TT̄, Tj channels, the benchmark point is f ¼ 8 TeV,mT ¼ 2 TeV,mη ¼ 500 GeV while forDD̄ channels,
the benchmark point is f ¼ 8 TeV, mT ¼ 3 TeV, mη ¼ 500 GeV, mD ¼ 700 GeV. When listing the signatures for TT̄, DD̄ channels
we do not consider the situation in which both quark partners decay into ηþ t or ηþ j, but this possibility is taken into account in the
cross section values and plots.

Channel Cross section at the benchmark point (
ffiffiffi
s

p ¼ 100 TeV) (fb) Signature

pp → TT̄ → ηþ anything 84ðδþt Þ, 379ðδ−t Þ 3tþW þ b or 4tþ Z=H
pp → Tj → ηþ anything 209ðδþt Þ, 133ðδ−t Þ 3tþ j
pp → DD̄ → ηþ anything 322 2tþW=Z=H þ 2j
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first-order gauge boson mass eigenstates Z, Z0, A in both
conventions, namely,

Z ↔ Z; Z0 ↔ Z0; A ↔ A: ðA4Þ

Then, by comparing the first-order gauge boson mixing
formulas in the two papers we are led to the following
conversion rule for sW and cW :

cW ↔ cW; sW ↔ −sW: ðA5Þ

Using these rules, it is straightforward to convert between
the two conventions. (Our present work adopts the same
convention as in Ref. [23].) Then, e.g., the Lagrangian
coefficient of Z0ff̄ couplings will acquire a minus sign
during conversion since g ↔ −g. However, the expression
for δZ [see Eq. (93)] remains the same since cW ↔ cW .

APPENDIX B: PARTIAL-WIDTH FORMULAS

Let us define

Fðx; yÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xþ yÞð1− x− yÞð1þ x− yÞð1− xþ yÞ

p
:

ðB1Þ

In particular, we have

Fð0; xÞ ¼ 1 − x2; for jxj ≤ 1: ðB2Þ

The partial-width formulas related to η, T, D, S, N, Z0
decays are listed as follows.
(1) η decay: Tree-level decay channels (to fermion final

states):

Γη→tt̄ ¼
3mη

8π

�
mtδt
v

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
t

m2
η

s
; ðB3Þ

Γη→dD ¼ 3mη

8π

�
mD

v

�
2
�
δ2Dd þ

v2

2f2

�
2
�
1 −

m2
D

m2
η

�
2

;

ðB4Þ

Γη→NN̄ ¼ mηm2
N

16πf2t2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
N

m2
η

s
; ðB5Þ

Γη→νN ¼ mη

8π

�
vmN

2f2s2β

�
2
�
1 −

m2
N

m2
η

�
2

: ðB6Þ

Here we adopt the notation Γη→dD≡Γη→dD̄þΓη→Dd̄

and Γη→νN ≡ Γη→νN̄ þ Γη→ν̄N .
Loop-induced decay channels:

Γη→gg ¼
m3

ηα
2
s

128π3v2
j − δtA1

2
ðτtÞ þ δtA1

2
ðτTÞ þ δDdA1

2
ðτDÞ þ δSsA1

2
ðτSÞj2; ðB7Þ

Γη→γγ ¼
m3

ηα
2
em

2304π3v2
j − 4δtA1

2
ðτtÞ þ 4δtA1

2
ðτTÞ þ δDdA1

2
ðτDÞ þ δSsA1

2
ðτSÞj2: ðB8Þ

Here τf ≡m2
η=4m2

f and for f ¼ T, D, S we have τf ≪ 1. The function A1
2
ðτÞ≡ 2fðτÞ=τ, where

fðτÞ ¼
8<
:

arcsin2
ffiffiffi
τ

p ðτ ≤ 1Þ;

− 1
4

�
ln

1þ
ffiffiffiffiffiffiffiffiffi
1−1=τ

p
1−

ffiffiffiffiffiffiffiffiffi
1−1=τ

p − iπ
�

2

ðτ > 1Þ: ðB9Þ

(2) T decay:

ΓT→Wb ¼
g2δ2t m3

T

64πm2
W

�
1þm2

W

m2
T
−
2m4

W

m4
T

�
F

�
0;
mW

mT

�
≃

δ2t m3
T

16πv2
; ðB10Þ

ΓT→Zt ¼
g2δ2t m3

T

128πc2Wm
2
Z

�
1þm2

Z − 2m2
t

m2
T

þm4
t þm2

t m2
Z − 2m4

Z

m4
T

�
F

�
mt

mT
;
mZ

mT

�
≃

δ2t m3
T

32πv2
; ðB11Þ

ΓT→Ht ¼
m3

Tδ
2
t

32πv2

�
1þm2

t −m2
H

m2
T

�
F

�
mt

mT
;
mH

mT

�
≃

δ2t m3
T

32πv2
; ðB12Þ
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ΓT→ηt ¼
mTm2

t

32πv2

�
1þm2

t −m2
η

m2
T

�
F

�
mt

mT
;
mη

mT

�
≃
mTm2

t

32πv2

�
1 −

m2
η

m2
T

�
2

: ðB13Þ

(3) D, S, N decays:

ΓD→Wu ¼
g2δ2Ddm

3
D

64πm2
W

�
1þm2

W

m2
D
−
2m4

W

m4
D

�
F

�
0;
mW

mD

�
≃
δ2Ddm

3
D

16πv2
; ðB14Þ

ΓD→Zd ¼
g2δ2Ddm

3
T

128πc2Wm
2
Z

�
1þ m2

Z

m2
D
−
2m4

Z

m4
D

�
F

�
0;
mZ

mD

�
≃
δ2Ddm

3
D

32πv2
; ðB15Þ

ΓD→Hd ¼
m3

Dδ
2
Dd

32πv2

�
1 −

m2
H

m2
D

�
F

�
0;
mH

mD

�
≃
δ2Ddm

3
D

32πv2
; ðB16Þ

ΓD→ηd ¼
m3

D

32πv2

�
v2

2f2
þ δ2Dd

�
2
�
1 −

m2
η

m2
D

�
2

≪ ΓD→Wu;Zd;Hd: ðB17Þ

The same formulas hold for S decay channels with the replacements δDd → δSs, mD → mS, D → S, d → s, u → c.
They also hold for N decay channels with the replacements mD → mN , D → N, d → ν, u → l and
δDd → δ−Dd ¼ vffiffi

2
p

ftβ
.

(4) Z0 decay:
For Z0 → ff̄ decay modes, assuming the interaction Lagrangian L ⊃

P
fgðafLf̄LγμfL þ afRf̄Rγ

μfRÞZ0
μ, the decay

width is given by

ΓZ0→ff̄ ¼ Ncg2mZ0

24π

�
ððafLÞ2 þ ðafRÞ2Þ

�
1 −

m2
f

m2
Z0

�
þ 6afLa

f
R

m2
f

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
Z0

s
: ðB18Þ

Nc ¼ 1 for leptons and Nc ¼ 3 for quarks. For SM quarks, we can take mf ¼ 0 sincemZ0 ∼OðfÞ. afL and afR can be
extracted from Eqs. (64)–(66). Thus, the Z0 → ff̄ decay widths are

ΓZ0→lþl− ¼ g2mZ0 ðð1 − t2WÞ2 þ 4t4WÞ
96πð3 − t2WÞ

; ðB19Þ

ΓZ0→νν̄ ¼
g2mZ0 ð1 − t2WÞ2
96πð3 − t2WÞ

; ðB20Þ

ΓZ0→uū ¼ ΓZ0→cc̄ ¼
g2mZ0

72π

�
3 − t2W

4
þ 4t4W
3 − t2W

�
; ðB21Þ

ΓZ0→dd̄ ¼ ΓZ0→ss̄ ¼
g2mZ0

72π

�
3 − t2W

4
þ t4W
3 − t2W

�
; ðB22Þ

ΓZ0→bb̄ ¼
g2mZ0

72πð3 − t2WÞ
�ð3þ t2WÞ2

4
þ t4W

�
; ðB23Þ

ΓZ0→tt̄ ¼
g2mZ0

72πð3 − t2WÞ
�ð3þ t2WÞ2

4
þ 4t4W

�
; ðB24Þ

ΓZ0→NN̄ ¼ g2mZ0

24πð3 − t2WÞ
�
1 −

m2
N

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
N

m2
Z0

s
; ðB25Þ
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ΓZ0→DD̄;SS̄ ¼
g2mZ0

72πð3 − t2WÞ
�
ðð3 − t2WÞ2 þ t4WÞ

�
1 −

m2
D;S

m2
Z0

�
− 6t2Wð3 − t2WÞ

m2
D;S

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
D;S

m2
Z0

s
; ðB26Þ

ΓZ0→TT̄ ¼ g2mZ0

72πð3 − t2WÞ
�
ðð3 − 2t2WÞ2 þ 4t4WÞ

�
1 −

m2
T

m2
Z0

�
− 12t2Wð3 − 2t2WÞ

m2
T

m2
Z0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
T

m2
Z0

s
: ðB27Þ

Decay widths in bosonic channels:

ΓZ0→WþW− ¼ g2mZ0 ð1 − t2WÞ2
192πð3 − t2WÞ

�
1 −

4m2
W

m2
Z0

�3
2

�
1þ 20m2

W

m2
Z0

þ 12m4
W

m4
Z0

�
≃
g2mZ0 ð1 − t2WÞ2
192πð3 − t2WÞ

; ðB28Þ

ΓZ0→ZH ¼ g2mZ0 ð1 − t2WÞ2
192πð3 − t2WÞ

F

�
mZ

mZ0
;
mH

mZ0

��
F2

�
mZ

mZ0
;
mH

mZ0

�
þ 12m2

Z

m2
Z0

�
≃
g2mZ0 ð1 − t2WÞ2
192πð3 − t2WÞ

; ðB29Þ

ΓZ0→Hη ¼
g2mZ0 ðv=fÞ2
24πð3 − t2WÞt22β

F3

�
mH

mZ0
;
mη

mZ0

�
; ðB30Þ

ΓZ0→Yη ¼
g2mZ0 ðv=fÞ2
384πc4W

F

�
mY

mZ0
;
mη

mZ0

��
2þ ðm2

Z0 þm2
Y −m2

ηÞ2
4m2

Z0m2
Y

�
: ðB31Þ
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