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Effective neutrino-quark generalized interactions are entirely determined by Lorentz invariance, so they
include all possible four-fermion nonderivative Lorentz structures. They contain neutrino-quark non-
standard interactions as a subset, but span over a larger set that involves effective scalar, pseudoscalar, axial
and tensor operators. Using recent COHERENT data, we derive constraints on the corresponding couplings
by considering scalar, vector and tensor quark currents and assuming no lepton flavor dependence. We
allow for mixed neutrino-quark Lorentz couplings and consider two types of scenarios in which: (i) one
interaction at the nuclear level is present at a time, (ii) two interactions are simultaneously present. For
scenarios (i) our findings show that scalar interactions are the most severely constrained, in particular for
pseudoscalar-scalar neutrino-quark couplings. In contrast, tensor and nonstandard vector interactions still
enable for sizable effective parameters. We find as well that an extra vector interaction improves the data fit
when compared with the result derived assuming only the standard model contribution. In scenarios (ii) the
presence of two interactions relaxes the bounds and opens regions in parameter space that are otherwise
closed, with the effect being more pronounced in the scalar-vector and scalar-tensor cases. We point out that
barring the vector case, our results represent the most stringent bounds on effective neutrino-quark
generalized interactions for mediator masses of order ∼1 GeV. They hold as well for larger mediator
masses, case in which they should be compared with limits from neutrino deep-inelastic scattering data.
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I. INTRODUCTION

The coherent elastic neutrino-nucleus scattering (CEνNS)
process has been recently observed by the COHERENT
experiment [1], more than 40 years after its first theoretical
description [2]. Compared to other neutrino processes at
energies below 100 MeV, CEνNS has a large cross section
with a value of order 10−39 cm2, due to the enhancement
induced by the square of the number of neutrons in the
nucleus. However, despite these large values the CEνNS
eluded experimental detection for years due to the compli-
cated measurement of the weak nuclear recoil energies
(∼ few keV) produced in the interaction. Its measurement
became possible thanks to the development of ultrasensitive
technology in other experimental searches namely, rare

decays and weakly interacting massive particle dark matter
(DM) [3].
CEνNS occurs when the de Broglie wavelength of the

scattering process is larger than the nuclear radius
(λ ¼ h=q≳ RN , where q refers to the exchanged momen-
tum), which for typical nuclei translates into q ≲ 200 MeV.
Accordingly, in ν − N scattering processes in which q is
sufficiently small the scattering amplitudes on single nucle-
ons add coherently and lead to an enhanced cross section
whosevalue depends upon the number of nucleonswithin the
nucleus. In the standard model (SM) the CEνNS process is
well understood and it is determined by Z boson exchange
[2]. It receives contributions from vector and axial nuclear
currents, with the latter being—of course—relevant only for
nuclei with spin J ≠ 0 [4]. However, even in that case, it is
well known that the axial contribution is relevant only for
light nuclei [4] and negligible for heavy ones, such as Cs
and I used in the COHERENT detector [1].
The COHERENT experiment uses neutrinos produced

in the spallation neutron source (SNS) at the Oak Ridge
National Laboratory. The spallation process starts with
negatively charged Hydrogen ions H− which are accel-
erated at a LINAC. After being accelerated at ∼0.9 c,
the two electrons in the H− ions are stripped off and the
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resulting protons are accumulated in a storage ring.
Spallation takes place when 60 Hz proton pulses hit a
liquid mercury fixed target. In that process not only
neutrons but also pions are produced from spallation.
The neutrinos used by COHERENT are thus generated
by πþ and μþ decay resulting in prompt νμ and delayed
ν̄μ and νe [1]. The detection of the CEνNS process is
performed using a low-background 14.6 kg sodium-doped
CsI (CsI[Na]) detector which relies on scintillation for
the detection of nuclear recoils induced by the neutrino-
nucleus scattering process.
Prospects for further and more precise measurements

of the CEνNS process include COHERENT upgrades.
Starting with a CsI[Na] scintillator detector, the collabo-
ration plans upgrades involving p-type point-contact
Germanium and two-phase liquid Xe detectors [3]. The
CENNS experiment is a proposal that aims at using the
Fermilab far-off-axis Booster Neutrino Beam, for which
Eν ≲ 50 MeV [5]. In addition, experiments using reactor
antineutrinos with typical energies below ∼8 MeV are also
planned. They include: A proposal for an ultralow-energy
Germanium detector located at the Kuo-Sheng Reactor
Laboratory in Taiwan, with a capability for measuring
nuclear recoil energies down to 0.1–0.2 keV [6]; CONNIE,
a solid state-based detector using antineutrinos generated in
the “Almirante Alvaro Alberto” nuclear power plant in Rio
de Janeiro, Brazil [7]; CONUS a low-energy Germanium
detector which uses antineutrinos produced at a nuclear
power plant in Brokdorf, Germany [8].
Measurements of the CEνNS process open a wide

spectrum of physics opportunities. For example, they allow
to constrain electroweak parameters such as the weak
mixing angle [9,10]. They allow as well the study of
neutrino electromagnetic properties such as its charge
radius or magnetic dipole moment [11], which if present
and sufficiently sizable can affect—to a certain extent—the
energy recoil spectrum and the expected number of
scattering events [9,12]. They further provide a rich avenue
for testing the presence of more generic beyond the
standard model (BSM) physics, such as neutrino-quark
non-standard interactions (NSI) [12,13], light mediators
associated with new Uð1Þ gauge symmetries or with
extended scalar sectors and involving order keV-MeV
scalars [14–17]. Moreover, facilities optimized for the
study of the CEνNS process offer a potential way to
observe neutrinos from supernovæ [4,18], measure the
neutron part of nuclear form factors [19] and test the
presence of sterile neutrinos [20]. In addition, CEνNS
interactions share the same detectable signature (low-
energy recoiling nuclei) of galactic DM scattering off
target nuclei. Hence, a precise understanding of the
CEνNS process is of paramount importance for near-future
DM direct detection searches, which will be subject to
irreducible neutrino backgrounds (solar neutrinos in the
short-term) [21,22]. New physics contributions can poten-
tially change the impact that such a background will have

on the capability of multiton scale DM detectors [23–26].
So, understanding at which extent the new physics can
impact the CEνNS process becomes crucial.
In the wake of the observation of the CEνNS process by

COHERENT, various analyses have been considered. Soon
after the data release, Ref. [27] studied the capability of the
interplay between neutrino oscillation and COHERENT
data to rule out the so-called large mixing angle dark
(LMA-D) solution to neutrino mixing parameters [27],
which arises in the presence of NSI. COHERENT data
allows, to a certain extent, to remove the parameter
degeneracy and to rule out the LMA-D solution at the
∼3σ level. Reference [28] studied the constraints implied
by data on various BSM scenarios, including neutrino-
quark NSI and light vector mediators. These results show
that COHERENT data still allow for certain BSM scenarios
to sizeably contribute to the CEνNS cross section.
Reference [29], instead, focused on nuclear aspects of
the data and calculated for the first time the root-mean-
square neutron radius. More recently, Ref. [9] carried out an
analysis including NSI, light vector and scalars (order MeV
mediators) and electromagnetic properties, with conclu-
sions similar to those in Ref. [28]. Other analyses have
included DM properties, e.g., constraints on dark-photon
portal parameters, in which case COHERENT places the
most stringent bounds for mDM ≲ 30 MeV [30]. This
clearly shows the capability of the CEνNS process as a
tool for testing new physics in the low-energy domain.
At the effective leading-order level, neutrinos couple to

quarks through dimension-six operators. In the SM both
vector and axial quark currents are present. Contributions
from heavy new physics can be parameterized by a larger
set of couplings subject only to the condition of Lorentz
invariance. The most studied case of such parameterization
corresponds to neutrino NSI [31], where the couplings have
a SM-like structure, but are controlled by free parameters
that “measure” the relative strength of the new interaction
to the Fermi interaction (GF). Neutrino NSI, however, are a
subset of a whole set of interactions which include scalar,
pseudoscalar, vector, axial and tensor couplings, which we
refer to as neutrino generalized interactions (NGI). (Note
however that neutrino NSI include the case of light
mediator as well, which we do not consider in this work.)
They may emerge in BSM scenarios in which e.g.,
neutrinos couple to heavy scalars [32] or in models where
neutrinos have non-vanishing electromagnetic couplings
[33]. If we were to consider such scenarios additional
constraints from the charged lepton sector should be
accounted for,1 but here we do not consider this possibility
and rather stick from the very beginning to nongauge

1This is the case in gauge-invariant effective formulations of
neutrino NSI. Additional constraints include limits on charged
lepton flavor violating processes, universality of the W� gauge
couplings and eþe−q̄q contact interactions [34]. Thus, in the case
of NGI constraints of this type should apply as well.
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invariant dimension six operators. In doing so, we then
place constraints on the new effective couplings by requir-
ing consistency with the COHERENT measurement. In
our analysis we focus on the leading contributions, which
means that we do not consider pseudoscalar nor axial quark
currents. These are spin-dependent interactions that—as
in the SM case—lead to suppressed contributions (assum-
ing that the vector and scalar contributions are always
present, and with comparable couplings). It is worth
emphasizing that our analysis is complementary to those
presented in Refs. [9,28] and extends upon these studies by
including scalar effective interactions, crossed Lorentz
structures and simultaneous presence of different nuclear
currents.
The rest of this paper is organized as follows. In Sec. II

we provide a short overview of the COHERENT experi-
ment and discuss the definitions and conventions used to
perform our analysis, such as theoretical neutrino fluxes
and calculation of number of events. We also define the
binned χ2 function and the different measured quantities
that are involved. In Sec. III we present the parametrization
for NGI starting with neutrino-quark interactions and
ending up with neutrino-nucleus couplings. We provide
relations between the quark and nucleus couplings for
scalar, vector and tensor currents. In Sec. IV we present our
results for the differential cross section and the constraints
implied on the effective neutrino-quark parameters by
COHERENT data. Finally, in Sec. V we summarize and
present our conclusions. In the Appendix we provide
details of the cross section calculation for neutrinos and
antineutrinos in the zero-momentum limit, including the
full set of generalized interactions for spin-1=2 nuclei.

II. CEνNS SIGNAL RATE AT COHERENT

COHERENT uses neutrinos produced in the Spallation
Neutron Source at the Oak Ridge National Laboratory [1].
The interaction of a pulsed proton (∼1 GeV) beam with a
fixed mercury target produces neutrons from spallation and
a substantial amount of low-energy neutrinos, which stem
from the decay of stopped pions and muons, πþ → μþ þ νμ
and μþ → eþ þ νe þ ν̄μ. Muon neutrinos—being the by-
products of a two-body decay—are monochromatic, and
their energy is determined by the pion and muon masses:
Eνμ ¼ ðm2

π −m2
μÞ=2mπ ≃ 30 MeV. Accordingly, their

energy distribution is given by [35]

F νμðEνμÞ ¼
2mπ

m2
π −m2

μ
δ

�
1 −

2Eνμmπ

m2
π −m2

μ

�
: ð1Þ

Electron neutrinos and muon antineutrinos instead feature
continuous spectra. Their energy distribution—normalized
to one—can be read off from the μþ (unpolarized) differ-
ential rate, namely

d
dEX

Γðμþ → eþ þ νe þ ν̄μÞ

¼ Γðμþ → eþ þ νe þ ν̄μÞF νXðEνXÞ
ðX ¼ νe; ν̄μÞ; ð2Þ

where the energy distribution functions are given by [35]

F νeðEνeÞ ¼
192

mμ

�
Eνe

mμ

�
2
�
1

2
−
Eνe

mμ

�
;

F ν̄μðEν̄μÞ ¼
64

mμ

�
Eν̄μ

mμ

�
2
�
3

4
−
Eν̄μ

mμ

�
; ð3Þ

with the kinematic end point located at Eν ¼ mμ=2≃
52.8 MeV. The neutrino flux (per flavor) that reaches
the CsI[Na] detector, ϕαðEναÞ (α ¼ νμ, ν̄μ, νe), is then
determined by the energy distribution functions in
Eqs. (1)–(3) times the total number of neutrinos per each
flavor, N . The latter is fixed by the number of neutrinos
produced per proton collision (r ¼ 0.08 per flavor), the
distance from the source to the detector (L ¼ 19.3 m) and
the number of protons-on-target (POT, nPOT). For the 308.1
live-days of neutrino production, nPOT ¼ 1.76 × 1023 [1].
Thus, since neutrinos are isotropically produced,
N ¼ r × nPOT

4πL2 and

ϕXðEXÞ ¼ NFXðEXÞ ðX ¼ νμ; ν̄μ; νeÞ: ð4Þ

The COHERENT detector consists of mdet ¼ 14.6 kg of
CsI[Na], where the sodium dopant is present with a
fractional mass of 10−5–10−4 and so it does not play
any substantial role as a target. Notice also that since
ACs ≃ AI, both Cs and I yield approximately the same
nuclear response. The number of target nuclei is therefore
given by nN ¼ 2mdet

mCsI
× NA [28], where mCsI ¼ 2.598 ×

10−1 kg=mol is the CsI molar mass and NA is the
Avogadro number.
For a given flavor α and taking into account both the Cs

and I nuclei, the expected number of events in the ith recoil
energy bin reads

Ri
α ¼ nN

X
a¼Cs;I

fa

Z
Eri

þΔEri

Eri
−ΔEri

dErAðnPEÞF2ðqaÞ

×
Z

Emax
ν

Emin
ν

dEνϕαðEνÞ
dσaα
dEν

: ð5Þ

Here Emin
ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNa
Er

p
(Er refers to the nuclear recoil

energy and mNa
to the nucleus mass), Emax

ν ¼ mμ=2 and fa
are nuclear fractions: fCs ¼ 51% and fI ¼ 49%. The
observed number of photoelectrons (PE) is related to the
recoil energy through [1]
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nPE ¼ 1.17

�
Er

keV

�
: ð6Þ

In terms of nPE the COHERENT signal covers 25 bins
starting from nPE ¼ 1 and extending up to nPE ¼ 49, with
bin size equal to 2 photoelectrons. Since the acceptance
function vanishes for nPE ≤ 5 (see below), the first three
bins contain no information on the scattering process.
Furthermore, from nPE ≥ 31 the relation between the
number of photoelectrons and the nuclear recoil energy
in (6) does not hold anymore. Thus, in our analysis we
consider only 14 data bins, from nPE ¼ 7 to nPE ¼ 31,2

assuming that at nPE ¼ 31 Eq. (6) is still valid (excluding
this bin has no significant impact in our results). In terms of
nPE the recoil energy integration limits are ðnPE ∓ 1Þ=1.17.
In our calculation we employ the nuclear Helm form factor
(see discussion in Sec. IV):

FðqaÞ ¼ 3
j1ðqarnÞ
qarn

eq
2
as

2=2; ð7Þ

where j1ðxÞ is the order-one spherical Bessel function,
qa ¼ 6.92 × 10−3

ffiffiffiffiffiffiffiffiffiffi
AaEr

p
fm−1 and the effective nuclear

radius is given by rn ¼ ðc2 þ 7π2a2=3 − 5s2Þ1=2, with
s ¼ 0.9 fm, a ¼ 0.52 fm and c ¼ ð1.23A1=3

a − 0.6Þ fm
[37]. The acceptance function AðxÞ is given by3

AðxÞ ¼ k1
1þ e−k2ðx−x0Þ

Hðx − 5Þ; ð8Þ

where k1 ¼ 0.6655, k2 ¼ 0.4942, x0 ¼ 10.8507, H is
the Heaviside function and x denotes the number of
photoelectrons.
The CEνNS differential cross section dσaα=dEr depends

on the nuclear target and in BSM physics scenarios can be
flavor dependent. In the SM it arises from the neutral
current vector and axial-vector couplings [2], with the axial
contribution terms being subdominant [4]. The leading
contribution can be written as follows:

dσa

dEr
¼ G2

F

4π
mNa

Q2
SM;a

�
1 −

ErmNa

2E2
ν

�
F2ðq2Þ: ð9Þ

Here Q2
SM;a ¼ ½Zað1 − 4 sin2 θwÞ − Na�2 ≃ N2

a, thus show-
ing that for heavy nuclei the CEνNS cross section is largely
enhanced. From Eqs. (5), (7), (8) and (9) we calculated the

number of CEνNS events predicted by the SM. The result is
shown in Fig. 1, for the different FX separately (colored
histograms) and for the total neutrino flux (black histo-
grams), together with the COHERENT data with their
corresponding uncertainties.4 As can be seen, these data
closely follow the SM prediction [1]. However, due to the
still large uncertainties, sizable contributions from BSM
physics can be present and can therefore be constrained.
As we have already pointed out, since the release of the
COHERENT result various BSM scenarios have been
analyzed. They include neutrino effective NSI [27,28],
NSI via light mediators [9,15,28], neutrino four-fermion
contact tensor interactions as well as electromagnetic
neutrino couplings [9].
To constrain new physics contributions with COHERENT

data, we use the following least-squares function5

χ2 ¼
X16
i¼4

�
Nmeas

i − ð1þ αÞNNGI
i ðPÞ − ð1þ βÞBon

i

σi

�
2

þ
�
α

σα

�
2

þ
�
β

σβ

�
2

; ð10Þ

whereNmeas
i is the number of events measured in the ith bin,

NNGI
i is the number of events predicted by the NGI scenario

(determined by the set of parameters P), σi is the statistical
uncertainty on the experimental data in the ith bin. The
nuisance parameters α and β account for uncertainties on the

νμ
ν̄μ
νe

Tot
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FIG. 1. Number of expected CEνNS events as a function of
photoelectrons in the SM. The points correspond to COHERENT
data [1] (with their error bars), while the colored histograms refer
to the number of events from the three neutrino flavors produced
in proton-Hg interactions. The largest (smallest) number of events
is obtained from ν̄μ (νμ) flux.

2Recently, COHERENT has released data and detailed in-
formation that enables independent analysis [36]. In this release
the acceptance function does cover the bin at nPE ¼ 5. In our
analysis however we use Eq. (8), since the uncertainties in our
calculation introduced by not considering this bin are small
compared to e.g., uncertainties related with the choice of nuclear
form factor (�5%) or neutrino fluxes (�10%) [1].

3We thank Juan Collar and Bjorn Scholz from the COHER-
ENT collaboration for giving us this information.

4The experimental data are residual differences comparing CsI
[Na] signals occurring before POT triggers and those taking place
immediately after. Negative counts are therefore possible.

5Note that we consider a spectral definition for the χ2 function.
Differently from the COHERENT collaboration, which per-
formed an analysis of neutrino-quark NSI treating the measure-
ment as a single-bin counting experiment [1].
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signal rate and on the background. Their standard deviations
are σα ¼ 0.28 and σβ ¼ 0.25. The calculation of the function
inEq. (10) requires aswell the beam-onbackground (per bin)
Bon
i , which is dominated by far by prompt neutrons resulting

from the SNS and which are able to penetrate the 19.3 m of
moderatingmaterial. Figure 2 shows the distribution forBon

i ,
obtained from the prompt neutron probability distribution
function and weighted by the energy delivered during the
308.1 live-days of neutrino production, 7.48 GWhr [36].6

III. NEUTRINO GENERALIZED INTERACTIONS

Most studies of the CEνNS process in the presence of
new physics are done assuming neutrino NSI [31], which
are determined by the following four-fermion effective
operator

LNSI
eff ¼−

ffiffiffi
2

p
GF

X
q¼u;d

ν̄iγ
μð1− γ5Þνjq̄ðϵqVij þ γ5ϵ

qA
ij Þq: ð11Þ

Here ϵqðV;AÞij are free parameters which are constrained by
neutrino oscillation and neutrino scattering data and q ¼ u,
d quarks [27,35,38,39] (see also Ref. [40] for a review).
These couplings parametrize the strength of the new
interactions (relative to GF). The operator in Eq. (11) is
actually more general and encodes other interactions. For
example, it describes as well an effective theory involving
operators such as ðν̄Li

qRÞðq̄RνLi
Þ, as can be checked by

Fierz rearrangement of the fermion fields. Nevertheless,
Eq. (11) is not the most general effective ν − q operator.
A more general treatment is possible by considering all

Lorentz invariant nonderivative interactions of neutrinos
with first generation quarks, namely (we use the notation
employed in [41])

LNGI
eff ¼ GFffiffiffi

2
p

X
X

ν̄ΓXνq̄ΓXðCq
X þ iγ5D

q
XÞq: ð12Þ

Here ΓX ¼ fI; iγ5; γμ; γμγ5; σμνg, where σμν ¼ i½γμ; γν�=2
and for simplicity we assume the parameters Cq

X and Dq
X

to be real.7 As in the NSI case, they “measure” the relative
strength of the new physics and so their size is of order
ð ffiffiffi

2
p

=GFÞðg2X=m2
XÞ, where mX is the mass of the exchanged

particle and gX the coupling constant. Due to the quark
axial current term, these interactions include diagonal and
non-diagonal Lorentz structures. For example, ΓP involves
pseudoscalar-pseudoscalar as well as pseudoscalar-scalar
neutrino-quark couplings.
Among theNGI, those that give themost relevant effect, in

the sense that can sizeably diminish/exceed the SM con-
tribution, do not involve nuclear spin. Indeed, effective
couplings for nuclear spin-dependent interactions are deter-
mined by a sum over spin-up and spin-down nucleons,
Z↑ − Z↓ and N↑ − N↓ (for proton and neutrons respec-
tively). Therefore they are suppressed for all nuclei except for
light ones [4]. Since our analysis involves heavy CsI nuclei
we then drop the pseudoscalar and axial quark currents and
we only keep scalar, vector and tensor quark currents. It is
worth emphasizing that with this choice only the parameters
P ¼ fCq

S;D
q
P; C

q
V;D

q
A andC

q
Tg can be constrained.

To compute the CEνNS cross section induced by the
NGI we assume a fermion nuclear ground state with spin
J ¼ 1=2. This is motivated by the fact that nuclear matrix
elements for nucleonic currents can in this case be
borrowed from nucleon matrix elements for quark currents.
Of course with such procedure one has to bear in mind that
the corresponding nuclear form factors are different. In our
case all the leading-order decompositions will involve the
Helm form factor given in Eq. (7).8 This is somehow
expected given that after dropping the pseudoscalar and axial
quark currents the remaining interactions become spin-
independent and so they add coherently on the nucleons.9

10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of photoelectrons (PE)

B
on

/2
P

E

FIG. 2. Beam-on background from prompt neutrons as a
function of the number of photoelectrons nPE. It follows from
the prompt neutron probability distribution function and it is
weighted by the energy delivered during the 308.1 live-days of
neutrino production, 7.48 GWhr [36]. Only PE bins considered in
our analysis (7 ≤ nPE ≤ 31) are shown.

6We thank Grayson Rich from the COHERENT collaboration
for providing us this information prior to its release in [36] and for
instructing us on its use.

7In the NSI case complex phases have been proven to have
an impact on their phenomenological implications. [41].

8We are assuming that the proton and neutron form factors
are equal and well described by the Helm form factor,
FZðq2Þ ¼ FNðq2Þ ≃ Fðq2Þ. A more precise approach in which
FZðq2Þ is described by the Fourier transform of the symmetrized
Fermi distribution and FNðq2Þ by the Helm form factor could be
adopted [29]. However, given the uncertainties of COHERENT
data our description is precise enough, taking into account that
the uncertainties on the choice of the form factor are of the order
of 5% [36].

9This is what one finds in DM direct detection analyses: all
nuclear interactions but the pseudoscalar and axial add coher-
ently. Accordingly, apart from these two cases, the corresponding
cross sections involve only the Helm form factor (see e.g.,
[37,42]).
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To determine the effective neutrino-nuclear Lagrangian,
from which we next calculate the cross section in the zero-
momentum transfer limit, we start with the quark currents
and we end up with nuclear currents following the procedure

Oq⟶
stepðIÞ

On⟶
stepðIIÞ

ON; ð13Þ
whereOq;n;N refer to quark, nucleon (n ¼ p, n) and nuclear
operators, respectively. For step (I) one calculates quark
currents in nucleons according to (see e.g., [43,44])

hnðpfÞjq̄qjnðpiÞi ¼
mn

mq
fTq

n̄n;

hnðpfÞjq̄γμqjnðpiÞi ¼ Nn
q n̄γμn;

hnðpfÞjq̄σμνqjnðpiÞi ¼ δnq n̄σμνn: ð14Þ
Here pi and pf refer to initial and final state nucleon
momenta. The scalar current receives contributions also
from heavy quarks (q ¼ c, b, t), which are not of the form
given in Eq. (14). These contributions however are sup-
pressed by mn=mq and so we do not consider them.
Moreover, we neglect as well the contribution from strange
quarks and from gluons and we keep only first generation
quarks. For vector currents, the coefficients Nn

q can be
understood essentially as the number of quarks within the
nucleon, while for tensor currents δnq represents a tensor
charge. The factors fTq

are related with the fraction of the
nucleonmass “carried” by a particular quark flavor. They are
derived in chiral perturbation theory from measurements of
the π −n sigma term [45]. The factors δnq thatwe use here are
derived from an analysis based on data from azimuthal
asymmetries in semi-inclusive deep-inelastic scattering
(DIS) and eþe− → h1h2X processes [46]. More recent
values are given in Refs. [47–49]. In our calculation we
use the numerical values [46,50]

fpTu
¼ 0.019; fpTd

¼ 0.041; δpu ¼ 0.54;

δpd ¼ −0.23; ð15Þ
fnTu

¼ 0.023; fnTd
¼ 0.034; δnu ¼ −0.23;

δnd ¼ 0.54: ð16Þ
For step (II) one evaluates the correlators of nucleonic

currents in nuclei, which involve nuclear form factors and
which can be written following Lorentz invariance, namely

hNðk2Þjn̄njNðp2Þi¼ N̄NFðq2Þ;

hNðk2Þjn̄γμnjNðp2Þi¼ N̄

�
γμFðq2Þþσμνqν

2mN
F1ðq2Þ

�
N;

hNðk2Þjn̄σμνnjNðp2Þi¼ N̄

�
iσμνFðq2Þ−γμqν−γνqμ

2mN
F2ðq2Þ

−
Kμqν−Kνqμ

2m2
N

F3ðq2Þ
�
N; ð17Þ

where the momenta of the incoming and outgoing nucleus,
p2 and k2, define the exchanged momentum q ¼ k2 − p2.
Some words are in order regarding these decompositions.
Fðq2Þ refers to the Helm form factor in Eq. (7) and it is in
practice the only one relevant at leading order. The
magnetic moment term in the vector current decomposition,
as well as the second and the third terms in the tensor
decomposition, are suppressed by Oðq=mNÞ factors. Thus,
keeping just the leading terms, step (II) can be carried out
and the neutrino-nucleus (ν − N) effective Lagrangian can
be written

Lν−N ∼
X

X¼S;V;T

ν̄ΓXνN̄CXΓXN þ
X

ðX;YÞ¼ðP;SÞ;
ðA;VÞ

ν̄ΓXνN̄iDXΓYN;

ð18Þ

where the coefficients CX and DX correspond to ν − N
effective couplings determined by the parameters Cq

X and
Dq

X in Eq. (12). Notice that from Eq. (18) we can calculate
the zero-momentum cross section, while the full cross
section will involve the nuclear form factor which in turn
will encode the momentum dependence (q2 dependence).
The ν − N coefficients are written as follows:

CS ¼ Z
X
q¼u;d

CðqÞ
S

mp

mq
fpTq

þ ðA − ZÞ
X
q¼u;d

CðqÞ
S

mn

mq
fnTq

;

CV ¼ Zð2Cu
V þ Cd

VÞ þ ðA − ZÞðCu
V þ 2Cd

VÞ;
CT ¼ ZðδpuCu

T þ δpdC
d
TÞ þ ðA − ZÞðδnuCu

T þ δndC
d
TÞ: ð19Þ

The expression for DP is obtained from that of CS by
trading Cq

S for Dq
P, while for DA from CV by trading Cq

V

for Dq
A. The relations in Eq. (19) allow to translate the

constraints on the ν − N coefficients to the parameters of
the “fundamental” Lagrangian.

A. Neutrino oscillations versus neutrino scattering

Before proceeding with the chi-square analysis, it is
worth commenting on which other processes may set
constraints on the NGI and on the range of validity of
our results. As in the NSI case, interactions in Eq. (12)
contribute—in principle—to forward coherent scattering
(order GF at q2 ¼ 0) and scattering processes (order G2

F
with q ≠ 0). The former are responsible for matter poten-
tials in matter and are related to neutrino oscillation data,
while the latter include not only COHERENT but also DIS
data from CHARM and NuTeV [51,52].
Matter potential induced by SM vector interactions in

the Sun and in the Earth are responsible for resonant
neutrino flavor conversion [31,53,54]. Accordingly, new
contributions to the vector current are subject to both
constraints, oscillationþ scattering. This is indeed the
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case for neutrino NSI, where it is found that the combined
analysis of oscillationþ scattering data imply more strin-
gent bounds [35,55]. Scalar interactions couple back-
ground fermions (nucleons) with different chiralities but
same helicity, and so they lead to helicity suppressed
matter potentials (mν=hEνi) [56]. Constraints from neu-
trino oscillation data on these couplings are thus loose, if
existing at all. Transverse tensor interactions, instead, can
induce a sizable matter potential as they couple back-
ground fermions with different chiralities and opposite
helicities (longitudinal tensor interactions are helicity
suppressed as well). However, this tensor matter potential
is only relevant in a polarized medium and so it does not
sizeably affect neutrino propagation in the Sun or even in
supernovæ [56].
In the NSI case, DIS data places more severe bounds than

COHERENT data does [35]. This should apply as well for
the remaining interactions in (12). These limits however do
not apply for mediators whose masses are below the typical
momentum exchange in DIS processes, Oð10 GeVÞ. For
m2

X ≪ q2DIS, the relative value of the new contribution is
σBSM=σSM ∼ g4X=q

4=G2
F and amounts to 1% for gX ¼ 10−2.

The same parameter choice with mX ¼ 102 MeV and
evaluated at q2COH ≃ ð10 MeVÞ2 gives σBSM=σSM ≫ 1.
This means that for mediator masses below 103 MeV DIS
constraints can be evaded and COHERENT bounds become
dominant.
It follows that the constraints we derive here (see

Sec. IV) are the most stringent (for all interactions except
the vector one), in scenarios where the mediator mass is
below 103 MeV. For heavier mediators, more severe limits
from DIS data may apply, but to the best of our knowledge
such bounds do not exist.

IV. CONSTRAINTS FROM COHERENT DATA

To address the implications of COHERENT data on
NGI, one has to calculate the number of expected events for
a certain parameter choice according to Eq. (5). This
requires the determination of the corresponding cross
sections for ν − N and ν̄ − N coherent scattering (the
former has been derived in [41]). Starting from the
Lagrangian in Eq. (18) we calculate the zero-momentum
differential cross section at leading order, i.e., neglecting
OðE2

r=E2
νÞ terms:

dσaðq2 ¼ 0Þ
dEr

¼ G2
F

4π
mNa

N2
a

�
ξ2S

Er

Emax
r

þ ξ2V

�
1 −

Er

Emax
r

−
Er

Eν

�

þ ξ2T

�
1 −

Er

2Emax
r

−
Er

Eν

�
− R

Er

Eν

�
; ð20Þ

the index a denoting the target material. Details of the
full calculation, including pseudoscalar and axial quark
currents, are given in the Appendix. In the previous

expression, Emax
r ≃ 2E2

ν=mNa
and the following definitions

apply10

ξ2S ¼
C2
S þD2

P

N2
; ξ2V ¼ C2

V þD2
A

N2
; ξ2T ¼ 8

C2
T

N2
;

R ¼ 2
CSCT

N2
: ð21Þ

The ξX parameters defined in Eq. (21) depend upon the
nucleus, although for the sake of simplicity we have
not written this dependence explicitly. The momentum-
dependent cross section is then obtained from Eq. (20)
introducing the nuclear form factor

dσaðq2Þ
dEr

¼ dσaðq2 ¼ 0Þ
dEr

Fðq2Þ: ð22Þ

Should an axial nuclear current be present, Eq. (20) would
contain two additional terms, corresponding to the axial
contribution itself and to an interference term between the
vector and axial currents. This axial-vector interference
term as well as the last term in Eq. (20) (proportional to R)
are the only two that come with opposite signs in the ν̄ − N
and ν − N cross sections. In the former (latter) case we find
that the vector-axial interference term leads to constructive
(destructive) interference. If we neglect pseudoscalar and
axial nuclear currents then the neutrino and antineutrino
elastic scattering cross sections differ only in the term
proportional to R, which turns out to be relevant only if
scalar and tensor interactions are simultaneously present.
This term leads to rather suppressed differences and even-
tually the neutrino and antineutrino cross sections can be
considered equal.
In full generality, the parametrization introduced in

Eq. (21) must include the SM as well. The SM limit is
recovered when all the couplings but ξV ¼ CV are set to
zero and ξV ¼ CV ¼ 1 − ð1 − 4 sin2 θwÞ × N=Z. This con-
tribution is of course always present throughout our
analysis, and so from now on we will denote by ξV the
BSM contribution to the vector current. Note that the term
proportional to ξV has en extra term, Er=Eν, compared to
the SM cross section for J ¼ 0, Eq. (9). This term is a
consequence of the nuclear ground state spin, J ¼ 1=2 [41].
From Eqs. (19) and (21) one can see that even neglecting
pseudoscalar and axial quark currents and without consid-
ering lepton flavor dependent couplings, the full problem
involves 10 free parameters. In order to technically simplify
the analysis, rather than considering the whole set, we stick
to two kinds of simplified benchmark scenarios which we
will discuss in the next subsections.

10These definitions slightly differ from what was found in
Ref. [41], where ξV ¼ ðCV −DAÞ=N.
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A. Single-parameter scenarios

We start our analysis by considering the single-parameter
case parametrized in terms of the different ξX. These
“couplings” are related to the neutrino-quark couplings
of the “fundamental” Lagrangian through the relations
derived in Eq. (19). Thus, in reality, by “single-parameter”
scenarios we refer to the cases in which only one interaction
at the nuclear level is present at a time. This, however, does
not mean that the analysis reduces to a single parameter
problem. Take for example the vector case. Vector nuclear
currents arise from either ΓVΓV or ΓAΓA Lorentz structures,
as can be seen by the definition of ξV . As already
introduced in Sec. III, in our analysis we only consider
first generation quarks. Thus, in general, when considering
the case in which all ξX vanish except for ξV, one is
eventually dealing with a four-parameter problem (Cu

V , C
d
V ,

Du
A and Dd

A). Similarly, also the scalar interaction involves
four fundamental parameters (Cu

S, Cd
S, Du

P and Dd
P),

encoded in ξS. The tensor current instead depends only
on two parameters at the quark level, Cu

T and Cd
T .

To facilitate the numerical analysis, for the scalar and
vector cases we will consider only two neutrino-quark
parameters at a time, for which there are six possible
choices: (1-i) Cq

X ≠ 0 orDq
X ≠ 0, (1-ii) Cu

X andDd
X different

from zero (or Cd
X, D

u
X ≠ 0), (1-iii) Cu

X and Du
X different

from zero (or Cd
X, D

d
X ≠ 0). Of these cases, (1-i) and (1-ii)

lead to the same constraints over the different parameters.
Constraints derived on Cq

X apply directly on Dq
X and those

derived on Cu
X and Dd

X on Cd
X and Du

X. Cases (1-iii) instead
result in different constraints over the different couplings.
Nevertheless, they should differ only by small values, given
that the differences between the up and down couplings
and masses are small (this is actually what is found in NSI
analyses [35,55]). We thus consider only the first options in
(1-i)-(1-iii) and Cu

T − Cd
T for the tensor interaction.

For all scenarios we fit the COHERENT data by
minimizing the least-squares function [Eq. (10)] over the
systematic nuisance parameters α and β, and then we
calculate Δχ2 ¼ χ2 − χ2min. From this procedure we obtain
the 90% and 99% CL allowed ranges for each ξX. Our
results are shown in Table I. Note that while the best fit

point values (BFPVs) for ξS and ξT are zero, an additional
vector current with ξV ¼ −0.113ð−1.764Þ (corresponding
to the two minima of the Δχ2ðξVÞ function) improves the
COHERENT data fit. This is shown in Fig. 3, where the
black (red) colored histograms refer to the CEνNS number
of events from the three neutrino flavors in the SM (SM
plus a vector NGI, with ξV ¼ −0.113). Values for χ2min in
both cases are also shown.
The results in Table I can be translated into the “funda-

mental” neutrino-quark parameters by using Eq. (19). To do
so one has to bear in mind that although the number of
events receives contributions from Cs and I, the following
simplification applies ξ2X ≃ ξ2XCs

þ ξ2XI
≃ 2ξ2XCs

. As expected,
given that fCs ≃ fI, F2ðqCsÞ ≃ F2ðqIÞ and mNCs

≃mNI

(numerically we find ξXI
=ξXCs

≃ 0.95 for all X). We then
derive the allowed 90%, 99% CL regions for the quark
parameters for scenarios (1-i)-(1-iii) and for the tensor case in
terms ofCu

T − Cd
T . Figure 4 shows the result for the scalar and

vector interactions for scenarios (1-i) and (1-ii) (results for
scenario (1-iii) closely resemble those from (1-ii) and so we
do not display them), while Fig. 5 for the tensor couplings.
It is worth emphasizing that theCq

X;D
q
X couplings appearing

in the different panels in Fig. 4 are not independent, as can be
seen from the translation of the ξX parameters into the Cq

X
couplings, Eq. (19).Hence, even ifwedisplay theCLcontour
regions in two quark parameter planes, since the initial χ2

function depends only on one ξX, we keep usingΔχ2 < 2.71
and Δχ2 < 6.63 to determine the 90%, 99% CL contours,
respectively.
As can be seen in Fig. 4, among the constraints implied

by COHERENT data those for scalar-type interactions are
the most stringent. This can be understood as follows.
Although the data still involves large uncertainties, one
can see that it is rather consistent with SM expectations.

χmin
2 [SM]=3.42

χmin
2 [SM+ξV (BFPV)]=2.94 SM

SM + ξV (BFPV)

0 5 10 15 20 25 30
–10

0

10

20

30
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ou

nt
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2P
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FIG. 3. Number of expected CEνNS events as a function of the
number of photoelectrons in the SM and in a BSM scenario with
vector interactions (SMþ ξVðBFPVÞ). The points correspond to
COHERENT data [1], while the black (red) colored histograms
refer to the numbers of events from the three neutrino flavors in
the SM (SMþ ξVðBFPVÞ). See text for details.

TABLE I. Best-fit-point value (second column), 90% CL
(Δχ2 < 2.71, third column) and 99% CL (Δχ2 < 6.63, fourth
column) ranges for the ξX (X ¼ S, V, T) parameters as defined in
Eq. (21). From these results one can then map to the fundamental
neutrino-quark parameters using Eq. (19). See text for further
details.

Param BFP value 90% CL 99% CL

ξS 0 ½−0.62; 0.62� ½−1.065; 1.065�
ξV −0.113 ½−0.324; 0.224� ½−0.436; 0.67�

−1.764 ½−2.102;−1.554� ½−2.545;−1.442�
ξT 0 ½−0.591; 0.591� ½−1.071; 1.072�
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The scalar interaction involves a cross section that sub-
stantially differs from that of the SM model, and so once
added it worsens the fit. Furthermore, translation from ξS to
quark parameters involves nucleon mass fractions times
nucleon-to-quark mass ratios which altogether amount to
values of order 5 [see Eq. (19)]. Since CS is bounded from
the constraint derived on ξS, consistency demands a sort of
cancellation between the up and down couplings contri-
butions, as Fig. 4 (top panels) shows. On the other hand,
tensor couplings allow for a relatively large freedom even
compared with vector parameters,11 as depicted in Fig. 5.
This, however, does not mean that tensor interactions
provide a better fit to data than vector do, as demonstrated
by ξBFPVT ¼ 0. It follows from the translation from nucleus
to quark parameters, which in the vector case involve larger
coefficients and so leads to narrower allowed regions.

Finally, the presence of two minima in the Δχ2ðξVÞ
function translates into two separate linear bands in the
Cu
V , Cd

V plane and in two concentric rings in the Cu
V ,

Dd
A plane.

B. Two-parameter scenarios

In this case we allow for the simultaneous presence of
two interactions at the nuclear level. Accordingly, we can
distinguish three cases corresponding to ξS − ξV , ξS − ξT
and ξV − ξT which involve eight and six quark parameters
respectively. As in the one-parameter case, here we focus
on smaller—though representative—regions of parameter
space. To determine at which extent the presence of a
second interaction modifies the constraints obtained in the
single-parameter analysis we study three scenarios: (2-i) for
ξS − ξV , Cu

S ≠ 0 and Cd
V ≠ 0; (2-ii) for ξS − ξT, Cu

S ≠ 0 and
Cd
T ≠ 0; (2-iii) for ξV − ξT, Cu

V ≠ 0 and Cd
T ≠ 0.

The chi-square function for this analysis becomes now a
function of two parameters (ξX1

and ξX2
). We present in

Table II the BFPVs and the 90% and 99% CL ranges for

TABLE II. Best-fit-point values for scalar, vector and tensor
parameters (second column), 90% CL (Δχ2 < 2.71, fourth
column) and 99% CL (Δχ2 < 6.63, fifth column) ranges for
ξX as defined in Eq. (21). See text for more details.

Inter ðξX;1; ξX;2ÞBFPV P 90% CL 99% CL

ξS − ξV ð−0.363; 0.363Þ ξS ½−0.816; 0.816� ½−1.123; 1.123�
ð−1.626;−0.253Þ ξV ½−2.081; 0.203� ½−2.514; 0.635�

ξS − ξT 0 ξS ½−0.623; 0.623� ½−1.076; 1.076�
0 ξT ½−0.593; 0.593� ½−1.081; 1.081�

ξV − ξT ð−1.398;−0.481Þ ξV ½−2.081; 0.203� ½−2.51; 0.632�
ð−0.515; 0.515Þ ξT ½−0.866; 0.866� ½−1.195; 1.195�

FIG. 4. 90% CL (Δχ2 < 2.71, dark reddish) and 99% CL
(Δχ2 < 6.63, light reddish) allowed regions in the neutrino-quark
couplings parameter space for scalar and vector interactions.
Panels in the left column correspond to constraints for scenario
(1-i), while those in the second column to scenario (1-ii). Results
for scenario (1-iii) resemble those of scenario (1-ii) and so we do
not display them. The dashed lines refer to the values determined
by the ξS;V BFPVs (see Table I). For ξV the χ2 function exhibits
two minima and so for this case the result includes two non-
overlapping regions. In each figure, the black dot indicates the
SM limit, i.e., where the neutrino-quark couplings are zero.

FIG. 5. 90% CL allowed regions in the neutrino-quark cou-
plings parameter space for tensor interactions. The dashed line
refer to the value determined by the ξT BFPV (see Table I). The
black dot indicates the SM limit, i.e., where the neutrino-quark
couplings are zero.

11This result differs from what has been found in Ref. [9], the
constraints derived here being less stringent. The difference arises
from the translation from nucleon to quark operators. In our case
we use “tensor charges” [Eq. (15)], while Ref. [9] uses a vector-
type translation.
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each ξXi
. The CL ranges for the parameter ξX1

are obtained
minimizing the least-squares function over the nuisance
parameters α and β and over the second interaction
parameter ξX2

. In principle, the parameter R could also
be constrained by COHERENT data. However, its con-
tribution to the CEνNS cross section is subdominant with
respect to the SM contribution. Moreover, it depends on the
product of two of the fundamental quark couplings Cq

S, C
q
T .

It turns out that COHERENT bounds are not competitive
enough to constrain Cq

S and Cq
T via the R parameter, they

are instead more stringently constrained by the requirement
of enforcing the new interaction to have a strength which is
below that of the SM (understood as Cq

S;T ≤ 1, i.e., the NGI
should not exceed GF). The constraints given in Table II
can then be mapped into the parameters of the neutrino-
quark Lagrangian in the same way as in the single-
parameter analysis. Using the relations given in Eq. (19)
we present in Fig. 6 the allowed regions for the funda-
mental parameters in scenarios (2-i)-(2-iii). We only show
these three particular cases, but the results in Table II and
Eq. (19) allow to investigate any case in which two nuclear
interactions are simultaneously present.
These results imply that the presence of an additional

interaction at the nuclear level relaxes the bounds on the
fundamental neutrino-quark couplings. Indeed, the addition
of an extra free parameter ξX allows for more freedom in the
values of the NGI parameters. Interestingly, COHERENT
constraints on the vector interaction parameter ξV are
sizeably relaxed with the addition of an extra scalar or
tensor interaction. This can be seen by studying the
dependence of the Δχ2 function upon ξV , depicted in
Fig. 7. The red solid curve shows the Δχ2 function in the
single-parameter scenario where only ξV is switched on,
while the blue dashed curve refers to the two-parameter
scenario with ξV and ξT simultaneously present and the
black dotted to the two-parameter scenario with ξV and ξS
both active. In all three cases the Δχ2 function has two
minima, but the region between them is heavily modified

when an extra interaction is added. In the region around
ξV ¼ −CV ¼ −½1 − ð1 − 4 sin2 θwÞ − N=Z� ≃ −0.95 the
extra vector interaction tends to cancel the SM contribution,
thus worsening the fit. As can be seen, the extra contri-
bution (either scalar or tensor) improves the fit by increas-
ing the expected number of events in that region.

V. CONCLUSIONS

We have studied a generic set of effective Lorentz
invariant nonderivative neutrino-quark interactions (NGI).
These interactions contain as a subset well-studied
neutrino-quark NSI, but involve additional scalar, pseudo-
scalar, axial and tensor couplings. In contrast to vector
interactions, they induce matter potentials that are either
helicity suppressed or vanish in nonpolarized media.
Accordingly, they are poorly constrained by neutrino
oscillation data. They instead contribute to scattering
processes which set bounds on their values. We have

1.0

FIG. 6. Results for the two parameter case analysis. Dark (light) reddish regions correspond to 90% CL (Δχ2 < 4.61) and 99% CL
(Δχ2 < 9.21) bounds for the neutrino-quark couplings. In each figure, the black dot indicates the SM limit, i.e., where the neutrino-
quark couplings are zero. The red stars mark the BFPV. (The black dot and the red star coincide in the middle panel.)

FIG. 7. Dependence of the Δχ2 function on the ξV parameter in
three different scenarios: The single-parameter scenario with only
ξV (red solid), the two-parameter scenario with ξV and ξT (blue
dashed) and the two-parameter scenario with ξV and ξS (black
dotted).
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considered the contributions of NGI to the CEνNS process
and we have employed the recent COHERENT data to
place constraints on the different effective parameters.
Our analysis includes scalar, vector and tensor quark

currents and excludes pseudoscalar and axial quark cou-
plings, which being spin-dependent are expected to be less
constrained. We have considered diagonal as well as
nondiagonal Lorentz structures, such as ðν̄γμγ5νÞðq̄γμqÞ
and ðν̄γ5νÞðq̄qÞ and under the assumption of no lepton
flavor dependence and of a spin-1=2 nuclear ground state,
we have calculated the full CEνNS cross section for
neutrinos and antineutrinos. In order to assess the impact
that such interactions have on the CEνNS process, we have
then carried out a chi-square analysis in two simplified
benchmark scenarios. A first one where only one nuclear
interaction is present at a time, dubbed single-parameter
case, and a second where two are simultaneously present,
called two-parameter case.
In the single-parameter case, our findings show that the

scalar interaction is the most constrained, with the tightest
bound found for the Lorentz mixed pseudoscalar-scalar
coupling. In such a case the effective parameters are
bounded to be smaller than 0.05 at 90% CL. For scalar-
scalar couplings this bound is relaxed and the parameters
can be of order one, but still in a rather narrow region in
parameter space. Allowed vector NGI are also sizable
reaching values as large as 0.85 at 90% CL, but again in
two nonoverlapping narrow stripes. We find that tensor
interactions are the less constrained, with the reason being
the translation between the nuclear to quark parameters,
which involves “tensor charges” which are small, thus
allowing for more freedom. Nevertheless none of these
values lead to an improvement in the COHERENT data fit,
as the BFPVs found in our analysis demonstrate.
In the two-parameter case, we have found that the

presence of an additional interaction at the nuclear level
relaxes the bounds on the fundamental neutrino-quark
couplings. The addition of an extra free parameter ξX
allows the NGI to span over relatively larger regions in
parameter space. In particular, the allowed ranges for the
vector parameter ξV are sizeably modified with the addition
of an extra scalar or tensor interaction. In the region where
ξV tends to cancel the SM contribution, thus worsening the
fit, the scalar or tensor contribution enables its improve-
ment to values below 1σ.
We have pointed out that further and perhaps more

severe constraints on NGI can be derived by considering
instead DIS scattering data from CHARM and NuTeV, as it
turns out to be the case for neutrino NSI [35]. However,
whether this is the case depends on the mass of the mediator
responsible for the effective interaction. We have stressed
that for mediator masses below ∼1 GeV our constraints can
be regarded as the current most stringent bounds on NGI.
For mediator masses above this value our results are still
valid but should be confronted with those from an analysis

using DIS data, which to our knowledge does not exist.
At any rate, improvements on limits on NGI couplings
generated by mediators with masses below 1 GeV will
require further improvement of COHERENT data.
CEνNS offers a plethora of physics opportunities,

allowing for tests of anomalously large neutrino magnetic
moments, sterile neutrinos, new light degrees of freedom,
among others [17]. The analysis presented in this paper,
while revisiting COHERENT constraints on some BSM
interactions already considered in the literature, further
complements previous works by considering effective NGI
with mixed neutrino-quark Lorentz structures and simulta-
neous presence of various neutrino-quark interactions, for
which we have shown that COHERENT data still allows
for sizable values.
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APPENDIX: CROSS SECTIONS FOR NEUTRINO
AND ANTINEUTRINO CEνNS WITH

SPIN–1/2 NUCLEI

In this Appendix we collect the results of the calculation
of the CEνNS cross section for neutrino and anti-neutrinos.
We follow the conventions used in Ref. [41]. We provide
here the full expression including all kinds of NGI,
although in our analysis we actually neglect pseudoscalar
and axial nuclear currents. We compute the CEνNS cross
section in the zero-momentum transfer limit, that is when
the spin-independent and spin-dependent nuclear form
factors satisfy F2ðq → 0Þ → 1 and S2ðq → 0Þ → 1.
We begin the computation of the CEνNS cross section by

describing the kinematics of the process. Incoming (out-
going) neutrino/antineutrino and nucleus four-momenta are
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labeled p1 and p2 (k1 and k2), as shown in Fig. 8. In the lab-
frame they are written as

p1 ¼ ðEν; êzEνÞ; k1 ¼ ðE0
ν; êrE0

νÞ; ðA1Þ

p2 ¼ ðmN; 0⃗Þ; k2 ¼ ðmN; ê0rE0
νÞ; ðA2Þ

where êr ¼ êz cosϕþ êx sinϕ, ê0r ¼ êz cosϕ − êx sinϕ
and ϕ is the scattering angle. The outgoing neutrino energy
can be calculated as

E0
ν ¼

mNEν

mN þ Eνð1 − cosϕÞ ; ðA3Þ

from which the nuclear recoil energy Er ¼ Eν − E0
ν follows

Er ¼
E2
νð1 − cosϕÞ

mN þ Eνð1 − cosϕÞ ; ðA4Þ

and from which in turn the maximum nuclear recoil
energy is obtained for backward scattering: Emax

r ≃
2E2

ν=mN (Eν ≪ mN).
The matrix elements for the process ν̄ðp1Þ þ

Nðp2ÞJ¼1=2 → ν̄ðk1Þ þ Nðk2ÞJ¼1=2 and νðp1Þ þ
Nðp2ÞJ¼1=2 → νðk1Þ þ Nðk2ÞJ¼1=2 can be written
according to

Mðν̄þN→ ν̄þNÞ ¼ GFffiffiffi
2

p
X
a

½v̄sðp1ÞPRΓavs
0 ðk1Þ�½ūr0 ðk2Þ

×ΓaðCaþ iγ5DaÞurðp2Þ�; ðA5Þ

MðνþN→ νþNÞ ¼ GFffiffiffi
2

p
X
a

½ūs0 ðk1ÞΓaPLusðp1Þ�½ūr0 ðk2Þ

×ΓaðCaþ iγ5DaÞurðp2Þ�: ðA6Þ

Here s, s0, r, r0 refer to spin indices and we sum over all
Lorentz structures. The differential cross section is in
general given by [57]

dσ
dEr

¼ 1

32π

1

E2
νmN

X
s;s0

1

2

X
r;r0

jMs;s0;r;r0 j2; ðA7Þ

where we have averaged over final state spins.
Implementing the kinematic relations in (A1) and using
FEYNCALC [58,59] we arrive to the following expressions
(the result for the tensor interaction was derived, as far as
we know, for the first time in [60])

dσaðq2 ¼ 0Þ
dEr

¼G2
F

4π
mNa

N2
a

�
ξ2S

Er

Emax
r

þjξ⃗V j2
�
1−

Er

Emax
r

−
Er

Eν

�

� 2ξ⃗V · ξ⃗A
Er

Eν
þ jξ⃗Aj2

�
1þ Er

Emax
r

−
Er

Eν

�

þ ξ2T

�
1−

Er

2Emax
r

−
Er

Eν

�
∓R

Er

Eν

�
; ðA8Þ

where we have droppedOðE2
r=E2

νÞ terms. For neutrinos the
third and last terms are positive and negative respectively,
while for antineutrinos the signs are opposite.12 Here the
following conventions apply

ξ2S ¼
C2
S þD2

P

N2
; ξ⃗V ¼ CVêV þDAêA

N
; ðA9Þ

ξ⃗A ¼ DVêV þ CAêA
N

; ξ2T ¼ 8
C2
S þD2

S

N2
ðA10Þ

and

R ¼ 2
CSCT − CPCT þDSDT −DPDT

N2
: ðA11Þ

Our result for antineutrinos differs from that found in
Ref. [41] in the vector, axial and mixed vector-axial terms
(couplings). The energy dependence of those terms, how-
ever, is the same and so the differences are numerically
small.

FIG. 8. Diagram representing the CEνNS effective interaction
momenta assignment.

12While these differences appear in subleading terms, they
could be of interest in experiments where timing information is
taken into account.
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