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The direct observation of time reversal symmetry violation (TV) is important for the test of CPT
conservation and the Standard Model. In this paper, we study both time-dependent and time-independent
genuine TV signals in entangled D° — D pairs. A possible CPT-violation effect called the o effect is also
investigated. In the C = —1 entangled state, the asymmetries due to TV are calculated to be of the order of
1075 to 10~* within the Standard Model, but the modification due to the w effect in the C = —1 states is
found to be about 10%-30% when |w| ~ 10~*. This result is consistent with our Monte Carlo simulation,

which implies that with 10° to 10'° events, TV signals can be observed in the entangled D — D° pairs, and
the bound of @ ~ 10~3 can be reached. The time-dependent and the time-independent asymmetries in the
C = —1 D — DY system provides a window to detect new physics such as the w effect, although they are

not easily observable.

DOI: 10.1103/PhysRevD.98.075019

I. INTRODUCTION

Symmetry, symmetry violation, and symmetry breaking
have been playing important roles in particle physics. The
studies of discrete symmetries P, C, T, and their combi-
nations have progressed greatly with the help of large
experimental data [1]. There are oscillations between
neutral mesons and their antiparticles, such as B — B°,
D — D°, and K° — K°. In the D° — D° system, both the
mass and the decay width differences between the two mass
eigenstates are very small in comparison with the mean
values [2]. This provides an opportunity to verify CP
violation (CPV) sources from both the Standard Model
(SM) and new physics (NP) [3] and even the possibility of
CPT violation (CPTV) such as the so-called w effect, as
predicted by some theories of quantum gravity [4,5].

If CPT is conserved [6], then CPV implies time reversal
(T) symmetry violation (TV). However, direct observation
of TV without the presumption of CPT conservation
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is especially important [7—10]. The TV signal based on
a T-odd product of momentum vectors was observed in the
decay D° — K*K~z"z~ [11]. However, such a signal has
a chance of being nongenuine because the initial and final
states are not interchanged [8]. The TV signal based on the
rate difference between the transformation from K° to K°
and vice versa [12] is controversial [8].

Hence, an important development is that a genuine TV
signal has been observed in B — BY decay, by comparing
transitions that are related through time reversal but not
through CP conjugation [13,14]. The key idea is to make
use of quantum entanglement, also called the Einstein-
Podolsky-Rosen correlation [7-9]. The initial states of each
of the two transitions is prepared by tagging the entangled
partners in the corresponding way. The connections
between CP, T, and CPT asymmetries and the exper-
imental asymmetries are investigated for entangled BZBS
mesons [15]. Extension to kaons has been made [9,16].

In this paper, we propose using the time-independent
signals to study TV by extending the entanglement
approach of TV to D°—D° systems. The C = —1
entangled D° — D° pairs can be produced through the
strong decay of w(3770) [17-19] or w(4140) [18,19].
y(3770) has often been used for the study of CPV of D
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mesons. The C = +1 entangled state of D mesons can also
be produced in the strong decay of y(4140) [18,19].

First, we calculate the time-dependent and the time-
independent asymmetries between T-conjugate processes
for the C = —1 entangled states. Within the SM, the
asymmetry of the C = —1 system is found to be at most
1073. We also consider the w effect in the C = —1 state,
which mixes the C = +1 state into it. We find that the @
effect modifies the TV signals by as large as 20% when
|w| ~ 10~*. We also calculate the T asymmetries defined for
transitions from D° to D~ and vice versa, by using event
numbers in joint decays of entangled pairs. Finally, we use
a Monte Carlo simulation [20] to study the C = —1 systems
based on the current experimental situation and demon-
strate that if the number of events reaches 10° TV signals
can be observed; furthermore, if the number of events
reaches 10'°, the bound of @ ~ 1073 can be obtained.

We conclude that in the C = —1 D° — DY entangled state
the time-dependent asymmetry due to TV within the SM
requires a large number of events and may provide a
window to detect the signal of NP such as the w effect.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the idea of studying TV using the
entangled states. In Sec. III, we study the joint decay rates
of such states. In Sec. IV, we discuss the TV signals in the
oscillation of the D° — D system. Section V is a discussion
on the relation between the joint decay rate and the
experimental measurement. In Sec. VI, we present a
Monte Carlo simulation on the TV. Section VII is a
summary.

II. ENTANGLED STATES OF NEUTRAL MESONS

As pseudoscalar neutral mesons consisting of quarks,
D° = cii and D° = ¢u. In the Wigner-Weisskopf approxi-
mation, |D°) and | D°) are eigenstates of the flavor, which is
the charm in this specific case, with eigenvalues 4-1. |D)
and |D°) comprise a basis, in which the effective mass
matrix is written as

H I %

H— ( 00 oo ) (1)
Hyo  Hyg

where Hy, = (D°|H|D®), Hy; = (D°|H|D"), and so on.

The eigenstates of H are

|Dy) = pID%) +q|D°). D) = p|D°) —q|D°). (2)

1 - H;
P__—°¢_ |70 (3)
q l+e Hyg

where € is the indirect CPV parameter. The corresponding
eigenvalues are

with

i
Ap = my — EFH = Hyo + /HyHgos

1

AL :mL_EFL = Hy — \/H()(JH()O- (4)

We can neglect the direct CPV, as done in testing T
violation in entangled B mesons [8,15,20] and can also be
done in entangled D mesons [2,17,21].

We will use the definitions

AmEmH—mL, AlEﬂH—lL, AFEFH—FL,

m=—(my~+myg), '=-(T,+Ty). (5)

| =

5

The sign of AI" in the definition (5) is different from
AI" defined in Refs. [18,22] and is the same as in
Refs. [2,23-25].

The time evolution of the mass eigenstates is

U(1)|Dy) = e "' |Dy),
U(1)|DL) = e '|Dy), (6)

1Dy (1))
1DL(2))

where U(r) represents the time evolution under the effec-
tive mass matrix. U(t) evolves the flavor basis states as

|D°(1)) = U(1)|D°) = g, (1)|D°) - %9_(f)|13°>,
|D°(1)) = U(1)|D°) = —gg_(I)ID°> +9,0ID%.  (7)
with

e—iﬂLz + e—illHt

— ®

g+(1)

where the sign of g_(¢) is different from that in Ref. [24]
and is the same as in Refs. [18,22]. The more general
expressions of |D°(¢)) and |D°(¢)), without the assumption
of indirect CPT conservation, are given in Refs. [23,26]
and reduce to the expressions here when CPT is indirectly
conserved. Note that the two mass eigenstates |Dy) and
|D; ) are not orthogonal because of indirect CPV parameter
€ # 0; hence, the basis transformation involving them is not
unitary.

There is yet another basis often used, namely, the CP
basis,

1

|Di> :\/i

(ID%) £ D), ©)

with eigenvalue £1. The time evolution starting with each
of them can be written as
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ID(1)) = U(1)| D). (10)

Now, suppose at time ¢ = 0 the C = +-1 entangled states
of two mesons a and b is generated,

1
V2

where the subscripts @ and b will be omitted below. Under
the mass matrix, |¥¢) evolves to

We) = —=(ID%),|D%), + CID%),|D°),). (1)

(1) = 5 (D)D" (1) + D), D70
(12)
Specifically,
(1)) = e ), (13)
e—i(/lH+/1L)t _
() = (Leostaan (D)D)
+ |D%)|D%)) + isin(At)(|D°)| D)
q\? A0\ | 750
n (;) DY)D >>). (14)

It can be seen that the evolution of W_ leaves the
entanglement unchanged and provides a good opportunity
to study the discrete symmetries. Furthermore, one can
define

et tp)) =U(ty)U(1,)[¥e)

:%(|D0<ta)>|bo(tb)> +C|D%(12))|D° (1)),

5

(15)

which represents that particle a decays at ¢, while particle b
decays at ;, and is widely used in calculating joint decay
rate [8,18,27]. |¥(t,,1,) can also be written in terms of
CP eigenstates as

(W_(ta:1)) =\%(ID—(%)> D4 (1)) =D+ (1)) [D-(1))),
W (1, 10)) :L(|D+<ta)>|D+(tb)> —[D_(2))ID-(1)))-

5

2
(16)

Unless explicitly stated, here, ¢, > 1, is assumed without
loss of generality. The free choice between Eqgs. (15) and
(16) can be made by determining whether the earlier decay
of meson « is into a CP eigenstate or a flavor eigenstate.
We use [* to denote a final state of a semileptonic decay
with flavor number 1 and S to denote the final state of a
CP eigenstate with eigenvalue +1.

III. T-CONJUGATE TRANSITIONS OBTAINED
FROM THE ENTANGLED MESONS

A. T-conjugate transitions

The entangled meson pairs can be used in the so-called
single-tag (ST) and double-tag (DT) methods [17,28,29].
In the case of the C = —1 entangled state, the final state of
the first decay at 7, tags the partner as D° or D° or D ; one
can then study the decay of the tagged partner at .

Because, attime 7, |¥_(7)) « |¥_), the C = —1 entangled
state can be used to construct T-conjugate processes. For
example, if meson a decays into the /™ final state at 7, it
implies that meson a has been projected to |D°), which
decays to the [~ final state; hence, meson b is prepared to be
|D°) at t,,. Then, by measuring the probability that meson b
decays into a final state S_ at a later time #;,, one obtains the
probability that meson b evolves and then transits to
D_ during the time period ¢, — £,.

Therefore, the final states of the two entangled mesons
act as tags. With the help of the tags, one can measure the
rate of the transition D° — D_ of meson b.

The time reversal symmetry requires that the transition
rate of D° — D_ from ¢ to t + At is equal to that of D_ —
DO from ¢ to ¢ + At. They can be prepared alternatively as
the transitions of meson b through double tags. For the
process D® — D_, D, as the initial state of meson b, is
prepared when the final state of meson a is [~, while D_ is
indicated by the final state S~ of meson b (with the direct
CPV neglected). For the process D_ — D, D_, as the initial
state of meson b, is prepared when the final state of meson a
is S, while D is indicated by the final state /" of meson b.
Various transitions and the corresponding final states, as
used to observe the TV, are summarized in Table I [8,20].

To test TV, we need to compare these T-conjugation
transitions. There are several ways to relate the transitions
to observables, as discussed below.

B. Joint decay rates

For the entangled meson pairs, an important quantity to
study is the joint decay rate, which is the joint rate of the
processes in which one of the entangled mesons decays into
the final state f, at ¢z, while the other decays into f, at 7,
[18,22-24,26]. The rate T'(f,, £, 4, t},) at which meson a
decays to f, at t, while b decays to f, at t, is proportional
to the joint decay rate calculated from |¥¢(2,,1,)),

FC(fa’fb’ ty, tb) & RC(fa’fb’ Iy, tb)
= [(fa [ol HHp[Pelta 1)) 2 (17)

The rate of each transition listed in Table I can be
obtained from the joint decay rate of the corresponding
final states, with meson a decaying to its final state such
that the entangled partner b is projected to the initial state in
the transition listed.
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TABLE L. T-conjugate transitions and the corresponding final states of the C = —1 entangled mesons a and b. We
use /* to denote a final state of a semileptonic decay, with flavor number £1, and use S to denote the CP eigenstate
with eigenvalue +1. Meson a decays at t,, while meson b decays at a later time 7, > t,. The transition listed is that

of meson b.

Final state Transition Final state Final state T-conjugate transition Final state
of meson a of meson b of meson b of meson a of meson b of meson b
I~ D’ — D_ S_ A\ D_— D° I+

- DY - D, S, S_ D, - D° It

Iag DY - D_ S_ S, D_—D° -

I D> D, Sy S_ D, — DY -

1. Joint decay rates of C= + I states

For |W(7,,1,)), the joint decay amplitude for the joint processes in which meson a decays to f, at ¢, while meson b

decays to f, at 1, is

(far FoHaHpPe(ta: 1)) = %{éc[gma)g-(tb) + Cy-(12)9+ ()] + Cclg (1) 94 (1) + Cg-(1a)g9-(1)]},  (18)

where H,, is the weak interaction field theoretic Hamiltonian governing the decay of the meson a and £ and (¢ are defined

as
__(P 95 5 4R Z
Se=\ AL T AL ) be = ArAy, + CALA;,
where A, and f_\f are instantaneous decay amplitudes

Ap=(fIHID%). Ay = (f|H|D").

The joint decay rate is thus

RC(favfbv 14, tb) = |<favfh|HaHh|lPC(tav tb)>|2
—T(t,+1)
= eT X {(&cl* + [¢cl?) cosh(YT (1, + Cty)) = (|&c|* = 1c|?) cos(xT (2, + C1,))

+ 2CRe({éc) sinh(yI(1, + Cty,)) — 2CIm(EEEc) sin(x(z, + Cty)) },
where x and y are defined as

Am
r\ b

=

X

<
ll

In experiments, we often use the time-integrated joint decay

Re(fa fieA) = [ dtuRe(F o Fovtarty + 80
hence,
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e A 1 + C\ y?cosh(yI'At) + ysinh(y['At
Refufret > 0) = S L (e +1¢cP) coshoman + TR0+ ) ST
8I' 2 -y
1 + C\ —x?cos(xI"'At) — x sin(x"At
~(lecl? = IzcP) [costaran + a8~ xeinal A0
2 1+x
) 1+ C\ ycosh(y['Ar) + y? sinh(y['At
+2Re(CEéc) [smh(yFAt) + < > ) Y b 1) - ;]2 8 )]
. 1 + C\ xcos(xI"At) — x? sin(x"At)
—2Im((¢ At . 24
m(gie)[sintaran) + (1 56) )2 24)
Finally, the time-independent joint decay rate is defined as
Relfarfi) = [Tty [ dnl(fo fil M el )P (25)
which is obtained as
Relfurf) = 7o (el + 1) 205 = (el = 16eP) A= S 2Re(cpee) % - dtmgzce) U -4
c\JaJb _4F2 C C (1_y2)2 C C (1+x2)2 coC (1_y2)2 ceC (1 +)C2)2 :
(26)
|
Note that R-(f,, f;) is independent of the order of the two Because of the w effect, the C = —1 entangled state is
final states. In experiments, such time-independent quan-  modified to be

tities are most easily measured.

Y, (t,. 1)) = |Y_(t,. 1)) + 0|V, (2, t,)), (27
2. Joint decay rates under the o effect ¥ (ta 1)) = W-(ta: 1)) + 0¥ (10 1)) 27)

One kind of CPTYV is the so-called w effect, which is a

- where
consequence of some forms of quantum gravity [4,5]. The
w effect affects the entangled source, so the C = —1 .
entangled state is mixed in by the C = +1 entangled state w = |wle
with a factor w. For simplicity, in this section, we assume
the CPV parameters are barely affected by the w effect. is a small mixing factor. The joint decay rate is found to be
J
Rw(fa’fbv Iy, tb) = R—(fa! fb’ Iy, tb) + |a)|2R+(fa’ fb’ Iy, tb) + Rm(fa’ fh’ tg, tb)’ (28)
with
Ry(farfortarty) = e Tt [Re(a + B) cos(xT't,) cosh(yI't,) — Im(a + ) sin(xT't,) sinh(yI't,,)
—Re(a — ) cos(xI't;,) cosh(yI't,) + Im(a — B) sin(xI't,) sinh(yI'z,)
+Re(p + o) cos(xI't,) sinh(yI't),) — Im(p + o) sin(xI'z,) cosh(yI'z;)
—Re(p — 0) cos(xI'ty,) sinh(yI't,) + Im(p — o) sin(xI't;,) cosh(yI'z,)]. (29)
where
) ) 1) )
a=TEE. =500 p=FELL o=30E (30)

The integrated joint decay rate can be written as
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Ra)(fa’ fbv At) = R—(fa’ fbv At) + |a)|2R+<fa’ fbv At) + Rm(fa’ fb’ At>’ (31)

where

—I'At

Ry(fa- o A1) =

with

(Chcosh(yI'Ar) + Shsinh(y['Af) + Cs cos(xI'Az) + Snsin(xI'Ar)), (32)

Ch = ARe(a + f) — DIm(a + ) — yBRe(p + 0) — xCIm(p + o),
Sh = —yBRe(a + ) — xCIm(a + ff) + ARe(p + o) — DIm(p + o),
Cs = —ARe(a — ) + DIm(a — ) + yBRe(p — ) + xCIm(p — o),
Sn = xCRe(a — ) — yBIm(a — §) + DRe(p — 6) + Alm(p — o),

_ 2(x —y* 4+ 4)
2 4+ (P - 4)

c— (¥ +y? +4)
23 (3 ) + (P -4

IV. TV SIGNALS IN D°-D° SYSTEMS

In this section, we first establish the TV signals and their
behavior predicted within the SM. We use those decay
channels in which the direct CPV, i.e., that in the decays, can
be neglected and only consider indirect CPV, i.e., that in the
oscillation. We consider only the cases in which one of the
final states is a CP eigenstate while the other is a flavor
eigenstate [8,17,20]. In D° — D° systems, the indirect CPV
parameter is known to be very small [2,30]. Within the SM,
the corresponding TV is also expected to be very small.

With direct CPV negligible, we have [2,21]

Alf = Al+ = O, Al+ = Alf = Al' (34)

When the final state is a CP eigenstate S, within the
SM, we have [21]

ASi = :l:ASi’ (35)

where A and Af are defined in Eq. (21). Substituting
(farf3) = (I, S4) in Eq. (19), we find

p2n,

Gl + el = |Al|2|Asi|2(\ 5' ; 1),
p2n,

el = I¢e = |A1|2|Asi|2(\ 5' - 1),

2Re({éc) = —2n,

p|™
5\ cos(2) A |As. 2.

2Im(CEée) = 2myny

pl" .
5\ sin(P) APl . (36)

where n; = +1 for [* final states and n, = +1 for S,
states.

B= (x* 4+ y> —4)
2 (y +4) + (P - 4)
D= 4xy
X2+ 4) + (P —4)F

(33)

Experimentally, the semileptonic decay modes and
the CP eigenstate decay modes of a C = —1 entangled
D° — D system have been studied by using DT of the two
mesons [17], where the semileptonic decay modes include
Kev and Kuv, while the CP eigenstate decay modes
include K*K-, ntn~, and K2%2° for CP =1 and
K97°, K%, and K97 for CP = —1.

q/ p is often parametrized as

K

e?, (37)
P

1
4
which will be used below. Other frequently used parameters
include y.p and A, which can be defined as [2,17,31]

o ion 32)-rman (3 )
webomon 3w 21)

(38)

yep # y and Ar # 0 indicate indirect CPV. A is known to
be very small. We also define [2]

2 1+Ay
“\Vi-a, (39)

which is often used in the studies of D decays.

:

A. TV signals based on joint decay rates

For the C = —1 entangled state, we can construct
four TV signals from time-dependent joint decay rates
(depending on the difference At=1,—1, of two
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decay times), corresponding to the final states listed in  In details, if the final state of meson a is f,, the
Table I. In the first example listed in the Table, the final  state of meson b becomes o A; [D% — A, |D°). Then,
states of mesons a and_b are [~ and S_,_With direct CPV if the meson b decays into fb at tb’ it can be obtained
neglected, i.e., A = Ap =0, App = A = A, Ag, = that
FAs,. R(I7.5_t,1,) < |AP|As_P(D-|U (1, —1,)| D%)|*.

|

|<fa’ fb'HaHb|lIl—(ta’ tb)>|2
= e (JAy, PUSIH U (1 = 1)IDO) P + 1A, PI(f5 M |U (1 — 1,)ID°))

= et (% A g, P Ho D) PUDLU (1, = 1) IDO) + [(f[Hp|D-) PUD-|U (2 = 1,)|D°) )

+ % A, P H D) PUDLU (1, = 1) D)2 + (£ |D_)P[(D-[U (2, — ta>|D0>‘2))’ (40)

where we have assumed no wrong-sign decay. If f, = [~, then

e~
|Fas Fol HaHo ¥ (1a0s16)) P === (AP (| f o [Ho [ D) PUD D (8 = 1)) P+ [f o [H, [ D) DD (1, 1)) 7). (41)
Considering (S_|H|D_) = Y2 ((S_[H|D®) + (S_|H|D%)) = 0, (S_|H|D_) =2 A , and f, = S_, we have
=2
(17 S HaHp [P (ta 1)) [P = —;— AP As PD_ID" (1 = 1)) * (42)

From Eq. (7),

1 .
|<D_|H|D0(tb - ta)> ‘2 = Ze_r(tu_tb>e_%(ta_tb) ( (g + 1) e%(ta_tb)(AF+2lAm) —_ g + 1>

p p
x (2 (_1 + e(ﬁﬁ')(ra—zb)(Ar—Zi(Am+F)—4m)) + e%(ta—lb)(AT—ZiAm) + 1>. (43)
p
Hence, Eq. (42) is consistent with Eq. (21); especially, |(I=, S_|H, H,|¥_(t4. t;,))|> o e~ at),
Similarly,
o2t
RS, 1% 10, 1) = ——|As, PIAP(D|U (1, = 1) [D-) 2. (44)

A similar expression can be for each pair of T-conjugated transitions.
T symmetry implies [(D_|U(At)|D°)|? = |(D°|U(At)|D_)|*. Therefore, for At > 0, T symmetry implies that

R_(I".S_,Af) R_(S..I*,Ar) R_(I".S..Af)  R_(S_.I*, A1)

APIAs P JAPAs APIAs 2 APAs P
R_(I",S_,At) R_(S,,I",Ar) R_(I",S,,Ar) R_(S_,I",Ar)
2 2 2 2 2 2 2 2 - (45)
[A1]*|As_| [A1]*|As, | [A1]*|As, | [A1]*|As_|
Hence, we can define a T asymmetry, denoted as AL(At > 0),
R_(I",S_,At) _ R_(S..I",A1)
|A,*As_[* |A,*|Ag, |
1 _
A—(At) T R_(I",S_,A1) + R,(S+,l:,At) ’ (46)
1A, [*|As_[* A7 |As, |2

and there are three other asymmetries corresponding to the equalities in Eq. (45).
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We can also define TV signals independent of |Ag, |,
denoted as A2 (At > 0),

(S, 17, Ar)

R_(I",S_, Ar)
A% (A1) = S )
~(a7) (S..17. Ar)

~ R_(I'",S_, A1)

R
- 47

= (47
There are five other signals similar to Eq. (47) that can be
constructed, according to Eq. (45).

One can also use the normalized joint decay rates or the
probability density function (PDF), defined as

I R_(fa: fb: A1)

r—(fa’fb» At) =
i A PlAL P
1
=7 R—(fa’fb’At)’ (48)
nfavfb

_ R_(furf 1) ;o
ny,p, = Joo d(AD) T nff, =

J&° d(At)R_(f 4, fp. At). That is to say, the PDF for

R_(fu. fp,Af) is the same as that for RUotpbi)
[As, [|Ag, |

Therefore, one only needs to consider R_(f,, f;, At) when
normalization with respect to various Atf is taken into
account. Hence, one can construct a TV A3 (At > 0) as

where

(I7.S_,Af) = r_(S,, 1", A1)
(I7,S_,At) +r_(S,, I, Ar)’

A3 (Ar) = :‘ (49)

which vanishes only if T symmetry is valid. Note that it was
A3 (At) that was measured in BABAR experiments [13,20].
We now consider the time-independent joint decay rate

R(fufs) = /0 *ar, /0 * dtyR_(fur fortary)
= /oo dtu /oo dtbR—(fwfb’tb’ta)' (50)
0 0

Note that R—(fa’fb)/|Afa|2|Af;,|2 = R—(fbvfa)/
|As |*|Ay,|? is independent of the order of the final states.
Hence, in counting the events, one does not need to
distinguish which final state is of which meson.

a2
¥, ) o zcos(Aﬂ»ta)|l_)0> +i
p

9\2

W) « Lcos(Adr,)|D0) + i
P

1+ (%)
W5, ) %cos(Aﬂta)|D+> +i 2(”)

W ) o — Leos(AML,)|D_) + i——2
p

Tpsin(AitaﬂDO) +i
) Sy
Tsm(AitaﬂD ) —i

sin(AAt,)|D.) + i 2”

(@2

sin(AAr,)|D_) + i

R_(I7.8_)/|A|*|As_|* # R_(I*.S})/|A/*|As, | is a
sufficient condition of TV in the time-dependent rates
and implies that there is at least a certain value of ¢, for
which at least one of the two corresponding conjugate
processes violates T symmetry. A similar conclusion can be
made if R_(I.8,)/|A*|As |* # R-(I".S_)/|AP|As_|?.

If time reversal symmetry is respected, then both of the
following equations are satisfied:

R.(I-.S.) R.(I*.S,)  R.(I".S.) R_(I*.5.)
AP1As [P APAs, [P AP1As, P |APAs [F
(51)

Hence, we can define the time-independent TV signal of
C = —1 states denoted as A_,

4 _R(.S) R(%.S)
T R_(IM.S.) R_(I".S,)

When A_ # 0, at least one of the equalities in Eq. (51) is
violated. Therefore, A_ is the TV signal independent
of A S+

We emphasize that A2(A7) =0 or A3(A7)=0 or
A_ =0 does not guarantee the time reversal symmetry.
However, A2(At)#0 or A3(At)#0 or A_#0 is a
sufficient condition of TV. In experiments, one would like
to use the TV signal independent of Ag_, that is, A2 (A1),
A3 (Ar) and A_.

Note that, despite the decays, the antisymmetry of the
C = —1 entangled state remains. This is crucial in its use in
the construction of genuine TV signals [8]. The C = +1
entangled state of D mesons can also be produced in the
strong decay of y(4140) [18,19], but it is difficult to extract
TV signals from it. When the C = +1 entangled state
evolves to 1 = t,, it becomes |¥,(z,)) as given in (14).
Consequently, when one of the mesons decays into the f,
final state at 7,,, the other meson becomes a superposition of
D° and D°. If we denote W, as the state of the second
meson tagged by the final state of the first meson f,, ¥/
can be written as

(52)

— (9)2
Tpsin(AltuﬂDo),

— (9)2
Tpsin(Aita)|D0>,

q)\2

sin(Adz,)|D_),

1- @

sin(Adz,)|D,), (53)
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where « implies that these four states are not normalized yet. If, e.g., we compare the joint decay rate R (17, S_, t,, t,) with
R (S, 17, 1,,1,), we are comparing the transitions ¥;- — D_ with W5 _— D°, which are not T-conjugate transitions.

In the followmg, we concentrate on the TV signals of the C = —1 entangled states Substituting Eq. (36) into Eq. (24), we
obtain the time-dependent joint decay rates

e TIANA A 2 [ (| p
R_(I",S, Af) = — 0TS0 J (12
(.5 41) 8’ {(‘ q

? P
+ 1) cosh(y['Atr) — (‘ =

2
-1 > cos(x["At)

[cos(2¢) sinh(y['At) + sin(2¢) sin(x['At)] 7,

qcz"’
q

e—F\At\ AlRIAC |2
R_(l—,si,m):—|8’r|‘ 5. {(‘%

g 1) cosh(y['Ar) — (‘

2
— 1) cos(x["At)

[cos(2¢) sinh(yI'Ar) — sin(2¢) sin(x"Az)] . (54)

e ' Q

:Fz“’
p

With A=—g/p x A s./As., and at the limit at which A" — 0, which is the case of B mesons [20], the integrated joint
decay rates become

1 —|A]? 2ImA .
R_(I*,S., At “Flad (g — CAf) ————— A ) |,
(IT, Sy, Af)|p x e T |A|2cos(x ) e sin(x["At)
1—|AP 2ImA .
I=,8., At —Tlag (1 TAf) ———— TAf) ) ), 55
R_( A xe + |A|zcos(x ) T |A|2 sin(x ) (55)

which reproduces the integrated joint decay rates of B mesons in Refs. [32,33].
The time-independent joint decay rate can be obtained, from Egs. (26) and (36):

A PAs, |2 P 1 p|? 1
R_(I™,S LA L — 1 = -1 ,
( £) = q + 1—y? q 1+ x?

412

|A*|As, 2 ql? 1 q? 1
-, S — — 1 - =1 . 56
R(I7,84) = 412 p * 1 —y? p 1+ x2 (56)

Now, we can obtain the TV signals. Taking A! (A¢) as an example, we can estimate A! (Af) of the C = —1 system using
the measured parameters of CPV of D° — D° mesons in the SM. Using Eqgs. (49) and (54), we find

(x1y1(At) = 2x, cos(2¢) sinh(y['At) — 2x5 sin(2¢) sin(x['At))

AL(Ar) = , 57
~(a7) (x4y1 (A7) + 2y, (At) 4 2x3 cos(2¢) sinh(y[Ar) + 2x, sin(2¢) sin(x['At)) (57)
where x; and y; are defined as
2 2 2 2
ol e A el
p q q| |pP q p
v1(At) = cosh(yI'At) — cos(x['At), v2(At) = cosh(yI'At) 4 cos(x[At). (58)

In the case of B mesons, we can take the limit AT — 0 and g/p — €*”; thus, we find AL(Af) = —sin(28) sin(xT"At).
This corresponds to the CP asymmetry predicted by the SM, as given in Refs. [32,33].
We can expand A’ (Af) to the leading order and find

AL(Af)~ ArTAr,  AZ(Ar) = 4ArT A, A3(Ar) ~ AP (AL —1). (59)

We use the parameter values in Ref. [25],
x = 0.0037, y = 0.0066, q4_ 0.91, ¢ =-4.7° (60)
4

Notice that the definition of ¢ in Ref. [25] is arg (¢/ p), while in this paper, we define ¢p = arg (¢/p)/2, which is the same as
in Ref. [18]. For At = 7, = 1/T, we find AL(Ar) ~ 107,
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The time-independent joint decay rate does not depend
on the decay times, so we are not able to identify the
transition. For example, we need to know which of the final
states is the outcome of the earlier decay to distinguish
D® - D_ from D, — D°. However, one can construct a
time-independent signal for TV.

It is found that

_)_}El—yz, (61)

where x; and x, are defined in Eq. (58). To the leading
order,

A_m 24y (3% +y?) = 22 x 107, (62)

The error of the signal can be estimated to be related to the
event number N as 5A_ ~ 1 /V/N. Hence, the magnitude of
A_ implies that the number of events should be as large as
10° to 10!, which will be verified in Monte Carlo
simulation in Sec. VI. Such an event number can be
obtained at the super-tau-charm factory [34].

B. C= -1 state with o effect

As noted in Eq. (27), the w effect causes the C = —1
state to be mixed in by the C = +1 state. Then, the
T-conjugation between each pair of processes in the
asymmetries studied above is lost. However, the asymme-
tries for these pairs of processes can still be investigated to
determine the value of w. We find that these asymmetries
are enhanced. For example, for the same final states as in
AL (At) defined in Eq. (46), the corresponding asymmetry
of the C = +1 state is

R, (I",S_,At) R, (S.,I",Ar)
|4, P[As_? A/ ?As, 7
AL(8r) = T T ®
R("S_A) | R.(S_.I".5)
AP As_ A *[As, [*

Inserting Eq. (36) into Egs. (24) and (26), in the case of
C = +1, we find

AL (A1) % yep(1 +TAL) ~ 1072, (64)

The difference between AL (Af) and Al (At) is very large,
providing an opportunity to detect the w effect. The
numerical results show that AL(Ar~17p)/AL (At~ 1p)~
10~*, which implies that a small  at the order |w| ~ 107*
may considerably change the TV signals. Incidently, this is
also the order of magnitude considered in Ref. [5]. So, we
conjecture the experiment to observe the TV signal in the D
system may at the same time provide a window to detect the
w effect with a sensibility up to || ~ 1074,

For simplicity, we only consider how the TV signal
A2(At) is affected by the w effect. Using Eqgs. (19),
(30)—(35), we find

R, (I7,8_,Ar)
A, (At) =22 -
o(A1) R, (I",S_, Ar)

R,(S.. 1", Ar)
R,(S,.I". A1)

1
~ ZFAI(—Z sin(2¢)x(A3, — 8y cos(2¢)C At + 8)

+ Ay (343 + 8) cos(2¢)y

+ 4A,TAL((1 = 2c0s*(2¢))y* + x?))

+ 4 cos(2¢)|w|(y cos(Q) — xsin(Q))(1 + TAr),
(65)

where A, is determined by ¢/p, as defined in Eq. (39).

The CPV parameters are assumed to be barely affected
by the w effect. Using Eq. (60), the dependence of A, (Ar)
on |w| and Q when At = 1,i.e., At = 7, = 1/T, is shown
in Figs. 1 and 2. We find that when || ~ 10~ the change
of time-integrated T asymmetry, due to the w effect, can be
as large as 20% of that within the SM. The sensitivity could
be competitive with the B or B; meson pairs [35]. In the
Monte Carlo simulation presented in Sec. VI, we will find
that if the event number is of the order of 10° the TV signal
can possibly be observed. Such an event number can also
set a bound on |w| at 10~ at the same time.

We emphasize that when the C = —1 state is mixed with
the C = 41 state the signal is no longer a TV signal.

-5
E
[
~
i
Il
-~
g
3
<
-4.8 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
|w] x107#
FIG. 1. A,(Ar=1/T") as a function of |w| in the region

|w| < 107*. The solid line is for Q = 0, the dashed line is for
Q = 7/2, the dotted line is for Q = z, and the dotted-dashed line
is for Q=3z/2. The parameter values are x = 0.0037,
y = 0.0066, % =091, and ¢ = —-4.7°.
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-5
3610 : : : : , ,

) v || = 104 |
38 :".‘ ol =0 :.,: 4

42t ; 1

A (At =1)T)

4.6 5 A

481 1

FIG. 2. A,(Ar=1/TI') as a function of Q. The solid line is for
|w| = 0, that is, within the SM. The dotted line is for |w| = 107,
The parameter values are x = 0.0037, y = 0.0066, % =091, and

¢ =—4T°.

However, the deviation from the TV signal calculated
within the SM reveals the nonzero w effect.

V. RELATION BETWEEN THE TV SIGNALS AND
EXPERIMENTAL MEASUREMENTS

One can relate the normalized time-integrated joint
decay rates to event numbers of the decays [20]. In
using normalized time-integrated joint decay rates, the
T-conjugated transitions differ in the dependence on the
time interval rather than on the number of events.

A similar way to investigate the double decay is to use
ST and DT signals [17,28,29].

Suppose the final state of meson a at ¢, is [~, it tagged the
meson b as D°, which decays to S_ at ¢, = t, + At, the rate
of which can be denoted as I'(D° — S_, At). By assuming
that there is no mistake in tagging and that the direct CPV
can be neglected, the rate |(D_|U(A#)|D°)|* of the tran-
sition D° — D_ in time interval At is related to decay rate
[(D° - S_,At) as

(DY - S_, A1) o [(S_|H|D°(An))?
= [(S_[H|D_)(D_|U(A1)|D°)
+(S_[H|D.)(D|U(A1)|D°)?
= [(D_|U(AN)|D)P[{S_[HID_)|*. (66)

where H is the Hamiltonian governing the decay. As a
result,

I(D° = S_,Af) =|(D_|U(AD)| DY) PIT(D_ > S_),  (67)

where I'(D_ — S_) = |(S_|H|D_)|*.
In experiments, the decay rate can be related to event
numbers as

At
Nies.(taty +810) = 100 = 540Ny (t)d(a0)
0

(68)

where N-(t,) is the number of the events in which meson a
decays to [~ at 7, and Nj- g (t,,t, + Atg) is the number of
the joint events in which meson a decays to [~ at ¢, and then
meson b decays to S_ in time interval [¢,, 7, + Af]. So,

0
/ dtuNl‘,S, (ta’ ta + oo)
0

_ / “I(D0 - S_, Af)d(A) / "N (t)dt,,  (69)

0

which can be rewritten as

./\/[*_57 - R(DO g S_)./\[[*, (70)

Nl’,S_ = / dtaNl’,S_<ta’ 1, + 00),
0
Np= / Ny (2)dt,.
0

R(D’ - S_) = / (DY - S_, At)d(At)
0

—R(D" = D_)T(D_ - S_), (71)

with
R(D" = D_) = A  (D_|U(AD) DY) 2d(Ar).  (72)

N |- is the total number of events in which meson a decays
to [~ and is also called the signal yield of ST decays. /- 5
is the total number of the joint events in which meson a
decays to [~ while meson b decays to S_ and is also called
the signal yield of DT decays.

Since T symmetry requires |(D_|U(Af)|D%)|* =
|[(D°|U(AL)|D_)|> for any Atr>0, R(D°— D_)#
R(D_ — D) is a sufficient TV signal.

In experiments, the detection efficiencies should also be
considered, so we can write the transition rates as

075019-11



YU SHI and JI-CHONG YANG

PHYS. REV. D 98, 075019 (2018)

N :
R(D° = S,)=R(D® = D,)[(D, — §,) ==L
N[— 5[— Si
D i N+ +
R(DO_)S:E)ER(DO_)D:‘:>F(D:E—)Si>: ! ’Si el s
Nl+ Et g
N + €
R(Dy — ") =R(D —» DO)[(D0 — [+) = ==L ¢
NS¥ ‘E‘Spl*
- Ns i €
R(D. - I")=R(D. - DO(D° - I7)= Sel” 75x
NS¥ ‘E‘S;,[*
(73)

where ¢’s are the detection -efficiencies, with the
subscripts the same as those of the corresponding event
numbers A’s, which are now understood as the exper-
imental ones.

If time reversal symmetry is conserved, R(D? — D_) =
R(D_ - D°), R(D® — D_) = R(D_ — D). Then, acco-
rding to Eq. (73), we have

R(D° - S_) R(D_—1I")
I(D_—S.) T(D°—1I)’
R(D DO > §_ ) R(D_— 1)
r(D_—-S) T 1)’ (74)
J
2(EP + D2 +2(/8P — 1)y + 1

By using the ratios between the left-hand sides and right-
hand sides of the equalities in Eq. (74), we construct the TV
signal AL as

, T(D_—S_)R(D°—>S_) T(D°—I")R(D_—1")
" T(D_—>S_)R(D°=S_) I'(D°=I")R(D_—1")

NF.S, £ NS+ " €S+

N~ 51—.S,_F<D -1~ ) N, Eg it (75)
Nipps. en (D _>l+)/\/s+.1 es,
Nt e s sy Espm

which can thus be obtained from the numbers of ST and DT
events. Here, A} # 01is a TV signal. Note that A} = 0 does
not guarantee T symmetry; however, A} # 0 is a sufficient
condition of TV.

Another T-asymmetry can be constructed as

R(D° - S,)

r(D° - I")R(D, - I7)
" T(D° > IN)R(D, - I)’

A3 = (76)

Note that the asymmetries defined in Sec. IV are in terms
of joint decay rates, while the asymmetries defined here are
in terms of single particle decay rates, some of which are
then obtained from joint decay events.

We can estimate those asymmetries in the SM. Using
Eqgs. (7), (9), (34), (35), and (70), we find

+

R(D" - S,) o« |Ag [ -
(D7 = S.) o |As. | ( 2C(4x? 4+ 1)(4y* — 1)

2P (=202 4252~ 1) ~2(x+3?)

| 2](cos(2¢)(4x> + 1)y + sin(2¢)x(4y* — 1))
C(4x* 4+ 1)(4y* - 1) ) 77)

R(D°—S.)|As, |2
(D7 8 ) oA, | ( TP (Ax+ 1) (49> = 1)

BP(-22 +22 1) =2(*+?)

(x(4cos(2¢p)xy —4sin(2¢)y?

(lheor2 ey dsin3) sn) £ex )

TI2](4x* +1)(4y* = 1)

R~ 1)l
* 2C(2[2(4x% +1)(4y* — 1)

+ 1)x? +2(]

-1y’ +1

+sin(2¢)) +cos(2¢)y)
FTE[(a+ (& -1) ). o

+

L aep 2P
R(Ds =) A <_ (42 + )42 — 1)

We use the parameter values x = 0.0037, y = 0.0066,
% =0.91, and ¢ = —4.7°, as given above. As a result, the

expected signal within the SM at the leading order can be
written as

Al ~ 8Ap + 8x(Ayx + 2sin(2¢)y) = —1.5 x 1074,
A2~ 8AL — 8x(Ayx + 25in(2)y) 2.2 x 105, (81)

The DT method using the entangled states has been used
to measure ycp [17], which is of the order of about 10~ to
1072, We can conclude that, to observe TV signals, which

| 2](cos(2¢)(4x> + 1)y + sin(2¢)x(4y* — 1))
C(4x* 4+ 1)(4y* - 1) ) (80)

are about 107> to 10~%, the event numbers should be four
orders greater than those for measuring yp.

VI. SIMULATION

Through a Monte Carlo simulation [20], we can estimate
the significance of the expected time-dependent signal
based on current experiments. The time-dependent signal
in the D°— D° mixing is difficult to measure [2,36]
because the lifetimes of D mesons are too short, thus
requiring a very high resolution of the decay length. We
have calculated above that the asymmetries in the C = —1
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D° — D state are very small. In this section, by using
Monte Carlo simulation, we analyze whether we are able to
observe such signals or how far experimentally we are
away from the required resolution.

Following the idea of Ref. [20], we use R_(f,, [, At) as
the PDF to generate experimental events. For simplicity, we
only simulate the D° — D_ and D_ — D° transitions. We
define r =17.

The PDF is affected by the mistakes in identifying the
final states. In the case of B mesons, only the mistakes in
the flavor identification were considered [20]. We assume
this is also the case in D mesons. The mistakes in
identifying a non-CP eigenstate as a CP eigenstate cancel
each other between S terms in the asymmetries. Similarly,
the mistakes in distinguishing the semileptonic decays from
background also cancel each other between [* terms.
Moreover, the CP violation in the decays of K‘; mesons
[17], which is used in the CP identification, is known to be
small; thus, the mistakes in distinguishing the two CP
eigenstates can be neglected. So, we only consider the
mistakes in distinguishing the two flavor final states [
and /.

The PDF can be modified as [20]

R_(I",S., A7) = (1 —w))R_(I", Sy, A7)
+oR_(I",S4, A1),

R_(I7,8:,A7t) = (1 —w;)R_(I", 84, A7)

+awR_(I", 81, A1), (82)

where ) is the mistag rates in distinguishing /* final states.
We assume the confidence of identification of /* is similar
to the case of B mesons; hence, w; =~ 2.8% [32].

The effect of Ar resolution is complicated in the
experiments [20,32,37]. We simply use a Gaussian function
to include the effect of Az resolution,

exp (_ (At — Armw)2>’ (83)

h(AT’ AType, Gr) = 252

1
V2no,
and the PDF can be modified as [20]

R(I%, 84, At) o« R_(I%, 84, Atyye ) H(ATypye)
® h(At, Aty 0;)
+ R_(S4, I*, Aty ) H(—=ATyye)
® h(Az, Atyye, 0,), (84)

where H(Ar) is Heaviside step function and ® denote
convolution over At.

If w(3770) is at rest, the proper time interval Atz of the
decays of the two D mesons is related with the momentum
as [24]

mp

At%(rD—rD)m,

(85)

where rp and rp are decay lengths of D and D° mesons
and P is the 3-momentum of D°. The uncertainties mainly
come from rp and rp. The average is =290 um, and
one can use the rms of the decay length in Belle, which is
< 100 pm [24], and then o,./A7 ~ 100/290 =~ 34%.

We only generate the events with Az > 0. The normal-
ized PDF is

- 1
RMC(livsivAT) = NR(livs:t’AT)H(AT)7 (86)

where N = ["® d(A7)R(I*, S, A7).

In Ref. [17], the number of double-tag events is about
5000. Hence, we generate 5000 events for both D® — D_
and D_ — DO using the PDF in Eq. (86). With generated
events, we are able to obtain the number of events
Nyc(fa» fo,70) in an interval 0~ 7y. The numbers of
events that we are interested in are Nyc(S,,I",7y) and
Nyc(l7, S_, 79). We can also obtain the average decay time
(A1) from generated events, where = in the superscript
represents the transition with the /* final state.

A. Fitting joint decay rates

Since we use the normalized PDF, we are not able to
compare the time-independent joint decay rates of the
conjugated transitions. So, we concentrate on comparing
time-dependent joint decay rates.

Using Eq. (54), we find that the normalized time-
dependent joint decay rate of a C = —1 can be approx-
imately expressed as

1
ro (7.8 A1) =~ (2 + bAL + 0(107))),
n
1
r(Se 0t An) == T2+ bAL+ 0(107%))),  (87)
n

where r_(f,, f, At) is defined in Eq. (48) and b and n
satisfy

b =2cos(2¢)y ~2ycp, nz%,
+o0
n_ E/ d(At)r_(I7,S_, At),
0
+oo
n, EA d(AtR_(S,, I, A1),
e = b (67 5) +2F Gt 5)
F LRy P
+ 2‘ g (cos(2¢p)yx £ sin(2¢)x)7)> , (88)
p
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where X and y are defined in Eq. (61). The number of events
with Az < 7, can be obtained as

Nest(far fu70) = N / v (Furfo AD). (89)

where the subscript SM represents the expected result in the
SM. N ¢ 1s the total number of events. With the definition
NS+M(TO) = NSM(S+’ l+, AT()) and NgM(T0> = NSM(l_v S_,
Az,), we find that, to the leading order,

Niva(z0) = Ns(z0) = A H((2 4+ b)(1 = €7) = bzye~™).
(90)

We can use Eq. (90) to fit N§;(7y), thereby determining
the corresponding values of b, denoted as b*, where the
superscript corresponds to that of Ny; (7). If time reversal
is conserved, one has b™ = b~. The difference between b™
and b~ can be identified as a signal of TV. Examples of the
generated Ny;c(7) and the fitting N (7o) are shown in
Figs. 3 and 4.

To estimate the uncertainty of b*, we run such a
simulation for 300 times, and the distributions of b* are
shown in Figs. 5 and 6, respectively, and the results are

b~ =13.0£0.9 x 1073,
(1)

bt =13.1+£0.9 x 1073,

5000
4500
4000
3500
3000 [ T

=

1~ 2500 |

z
2000+ T

1500

1000

500

0 0.5 1 1.5 2 25 3 35 4
T

FIG. 3. One example of the fitting of b~. The cross with the

error bar is the generated Ny (z), where the error bars are

generated because the d7 of the events is 34%. The solid line is the

fitting Ngy () using Eq. (90). In this figure, the fitted result is

b~ =0.01312.

5000

4500

4000 [

3500 |

3000 |

o~ -
+2 2500 | 1
P4

2000

1500

1000

500

0o o5 1 15 2 25 3 35 4
T

FIG.4. One example of fitting of b*. The cross with error bar is

the generated Ny, (), where the error bars are generated because

the standard deviation dz of the events is 34%. The solid line is

the fitted N, (z) using Eq. (90). In this figure, the fitted result

is bt =0.01314.

Hence, it is difficult to observe the TV in time-dependent
T asymmetry in the C= -1 D°—D° state because
Ab < 5b*, where Ab = |b~ — b*|, 6b* are the standard
deviations of b*.

We can also estimate how far we are from the observa-
tion of the signal. In the SM, we find

80

I
e}
°
9]
Qo
£
=)
z
0.01 0.011 0.012 0.013 0.014 0.015 0.016
b-
FIG.5. The distribution of b~ in 300 runs of the simulation. The

solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (91).
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FIG. 6. The distribution of b in 300 runs of simulation. The
solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (91).

ANsy(79) = Ngy(7o) — Ngy (7o) = s(1 —e™)
—2uzge™ 4+ 0(107°), (92)
where

s=4An +2u,
3
u= Ay cos(2¢)y — 2sin(2¢)x + §A13v1 cos(2¢)y

1
- ZA@ sin(2¢)x,

An="r"" (93)
2
In the SM, we find s = 7.6 x 107 and 2u = =3.1 x 107;

therefore,
b* ~ b =0.013, 5b*t < 1074, (94)

Using Egs. (91) and (94), we find that with 5000 events the
fitting values of b* are very close to the expected values of
b*: however, the expected difference Ab is too small to be
observed. The accuracy of h* needs to be at least smaller
than 10~*. So, we can also conclude that, in consistency
with Sec. IV, to observe the TV signal the number of events
should be at least four orders of magnitude larger than the
one in the current experiments, which is about 5000.

B. Average decay times

In the above, we have used Az ~ 1, such that Ar ~ 1/T.
Here, we verify this assumption, and use the difference
between the average decay times in the two conjugate
processes as the evidence of TV. Each average decay time
does not depend on fitting.

90

80 |

70 1

60 [

50

40}

Number of (At)

30 |

20

10

0.94 0.96 0.98 1 1.02 1.04 1.06
(AT)_

FIG.7. The distribution of (A7)_ in 300 runs of simulation. The
solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (96).

In the SM, the average decay time can be obtained as
(At)_ = / r_(I=,8_, At)Ard(A7),
0

(A7), = A C (8., 1t At)Ard(A), (95)

which are obtained in 300 runs of the simulation, as shown
in Figs. 7 and 8, with the result
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FIG. 8. The distribution of (A7), in 300 runs of simulation.
The solid line is generated by the Gaussian distribution with the
mean and the standard deviation given in Eq. (96).
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TABLE II. The result of the simulation with different event numbers. The standard deviation is obtained by
running the simulation 300 times.

Number of events 10* 10° 10° 107

(At), —(AT)_ (=53 +£137) x 107™*  (-0.95+43) x 10™*  (0.68 £14) x 10™*  (2.9+41) x 107

(A7), yic = 1.0068 + 0.0149,
(A7)_ e = 1.0063 +0.0139. (96)

Hence, [(A7)_yc — (A7), mcl < 6(AT) 4y, Where
8(A7), pmc is the standard deviation of (A7), yc. This
suggests the difficulty in observing the T-violating signal.

Let us estimate in the SM the accuracy needed to observe
the T-violating signal. We find

(ar), =, (97)

2> (1+y%) +4[2] cos(2¢)y
52
5

|%‘2(x2_1)tézt\%\sin(&/))x)_l_
(1;—'2’67—&—(1;—2‘2)), with 7, and X and ¥ are defined in Eq. (88).
The numerical results are

_ 1
where Ti—‘z‘m(
P

(A7), g = 1.0066, (A7)_ gy ~ 1.0065. (98)
To observe the T-violating signal, the accuracy of meas-
uring (A7) should be about 1075.

It should be noted that the number of events is an
important factor that greatly affects the accuracy. We have
run the simulation on (Ar) described above with different
event numbers. The results are listed in Table II. To
estimate the standard deviation, each simulation with the
same number of events is run 300 times. We find that
the standard deviation is proportional to 1/+/N, where N is
the event number. According to the trend, if the event
number is of the order of 10° ~ 100, which can be
expected in the super-tau-charm factory [34], the standard
deviation reaches 107>, which is the order of the magnitude
of the lifetime difference between the T-conjugate proc-
esses, as predicted by the SM and the w effect,

(A7), s —(AT)_gu~3.75x 1073,
215107 < (A7), = (A7) ) y_ios <54% 107 (99)

Therefore, if the event number is of the order of
10° ~ 10'°, which can be expected in the super-tau-charm

factory, then the TV signal can be observed, and the result
can also set a bound on |w| at about 1073, That is to say,
|w| > 1073 can be excluded if not observed.

VII. SUMMARY

In this paper, we have studied TV in the C = —1 entangled
D" — DY systems, and various T asymmetries are considered.
We have proposed using the time-independent signals to
study TV.

We calculated the time-dependent asymmetries of C =
—1 system using joint decay rates, which are expected to be
at the order of 107> in the SM. Using the joint decay rates,
we also obtained the time-independent asymmetries, which
are also expected to be of the order of 107> in the SM.
We also studied the contribution of the w effect caused by a
kind of CPTV, which changes the asymmetries by as much
as 20% when || ~ 1074,

We also calculated T asymmetries defined for
T-conjugate processes, the transitions from D° to D~
and vice versa, using the transition rates obtained from
the event numbers in joint decays of entangled pairs. These
time-independent T asymmetries are also of the order of
107 to 1073,

We used the Monte Carlo simulation to estimate the
time-dependent signals in the C = —1 entangled system by
using the parameters in the current experimental situation.
We estimate that if the event number reaches 10° to 10'°
TV signals can be observed in the entangled D° — D° pairs
and the bound of @ ~ 103 can be reached.

In recent years, quantum entanglement has been found
to be a resource of quantum information processing.
Likewise, as exemplified by the present work, we may
say that quantum entanglement is a resource of precision
measurement in particle physics.
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