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The direct observation of time reversal symmetry violation (TV) is important for the test of CPT
conservation and the Standard Model. In this paper, we study both time-dependent and time-independent
genuine TV signals in entangled D0 − D̄0 pairs. A possible CPT-violation effect called the ω effect is also
investigated. In the C ¼ −1 entangled state, the asymmetries due to TVare calculated to be of the order of
10−5 to 10−4 within the Standard Model, but the modification due to the ω effect in the C ¼ −1 states is
found to be about 10%–30% when jωj ∼ 10−4. This result is consistent with our Monte Carlo simulation,
which implies that with 109 to 1010 events, TV signals can be observed in the entangledD0 − D̄0 pairs, and
the bound of ω ∼ 10−3 can be reached. The time-dependent and the time-independent asymmetries in the
C ¼ −1 D0 − D̄0 system provides a window to detect new physics such as the ω effect, although they are
not easily observable.
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I. INTRODUCTION

Symmetry, symmetry violation, and symmetry breaking
have been playing important roles in particle physics. The
studies of discrete symmetries P, C, T, and their combi-
nations have progressed greatly with the help of large
experimental data [1]. There are oscillations between
neutral mesons and their antiparticles, such as B0 − B̄0,
D0 − D̄0, and K0 − K̄0. In the D0 − D̄0 system, both the
mass and the decay width differences between the two mass
eigenstates are very small in comparison with the mean
values [2]. This provides an opportunity to verify CP
violation (CPV) sources from both the Standard Model
(SM) and new physics (NP) [3] and even the possibility of
CPT violation (CPTV) such as the so-called ω effect, as
predicted by some theories of quantum gravity [4,5].
If CPT is conserved [6], then CPV implies time reversal

(T) symmetry violation (TV). However, direct observation
of TV without the presumption of CPT conservation

is especially important [7–10]. The TV signal based on
a T-odd product of momentum vectors was observed in the
decay D0 → KþK−πþπ− [11]. However, such a signal has
a chance of being nongenuine because the initial and final
states are not interchanged [8]. The TV signal based on the
rate difference between the transformation from K0 to K̄0

and vice versa [12] is controversial [8].
Hence, an important development is that a genuine TV

signal has been observed in B0 − B̄0 decay, by comparing
transitions that are related through time reversal but not
through CP conjugation [13,14]. The key idea is to make
use of quantum entanglement, also called the Einstein-
Podolsky-Rosen correlation [7–9]. The initial states of each
of the two transitions is prepared by tagging the entangled
partners in the corresponding way. The connections
between CP, T, and CPT asymmetries and the exper-
imental asymmetries are investigated for entangled B0

dB̄
0
d

mesons [15]. Extension to kaons has been made [9,16].
In this paper, we propose using the time-independent

signals to study TV by extending the entanglement
approach of TV to D0 − D̄0 systems. The C ¼ −1
entangled D0 − D̄0 pairs can be produced through the
strong decay of ψð3770Þ [17–19] or ψð4140Þ [18,19].
ψð3770Þ has often been used for the study of CPV of D
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mesons. The C ¼ þ1 entangled state ofD mesons can also
be produced in the strong decay of ψð4140Þ [18,19].
First, we calculate the time-dependent and the time-

independent asymmetries between T-conjugate processes
for the C ¼ −1 entangled states. Within the SM, the
asymmetry of the C ¼ −1 system is found to be at most
10−5. We also consider the ω effect in the C ¼ −1 state,
which mixes the C ¼ þ1 state into it. We find that the ω
effect modifies the TV signals by as large as 20% when
jωj ∼ 10−4. We also calculate the Tasymmetries defined for
transitions from D0 to D− and vice versa, by using event
numbers in joint decays of entangled pairs. Finally, we use
a Monte Carlo simulation [20] to study the C ¼ −1 systems
based on the current experimental situation and demon-
strate that if the number of events reaches 109 TV signals
can be observed; furthermore, if the number of events
reaches 1010, the bound of ω ∼ 10−3 can be obtained.
We conclude that in the C ¼ −1D0 − D̄0 entangled state

the time-dependent asymmetry due to TV within the SM
requires a large number of events and may provide a
window to detect the signal of NP such as the ω effect.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the idea of studying TV using the
entangled states. In Sec. III, we study the joint decay rates
of such states. In Sec. IV, we discuss the TV signals in the
oscillation of theD0 − D̄0 system. Section V is a discussion
on the relation between the joint decay rate and the
experimental measurement. In Sec. VI, we present a
Monte Carlo simulation on the TV. Section VII is a
summary.

II. ENTANGLED STATES OF NEUTRAL MESONS

As pseudoscalar neutral mesons consisting of quarks,
D0 ¼ cū and D̄0 ¼ c̄u. In the Wigner-Weisskopf approxi-
mation, jD0i and jD̄0i are eigenstates of the flavor, which is
the charm in this specific case, with eigenvalues �1. jD0i
and jD̄0i comprise a basis, in which the effective mass
matrix is written as

H ¼
�
H00 H00̄

H0̄0 H0̄ 0̄

�
; ð1Þ

where H00 ≡ hD0jHjD0i, H00̄ ≡ hD0jHjD̄0i, and so on.
The eigenstates of H are

jDHi ¼ pjD0i þ qjD̄0i; jDLi ¼ pjD0i − qjD̄0i; ð2Þ

with

p
q
¼ 1 − ϵ

1þ ϵ
¼

ffiffiffiffiffiffiffiffi
H0̄0

H00̄

s
; ð3Þ

where ϵ is the indirect CPV parameter. The corresponding
eigenvalues are

λH ¼ mH −
i
2
ΓH ¼ H00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H00̄H0̄0

p
;

λL ¼ mL −
i
2
ΓL ¼ H00 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H00̄H0̄0

p
: ð4Þ

We can neglect the direct CPV, as done in testing T
violation in entangled B mesons [8,15,20] and can also be
done in entangled D mesons [2,17,21].
We will use the definitions

Δm≡mH −mL; Δλ≡ λH − λL; ΔΓ≡ ΓH − ΓL;

m≡ 1

2
ðmH þmLÞ; Γ≡ 1

2
ðΓL þ ΓHÞ: ð5Þ

The sign of ΔΓ in the definition (5) is different from
ΔΓ defined in Refs. [18,22] and is the same as in
Refs. [2,23–25].
The time evolution of the mass eigenstates is

jDHðtÞi≡UðtÞjDHi ¼ e−iλHtjDHi;
jDLðtÞi≡UðtÞjDLi ¼ e−iλLtjDLi; ð6Þ

where UðtÞ represents the time evolution under the effec-
tive mass matrix. UðtÞ evolves the flavor basis states as

jD0ðtÞi≡UðtÞjD0i ¼ gþðtÞjD0i − q
p
g−ðtÞjD̄0i;

jD̄0ðtÞi≡UðtÞjD̄0i ¼ −
p
q
g−ðtÞjD0i þ gþðtÞjD̄0i; ð7Þ

with

g�ðtÞ≡ e−iλLt � e−iλHt

2
; ð8Þ

where the sign of g−ðtÞ is different from that in Ref. [24]
and is the same as in Refs. [18,22]. The more general
expressions of jD0ðtÞi and jD̄0ðtÞi, without the assumption
of indirect CPT conservation, are given in Refs. [23,26]
and reduce to the expressions here when CPT is indirectly
conserved. Note that the two mass eigenstates jDHi and
jDLi are not orthogonal because of indirect CPV parameter
ϵ ≠ 0; hence, the basis transformation involving them is not
unitary.
There is yet another basis often used, namely, the CP

basis,

jD�i ¼
1ffiffiffi
2

p ðjD0i � jD̄0iÞ; ð9Þ

with eigenvalue �1. The time evolution starting with each
of them can be written as
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jD�ðtÞi ¼ UðtÞjD�i: ð10Þ

Now, suppose at time t ¼ 0 the C ¼ �1 entangled states
of two mesons a and b is generated,

jΨCi ¼
1ffiffiffi
2

p ðjD0iajD̄0ib þ CjD̄0iajD0ibÞ; ð11Þ

where the subscripts a and b will be omitted below. Under
the mass matrix, jΨCi evolves to

jΨCðtÞi ¼
1ffiffiffi
2

p ðjD0ðtÞiajD̄0ðtÞib þ CjD̄0ðtÞiajD0ðtÞibÞ:

ð12Þ
Specifically,

jΨ−ðtÞi ¼ e−iðλHþλLÞtjΨ−i; ð13Þ

jΨþðtÞi ¼
e−iðλHþλLÞt

2q
p

�
q
p
cosðΔλtÞðjD0ijD̄0i

þ jD̄0ijD0iÞ þ i sinðΔλtÞðjD0ijD0i

þ
�
q
p

�
2

jD̄0ijD̄0iÞ
�
: ð14Þ

It can be seen that the evolution of Ψ− leaves the
entanglement unchanged and provides a good opportunity
to study the discrete symmetries. Furthermore, one can
define

jΨCðta; tbÞi≡UðtbÞUðtaÞjΨCi

¼ 1ffiffiffi
2

p ðjD0ðtaÞijD̄0ðtbÞiþCjD̄0ðtaÞijD0ðtbÞiÞ;

ð15Þ

which represents that particle a decays at ta while particle b
decays at tb and is widely used in calculating joint decay
rate [8,18,27]. jΨCðta; tbÞ can also be written in terms of
CP eigenstates as

jΨ−ðta;tbÞi¼
1ffiffiffi
2

p ðjD−ðtaÞijDþðtbÞi− jDþðtaÞijD−ðtbÞiÞ;

jΨþðta;tbÞi¼
1ffiffiffi
2

p ðjDþðtaÞijDþðtbÞi− jD−ðtaÞijD−ðtbÞiÞ:

ð16Þ

Unless explicitly stated, here, tb ≥ ta is assumed without
loss of generality. The free choice between Eqs. (15) and
(16) can be made by determining whether the earlier decay
of meson a is into a CP eigenstate or a flavor eigenstate.
We use l� to denote a final state of a semileptonic decay
with flavor number �1 and S� to denote the final state of a
CP eigenstate with eigenvalue �1.

III. T-CONJUGATE TRANSITIONS OBTAINED
FROM THE ENTANGLED MESONS

A. T-conjugate transitions

The entangled meson pairs can be used in the so-called
single-tag (ST) and double-tag (DT) methods [17,28,29].
In the case of the C ¼ −1 entangled state, the final state of
the first decay at ta tags the partner as D0 or D̄0 or D�; one
can then study the decay of the tagged partner at tb.
Because, at time t, jΨ−ðtÞi ∝ jΨ−i, theC ¼ −1 entangled

state can be used to construct T-conjugate processes. For
example, if meson a decays into the l− final state at ta, it
implies that meson a has been projected to jD̄0i, which
decays to the l− final state; hence, meson b is prepared to be
jD0i at ta. Then, by measuring the probability that meson b
decays into a final state S− at a later time tb, one obtains the
probability that meson b evolves and then transits to
D− during the time period tb − ta.
Therefore, the final states of the two entangled mesons

act as tags. With the help of the tags, one can measure the
rate of the transition D0 → D− of meson b.
The time reversal symmetry requires that the transition

rate of D0 → D− from t to tþ Δt is equal to that of D− →
D0 from t0 to t0 þ Δt. They can be prepared alternatively as
the transitions of meson b through double tags. For the
process D0 → D−, D0, as the initial state of meson b, is
prepared when the final state of meson a is l−, while D− is
indicated by the final state S− of meson b (with the direct
CPVneglected). For the processD− → D0,D−, as the initial
state of meson b, is prepared when the final state of meson a
is Sþ, whileD0 is indicated by the final state lþ of meson b.
Various transitions and the corresponding final states, as
used to observe the TV, are summarized in Table I [8,20].
To test TV, we need to compare these T-conjugation

transitions. There are several ways to relate the transitions
to observables, as discussed below.

B. Joint decay rates

For the entangled meson pairs, an important quantity to
study is the joint decay rate, which is the joint rate of the
processes in which one of the entangled mesons decays into
the final state fa at ta while the other decays into fb at tb
[18,22–24,26]. The rate ΓCðfa; fb; ta; tbÞ at which meson a
decays to fa at ta while b decays to fb at tb is proportional
to the joint decay rate calculated from jΨCðta; tbÞi,

ΓCðfa; fb; ta; tbÞ ∝ RCðfa; fb; ta; tbÞ
≡ jhfa; fbjHaHbjΨCðta; tbÞij2: ð17Þ

The rate of each transition listed in Table I can be
obtained from the joint decay rate of the corresponding
final states, with meson a decaying to its final state such
that the entangled partner b is projected to the initial state in
the transition listed.
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1. Joint decay rates of C = � 1 states

For jΨCðta; tbÞi, the joint decay amplitude for the joint processes in which meson a decays to fa at ta while meson b
decays to fb at tb is

hfa; fbjHaHbjΨCðta; tbÞi ¼
1ffiffiffi
2

p fξC½gþðtaÞg−ðtbÞ þ Cg−ðtaÞgþðtbÞ� þ ζC½gþðtaÞgþðtbÞ þ Cg−ðtaÞg−ðtbÞ�g; ð18Þ

whereHa is the weak interaction field theoretic Hamiltonian governing the decay of the meson a and ξC and ζC are defined
as

ξC ≡ −
�
p
q
AfaAfb þ C

q
p
ĀfaĀfb

�
; ζC ≡ AfaĀfb þ CĀfaAfb; ð19Þ

where Af and Āf are instantaneous decay amplitudes

Af ≡ hfjHjD0i; Āf ≡ hfjHjD̄0i: ð20Þ

The joint decay rate is thus

RCðfa; fb; ta; tbÞ ¼ jhfa; fbjHaHbjΨCðta; tbÞij2

¼ e−ΓðtaþtbÞ

4
× fðjξCj2 þ jζCj2Þ coshðyΓðta þ CtbÞÞ − ðjξCj2 − jζCj2Þ cosðxΓðta þ CtbÞÞ

þ 2CReðζ�CξCÞ sinhðyΓðta þ CtbÞÞ − 2CImðζ�CξCÞ sinðxΓðta þ CtbÞÞg; ð21Þ

where x and y are defined as

x≡ Δm
Γ

; y≡ ΔΓ
2Γ

: ð22Þ

In experiments, we often use the time-integrated joint decay

RCðfa; fb;ΔtÞ ¼
Z

∞

0

dtaRCðfa; fb; ta; ta þ ΔtÞ; ð23Þ

hence,

TABLE I. T-conjugate transitions and the corresponding final states of the C ¼ −1 entangled mesons a and b. We
use l� to denote a final state of a semileptonic decay, with flavor number�1, and use S� to denote the CP eigenstate
with eigenvalue �1. Meson a decays at ta, while meson b decays at a later time tb ≥ ta. The transition listed is that
of meson b.

Final state
of meson a

Transition
of meson b

Final state
of meson b

Final state
of meson a

T-conjugate transition
of meson b

Final state
of meson b

l− D0 → D− S− Sþ D− → D0 lþ
l− D0 → Dþ Sþ S− Dþ → D0 lþ
lþ D̄0 → D− S− Sþ D− → D̄0 l−

lþ D̄0 → Dþ Sþ S− Dþ → D̄0 l−
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RCðfa; fb;Δt > 0Þ ¼ e−ΓΔt

8Γ

�
ðjξCj2 þ jζCj2Þ

�
coshðyΓΔtÞ þ

�
1þ C
2

�
y2 coshðyΓΔtÞ þ y sinhðyΓΔtÞ

1 − y2

�

−ðjξCj2 − jζCj2Þ
�
cosðxΓΔtÞ þ

�
1þ C
2

�
−x2 cosðxΓΔtÞ − x sinðxΓΔtÞ

1þ x2

�

þ2Reðζ�CξCÞ
�
sinhðyΓΔtÞ þ

�
1þ C
2

�
y coshðyΓΔtÞ þ y2 sinhðyΓΔtÞ

1 − y2

�

−2Imðζ�CξCÞ
�
sinðxΓΔtÞ þ

�
1þ C
2

�
x cosðxΓΔtÞ − x2 sinðxΓΔtÞ

1þ x2

��
: ð24Þ

Finally, the time-independent joint decay rate is defined as

RCðfa; fbÞ≡
Z

∞

0

dta

Z
∞

0

dtbjhfa; fbjHaHbjΨCðta; tbÞij2; ð25Þ

which is obtained as

RCðfa; fbÞ ¼
1

4Γ2

�
ðjξCj2 þ jζCj2Þ

1þ Cy2

ð1 − y2Þ2 − ðjξCj2 − jζCj2Þ
1 − Cx2

ð1þ x2Þ2þ2Reðζ�CξCÞ
ð1þ CÞy
ð1 − y2Þ2 − 2Imðζ�CξCÞ

ð1þ CÞx
ð1þ x2Þ2

�
:

ð26Þ

Note that RCðfa; fbÞ is independent of the order of the two
final states. In experiments, such time-independent quan-
tities are most easily measured.

2. Joint decay rates under the ω effect

One kind of CPTV is the so-called ω effect, which is a
consequence of some forms of quantum gravity [4,5]. The
ω effect affects the entangled source, so the C ¼ −1
entangled state is mixed in by the C ¼ þ1 entangled state
with a factor ω. For simplicity, in this section, we assume
the CPV parameters are barely affected by the ω effect.

Because of the ω effect, the C ¼ −1 entangled state is
modified to be

jΨωðta; tbÞi ¼ jΨ−ðta; tbÞi þ ωjΨþðta; tbÞi; ð27Þ

where

ω≡ jωjeiΩ

is a small mixing factor. The joint decay rate is found to be

Rωðfa; fb; ta; tbÞ ¼ R−ðfa; fb; ta; tbÞ þ jωj2Rþðfa; fb; ta; tbÞ þ Rmðfa; fb; ta; tbÞ; ð28Þ

with

Rmðfa; fb; ta; tbÞ≡ e−ΓðtaþtbÞ½Reðαþ βÞ cosðxΓtaÞ coshðyΓtbÞ − Imðαþ βÞ sinðxΓtaÞ sinhðyΓtbÞ
−Reðα − βÞ cosðxΓtbÞ coshðyΓtaÞ þ Imðα − βÞ sinðxΓtbÞ sinhðyΓtaÞ
þReðρþ σÞ cosðxΓtaÞ sinhðyΓtbÞ − Imðρþ σÞ sinðxΓtaÞ coshðyΓtbÞ
−Reðρ − σÞ cosðxΓtbÞ sinhðyΓtaÞ þ Imðρ − σÞ sinðxΓtbÞ coshðyΓtaÞ�; ð29Þ

where

α≡ ω

2
ξ�−ξþ; β≡ ω

2
ζ�−ζþ; ρ≡ ω

2
ξ�−ζþ; σ ≡ ω

2
ζ�−ξþ: ð30Þ

The integrated joint decay rate can be written as
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Rωðfa; fb;ΔtÞ ¼ R−ðfa; fb;ΔtÞ þ jωj2Rþðfa; fb;ΔtÞ þ Rmðfa; fb;ΔtÞ; ð31Þ

where

Rmðfa; fb;ΔtÞ ¼
e−ΓΔt

Γ
ðCh coshðyΓΔtÞ þ Sh sinhðyΓΔtÞ þ Cs cosðxΓΔtÞ þ Sn sinðxΓΔtÞÞ; ð32Þ

with

Ch≡ AReðαþ βÞ −DImðαþ βÞ − yBReðρþ σÞ − xCImðρþ σÞ;
Sh≡ −yBReðαþ βÞ − xCImðαþ βÞ þ AReðρþ σÞ −DImðρþ σÞ;
Cs≡ −AReðα − βÞ þDImðα − βÞ þ yBReðρ − σÞ þ xCImðρ − σÞ;
Sn≡ xCReðα − βÞ − yBImðα − βÞ þDReðρ − σÞ þ AImðρ − σÞ;

A≡ 2ðx2 − y2 þ 4Þ
x4 þ 2x2ðy2 þ 4Þ þ ðy2 − 4Þ2 ; B≡ ðx2 þ y2 − 4Þ

x4 þ 2x2ðy2 þ 4Þ þ ðy2 − 4Þ2 ;

C≡ ðx2 þ y2 þ 4Þ
x4 þ 2x2ðy2 þ 4Þ þ ðy2 − 4Þ2 ; D≡ 4xy

x4 þ 2x2ðy2 þ 4Þ þ ðy2 − 4Þ2 : ð33Þ

IV. TV SIGNALS IN D0 − D̄0 SYSTEMS

In this section, we first establish the TV signals and their
behavior predicted within the SM. We use those decay
channels in which the direct CPV, i.e., that in the decays, can
be neglected and only consider indirect CPV, i.e., that in the
oscillation. We consider only the cases in which one of the
final states is a CP eigenstate while the other is a flavor
eigenstate [8,17,20]. In D0 − D̄0 systems, the indirect CPV
parameter is known to be very small [2,30]. Within the SM,
the corresponding TV is also expected to be very small.
With direct CPV negligible, we have [2,21]

Al− ¼ Ālþ ¼ 0; Alþ ¼ Āl− ≡ Al: ð34Þ
When the final state is a CP eigenstate S�, within the

SM, we have [21]

AS� ¼ �ĀS� ; ð35Þ
where Af and Āf are defined in Eq. (21). Substituting
ðfa; fbÞ ¼ ðl�; S�Þ in Eq. (19), we find

jξCj2 þ jζCj2 ¼ jAlj2jAS�j2
�				pq

				
2nl þ 1

�
;

jξCj2 − jζCj2 ¼ jAlj2jAS�j2
�				pq

				
2nl

− 1

�
;

2Reðζ�CξCÞ ¼ −2ns

				pq
				
nl
cosð2ϕÞjAlj2jAS�j2;

2Imðζ�CξCÞ ¼ 2nlns

				pq
				
nl
sinð2ϕÞjAlj2jAS�j2; ð36Þ

where nl ¼ �1 for l� final states and ns ¼ �1 for S�
states.

Experimentally, the semileptonic decay modes and
the CP eigenstate decay modes of a C ¼ −1 entangled
D0 − D̄0 system have been studied by using DT of the two
mesons [17], where the semileptonic decay modes include
Keν and Kμν, while the CP eigenstate decay modes
include KþK−, πþπ−, and K0

Sπ
0π0 for CP ¼ 1 and

K0
Sπ

0, K0
Sω, and K0

Sη for CP ¼ −1.
q=p is often parametrized as

q
p
≡
				 qp

				ei2ϕ; ð37Þ

which will be used below. Other frequently used parameters
include yCP and AΓ, which can be defined as [2,17,31]

yCP≡1

2

�
ycosð2ϕÞ

�				qp
				þ

				pq
				
�
−xsinð2ϕÞ

�				qp
				−
				pq

				
��

;

AΓ≡1

2

�
ycosð2ϕÞ

�				qp
				−
				pq

				
�
−xsinð2ϕÞ

�				qp
				þ

				pq
				
��

:

ð38Þ

yCP ≠ y and AΓ ≠ 0 indicate indirect CPV. AΓ is known to
be very small. We also define [2]

				 qp
				
2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AM

1 − AM

s
; ð39Þ

which is often used in the studies of D decays.

A. TV signals based on joint decay rates

For the C ¼ −1 entangled state, we can construct
four TV signals from time-dependent joint decay rates
(depending on the difference Δt ¼ tb − ta of two
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decay times), corresponding to the final states listed in
Table I. In the first example listed in the Table, the final
states of mesons a and b are l− and S−, with direct CPV
neglected, i.e., Al− ¼ Ālþ ¼ 0, Alþ ¼ Āl− ≡ Al, AS� ¼
�ĀS� , R−ðl−;S−;ta;tbÞ∝ jAlj2jAS− j2jhD−jUðtb− taÞjD0ij2.

In details, if the final state of meson a is fa, the
state of meson b becomes ∝ Afa jD̄0i − Āfa jD0i. Then,
if the meson b decays into fb at tb, it can be obtained
that

jhfa; fbjHaHbjΨ−ðta; tbÞij2
¼ e−2ΓtaðjAfa j2jhfbjHbjUðtb − taÞjD̄0ij2 þ jĀfa j2jhfbjHbjUðtb − taÞjD0ij2Þ

¼ e−2Γta
�
1

2
jAfa j2ðjhfbjHbjDþij2jhDþjUðtb − taÞjD̄0ij2 þ jhfbjHbjD−ij2jhD−jUðtb − taÞjD̄0ij2Þ

þ 1

2
jĀfa j2ðjhfbjHbjDþij2jhDþjUðtb − taÞjD0ij2 þ jhfbjHbjD−ij2jhD−jUðtb − taÞjD0ij2Þ

�
; ð40Þ

where we have assumed no wrong-sign decay. If fa ¼ l−, then

jhfa;fbjHaHbjΨ−ðta;tbÞij2¼
e−2Γta

2
ðjAlj2ðjhfbjHbjDþij2jhDþjD0ðtb− taÞij2þjhfbjHbjD−ij2jhD−jD0ðtb−taÞij2ÞÞ: ð41Þ

Considering hS−jHjDþi ¼
ffiffi
2

p
2
ðhS−jHjD0i þ hS−jHjD̄0iÞ ¼ 0, hS−jHjD−i ¼

ffiffi
2

p
2
AS− , and fb ¼ S−, we have

jhl−; S−jHaHbjΨ−ðta; tbÞij2 ¼
e−2Γta

4
jAlj2jAS− j2jhD−jD0ðtb − taÞij2: ð42Þ

From Eq. (7),

jhD−jHjD0ðtb − taÞij2 ¼
1

4
e−Γðta−tbÞe−ΔΓ

2
ðta−tbÞ

��
q
p
þ 1

�
e
1
2
ðta−tbÞðΔΓþ2iΔmÞ −

q
p
þ 1

�

×

�
q
p
ð−1þ eð14þi

4
Þðta−tbÞðΔΓ−2iðΔmþΓÞ−4mÞÞ þ e

1
2
ðta−tbÞðΔΓ−2iΔmÞ þ 1

�
: ð43Þ

Hence, Eq. (42) is consistent with Eq. (21); especially, jhl−; S−jHaHbjΨ−ðta; tbÞij2 ∝ e−ΓðtaþtbÞ.
Similarly,

R−ðSþ; lþ; ta; tbÞ ¼
e−2Γta

4
jASþj2jAlj2hD0jUðtb − taÞjD−ij2: ð44Þ

A similar expression can be for each pair of T-conjugated transitions.
T symmetry implies jhD−jUðΔtÞjD0ij2 ¼ jhD0jUðΔtÞjD−ij2. Therefore, for Δt > 0, T symmetry implies that

R−ðl−; S−;ΔtÞ
jAlj2jAS− j2

¼ R−ðSþ; lþ;ΔtÞ
jAlj2jASþj2

;
R−ðl−; Sþ;ΔtÞ
jAlj2jASþj2

¼ R−ðS−; lþ;ΔtÞ
jAlj2jAS− j2

;

R−ðlþ; S−;ΔtÞ
jAlj2jAS− j2

¼ R−ðSþ; l−;ΔtÞ
jAlj2jASþj2

;
R−ðlþ; Sþ;ΔtÞ
jAlj2jASþj2

¼ R−ðS−; l−;ΔtÞ
jAlj2jAS− j2

: ð45Þ

Hence, we can define a T asymmetry, denoted as A1
−ðΔt > 0Þ,

A1
−ðΔtÞ ¼

R−ðl−;S−;ΔtÞ
jAlj2jAS− j2

− R−ðSþ;lþ;ΔtÞ
jAlj2jASþ j2

R−ðl−;S−;ΔtÞ
jAlj2jAS− j2

þ R−ðSþ;lþ;ΔtÞ
jAlj2jASþ j2

; ð46Þ

and there are three other asymmetries corresponding to the equalities in Eq. (45).
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We can also define TV signals independent of jAS�j,
denoted as A2

−ðΔt > 0Þ,

A2
−ðΔtÞ ¼

R−ðl−; S−;ΔtÞ
R−ðlþ; S−;ΔtÞ

−
R−ðSþ; lþ;ΔtÞ
R−ðSþ; l−;ΔtÞ

: ð47Þ

There are five other signals similar to Eq. (47) that can be
constructed, according to Eq. (45).
One can also use the normalized joint decay rates or the

probability density function (PDF), defined as

r−ðfa; fb;ΔtÞ ¼
1

nfa;fb

R−ðfa; fb;ΔtÞ
jAfa j2jAfb j2

¼ 1

n0fa;fb
R−ðfa; fb;ΔtÞ; ð48Þ

where nfa;fb ¼ R
∞
0 dðΔtÞ R−ðfa;fb;ΔtÞ

jAfa j2jAfb
j2 , n0fa;fb ¼R∞

0 dðΔtÞR−ðfa; fb; ΔtÞ. That is to say, the PDF for

R−ðfa; fb;ΔtÞ is the same as that for R−ðfa;fb;ΔtÞ
jAfa j2jAfb

j2 .

Therefore, one only needs to consider R−ðfa; fb;ΔtÞ when
normalization with respect to various Δt is taken into
account. Hence, one can construct a TV A3

−ðΔt > 0Þ as

A3
−ðΔtÞ ¼

r−ðl−; S−;ΔtÞ − r−ðSþ; lþ;ΔtÞ
r−ðl−; S−;ΔtÞ þ r−ðSþ; lþ;ΔtÞ

; ð49Þ

which vanishes only if T symmetry is valid. Note that it was
A3
−ðΔtÞ that was measured in BABAR experiments [13,20].
We now consider the time-independent joint decay rate

R−ðfa; fbÞ ¼
Z

∞

0

dta

Z
∞

0

dtbR−ðfa; fb; ta; tbÞ

¼
Z

∞

0

dta

Z
∞

0

dtbR−ðfa; fb; tb; taÞ: ð50Þ

Note that R−ðfa; fbÞ=jAfa j2jAfb j2 ¼ R−ðfb; faÞ=
jAfa j2jAfb j2 is independent of the order of the final states.
Hence, in counting the events, one does not need to
distinguish which final state is of which meson.

R−ðl−; S−Þ=jAlj2jAS− j2 ≠ R−ðlþ; SþÞ=jAlj2jASþj2 is a
sufficient condition of TV in the time-dependent rates
and implies that there is at least a certain value of t, for
which at least one of the two corresponding conjugate
processes violates T symmetry. A similar conclusion can be
made if R−ðl−; SþÞ=jAlj2jASþj2 ≠ R−ðlþ; S−Þ=jAlj2jAS− j2.
If time reversal symmetry is respected, then both of the

following equations are satisfied:

R−ðl−; S−Þ
jAlj2jAS− j2

¼ R−ðlþ; SþÞ
jAlj2jASþj2

;
R−ðl−; SþÞ
jAlj2jASþj2

¼ R−ðlþ; S−Þ
jAlj2jAS− j2

:

ð51Þ

Hence, we can define the time-independent TV signal of
C ¼ −1 states denoted as Â−,

Â− ¼ R−ðl−; S−Þ
R−ðlþ; S−Þ

−
R−ðlþ; SþÞ
R−ðl−; SþÞ

: ð52Þ

When Â− ≠ 0, at least one of the equalities in Eq. (51) is
violated. Therefore, Â− is the TV signal independent
of AS� .
We emphasize that A2

−ðΔtÞ ¼ 0 or A3
−ðΔtÞ ¼ 0 or

A− ¼ 0 does not guarantee the time reversal symmetry.
However, A2

−ðΔtÞ ≠ 0 or A3
−ðΔtÞ ≠ 0 or A− ≠ 0 is a

sufficient condition of TV. In experiments, one would like
to use the TV signal independent of AS� , that is, A

2
−ðΔtÞ,

A3
−ðΔtÞ and Â−.
Note that, despite the decays, the antisymmetry of the

C ¼ −1 entangled state remains. This is crucial in its use in
the construction of genuine TV signals [8]. The C ¼ þ1
entangled state of D mesons can also be produced in the
strong decay of ψð4140Þ [18,19], but it is difficult to extract
TV signals from it. When the C ¼ þ1 entangled state
evolves to t ¼ ta, it becomes jΨþðtaÞi as given in (14).
Consequently, when one of the mesons decays into the fa
final state at ta, the other meson becomes a superposition of
D0 and D̄0. If we denote Ψfa as the state of the second
meson tagged by the final state of the first meson fa, Ψfa
can be written as

jΨlþi ∝
q
p
cosðΔλtaÞjD̄0i þ i

1þ ðqpÞ2
2

sinðΔλtaÞjD0i þ i
1 − ðqpÞ2

2
sinðΔλtaÞjD0i;

jΨl−i ∝
q
p
cosðΔλtaÞjD0i þ i

1þ ðqpÞ2
2

sinðΔλtaÞjD̄0i − i
1 − ðqpÞ2

2
sinðΔλtaÞjD̄0i;

jΨSþi ∝
q
p
cosðΔλtaÞjDþi þ i

1þ ðqpÞ2
2

sinðΔλtaÞjDþi þ i
1 − ðqpÞ2

2
sinðΔλtaÞjD−i;

jΨS−i ∝ −
q
p
cosðΔλtaÞjD−i þ i

1þ ðqpÞ2
2

sinðΔλtaÞjD−i þ i
1 − ðqpÞ2

2
sinðΔλtaÞjDþi; ð53Þ
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where ∝ implies that these four states are not normalized yet. If, e.g., we compare the joint decay rate Rþðl−; S−; ta; tbÞwith
RþðSþ; lþ; ta; tbÞ, we are comparing the transitions Ψl− → D− with ΨSþ → D0, which are not T-conjugate transitions.
In the following, we concentrate on the TV signals of theC ¼ −1 entangled states. Substituting Eq. (36) into Eq. (24), we

obtain the time-dependent joint decay rates

R−ðlþ; S�;ΔtÞ ¼
e−ΓjΔtjjAlj2jAS�j2

8Γ

��				pq
				
2

þ 1

�
coshðyΓΔtÞ −

�				pq
				
2

− 1

�
cosðxΓΔtÞ

∓ 2

				pq
				½cosð2ϕÞ sinhðyΓΔtÞ þ sinð2ϕÞ sinðxΓΔtÞ�

�
;

R−ðl−; S�;ΔtÞ ¼
e−ΓjΔtjjAlj2jAS�j2

8Γ

��				 qp
				
2

þ 1

�
coshðyΓΔtÞ −

�				 qp
				
2

− 1

�
cosðxΓΔtÞ

∓ 2

				 qp
				½cosð2ϕÞ sinhðyΓΔtÞ − sinð2ϕÞ sinðxΓΔtÞ�

�
: ð54Þ

With Λ≡ −q=p × ĀS�=AS� , and at the limit at which ΔΓ → 0, which is the case of B mesons [20], the integrated joint
decay rates become

R−ðlþ; S�;ΔtÞjB ∝ e−ΓjΔtj
�
1 −

�
1 − jΛj2
1þ jΛj2 cosðxΓΔtÞ −

2ImΛ
1þ jΛj2 sinðxΓΔtÞ

��
;

R−ðl−; S�;ΔtÞjB ∝ e−ΓjΔtj
�
1þ

�
1 − jΛj2
1þ jΛj2 cosðxΓΔtÞ −

2ImΛ
1þ jΛj2 sinðxΓΔtÞ

��
; ð55Þ

which reproduces the integrated joint decay rates of B mesons in Refs. [32,33].
The time-independent joint decay rate can be obtained, from Eqs. (26) and (36):

R−ðlþ; S�Þ ¼
jAlj2jAS�j2

4Γ2

��				pq
				
2

þ 1

�
1

1 − y2
−
�				pq

				
2

− 1

�
1

1þ x2

�
;

R−ðl−; S�Þ ¼
jAlj2jAS�j2

4Γ2

��				 qp
				
2

þ 1

�
1

1 − y2
−
�				 qp

				
2

− 1

�
1

1þ x2

�
: ð56Þ

Now, we can obtain the TV signals. Taking A1
−ðΔtÞ as an example, we can estimate A1

−ðΔtÞ of the C ¼ −1 system using
the measured parameters of CPV of D0 − D̄0 mesons in the SM. Using Eqs. (49) and (54), we find

A1
−ðΔtÞ ¼

ðx1y1ðΔtÞ − 2x2 cosð2ϕÞ sinhðyΓΔtÞ − 2x3 sinð2ϕÞ sinðxΓΔtÞÞ
ðx4y1ðΔtÞ þ 2y2ðΔtÞ þ 2x3 cosð2ϕÞ sinhðyΓΔtÞ þ 2x2 sinð2ϕÞ sinðxΓΔtÞÞ

; ð57Þ

where xi and yi are defined as

x1 ≡
				 qp

				
2

−
				pq

				
2

; x2≡
				pq

				−
				 qp

				; x3≡
				pq

				þ
				 qp

				; x4 ≡
				pq

				
2

þ
				 qp

				
2

;

y1ðΔtÞ≡ coshðyΓΔtÞ − cosðxΓΔtÞ; y2ðΔtÞ≡ coshðyΓΔtÞ þ cosðxΓΔtÞ: ð58Þ
In the case of B mesons, we can take the limit ΔΓ → 0 and q=p → e2iβ; thus, we find A1

−ðΔtÞ ¼ − sinð2βÞ sinðxΓΔtÞ.
This corresponds to the CP asymmetry predicted by the SM, as given in Refs. [32,33].
We can expand Ai

−ðΔtÞ to the leading order and find

A1
−ðΔtÞ ≈ AΓΓΔt; A2

−ðΔtÞ ≈ 4AΓΓΔt; A3
−ðΔtÞ ≈ AΓΓðΔt − 1Þ: ð59Þ

We use the parameter values in Ref. [25],

x ¼ 0.0037; y ¼ 0.0066;
q
p
¼ 0.91; ϕ ¼ −4.7°: ð60Þ

Notice that the definition of ϕ in Ref. [25] is arg ðq=pÞ, while in this paper, we define ϕ≡ arg ðq=pÞ=2, which is the same as
in Ref. [18]. For Δt ¼ τD ≡ 1=Γ, we find A1

−ðΔtÞ ∼ 10−5.
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The time-independent joint decay rate does not depend
on the decay times, so we are not able to identify the
transition. For example, we need to know which of the final
states is the outcome of the earlier decay to distinguish
D0 → D− from Dþ → D̄0. However, one can construct a
time-independent signal for TV.
It is found that

Â− ¼ x1ðx4ðx̄ − ȳÞ2 þ 2ðx̄2 − ȳ2ÞÞ
x4ðx̄2 − ȳ2Þ þ 2ðx̄2 þ ȳ2Þ ;

x̄≡ 1þ x2; ȳ≡ 1 − y2; ð61Þ

where x1 and x4 are defined in Eq. (58). To the leading
order,

Â− ≈ 2AMðx2 þ y2Þ ¼ −2.2 × 10−5: ð62Þ

The error of the signal can be estimated to be related to the
event number N as δÂ− ∼ 1=

ffiffiffiffi
N

p
. Hence, the magnitude of

Â− implies that the number of events should be as large as
109 to 1010, which will be verified in Monte Carlo
simulation in Sec. VI. Such an event number can be
obtained at the super-tau-charm factory [34].

B. C= − 1 state with ω effect

As noted in Eq. (27), the ω effect causes the C ¼ −1
state to be mixed in by the C ¼ þ1 state. Then, the
T-conjugation between each pair of processes in the
asymmetries studied above is lost. However, the asymme-
tries for these pairs of processes can still be investigated to
determine the value of ω. We find that these asymmetries
are enhanced. For example, for the same final states as in
A1
−ðΔtÞ defined in Eq. (46), the corresponding asymmetry

of the C ¼ þ1 state is

A1þðΔtÞ ¼
Rþðl−;S−;ΔtÞ
jAlj2jAS− j2

− RþðSþ;lþ;ΔtÞ
jAlj2jASþ j2

Rþðl−;S−;ΔtÞ
jAlj2jAS− j2

þ RþðSþ;lþ;ΔtÞ
jAlj2jASþ j2

: ð63Þ

Inserting Eq. (36) into Eqs. (24) and (26), in the case of
C ¼ þ1, we find

A1þðΔtÞ ≈ yCPð1þ ΓΔtÞ ∼ 10−2: ð64Þ

The difference between A1
−ðΔtÞ and A1þðΔtÞ is very large,

providing an opportunity to detect the ω effect. The
numerical results show that A1

−ðΔt ≈ τDÞ=A1þðΔt ≈ τDÞ∼
10−4, which implies that a small ω at the order jωj ∼ 10−4

may considerably change the TV signals. Incidently, this is
also the order of magnitude considered in Ref. [5]. So, we
conjecture the experiment to observe the TV signal in theD
systemmay at the same time provide a window to detect the
ω effect with a sensibility up to jωj ∼ 10−4.

For simplicity, we only consider how the TV signal
A2
−ðΔtÞ is affected by the ω effect. Using Eqs. (19),

(30)–(35), we find

AωðΔtÞ ¼
Rωðl−; S−;ΔtÞ
Rωðlþ; S−;ΔtÞ

−
RωðSþ; lþ;ΔtÞ
RωðSþ; l−;ΔtÞ

≈
1

4
ΓΔtð−2 sinð2ϕÞxðA2

M − 8y cosð2ϕÞΓΔtþ 8Þ
þ AMð3A2

M þ 8Þ cosð2ϕÞy
þ 4AMΓΔtðð1 − 2cos2ð2ϕÞÞy2 þ x2ÞÞ
þ 4 cosð2ϕÞjωjðy cosðΩÞ − x sinðΩÞÞð1þ ΓΔtÞ;

ð65Þ

where AM is determined by q=p, as defined in Eq. (39).
The CPV parameters are assumed to be barely affected

by the ω effect. Using Eq. (60), the dependence of AωðΔtÞ
on jωj andΩwhen ΓΔt ¼ 1, i.e., Δt ¼ τD ≡ 1=Γ, is shown
in Figs. 1 and 2. We find that when jωj ∼ 10−4 the change
of time-integrated T asymmetry, due to the ω effect, can be
as large as 20% of that within the SM. The sensitivity could
be competitive with the B or Bd meson pairs [35]. In the
Monte Carlo simulation presented in Sec. VI, we will find
that if the event number is of the order of 109 the TV signal
can possibly be observed. Such an event number can also
set a bound on jωj at 10−3 at the same time.
We emphasize that when the C ¼ −1 state is mixed with

the C ¼ þ1 state the signal is no longer a TV signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-4

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6
10-5

FIG. 1. AωðΔt ¼ 1=ΓÞ as a function of jωj in the region
jωj < 10−4. The solid line is for Ω ¼ 0, the dashed line is for
Ω ¼ π=2, the dotted line is for Ω ¼ π, and the dotted-dashed line
is for Ω ¼ 3π=2. The parameter values are x ¼ 0.0037,
y ¼ 0.0066, q

p ¼ 0.91, and ϕ ¼ −4.7°.
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However, the deviation from the TV signal calculated
within the SM reveals the nonzero ω effect.

V. RELATION BETWEEN THE TV SIGNALS AND
EXPERIMENTAL MEASUREMENTS

One can relate the normalized time-integrated joint
decay rates to event numbers of the decays [20]. In
using normalized time-integrated joint decay rates, the
T-conjugated transitions differ in the dependence on the
time interval rather than on the number of events.
A similar way to investigate the double decay is to use

ST and DT signals [17,28,29].
Suppose the final state of meson a at ta is l−, it tagged the

meson b asD0, which decays to S− at tb ¼ ta þ Δt, the rate
of which can be denoted as ΓðD0 → S−;ΔtÞ. By assuming
that there is no mistake in tagging and that the direct CPV
can be neglected, the rate jhD−jUðΔtÞjD0ij2 of the tran-
sition D0 → D− in time interval Δt is related to decay rate
ΓðD0 → S−;ΔtÞ as

ΓðD0 → S−;ΔtÞ ∝ jhS−jHjD0ðΔtÞij2
¼ jhS−jHjD−ihD−jUðΔtÞjD0i
þ hS−jHjDþihDþjUðΔtÞjD0ij2

¼ jhD−jUðΔtÞjD0ij2jhS−jHjD−ij2; ð66Þ

where H is the Hamiltonian governing the decay. As a
result,

ΓðD0→S−;ΔtÞ¼ jhD−jUðΔtÞjD0ij2jΓðD−→S−Þ; ð67Þ

where ΓðD− → S−Þ≡ jhS−jHjD−ij2.
In experiments, the decay rate can be related to event

numbers as

Nl−;S−ðta; ta þ Δt0Þ ¼
Z

Δt0

0

ΓðD0 → S−;ΔtÞNl−ðtaÞdðΔtÞ;

ð68Þ

whereNl−ðtaÞ is the number of the events in which meson a
decays to l− at ta and Nl−;S−ðta; ta þ Δt0Þ is the number of
the joint events in which meson a decays to l− at ta and then
meson b decays to S− in time interval ½ta; ta þ Δt0�. So,
Z

∞

0

dtaNl−;S−ðta; ta þ∞Þ

¼
Z

∞

0

ΓðD0 → S−;ΔtÞdðΔtÞ
Z

∞

0

Nl−ðtaÞdta; ð69Þ

which can be rewritten as

N l−;S− ¼ RðD0 → S−ÞN l− ; ð70Þ

where

N l−;S− ≡
Z

∞

0

dtaNl−;S−ðta; ta þ∞Þ;

N l− ≡
Z

∞

0

Nl−ðtaÞdta;

RðD0 → S−Þ≡
Z

∞

0

ΓðD0 → S−;ΔtÞdðΔtÞ

¼ RðD0 → D−ÞΓðD− → S−Þ; ð71Þ

with

RðD0 → D−Þ≡
Z

∞

0

jhD−jUðΔtÞjD0ij2dðΔtÞ: ð72Þ

N l− is the total number of events in which meson a decays
to l− and is also called the signal yield of ST decays.N l−;S−
is the total number of the joint events in which meson a
decays to l− while meson b decays to S− and is also called
the signal yield of DT decays.
Since T symmetry requires jhD−jUðΔtÞjD0ij2 ¼

jhD0jUðΔtÞjD−ij2 for any Δt > 0, RðD0 → D−Þ ≠
RðD− → D0Þ is a sufficient TV signal.
In experiments, the detection efficiencies should also be

considered, so we can write the transition rates as

0 1 2 3 4 5 6
-5

-4.8

-4.6

-4.4
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-3.8
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FIG. 2. AωðΔt ¼ 1=ΓÞ as a function of Ω. The solid line is for
jωj ¼ 0, that is, within the SM. The dotted line is for jωj ¼ 10−4.
The parameter values are x ¼ 0.0037, y ¼ 0.0066, qp ¼ 0.91, and
ϕ ¼ −4.7°.
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RðD0 → S�Þ≡RðD0 →D�ÞΓðD� → S�Þ ¼
N l−;S�
N l−

εl−

εl−;S�
;

RðD̄0 → S�Þ≡RðD̄0 →D�ÞΓðD� → S�Þ ¼
N lþ;S�
N lþ

εlþ

εlþ;S�
;

RðD� → lþÞ≡RðD� →D0ÞΓðD0 → lþÞ ¼N S∓;lþ

N S∓

εS∓
εS∓;lþ

;

RðD� → l−Þ≡RðD� → D̄0ÞΓðD̄0 → l−Þ ¼N S∓;l−

N S∓

εS∓
εS∓;l−

;

ð73Þ

where ε’s are the detection efficiencies, with the
subscripts the same as those of the corresponding event
numbers N ’s, which are now understood as the exper-
imental ones.
If time reversal symmetry is conserved, RðD0 → D−Þ ¼

RðD− → D0Þ, RðD̄0 → D−Þ ¼ RðD− → D̄0Þ. Then, acco-
rding to Eq. (73), we have

RðD0 → S−Þ
ΓðD− → S−Þ

¼ RðD− → lþÞ
ΓðD0 → lþÞ ;

RðD̄0 → S−Þ
ΓðD− → S−Þ

¼ RðD− → l−Þ
ΓðD̄0 → l−Þ : ð74Þ

By using the ratios between the left-hand sides and right-
hand sides of the equalities in Eq. (74), we construct the TV
signal A1

T as

A1
T ¼

ΓðD−→S−Þ
ΓðD−→S−Þ

RðD0→S−Þ
RðD̄0→S−Þ

−
ΓðD̄0→ l−Þ
ΓðD0→ lþÞ

RðD−→ lþÞ
RðD−→ l−Þ

¼
N l− ;S−
N l−

εl−
εl− ;S−

N lþ ;S−
N lþ

εlþ
εlþ ;S−

−
ΓðD̄0→ l−Þ
ΓðD0→ lþÞ

N Sþ ;lþ
N Sþ

εSþ
εSþ ;lþ

N Sþ ;l−

N Sþ

εSþ
εSþ ;l−

; ð75Þ

which can thus be obtained from the numbers of STand DT
events. Here, A1

T ≠ 0 is a TV signal. Note that A1
T ¼ 0 does

not guarantee T symmetry; however, A1
T ≠ 0 is a sufficient

condition of TV.
Another T-asymmetry can be constructed as

A2
T ¼ RðD̄0 → SþÞ

RðD0 → SþÞ
−
ΓðD0 → lþÞ
ΓðD̄0 → l−Þ

RðDþ → l−Þ
RðDþ → lþÞ : ð76Þ

Note that the asymmetries defined in Sec. IVare in terms
of joint decay rates, while the asymmetries defined here are
in terms of single particle decay rates, some of which are
then obtained from joint decay events.
We can estimate those asymmetries in the SM. Using

Eqs. (7), (9), (34), (35), and (70), we find

RðD0 → S�Þ ∝ jAS�j2
�
−
2ðj pq j2 þ 1Þx2 þ 2ðj pq j2 − 1Þy2 þ 1

2Γð4x2 þ 1Þð4y2 − 1Þ �
j pq jðcosð2ϕÞð4x2 þ 1Þyþ sinð2ϕÞxð4y2 − 1ÞÞ

Γð4x2 þ 1Þð4y2 − 1Þ
�
; ð77Þ

RðD̄0→S�Þ∝ jAS�j2
�jpq j2ð−2x2þ2y2−1Þ−2ðx2þy2Þ

2Γjpq j2ð4x2þ1Þð4y2−1Þ �ðxð4cosð2ϕÞxy−4sinð2ϕÞy2þsinð2ϕÞÞþcosð2ϕÞyÞ
Γjpq jð4x2þ1Þð4y2−1Þ

�
; ð78Þ

RðD�→ lþÞ∝ jAlj2
�jpq j2ð−2x2þ2y2−1Þ−2ðx2þy2Þ

2Γjpq j2ð4x2þ1Þð4y2−1Þ �ðxð4cosð2ϕÞxy−4sinð2ϕÞy2þsinð2ϕÞÞþcosð2ϕÞyÞ
Γjpq jð4x2þ1Þð4y2−1Þ

�
; ð79Þ

RðD� → l−Þ ∝ jAlj2
�
−
2ðj pq j2 þ 1Þx2 þ 2ðj pq j2 − 1Þy2 þ 1

2Γð4x2 þ 1Þð4y2 − 1Þ �
j pq jðcosð2ϕÞð4x2 þ 1Þyþ sinð2ϕÞxð4y2 − 1ÞÞ

Γð4x2 þ 1Þð4y2 − 1Þ
�
: ð80Þ

We use the parameter values x ¼ 0.0037, y ¼ 0.0066,
q
p ¼ 0.91, and ϕ ¼ −4.7°, as given above. As a result, the
expected signal within the SM at the leading order can be
written as

A1
T ≈ 8AΓ þ 8xðAMxþ 2 sinð2ϕÞyÞ ≈ −1.5 × 10−4;

A2
T ≈ 8AΓ − 8xðAMxþ 2 sinð2ϕÞyÞ ≈ 2.2 × 10−5: ð81Þ

The DT method using the entangled states has been used
to measure yCP [17], which is of the order of about 10−3 to
10−2. We can conclude that, to observe TV signals, which

are about 10−5 to 10−4, the event numbers should be four
orders greater than those for measuring yCP.

VI. SIMULATION

Through a Monte Carlo simulation [20], we can estimate
the significance of the expected time-dependent signal
based on current experiments. The time-dependent signal
in the D0 − D̄0 mixing is difficult to measure [2,36]
because the lifetimes of D mesons are too short, thus
requiring a very high resolution of the decay length. We
have calculated above that the asymmetries in the C ¼ −1
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D0 − D̄0 state are very small. In this section, by using
Monte Carlo simulation, we analyze whether we are able to
observe such signals or how far experimentally we are
away from the required resolution.
Following the idea of Ref. [20], we use R−ðfa; fb;ΔtÞ as

the PDF to generate experimental events. For simplicity, we
only simulate the D0 → D− and D− → D0 transitions. We
define τ≡ Γt.
The PDF is affected by the mistakes in identifying the

final states. In the case of B mesons, only the mistakes in
the flavor identification were considered [20]. We assume
this is also the case in D mesons. The mistakes in
identifying a non-CP eigenstate as a CP eigenstate cancel
each other between S� terms in the asymmetries. Similarly,
the mistakes in distinguishing the semileptonic decays from
background also cancel each other between l� terms.
Moreover, the CP violation in the decays of K0

S mesons
[17], which is used in the CP identification, is known to be
small; thus, the mistakes in distinguishing the two CP
eigenstates can be neglected. So, we only consider the
mistakes in distinguishing the two flavor final states lþ
and l−.
The PDF can be modified as [20]

R̄−ðlþ; S�;ΔτÞ ¼ ð1 − ωlÞR−ðlþ; S�;ΔτÞ
þ ωlR−ðl−; S�;ΔτÞ;

R̄−ðl−; S�;ΔτÞ ¼ ð1 − ωlÞR−ðl−; S�;ΔτÞ
þ ωlR−ðlþ; S�;ΔτÞ; ð82Þ

where ωl is the mistag rates in distinguishing l� final states.
We assume the confidence of identification of l� is similar
to the case of B mesons; hence, ωl ≈ 2.8% [32].
The effect of Δτ resolution is complicated in the

experiments [20,32,37]. We simply use a Gaussian function
to include the effect of Δτ resolution,

hðΔτ;Δτtrue; στÞ ¼
1ffiffiffiffiffiffi
2π

p
στ

exp

�
−
ðΔτ − ΔτtrueÞ2

2σ2τ

�
; ð83Þ

and the PDF can be modified as [20]

Rðl�; S�;ΔτÞ ∝ R̄−ðl�; S�;ΔτtrueÞHðΔτtrueÞ
⊗ hðΔτ;Δτtrue; στÞ
þ R̄−ðS�; l�;ΔτtrueÞHð−ΔτtrueÞ
⊗ hðΔτ;Δτtrue; στÞ; ð84Þ

where HðΔτÞ is Heaviside step function and ⊗ denote
convolution over Δτtrue.
If ψð3770Þ is at rest, the proper time interval Δt of the

decays of the two D mesons is related with the momentum
as [24]

Δt ≈ ðrD − rD̄Þ
mD

cjPj ; ð85Þ

where rD and rD̄ are decay lengths of D0 and D̄0 mesons
and P is the 3-momentum of D0. The uncertainties mainly
come from rD and rD̄. The average is ≈290 μm, and
one can use the rms of the decay length in Belle, which is
< 100 μm [24], and then στ=Δτ ≈ 100=290 ≈ 34%.
We only generate the events with Δτ > 0. The normal-

ized PDF is

R̄MCðl�; S�;ΔτÞ ¼
1

N
Rðl�; S�;ΔτÞHðΔτÞ; ð86Þ

where N ¼ Rþ∞
0 dðΔτÞRðl�; S�;ΔτÞ.

In Ref. [17], the number of double-tag events is about
5000. Hence, we generate 5000 events for both D0 → D−
and D− → D0 using the PDF in Eq. (86). With generated
events, we are able to obtain the number of events
NMCðfa; fb; τ0Þ in an interval 0 ∼ τ0. The numbers of
events that we are interested in are NMCðSþ; lþ; τ0Þ and
NMCðl−; S−; τ0Þ. We can also obtain the average decay time
hΔti�MC from generated events, where � in the superscript
represents the transition with the l� final state.

A. Fitting joint decay rates

Since we use the normalized PDF, we are not able to
compare the time-independent joint decay rates of the
conjugated transitions. So, we concentrate on comparing
time-dependent joint decay rates.
Using Eq. (54), we find that the normalized time-

dependent joint decay rate of a C ¼ −1 can be approx-
imately expressed as

r−ðl−; S−;ΔtÞ ¼
1

n
e−ΓjΔtjð2þ bΔtþOð10−5ÞÞÞ;

r−ðSþ; lþ;ΔtÞ ¼
1

n
e−ΓjΔtjð2þ bΔtþOð10−5ÞÞÞ; ð87Þ

where r−ðfa; fb;ΔtÞ is defined in Eq. (48) and b and n
satisfy

b≡ 2 cosð2ϕÞy ≈ 2yCP; n≡ nþ þ n−
2

;

n− ≡
Z þ∞

0

dðΔtÞr−ðl−; S−;ΔtÞ;

nþ ≡
Z þ∞

0

dðΔtÞR−ðSþ; lþ;ΔtÞ;

n� ¼ 1

j qp j1�1x̄ ȳ

�
ðx̄ ∓ ȳÞ þ j q

p
j2ðx̄� ȳÞ

þ 2

				 qp
				ðcosð2ϕÞyx̄� sinð2ϕÞxȳÞ

�
; ð88Þ
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where x̄ and ȳ are defined in Eq. (61). The number of events
with Δτ < τ0 can be obtained as

NSMðfa; fb; τ0Þ ¼ N f

Z
τ0

0

r−ðfa; fb;ΔtÞ; ð89Þ

where the subscript SM represents the expected result in the
SM. N f is the total number of events. With the definition
Nþ

SMðτ0Þ≡ NSMðSþ; lþ;Δτ0Þ and N−
SMðτ0Þ≡ NSMðl−; S−;

Δτ0Þ, we find that, to the leading order,

Nþ
SMðτ0Þ ¼ N−

SMðτ0Þ ¼
1

n
N fðð2þ bÞð1− e−τ0Þ− bτ0e−τ0Þ:

ð90Þ

We can use Eq. (90) to fit N�
MCðτ0Þ, thereby determining

the corresponding values of b, denoted as b�, where the
superscript corresponds to that of N�

MCðτ0Þ. If time reversal
is conserved, one has bþ ¼ b−. The difference between bþ
and b− can be identified as a signal of TV. Examples of the
generated N�

MCðτ0Þ and the fitting N�
SMðτ0Þ are shown in

Figs. 3 and 4.
To estimate the uncertainty of b�, we run such a

simulation for 300 times, and the distributions of b� are
shown in Figs. 5 and 6, respectively, and the results are

bþ ¼ 13.1� 0.9 × 10−3; b− ¼ 13.0� 0.9 × 10−3:

ð91Þ

Hence, it is difficult to observe the TV in time-dependent
T asymmetry in the C ¼ −1 D0 − D̄0 state because
Δb < δb�, where Δb ¼ jb− − bþj, δb� are the standard
deviations of b�.
We can also estimate how far we are from the observa-

tion of the signal. In the SM, we find
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FIG. 3. One example of the fitting of b−. The cross with the
error bar is the generated N−

MCðτÞ, where the error bars are
generated because the δτ of the events is 34%. The solid line is the
fitting N−

SMðτÞ using Eq. (90). In this figure, the fitted result is
b− ¼ 0.01312.
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FIG. 4. One example of fitting of bþ. The cross with error bar is
the generated Nþ

MCðτÞ, where the error bars are generated because
the standard deviation δτ of the events is 34%. The solid line is
the fitted Nþ

SMðτÞ using Eq. (90). In this figure, the fitted result
is bþ ¼ 0.01314.
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FIG. 5. The distribution of b− in 300 runs of the simulation. The
solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (91).
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ΔNSMðτ0Þ≡ N−
SMðτ0Þ − Nþ

SMðτ0Þ ¼ sð1 − e−τ0Þ
− 2uτ0e−τ0 þOð10−6Þ; ð92Þ

where

s≡ 4Δnþ 2u;

u≡ AM cosð2ϕÞy − 2 sinð2ϕÞxþ 3

8
A3
M cosð2ϕÞy

−
1

4
A2
M sinð2ϕÞx;

Δn≡ nþ − n−
2

: ð93Þ

In the SM, we find s ¼ 7.6 × 10−5 and 2u ¼ −3.1 × 10−5;
therefore,

b� ≈ b ¼ 0.013; δb� < 10−4: ð94Þ
Using Eqs. (91) and (94), we find that with 5000 events the
fitting values of b� are very close to the expected values of
b�; however, the expected difference Δb is too small to be
observed. The accuracy of b� needs to be at least smaller
than 10−4. So, we can also conclude that, in consistency
with Sec. IV, to observe the TV signal the number of events
should be at least four orders of magnitude larger than the
one in the current experiments, which is about 5000.

B. Average decay times

In the above, we have used Δτ ∼ 1, such that Δt ∼ 1=Γ.
Here, we verify this assumption, and use the difference
between the average decay times in the two conjugate
processes as the evidence of TV. Each average decay time
does not depend on fitting.

In the SM, the average decay time can be obtained as

hΔτi− ≡
Z

∞

0

r−ðl−; S−;ΔτÞΔτdðΔτÞ;

hΔτiþ ≡
Z

∞

0

r−ðSþ; lþ;ΔτÞΔτdðΔτÞ; ð95Þ

which are obtained in 300 runs of the simulation, as shown
in Figs. 7 and 8, with the result
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FIG. 6. The distribution of bþ in 300 runs of simulation. The
solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (91).
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FIG. 7. The distribution of hΔτi− in 300 runs of simulation. The
solid line is generated by the Gaussian distribution with the mean
and the standard deviation given in Eq. (96).
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FIG. 8. The distribution of hΔτiþ in 300 runs of simulation.
The solid line is generated by the Gaussian distribution with the
mean and the standard deviation given in Eq. (96).
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hΔτiþ;MC ¼ 1.0068� 0.0149;

hΔτi−;MC ¼ 1.0063� 0.0139: ð96Þ

Hence, jhΔτi−;MC − hΔτiþ;MCj ≪ δhΔτi�;MC, where
δhΔτi�;MC is the standard deviation of hΔτi�;MC. This
suggests the difficulty in observing the T-violating signal.
Let us estimate in the SM the accuracy needed to observe

the T-violating signal. We find

hΔτi� ¼ T�
n�

; ð97Þ

where T�¼ 1
jqpj1∓1ðj

q
pj2ð1þy2Þþ4jqpjcosð2ϕÞy

ȳ2 þjqpj2ðx2−1Þ�4jqpjsinð2ϕÞx
x̄2 Þþ

ð1−x2x̄2 þð1þy2Þ
ȳ2 Þ, with n�, and x̄ and ȳ are defined in Eq. (88).

The numerical results are

hΔτiþ;SM ≈ 1.0066; hΔτi−;SM ≈ 1.0065: ð98Þ

To observe the T-violating signal, the accuracy of meas-
uring hΔτi should be about 10−5.
It should be noted that the number of events is an

important factor that greatly affects the accuracy. We have
run the simulation on hΔτi described above with different
event numbers. The results are listed in Table II. To
estimate the standard deviation, each simulation with the
same number of events is run 300 times. We find that
the standard deviation is proportional to 1=

ffiffiffiffi
N

p
, where N is

the event number. According to the trend, if the event
number is of the order of 109 ∼ 1010, which can be
expected in the super-tau-charm factory [34], the standard
deviation reaches 10−5, which is the order of the magnitude
of the lifetime difference between the T-conjugate proc-
esses, as predicted by the SM and the ω effect,

hΔτiþ;SM−hΔτi−;SM≈3.75×10−5;

2.1×10−5< ðhΔτiþ−hΔτi−Þjjωj¼10−3 <5.4×10−5: ð99Þ

Therefore, if the event number is of the order of
109 ∼ 1010, which can be expected in the super-tau-charm

factory, then the TV signal can be observed, and the result
can also set a bound on jωj at about 10−3. That is to say,
jωj > 10−3 can be excluded if not observed.

VII. SUMMARY

In this paper, we have studied TVin theC ¼ −1 entangled
D0 − D̄0 systems, and various Tasymmetries are considered.
We have proposed using the time-independent signals to
study TV.
We calculated the time-dependent asymmetries of C ¼

−1 system using joint decay rates, which are expected to be
at the order of 10−5 in the SM. Using the joint decay rates,
we also obtained the time-independent asymmetries, which
are also expected to be of the order of 10−5 in the SM.
We also studied the contribution of the ω effect caused by a
kind of CPTV, which changes the asymmetries by as much
as 20% when jωj ∼ 10−4.
We also calculated T asymmetries defined for

T-conjugate processes, the transitions from D0 to D−

and vice versa, using the transition rates obtained from
the event numbers in joint decays of entangled pairs. These
time-independent T asymmetries are also of the order of
10−4 to 10−5.
We used the Monte Carlo simulation to estimate the

time-dependent signals in the C ¼ −1 entangled system by
using the parameters in the current experimental situation.
We estimate that if the event number reaches 109 to 1010

TV signals can be observed in the entangled D0 − D̄0 pairs
and the bound of ω ∼ 10−3 can be reached.
In recent years, quantum entanglement has been found

to be a resource of quantum information processing.
Likewise, as exemplified by the present work, we may
say that quantum entanglement is a resource of precision
measurement in particle physics.
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TABLE II. The result of the simulation with different event numbers. The standard deviation is obtained by
running the simulation 300 times.

Number of events 104 105 106 107

hΔτiþ − hΔτi− ð−5.3� 137Þ × 10−4 ð−0.95� 43Þ × 10−4 ð0.68� 14Þ × 10−4 ð2.9� 41Þ × 10−5
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Mavromatos, M. Nebot, Eur. Phys. J. C 77, 865 (2017).

TIME REVERSAL SYMMETRY VIOLATION IN ENTANGLED … PHYS. REV. D 98, 075019 (2018)

075019-17

https://doi.org/10.1088/1742-6596/631/1/012015
https://doi.org/10.1088/1742-6596/631/1/012015
https://doi.org/10.1088/1742-6596/631/1/012003
https://doi.org/10.1088/1742-6596/631/1/012003
https://doi.org/10.1088/1361-6633/aa5514
https://doi.org/10.1016/j.ppnp.2016.06.003
https://doi.org/10.1016/j.ppnp.2016.06.003
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1393/ncc/i2016-16329-3
https://doi.org/10.1393/ncc/i2016-16329-3
http://arXiv.org/abs/hep-ph/0607322
https://doi.org/10.1103/PhysRevLett.92.131601
https://doi.org/10.1016/j.nuclphysb.2006.03.028
http://arXiv.org/abs/hep-ph/0607322
https://doi.org/10.1016/S0370-2693(99)01043-6
https://doi.org/10.1016/S0370-2693(99)01043-6
https://doi.org/10.1016/S0550-3213(00)00548-4
https://doi.org/10.1142/S0218301399000343
https://doi.org/10.1142/S0218301399000343
https://doi.org/10.1103/RevModPhys.87.165
https://doi.org/10.1103/RevModPhys.87.165
https://doi.org/10.1016/j.nuclphysb.2012.11.009
https://doi.org/10.1142/S0218301313300105
https://doi.org/10.1103/PhysRevD.81.111103
https://doi.org/10.1103/PhysRevD.81.111103
https://doi.org/10.1016/S0370-2693(98)01356-2
https://doi.org/10.1016/S0370-2693(98)01356-2
https://doi.org/10.1103/PhysRevLett.109.211801
https://doi.org/10.1103/PhysRevLett.109.211801
https://doi.org/10.1103/PhysRevD.89.076011
https://doi.org/10.1007/JHEP06(2016)100
https://doi.org/10.1007/JHEP06(2016)100
https://doi.org/10.1007/JHEP10(2015)139
https://doi.org/10.1016/j.physletb.2015.04.008
https://doi.org/10.1016/j.physletb.2015.04.008
https://doi.org/10.1103/PhysRevD.55.196
https://doi.org/10.1016/0370-2693(96)00077-9
https://doi.org/10.1007/JHEP08(2012)064
https://doi.org/10.1103/PhysRevD.73.034024
https://doi.org/10.1103/PhysRevD.73.034024
https://doi.org/10.1103/PhysRevD.89.016018
https://doi.org/10.1103/PhysRevD.89.016018
https://doi.org/10.1103/PhysRevD.74.094016
https://doi.org/10.1103/PhysRevD.74.094016
http://arXiv.org/abs/1412.7515
https://doi.org/10.1140/epjc/s10052-013-2506-7
https://doi.org/10.1016/0370-2693(89)91097-6
https://doi.org/10.1103/PhysRevLett.60.89
https://doi.org/10.1103/PhysRevLett.60.89
https://doi.org/10.1103/PhysRevLett.56.2140
https://doi.org/10.1103/PhysRevLett.56.2140
https://doi.org/10.1007/JHEP06(2011)089
https://doi.org/10.1007/JHEP06(2011)089
https://doi.org/10.1016/S0370-2693(00)00772-3
http://arXiv.org/abs/1212.3478
https://doi.org/10.1103/PhysRevD.79.072009
https://doi.org/10.1103/PhysRevD.79.072009
https://doi.org/10.1103/PhysRevLett.99.171803
https://doi.org/10.1103/PhysRevLett.99.171803
https://doi.org/10.1016/j.nuclphysbps.2015.02.050
https://doi.org/10.1088/1126-6708/2006/11/087
https://doi.org/10.1088/1126-6708/2006/11/087
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1103/PhysRevD.66.032003
https://doi.org/10.1103/PhysRevD.66.032003
https://doi.org/10.1140/epjc/s10052-017-5432-2

