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A model for neutrino masses and mixing is presented using the seesaw mechanism. The model
combines type-I and type-II seesaw contributions of which the latter dominates. The scalars and
the leptons in the model are assigned A4 charges suitable to obtain the mass matrices required for
the scheme. The type-II seesaw accommodates atmospheric mass splitting and maximal mixing in the
atmospheric sector (6,3 = 7/4). It is characterized by vanishing solar mass splitting and 03 whereas the
third neutrino mixing angle can acquire any value, 9?2. Particular alternatives of 0(1)2 viz. 6’?2 = 35.3°
(tribimaximal), 45.0° (bimaximal), 31.7° (golden ratio) are accounted for. Another choice of 9?2 = 0°(no
solar mixing) is also considered. Incorporating the corrections provided by the subdominant type-I
seesaw involves degenerate perturbation theory due to vanishing solar splitting in the type-II seesaw
enabling the solar mixing angle to receive substantial corrections. Apart from amending the solar sector,
the type-I seesaw also tunes all the neutrino oscillation parameters into the allowed ranges, thus
interrelating them all. Thus, the model is testable in the light of future experimental data. As an example,
6,3 emerges in the first (second) octant for normal (inverted) ordering. CP-violation is controlled by
phases present in the right-handed Majorana neutrino mass matrix, M, ;. Only normal ordering is
allowed if these phases are absent. If M, is complex the Dirac CP-violating phase §, can be large, i.e.,
~ =+ /2, and inverted ordering is also allowed. T2K and NOVA preliminary data favoring normal
ordering and &~ —x/2 predicts lightest neutrino mass to be 0.05 eV or more within the model

framework.
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I. INTRODUCTION

Intensive  experimental investigations worldwide
have determined neutrino masses and mixing to a great
extent. In spite of these, neutrinos retain certain mysteries
including the ordering of their masses, their absolute
mass scale, their Dirac or Majorana nature, the octant
of the atmospheric mixing angle 6,3 and CP-violation
in lepton sector. While future experiments address
these riddles, here a model of neutrino masses and
mixing in concord with the experimental observations
is proposed. The two small quantities ;3 and the ratio
R= Amgolar/ Am2,..c can get interrelated when both are
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derived from a single perturbation [1]. In [2], larger
mixing parameters like Am2,.., and 0,3 = n/4 were
ascribed to the dominant fundamental structure of neu-
trino masses and mixing, whereas the other oscillation
parameters i.e., 63, 0,, the deviation of 6,5 from z/4,
and Am2  originated from a smaller seesaw [3] gen-
erated perturbation.1 This induces constraints on the
measured parameters. Certain symmetries can give rise
to vanishing 6,5 rather easily, and new models based on
perturbations of such structures are also common in
literature [5,6].

Here, a schematic outline of the current exercise
is given. The following standard parametrization of the
lepton mixing matrix—the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) matrix—U has been used as

'Earlier attempts on neutrino mass models with some
oscillation parameters much smaller than the others can be
located in [4].
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where ¢;; = cos6;; and s;; = sin6,;. Neutrino masses and
mixing are generated by a two-component Lagrangian, one
of the dominant type-II seesaw structures, while the
subdominant contribution originates from the type-I see-
saw. The larger atmospheric mass splitting, Am2,.., and
maximal atomspheric mixing (6,3 = z/4) are embedded
within the type-II seesaw structure, whereas the solar
splitting, Amzolar and 6,3, are kept at zero. The solar
mixing angle can vary continuously and acquire any
desired value of 69,. Needless to mention, neither
Am?,, nor 05 are vanishing [7]. Evidences of nonmaximal
yet large 6,3 exist. The solar mixing angle 6, is also
constrained by experiments. The type-I seesaw alleviates
all these issues. Since the solar splitting is vanishing in the
type-II seesaw scenario, the first two mass eigenstates are
degenerate. In order to lift this degeneracy with the help of
the type-I seesaw contribution, one has to use degenerate
perturbation theory. As a consequence of this, corrections
to the solar mixing angle can be large.

The starting structure can be of tribimaximal (TBM),
bimaximal (BM), and golden ratio (GR) mixings. All of
these have 0,3 = 0 and 6,3 = /4, with 6, being the only
discriminating factor as specified in Table L. In this Table,
the fourth option corresponds to no solar mixing (NSM)
i.e., #9, = 0, which has the virtue of the mixing angles to be
either maximal, i.e., 7/4 (6,3) or vanishing (63 and 69,).
An A4-based model with identical objectives only for the
NSM case was studied in [8]. This attempt along with [8]
differs from the other earlier works on A4 [9—11], as in most
of them, the neutrino mass matrix was derived as an
outcome of a type-II seesaw mechanism, and obtaining
TBM was of chief importance. Recent activities directed
towards more realistic mixing patterns [12] often leading to
breaking of A4 symmetry can be found in [13].

A few distinctive aspects of this model are worth noting
at this point. First, a combination of the type-I and type-II
seesaw is considered. Second, the model is constructed to
accommodate many popular mixing patterns. This is the
first attempt of this kind using A4 flavor symmetry that
amends several popular lepton mixing patterns in a single
stroke in which the type-Il seesaw is the dominant

TABLE L. 69, for different popular lepton mixing patterns viz.
TBM, BM, and GR mixing. NSM represents the case with
vanishing solar mixing.

Model TBM BM GR NSM
o, 35.3° 45.0° 31.7° 0.0°
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contribution and the type-I seesaw is subdominant. The
symmetries are broken spontaneously. Further, soft sym-
metry breaking terms are prohibited. All symmetry con-
serving terms are included in the Lagrangian. Scalars and
leptons involved in the model are assigned suitable A4
charges to implement this feature. An analogous pursuit
based on S3 x Z3 resulted in [14].

All the three neutrino mixing angles and the solar mass
splitting receives first-order corrections from a single
source—the type-I seesaw—in this model. Owing to the
common origin, they all get interrelated. These correlations
are characteristic features of this particular model. Indeed
the model has a large number of parameters, but it must
noted that only the region of the parameter space allowed
by the neutrino mass and mixing data obeying these
correlations is considered.

An analysis of the model initiates the discussion. In the
next section, the operational strategy is described. The
results so obtained are compared to the experimental data in
the following section, succeeded by the conclusions and
inferences of this work. Some essential ideas of the of the
discrete symmetry A4 are presented in Appendix A.
A detailed study of the rich scalar sector to the extent of
local minimization of the scalar potential is furnished in
Appendix B. In Appendix C, algebraic details of the mass
matrix calculations while going to the flavor basis of the
neutrinos from the Lagrangian basis can be found.

II. THE MASS MODEL

The model comprises of scalars and leptons with specific
A4 charges. All terms allowed by the symmetries under
consideration are included in the Lagrangian. No soft
symmetry-breaking term is included.

The right-handed charged leptons transform as 1(eg),
1'(ug), and 1”(zz) under A4. The left-handed lepton
doublets of three flavors constitute an A4 triplet, so does

TABLE II. The lepton catalog of the model. The A4 quantum
numbers assignments of the fields are featured together with their
SU(2), properties. The hypercharge, ¥, and lepton number, L,
are displayed.

Fields Notations A4 SU(2), (Y) L
Left-handed leptons (vily), 3 2 (-1) 1
Right-handed charged leptons L 1 1 (=2) 1
b Iy
ZSR 1//
Right-handed neutrinos Nir 3 1 (0) -1
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the right-handed neutrinos.” Table II shows the lepton
constituents of the model together with their transformation
properties under A4 and SU(2),. The hypercharge and
lepton number assignments are also shown.” The choices of
A4 properties of the fields are not unique. A list of all
possible options can be found in [15] of which this model
adopts class B. The model is restricted to leptons only.4

Masses of all leptons originate from A4-invariant
Yukawa couplings. Several scalar fields have to be
included’ that acquire suitable vacuum expectation values
(vevs). The strategy of choosing the scalar field multiplets
requires some elaboration. An idea of the mass matrices of
the left- and right-handed neutrinos in the flavor basis
(charged lepton mass matrix diagonal) that are suitable for
our avowed goal can be acquired from our previous work
[14]. The Lagrangian is written down in a basis which is
unitarily related to the flavor basis. Consequently, the mass
matrices in this defining basis have somewhat complicated
structures for which the motivation is not initially obvious.
These forms of the mass matrices (below) arise from a
rather large set of scalars and their vevs.

The charged leptons acquire their masses through the
SU(2), doublet scalar fields @; (i = 1, 2, 3) forming an A4
triplet. The neutrino Dirac mass matrix is generated by an

A4 invariant SU(2), doublet 7, having lepton number 2.
|

Linass = yjpjikzLileq)

n=a,b

(charged lepton mass) + fp 2N gt

SU(2), triplet scalars are required for the type-II seesaw for
left-handed neutrino mass matrix that include A4 triplet
fields AL and AL along with AL, ¢ = 1, 2, 3 transforming
as 1, 1/, 1” of A4. These are used to construct the dominant
type-II seesaw neutrino mass matrix. Effects of the sub-
dominant type-I seesaw contribution is included perturba-
tively. A4 conserving Yukawa couplings produce the
right-handed neutrino mass matrix as well. Several
SU(2), singlet scalars are involved in generation of the
Majorana masses for the right-handed neutrinos viz. A’;
(p = a, b, ¢) transforming as A4 triplets and Af =12,
3) transforming as 1, 1" and 1” under A4. Table III evinces
transformation properties of the model scalars under A4
and SU(2), together with their hypercharge, lepton number
and vev configurations. The vevs of the SU(2), doublet
scalars are of O(My,) while that of the SU(2), triplets are
several orders of magnitude smaller than the doublet vevs
in concord with the small neutrino masses as well as the p
parameter of electroweak symmetry breaking. As expected,
the vevs of the SU(2), singlets responsible for right-
handed neutrino mass lies much above the electroweak
scale. The mass terms of the neutrinos (both type-I and
type-II seesaw) and that of the charged leptons are
generated by a SU(2), x U(1), conserving Lagrangian
that preserves A4 as well’:

(neutrino Dirac mass)

(Z Yia aivyC” vL,A”k + nggz,l/LlC DLJALO) (neutrino type-1I seesaw mass)

1 -
—|—§< Z VRN, CT' N AR + YRp, . iNk.C 1NRJARO> (th neutrino mass) + H.c. (2)

p=a,b,c

The scalars acquire the following vevs (SU(2), part is suppressed):

1 1
v o
@) =7 1] )=u Af=v.l0].
1 0
1
<A§O> =vpa| 1], <A§0> = URp
1

The notation followed closely resembles that of [9].

1

~

By =v [ 1], (A1) =(A) = (A" =u,.  (3)
1
1 1
o |, (AF) = | @ . (4)
0)2 [

Opp051te lepton numbers are assigned to v, and Ny in order to prohibit their coupling with @ so that the Dirac mass matrix can

remaln proportional to the identity matrix.
Quark models based on A4 has been explored in [16,17].

*Models addressing this issue by separating the breaking of SU(2), and A4 are widely studied in literature [10]. The former is
mediated by the usual doublet and triplet scalars of SU(2), that are invariant under A4. The breaking of A4 is induced by the vev of
“flavon” scalar fields that are singlets of SU(2), but their transformations under A4 is nontrivial. Though such models are economic
effective dimension-5 interactions comes into play in order to connect the fermions with the two types of scalar fields simultaneously

leadmg to an interpretation as an effective theory.

Lepton number is also conserved for the mass terms of Dirac kind.
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TABLEIII.  The scalar sector of the model. The A4 charges as well as the SU(2), nature of the scalars are exhibited. The hypercharge,
Y, lepton number, L, and the vacuum expectation value (vev) configurations of the scalars are also presented.

Purpose Notations A4 SU2), (V) L Vev
Charged fermion mass or P 3 2 () 0 AU
o= ¢; ¢ (@) =—7=(0 1
ol 3\o 1
3?3
Neutrino Dirac mass n=n) 1 2 (—1) 2 (n) = (u,0)
Type-II seesaw mass Arr AY, A% \C 3 3(2) -2 . 0 0 1
Bi=| 4 &, &, o=l 000
AS AL A,
Type-II seesaw mass AT; Al+b A9, L 3 3(22) -2 <, 0 0 1
e[ 8 i=wfy 8 !
A3 Ay A
1 3(2) -2 (ALY = (0,0, u;)
Type-II seesaw mass AL = (A AF, ADE & 3(2) -2 (ALY = (0,0,u;)
1 32 -2 (ALY = (0,0, u;)
Right-handed neutrino mass ) é?u R 3 1 (0) 2 - 1
Ag = A(Z)a (Ag) = vga| 1
A%, .
Right-handed neutrino mass ) é?b R 3 1 (0) 2 R 1
Aj =1 Ay, (Ah) =vgp| @
A3, o’
Right-handed neutrino mass A é?c R 3 1 (0) 2 R 1
Af - A(Z)L <A§> = URe a)Z
Agc (0]
Right-handed neutrino mass AR = (AR 1 1 (0) 2 (AR = upp
Right-handed neutrino mass AR = (AR Iy 1 (0) 2 (AR = upp
Right-handed neutrino mass AR = (AR 1” 1 (0) 2 (ARY = usg

performed and the conditions corresponding to the par-
ticular vev structures as indicated in Egs. (3)-(5) are
obtained.

An elaborate study of the A4 conserving scalar potential The mass matrix for the charged leptons and the left-
involving the fields listed in Table III is presented  handed Majorana neutrinos so obtained are:

in Appendix B of this paper. Local minimization is

<Alfo> = U1R, <A§0> = Upg, <A§O> = U3R- (5)

V1 Y2 Y3

v
2
w'ys |,

==Y wy
ey \/§ 1 ; 2
Y1 w7y, Y3

(YT +2Y7)u, %f/i”u; %?IEULb
M, = %%”Lb (Yf - Yé)”L %(y{;”La + IAﬂé”Lb) ) (6)
%?II;DLZJ %(?SvLa + %%b) (Ylf - Y%)”L
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where the choice of Y% =Y% is made. The Yukawa
couplings involved in the charged lepton mass matrix
satisfies y,v =m,, y,v =m,, y;v =m,. The neutrino
mass matrix of Dirac nature and the right-handed neutrino
mass matrix of Majorana kind acquires the following
structures:

X1 Xe Xs
Mp = ful, Myp=mgl xe 42 xa |- (7)
X5 X4 X3

mp sets the scale of Dirac masses of the neutrinos
where one can identify fu = mp. The scale of the
type-II seesaw neutrino masses is much smaller than that
of the charged leptons i.e., O(M,;) ~ u;, v;,, v;, Where
Ur, Urq, v, < v. Such a possibility that the triplet vev is
much smaller than the doublet vev can be obtained as
shown in [18], albeit in a model with fewer scalars. The
scale of the right-handed Majorana neutrino masses is set
by mg and y; in Eq. (7) are dimensionless quantities’
of O(1).

The mass matrices in Eq. (6) could be expressed in a
more convenient form by applying a couple of trans-
formations. The non-Hermitian charged lepton mass matrix
can be diagonalized by applying a transformation Uj
(below) on the left-handed lepton doublets and no trans-
formation on the right-handed charged leptons. The trans-
formation matrices are expressed as

1

1
U, =—7=11 2w |. 8
L \/§ , ( )

@
@

This basis in which the charged lepton mass matrix is
diagonal and the entire lepton mixing is governed by the
neutrino sector is termed as the flavor basis in which the
mass matrices acquire the following forms:

m, 0 O
Mimer=10 m, 0 |,
0 0 m,
| 2m® 0 0
M =351 0 m" m | )
0 m m"
Here m* = mgo) + mgo) . Therefore, m™ is positive (neg-

ative) for normal (inverted) ordering. As noted earlier,
Miavor - which arises from the type-Il seesaw, is the
dominant contribution to the neutrino mass.

"See Appendix C for exact expressions of y; in Eq. (7).

Demanding that the neutrino Dirac mass matrix, which
couples the left- and right-handed neutrinos, preserves its
proportionality to the identity matrix necessitates that the
transformation applied on the right-handed neutrino fields
must be Vz = U,. Thus, we get

MD = fM]I,

- T I3
m
(VjeMpRVIe) == ra T I3 |- (10)

Mflavor —
vk 4ab

ryz I a3

The matrices in Eq. (10) will take part in the type-I seesaw
mechanism.® Various identification of the products of the
Yukawa couplings and the vevs with the neutrino mass and
mixing parameters are necessary for the mass matrices to be
expressed in the forms as presented in Egs. (9) and (10).
Appendix C comprises of these algebraic details.

III. MODUS OPERANDI

The four mass matrices in the flavor basis obtained from
the model are given in Egs. (9) and (10). In this basis the
entire lepton mixing and CP-violation is controlled solely
by the neutrino sector to which we restrict our discussion
now onwards. The subdominant contribution given by the
type-I seesaw is incorporated by perturbation theory to the
dominant component Mﬂfv‘” coming from the type-II
seesaw. The flavor basis mass matrices have to undergo
one more basis transformations for successful implemen-
tation of this scheme. More precisely they ought to be
expressed in the mass basis of the neutrinos which by
definition has the left-handed neutrino mass matrix diago-
nal in it. Thus,

m®” 0 0
MO = er/r};‘lss _ UOTMlt}zwor UO _ 0 mgO) 0 , (1 1)
o 0o m
where
cos®), sind), 0
sin 6" cos 6 1
w= | TE S 5 (12)
sin 69, _cosd),
V2 V2 2

The left-handed neutrino fields in the mass basis (|]"*))
are connected to the ones in the flavor basis ([t14'°")) by
this U° furnished in Eq. (12). One can obtain the [11'*%) by
applying U°" on [Jilaver) je., |pmass) = yOT|pllaver) - g
immediately follows from Egs. (11), (1) and (12) that, in
the type-II seesaw component, solar splitting is absent,

*Explicit forms of r; ;in Eq. (10) can be found in Appendix C.
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0,3 =0 and 6y = /4. The columns of U° are the
unperturbed flavor basis.

Once again we demand that in the mass basis the
neutrino Dirac mass matrix remains proportional to iden-
tity. In order to satisfy this, the same transformation (U°")
has to be applied on the right-handed neutrino fields. This
leads to changes in form of right-handed neutrino mass
matrix given by MM = (U MIavery0). The matrices
contributing in the type-I seesaw are as follows:

0 b b

) mpg a a

Mp=mpl and MM = b & -5
D D VR 2V2ab , x/ia a\/i
V22

(13)

Here a and b are dimensionless quantities’ of O(1). It is
imperative to note that @ and b can in general be complex.
One can in principle trade off @ and b in terms of complex
numbers ye %2 and xe™"' respectively, where x and y are
dimensionless real quantities of O(1). The type-1 seesaw
contribution is obtained by

0 yel¢l ye”ﬁl
2 :
- m iy xe'l2 —xe'h>
M'=ME (M) Mpl =T | YT NE T | (14)
y€i¢1 —)i;;? xf/’?

Here the Dirac mass matrix is proportional to identity. It
was checked that the same results can follow as long as M,
is diagonal. MJ3* exhibits a N,z <> N3i discrete sym-
metry. The results remain intact even if that choice is
relaxed. Now onwards the entire procedure is carried on in
the mass basis of the neutrinos using the mass matrices
expressed in Egs. (11) and (14).

The method followed below essentially consists of the
following steps. From the type-II seesaw, a lepton mixing
of the form of Eq. (12) is generated, with 69, of any
preferred value. At this stage, only the atmospheric mass
splitting is nonzero and atmospheric mixing is maximal.
Next, the type-lI seesaw is included using degenerate
perturbation theory. The solar mass splitting and the desired
01, are first obtained. Then the third column of the mixing
matrix is calculated and compared with Eq. (1) to extract
913, 923, and o.

IV. RESULTS

The neutrino mass matrices derived from the type-I and
type-Il seesaw mechanism have been discussed in the
previous section, of which the former is significantly
smaller than the latter. In the absence of the type-I seesaw
contribution, the leptonic mixing matrix characterized by

%See Eq. (C5) in Appendix C for details.

013 =0, 053 = n/4, and Y, is free to vary. Consequences
for the four choices of the value of 6%,, corresponding to the
TBM, BM, GR, and NSM cases together with the vanishing
solar splitting, are examined. This, along with the atmos-
pheric mass splitting allowed by the data, depict the type-II
seesaw structure. Inclusion of type-I seesaw corrections
perturbatively up to first order modulates the neutrino
oscillation parameters into the ranges preferred by data.
Owing to the vanishing solar splitting in the type-II seesaw
contribution, the first two mass eigenstates are degenerate.
Thus, in the solar sector degenerate perturbation theory has
to be applied. Hence, the first-order corrections to the solar
mixing angle can be large. The global best-fit of the
oscillation parameters are displayed in the next section.

A. Data

The current 30 global fits of the neutrino oscillation
parameters are: [19,20]

Am2, =(7.02-8.08) x 1075 eV2,
01, =(31.52-36.18)°,
|Am2,| =(2.351-2.618) x 1073 eV2,
053 =(38.6-53.1)°,
0,5 =(7.86-9.11)°,

5= (0-360)°.  (15)

These numbers are taken from NuFIT2.1 of 2016 [19].

Needless to mention, Amj; = m} — m3, such that Am3, > 0

for normal ordering (NO) and Am3, <0 for inverted
ordering (IO). Two best-fit points of 6,3 are evinced by
the data in the first and in the second octants. Towards the
end of the paper it is discussed how the model can
accommodate the recent T2K and NOVA hints [21,22]
of & close to —x/2.

B. Real M, (=0 or z, p,=0 or x)

As a warm-up exercise let us consider the simpler case of
M i real. In such a scenario there is no CP-violation as the
phases ¢, of Eq. (14) are O or n. This leads to four
different alternatives available for choosing ¢; and ¢,.
These are captured compactly by taking x and y real and
allowing them to assume both signs for notational con-
venience. It will be soon clear how the experimental
observations prefer one or the other of these four alter-
natives. Thus, for real M, the type-I seesaw contribution
appears like:

0 vy y

/ m%) X R
R X X

S R

The degeneracy of the two neutrino masses in the type-II
seesaw ensuring the vanishing solar splitting necessitates

075016-6
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TABLEIV. Data allowed 36 ranges of { [Eq. (18)], € [Eq. (19)], and (¢ — 9‘1)2) for different popular mixing patterns

are shown.

Model («9?2) TBM (35.3°) BM (45.0°) GR (31.7°) NSM (0.0°)
¢ —4.0° < 0.6° —-13.7° < -9.1° —0.4° <> 4.2° 31.3° < 35.9°
€ —4.0° < 0.6° —14.5° < =9.3° —04° < 4.2° 44.0° <> 56.7°
€— 9(1)2 —39.2°« —34.6° —59.5° < —54.4° -39.2° < -30.0° 44.0° <> 56.7°

the application of degenerate perturbation theory to obtain
the corrections for the solar sector mixing parameters.lo
The entire dynamics of this sector is dictated by the upper
2 x 2 submatrix of M’ given by:

, _mp (0 )
MZXZ_mR (y X/\/i . (17)

This gives rise to
0, =0, +(  tan2l = 2\6(2). (18)
X

For functional ease, it is useful to define a quantity € as

sinez* and cose:ﬂ
/yz +x2/2 /yz +x2/2’
1
ie, tane= Etan 2. (19)

Once a mixing pattern is selected, the corresponding 69,
gets fixed and the experimental bounds of 8, determines
the 3o ranges of { and e by means of Egs. (15) and (19) as
featured in Table IV. The ratio (y/x) is positive (negative)
when ¢ is positive (negative). From Eq. (19), it is evident
that the sign of y is regulated by the value of €. Putting all
these facts together it is easy to infer that x is positive
always, or in other words ¢, must be 0, while y has to be
positive, ¢, = 0 (negative, ¢p; = x) for NSM (BM). In case
of TBM and GR, both signs of y are admissible. The solar
splitting provided by the type-I seesaw as extracted from
Eq. (17) is

2m? 0) V2m? 0 X
Amk,, = mRD my \/x* 4 8y* = mRD m(1 cos2t
(20)

For the mass basis form of the mass matrix in Eq. (11),
the mixing in the leptonic sector is completely given by the
U° given in Eq. (12). After including the type-I seesaw

"Since degenerate perturbation theory is used in the solar
sector, the first-order correction to the solar mixing angle ¢ is not
constrained to be small.

correction to the mass matrices, there is a further contri-
bution to the mixing matrix as well, now given by

U=U%,
cos{ —sing K, sine
where U, = sin{ cos( —Kk,cos€e |,
K.sin({ —¢) «k,cos({ —¢) 1
(21)

with

2 2

mD 2 o - mD X
K AV X2 = —— . (22
Y Y / mrm~ /2 cos e (22)

The third column of the lepton mixing matrix is:

K, sin(e — 69,)
lys) = | 51 —K-cos(e=60)] | (23)

14k, cos(e — 69
As already pointed out, x is always positive, k, is positive
(negative) for NO (1O).

Eq. (23) when mapped to the third column of Eq. (1)
leads to

sin@3 cos & = «, sin(e — 6Y,), (24)
and
tan(z/4 — 053) = tanw = k,cos(e — #,).  (25)

The allowed ranges of (e —6,) for the different mixing

patterns is given in Table IV. The CP-phase ¢ is 0 () when

sin(e — @,) is positive (negative) in case of normal order-

ing."" It can be immediately concluded that 5 = 0 for the

NSM from Table IV and 6 = # for the rest of the options

under study. CP is conserved for both the values of 6.
Using Eqgs. (20), (22), and (24), we find

Am2 =m0 sin @3 cos d cos €
M, = 2m™m

26
solar 1 CcOS 2§ sin(e - 9(1)2) ( )

"Inverted ordering is prohibited for real M.
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For real M, inverted ordering is forbidden as can be seen
from Eq. (26). In order to justify this, one can define

_ (0
<=m m(l )/Amgtmos and '[al'lf = mO/ |Am§tmos‘v

(27)

where z is positive for both the orderings of neutrino
masses. With the help of Eq. (26) it can be written as

. ( Am2,. ) ( cos 2¢ sin(e — 69,) ) (28)

|Am2 06| ) \2 sin 03] cos 8| cos e

From Eq. (27), it is straightforward to show that
. . . 1 .
z=siné/(1+siné) ie., 0<z< 3 (fornormal ordering),

<z<1 (forinvertedordering).

(29)

N =

z=1/(1+siné) i.e.,

The lightest neutrino mass i, has a one-to-one correspon-
dence with z. In the quasidegenerate limit, i.e., m, — large,
Z —>% for both orderings. For real Mg, |cosd| =1 in
Eq. (28). It simply follows from the global fit mass splittings
and mixing angles in Sec. IV A and Table IV that z ~ 1072 or
smaller for all four popular mixing alternatives. Thus,
inverted ordering is forbidden for real M ;.

Using Egs. (24) and (25), the deviation of the atmos-
pheric mixing angle from maximality is found to be:

in @ 5
tan @ — SR 13050 cog . (30)
tan(e — 65,)

Eq. (25) implies that @ is positive always for normal
ordering irrespective of the mixing pattern. Thus, 0,3 is
confined only to the first octant for real M, ;. € can be
expressed in terms of 6, using Eqgs. (18) and (19). Thus, @
in Eq. (30) can be expressed as a function of €5 and 6,
only. Figure 1 exhibits @ as a function of 8, for BM (thin
pink lines) and NSM (thick green lines) alternatives. 6,
and o varied within 30 allowed ranges as shown in
Sec. IVA. The TBM and GR cases are excluded because,
for the allowed values of 6,,, they predict 8,3 beyond the 3¢
range. The 3¢ limiting values of 0,5 are marked by the solid
lines, whereas the dashed lines indicate its best-fit value.
The vertical and horizontal blue dot-dashed lines denote the
30 experimental limits of 6, and 6,5.

With the help of Eq. (28), one can translate any allowed
point in the w — 6}, plane and the 6,5 associated with it to a
value of z, or equivalently m,, when the solar and the
atmospheric mass splittings are provided. For both the
allowed mixing patterns m, varies over a very small range.
This range is found to be 2.13 meV < my < 3.10 meV
(3.20 meV < my < 4.42 meV) for NSM (BM) when both

7 T T T T T
Real M, g, Normal Ordering, First Octant

(n/4-053) in degrees

w=

T3 32 33 34 35 36
84, in degrees

FIG. 1. ® = (x/4 — 643) -vs- 0}, plot for normal ordering. The
3¢ allowed range of sin 65 is marked by the solid lines whereas
the dashed line indicates the best-fit value. Thin pink (thick
green) lines denote the BM (NSM) case. The horizontal and
vertical lines represent the data allowed 3¢ range. The first octant
of 6,3 is preferred since w is positive always. Although w is
positive for TBM and GR mixing patterns its value lies beyond
the 30 range. Best-fit values of atmospheric and solar mass
splittings are taken. Inverted ordering is disallowed for M real.

mass splittings and all the three mixing angles are allowed
to vary over their entire 3¢ ranges.

The salient features of the real M, case are

(1) Only the normal ordering of neutrino masses is
allowed.

(2) Only the first octant of 6,5 is admissible.

(3) Type-I seesaw corrections is unable to make the
TBM and GR mixing patterns consistent with the
allowed ranges of the mixing angles.

(4) NSM and BM alternatives can produce solutions in
agreement with the observed neutrino masses and
mixing. The allowed ranges of lightest neutrino
mass is very narrow.

C. Complex M,

Real M, has several limitations viz. inverted ordering
and CP-violation is forbidden. Moreover, TBM and GR
mixing patterns cannot be included within the ambit of the
model when M, is real. In order to overcome these
constraints, the general complex form of M, leading to
the type-I seesaw contribution M’ furnished in Eq. (14) has
to be considered. It is worth reminding ourselves that this
choice introduces the complex phases ¢, ,, while x and y
can only be positive.

Thus, M’ is no longer Hermitian. To retain the Hermitian
nature, the combination (M° + M')"(M° + M) is consid-
ered, among which M*"M° and (M*"M’ + M'"M°) are
treated as the leading term and the perturbation at the

lowest order, respectively. The unperturbed eigenvalues are
(0)

given by (m;)? and perturbation matrix is
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(MO M+ M MO)
0 2ymcosgi  yfldh)
2
:% 2ym§0) cos @ \/Exmgo) cos ¢, —\/%f(ﬁbz) ,
R
v (é) —5"(h2) \/zxmgo) cos ¢,
(31)
where
f(p)=mT cosp — im™ sing. (32)

The rest of the procedure is analogous to what was done in
case of real M, keeping in mind the discriminating factors
of Eq. (31). Now, instead of Egs. (18) and (19) of the
real M, p case, the solar mixing obtained from Eq. (31) is
given by

. y cos ¢y
sine = ,
V/y2cos2gy + x2cos’eh, /2
xXCoS ¢y /2
cose = ;
V/y2cospy + x2cos’, /2
1
tane = 3 tan 2. (34)

Table IV shows the allowed ranges of { and € which depend
on the mixing patterns. For all mixing alternatives cos € is
found to be positive. Thus, from Eq. (34), ¢», must always
lie in the first or fourth quadrants. For the different mixing
patterns the ranges of ¢, are also given by that of e. When ¢
is positive (negative) then from the first relation contained
in Eq. (34), it is evident that ¢; has to be in the first or
fourth (second or third) quadrants. Using the results
displayed in Table IV, one can infer that the first (second)
option holds for the NSM (BM) patterns. In case of TBM
and GR, ¢ varies over positive and negative values making

0 _ Yy cos 4 both options equally admissible.
010 =0, ¢, tan 2¢ = 2\/i)ccos o, (33) Applying degenerate perturbation theory the solar mass
splitting attributed completely to the type-1 seesaw con-
and tribution can be obtained from Eq. (31):
|
2 2 2 232
Ay = VIO "2\ [2co g, 1 Bytcos, = v/Am® DX P _ 5,0 My g
mpg my cos?2{ mgr  sin2f
In place of Eq. (23), one gets
Ke |Se Flpr) cos O — 56 £ (o) sin @y |
lws) = % {1 —Ke [cf;:(;l (1) sin 67, + cos s (¢h2) cos 9(1)2} /m+} , (36)

1 sin
{1 [

where

mp
Ke = -
mprm

\/y20052¢1 + x%cos?¢h, /2, (37)

Here Eq. (34) and the complex function f(¢, ,) defined in
Eq. (32) have been used. k. is positive (negative) for NO
(I0). Comparing Eq. (36) with the third column of Eq. (1)
leads to

sin@3 cos § = k. sin(e — 69,), (38)

sinf;3sind =« [sinesin gy cos ¢, cos 9(1)2

“m™ cos ¢, cosp,

— cos€cos ¢ sin ¢, sin 6Y,]. (39)

(¢1) sin €(1)2 + cose

et )

cos ¢,

From Table 1V, it is obvious that (e — 6",) exists in the
first (fourth) quadrant for the NSM (BM, TBM, and GR)
mixing pattern. From Eq. (38), one can immediately
conclude that for NSM (BM, TBM, and GR) case(s) 6
remains in the first or fourth (second or third) quadrants in
case of normal ordering. k. changes sign for inverted
ordering. Thus, the quadrants get modified accordingly.
The different alternatives are furnished in Table V. There
are two allowed quadrants of § having sin é of opposite sign
for any mixing option and ordering of neutrino masses. The
sign of the right-hand-side of Eq. (39) governs the phases
¢, which in its turn decides the quadrants CP-phase ¢ out
of the two allowed options. As already discussed, ¢, can be
in either the first or fourth quadrants. The quadrant of ¢,
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TABLE V. The octant of 8,3 and the quadrants of the CP-phase
o for different mixing patterns for both orderings of neutrino
masses are exhibited.

Normal ordering Inverted ordering

Mixing
pattern 6 Quadrant 6,3 Octant 6 Quadrant 6,3 Octant
NSM First/fourth First ~ Second/third Second

BM, TBM, Second/third First Second

GR

First/fourth

depends on the mixing pattern in such a manner that sin ¢,
can be of either sign. Therefore, the phases ¢; and ¢, can
be chosen in a way such that sin 6 can acquire any particular
sign. Thus, the two alternate quadrants of § for every case in
Table V are equally allowed in the model.

The type-I seesaw perturbative contribution to the
atmospheric mixing angle can be obtained from Eq. (36) as

tana):Sinel3COS§. (40)

Let us recall that Eq. (38) relates & and (e — 69,) through
k.. Thus, for all mixing alternatives 6,3 always remains in
first (second) octant for NO (IO). This is one of the most
important results of the model as shown in Table V.

In the solar splitting expressed in Eq. (35), the factor of
m? /my can be replaced in terms of .. This together with
Eq. (38) gives,

_ (0) .
Am? 2m mg )sm913 cosdcose
me. =

solar = sin(e — 69,) cos 2¢

(41)

Predictions of the model can be extracted from Eqgs. (40)
and (41). The three mixing angles 6,5, 6,, and 6,3 are
taken as inputs. Equation (40) determines a value of the

T
130 (1
‘|
120 | 2
A\
" 110 ‘}\\
Q o
o
(@]
(0]
©
£
(2=}
70
NSM ==
60 BM ==
TBM =—
50 GR e 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
mg in eV
FIG. 2.

CP-violating phase 6. With the help of these and the
experimentally observed solar splitting the combination
mgo) m~, or equivalently the variable z can be calculated
using Eq. (41) that fixes the lightest neutrino mass m,. It
may seem that arbitrarily large values of mg, and hence
mgo)m‘, may be accounted for by tuning cosd to smaller
and smaller values. However, this certainly is not the case.
Experimental data necessitate @ = (z/4 —0,3) to be
restricted within observed limits. As all other factors have
ranges determined experimentally, Eq. (40) also puts lower
and upper bounds on 6. Subsequently, m, lies within a fixed
range for any mixing pattern.

Figure 2 contains the CP-phase d (6,3) as a function of
the lightest neutrino mass m, for different mixing patterns
as predicted by this model in the left (right) panel while the
best-fit values of the various measured angles and mass
splittings are used. The NSM, BM, TBM and GR are
depicted by green solid, pink dashed, red dot-dashed, and
violet dotted curves respectively. The thick (thin) curves of
each kind indicate NO (IO). Normal and inverted orderings
are always associated with the first and second octants of
the atmospheric mixing angle 6,5 respectively. For NSM
case O lies in the first (second) quadrant for normal
(inverted) ordering, while for the rest of the mixing options
it is in the second (first) quadrant. For inverted neutrino
mass ordering, |§| remains close to /2 for the complete
range of my. The CP-phase 6 lies near z/2 for normal
ordering for m larger than around 0.05 eV.

From Table V, it is evident that if § is a solution for some
mg then by properly choosing alternate values of the phases
¢, appearing in M one can also obtain a second solution
with the phase —4§. This mirror set of solutions are not
shown in Fig. 2. The preliminary data presented by the T2K
[21] and NOVA [22] collaborations can be considered as
primary hint of normal ordering associated with § ~ —z/2.
The consistency of this model with these observations is
clearly visible from Fig. 2 with § ~ —x/2 favoring m in the

52

NSM —
BM ==
50 r TBM =
GR e
w 48
[0
o
o 46 L
[0)
©
£ 44t
[s¢}
S
42
40 HhE
38

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
mq in eV

In the left (right) panel, the CP-phase d (6,3 ) predicted by this model is plotted as a function of the lightest neutrino mass m, for all the

four mixing patterns when the best-fit values of the data are taken as input. The NSM, BM, TBM and GR mixing alternatives are represented by
the green solid, pink dashed, red dot-dashed, and violet dotted curves respectively. Thick (thin) curves of each kind denote NO (IO).
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quasidegenerate regime, i.e., my > O(0.05 eV), for normal
ordering. If this result is determined with better accuracy in
the future analysis then the model will predict neutrino
masses to be in a range that ongoing experiments are
capable of probing [23,24].

These interrelationships between the octant of 6,3, the
quadrant of the CP-violating phase 0, and the neutrino
mass ordering provide a clear set of correlations character-
istic of this A4 based model. In the model the corrections to
the three neutrino mixing angles and Am2,, . all have a
common origin—the type-I seesaw. As a result these
parameters get correlated. Such interrelationships are spe-
cific to this model. Although the model has a large number
of parameters, only this correlated region of the parameter
space allowed by neutrino mass and mixing data leads to
testable predictions in Table V.

V. CONCLUSIONS

In this paper, an A4 based seesaw model for neutrino
masses and mixing has been proposed. The flavor quantum
numbers suitable for the model are assigned to the leptons
and the scalars. The Lagrangian is inclusive of all the
symmetry conserving terms. No soft breaking of symmetry
is entertained. The Yukawa couplings induce the charged
lepton masses, Dirac and Majorana masses for the left- and
right-handed neutrinos after the symmetry is broken spon-
taneously. Neutrino masses are produced by a combined
effect of both type-I and type-II seesaw terms present in the
Lagrangian of which the former can be thought of to be a
small correction. The type-II seesaw dominant contribution
is associated with the atmospheric mass splitting, no solar
splitting, keeps 6,3 = z/4, and 0,3 =0 and 6, can be
given any preferred value. In particular, this model is
scrutinized in context of tribimaximal, bimaximal, golden
ratio, and ‘no solar mixing’ patterns. The contribution of
type-I seesaw can be treated as a perturbation that generates
the solar splitting and tunes the mixing angles to values in
agreement with the global fits. As a corollary, a correlation
between the octants of 6,; and neutrino mass ordering
followed—the first (second) octant is allowed for normal
(inverted) ordering of neutrino mass. The model has several
testable predictions including that of the CP-phase 9,
relationships between mixing angles and mass splittings.
Moreover, inverted ordering got associated with near-
maximal CP-phase ¢ and arbitrarily small neutrino masses
are allowed. In the case of normal ordering, d can vary over
a larger range and maximality is accomplished in the
quasidegenerate regime. The lightest neutrino mass has
to be at least a few meV for this case.
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APPENDIX A: THE GROUP A4

A4 is the even permutation group of four objects having
12 elements and two generators S and T satisfying the
property S? = T3 = (ST)> =1 It has four inequivalent
irreducible representations viz. one 3-dimensional repre-
sentation and three 1-dimensional representations, namely,
1,1’ and 1”. These three dimension-one representations are
singlets under S, whereas they transform as 1, o, and @2,
respectively, under the action of T, with @ being a cube root
of unity. Therefore, it is apparent that 1’ x 1” = 1. The
pertinent form of the generators S and T acting on the three-
dimensional representations are given by12

1 0 0 01 0
S=(0o -1 0| ad T=[0 0 1]. (A1)
0 0 -l 1 0 0

It is imperative to note that the product rule for the three-
dimensional representation is

33=101"1"d363. (A2)
When two triplets of A4 given by 3, = a; and 3, = b;, with
i =1, 2,3, are combined according to Eq. (A2), then the
resulting triplets can be represented by 3. = ¢; and 3, = d,,
where

o= dzb3 + Cl3b2 a3b1 + a1b3 albz + dzbl
1 2 k) 2 ’ 2 El
or, C; = al-jkajbk,

d — (12b3 - Cl3b2 a3b1 — a1b3 Cllbz - Cl2b1
i — 2 b 2 ) 2 )

or, d;=pa;by, (i, ], k, arecyclic) (A3)
and the 1, 1’ and 1” so obtained can be scripted as
I =a\by + ayb, + a3bz = py;;a;b,
1/ = Cl]b] + w2a2b2 + a)a3b3 = p3l~jaibj,
1” = Cl]b] + CUClQbQ + 0)2d3b3 = pZiJaibj. (A4)

The group is studied in extensive detail in [9,10].

"This choice of basis has the generator S diagonal. One can
equivalently perform an analogous analysis in a basis in which
the generator 7 is diagonal. Needless to mention that the two
bases are related by some unitary basis transformation.
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APPENDIX B: MINIMIZATION
OF THE SCALAR POTENTIAL

Some detailed analysis of the nature of the scalar
potential is presented in this Appendix. The conditions
that have to be satisfied by the parameters of the potential
so that the vevs acquire the values considered in the model
are extracted. The conditions so obtained guarantee the
potential is locally minimized by those choices. To confirm
if those choices concur with the global minimum is beyond
the scope of this work."?

The fields cataloged in Table III are comprised of scalars
having lepton numbers as well as A4, SU(2),, and U(1),
charges. The scalar potential must be of the most general
quartic nature conserving all the symmetries under con-
sideration. Thus, all the terms allowed by the symmetries
are included in the discussion below. Verification of
SU(2);, U(1)y and lepton number are familiar exercises.
A4 invariance requires elaborate discussion as presented in
the following section.

1. A4 conserving terms: Notations
and general principles

Let us summarize a few salient features of this model to
fix the notations to be followed for the A4-invariant terms.
As already noted, the scalar spectrum has fields trans-
forming as 1, 1’, 1”, and 3 under A4. One has to consider all
the combinations of these fields up to quartics that can yield
A4 invariants. The product rules for 1,1’ and 1” are easy,
but that for the triplets of A4 needs to be emphasized. If
there are two A4 triplet fields A = (a;,a,,a3)" and B =
(b1, by, b3)T where a;, b; may possess SU(2), x U(1)y
transformation properties that are not considered for the

|

(i) Quadratic: WW,

(i) Cubic: X,XiX{. XX, X, X|XiX}. X/X|X[. 0,(Y;.Y)X;. O(Y,
(X:X;) (X,X]),

(iii) Quartic: (W]W,) (Wiw,), (xx ) (X X)),

time being in the immediate course of discussion. As
furnished in Eq. (A2), one can combine A and B to obtain

3Z2®3p=101"d1"®363. (B1)

For notational simplicity, let us denote the irreducible
representations on the right-hand side by O,(A,B),
0,(A,B), O5(A,B), T,(A,B) and T,(A, B), respectively,
where, as already noted, in Eqgs. (A3) and (A4),

B)E 1 :albl +(12b2+(13b3 pllja,bj,
OZ(A,B) = 1/ = Cl]b] + w2a2b2 + a)a3b3 p3,ja,bj,

03(A,B) = 1// = alb] —+ wa2b2 + w2a3b3 pz,Jalbj,

(B2)

and
TS(A,B) =3= (a2b3—2|'—a3b2’a3b1 —;alb?}’albz‘;azb])T’
by —aszb by—ab bo—ab \T
Ta(A,B)E3:<a2 3203 2’a3 12a1 3"11 2202 1) '
(B3)

It is worth noting that O;(AT,A) =
T,(A,A) =0.

The scalar potential can be formulated implementing this
notation and keeping in mind that the scalar sector of this
model is devoid of any field which is invariant under all the
symmetries under consideration. Therefore the scalar
potential will contain terms of the following kind (only
A4 properties are exhibited):

[0,(AT,A)]" and

(X’X”) (X’X”) (X’X’) (XiX)), (X{XT) (X{X)),

Ol(Y,,Y)XkX,, OI(JY,,Y)X’X;’, OZ(Y,,Y)X’XQ, OZ(YZ,Y)X,(XQ’, 03(Y1,Y)X”X}’,03(Y,,Y)XkX’,

0.(Y; )OI(Yk»Yl) O0,(Y1. Y)T0,(Y . Y)), O5(Y;
S(Yk7Yl)) (Ts(Y, Y)), T (Yk’Yl))’ 0 (
O3(T,(Y;,Y;), Yi) X}, O((To(Y:, Y;), Yi) X, O5(T,

BAs an example, one can take a look at [25], where a
comparatively simpler scenario, consisting of an A4 triplet
composed of three SU(2), doublet scalar or, in other words,
an A4 symmetric three Higgs doublet model (3HDM), was
analyzed in terms of the global minimization of the scalar
potential. In [26], it is shown that alignment follows as a natural
consequence when the vevs acquire the configurations correspond-
ing to those global minima. Three Higgs doublets symmetric under
the A4 group has been vividly discussed in [27]. A model for
leptons using an A4 symmetric 3HDM can be found in [28].

Ta(Yi’Yj)vTa<Yk’Yl))' O, (
(Y,», Yj), Yk)X;/, 03(Ta(Yi,

Y)T03(YY))., Ox(YiY)O5(Y.Y)), O(Ty(Y..Y;),
Ts(Yi’ Yj)v Yi)X;, Ox(Ty(Y:, Y;), Y )X],
Y)). YK,

Here W is any field, X, X', and X" represent generic
fields transforming as 1, 1’, and 1” under A4 while ¥
happens to be generic A4 triplet field. The invariants
constructed by using X¥, X", X" and Y' are not listed
separately.

Owing to the large number of scalars in the model—e.g.,
SU(2), singlets, doublets, and triplets—the scalar potential
consists of many terms. In order to simplify the discussion,
cubic terms in the fields are excluded and all the couplings
are taken to be real. The antisymmetric triplet arising from
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the combination of two A4 triplets i.e., the terms denoted by
T, in Eq. (B3) are not included in the potential throughout
for ease of calculation. The potential is studied piecewise:
(a) consisting of terms that arise from a combination of fields
belonging to same SU(2), sector, and (b) comprising terms
obtained by combining scalars of different SU(2), sectors.
The vev of the SU(2), singlets giving rise to the right-
handed neutrino mass are larger than the vev of the other
scalar fields. Thus, in the latter category the combinations of
SU(2), singlets with the doublets and triplets of SU(2), are
considered, whereas, doublet-triplet inter-sector terms are
dropped owing to the smallness of the triplet vev responsible
for the left-handed Majorana neutrino mass. Also the
electroweak precision measurements put a stringent bound
on the triplet vev compelling it to be very small.

2. SU(2),, singlet sector

The SU(2), singlet scalar sector consists of three A4
triplets A’; with p = a, b, ¢ denoting each one of them.
These three triplets possess identical quantum numbers,
their vev being the only discriminating criterion. Also there
are three more fields viz. AR, AR and AR transforming as 1,
1" and 1” under A4. From Eq. (B1) we can see that two
same Aﬁf triplets can combine to produce several A4
irreducible representations. For notational simplicity let
us define:

oy, = OI(AI;T, Aﬁ); 03, = OQ(AI;T, Aﬁ);
I, = s(Aﬁ’ Aﬁ), (p=a,b,c). (B4)

Using two different triplets A,’f and A'; where p # ¢
analogous combinations can be defined:

c
E 2

mig

AI”I

P#q:p.q=a

blnglct Z mAR QSS + Z mAR Oss |:

1 3 2
F 2 IO ZEXEMW
i=1 k<jk#j k=1 j=2

+ Z ’13174

lpq
P#q;p.q=a
+zz[ ooy ]
p=a i i=1 p#qp.q=a

p#q:p.q=a

1 C
+§ZﬂEP(O§;AR+HC + Z ’1617[1 ARO3(AR
p=a

P#q:p.q=a

+Z Z A4lpq stolpq) +Hel

e = ONAFTAD: O3, = 0:(AfT.AD):
T =TJ(A5Af).  (p.g=ab.c and p#q).

(BS)

Generically, it is convenient to use O; » OF T, » if the second
triplet in the argument is replaced by its Hermitian con-
jugate. As an example,

O3, = 0, (AR ARY, 03 = 0,(ART, AR,

035 = O5(AfT ARY) and T3, =T (A5 AR").  (B6)
One can also consider
03, = O (ART ART) 055, = 0,(ART AR,
0§§,q = O;(ART AFT). (B7)
Also the following combinations are required:
Of, = 01(A5.T3). 5= 0,(AR. T3,
03, = 05 (AR, T3, (p=a.b,c). (B8)

The A4 singlets AR (i = 1, 2, 3) can be combined to yield

0 = AFAR, (i=1,2,3). (B9)
Needless to mention that such terms are singlets of all the
symmetries under consideration.

Having devised the essential notations one can write the
most general scalar potential for the SU(2), singlet sector

of this model as

1pq T all possible permutations

} 4= Zﬂ Oss 05s> Oss + 01P<T§Z’ Tf;]T)}

(021%1) 2pq+HC}+_ Z /131761{ lpq) 1pq+01(T§;7q’T;;7'q)}

p#qﬁq a

1 C
5> 24, (O5,AF + He)
p=a

H(AR TS 4+ Heel

Tsst) + (ARO5 (AR, 1557} + Hee ]
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+%ZA§F(
+ ZZA&P ARD,, +H.c.)

p=a i=

s AR
2pA3 —I—Hc
P#4:p.q=a

P#Fq:p.q=a i=

Z ’171711 A 02(AR Tigq)

T (AROy (A8, T35} + e

Z Z Kipg(AR20;,, + Hec)

+ Z 431, A8AR D, + 13, ARARD,, + 235, ARAR O3, + Hoc ]
p=a

c
+ Z 9117qARA 0117‘1 + j’92quRAR02ﬂq +)“

P#qip.q=a

Here 13 ,, and 73 pq are taken as the common coefficient

3pq
of the different A4 invariants generated by combining two

AR and two (AR )" fields. Similar policy will be adopted for
the fields with other SU(2), properties.

3. SU(2), doublet sector

The SU(2), doublet scalar precinct consists of the two
fields @ and # transforming as 3 and 1 of A4 respectively.

ARARO;,, +Hel. (B10)

93pq

4. SU(2), triplet sector
The SU(2), triplet sector is comprised of five fields.
There are two A4 triplets AL and A% together with the fields
the AL, A} and A% transforming as 1, 1/, 1”7 of A4
respectively.
It is useful to define:

0! = 0,(AL ALy, 01 = 0,(ALT, AL);

Opposite hypercharges are assigned to © and 7. The A4 T! = TS(A{;, Aﬁ), (n=a,b), (B14)
triplet @ combinations are denoted as
04 = 0,(®", @), 04 = 0,(d, D); O =01(A7" A 0%, = 0,(A7.A);
T(,jd = T,((D d)) (B] 1) 0131"1 = 03(A%Tv Af‘)’ Tgnl = T‘T(Afu A{J)v
(n,l=a,b and n#l), (B15)
and that of the A4 singlet » are
— ALTAL N
0% = y'y (B12) O =A7"Ar, (i=123), (B16)
n=n'n.
. L and
The potential for the SU(2), doublet sector is given by
o — AL ’,ﬁ . o — AL Attt
Vo =m0 1m0t 1 L g O = 0,(ALTH): O, = 0,(ALT)
ot T e T (y=1.2.3) and (n,01=a.b), (B17)
1
+ = 24{[0%]? + {04}t 0dd i i o
2E 0y, = 0,(AL ALY, 01, = 0,(BEAN),
+ 0T84, T{N)} + 5 /V’[QddOdd] (B13)  (j=1,23) and (nl=a,b and n#l). (BIS)
The scalar potential for this sector:
b
V isiplet = Z mA, ol + Z mAL o7, + < Z m Olnl + all possible permutations>
n#ln,l=a
3 1 23
Z 0P +5 > > 4,070 Zz {[0%2 + {04} 04, + 0,(T%,, TS}
i=1 k<jk=1j=2
L] d e
T3 Z 24,{[01,)* +{0%,}7 03, + Hee.} +_ Z L, {[01,)70 ] + Oy (T5,, T4}

n#ln,l=a

n#:lnl a
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1 3 b 3 b . . 1 b
o D A MAFANOLT+ Y D A [(AFANOY, +Hel + 5D 4, [{AFO) + Hel
Jj=1 n=a Jj=1 n#ln.l=a n—a

b
+ Z j'5nl {ALOIHI} +H. C Zl {ALO }+H C]
n,l=a
b
+ Z 26u[{A50%,,} + He] Zﬂ [{A305,} +He] + Z A, [{A5O5,,} + Heel
n,l=a n,l=a
b 3 3
+ 0N A [(AFOY) + Hel Z A [(AL201 ) + Hec]
n=a j=1 n#lnl=a j=1
b

+ Z {/19ln ALAL ln)} + {/192n(ALAL02n)} + {JQ%n(ALALOBH)} + HC]

+ Z ({21, (A5 501, )} + {4, (AL AL OF, )} + {2bs,, (AT A5 0%, )} + Hecl. (B19)
n#ln,l=a
|
5. Inter-sector terms in the scalar potential objective of the following discussion. In this category

the combinations of the SU(2), singlet scalars with that
belonging to either of the doublet or the triplet sector. The
other variety of inter-sector terms—doublet-triplet type—
are not included. This seems to be a reasonable approxi-
mation as the vevs of the singlet fields are the largest.

The terms in the scalar potential involving scalar fields of
identical SU(2), behavior are already taken into account.
Apart from them, the scalar potential will also receive
contributions from terms generated by combining scalars of
two different SU(2), sectors that constitute the main

a. Singlet-doublet inter-sector terms

Let us consider the combinations:

T3, =T (AR ART); T3, =T(AR AR and T =T (o, "), (p.q=a,b,c and p#gq) (B20)

sp— spq
and
0y, =0\(T¥.T3); 0, = 0\(T{". T3,);
0 =0,(AR T, (y=1,2,3) and (p.g=a.b.c with p#gq). (B21)

Using this notation,

—
l\)lr—k

3 c
0 =32 billeres) + Gsioroth) + 221 0701 + #Z [070%]
| P#4:p.q=a

+ Z 430 ({01 YAR + Hec.) + 434 ({032 }AR + Hee.) + 45 ({0} AR + Hee)]

led Oddon {0 }Todd+{0dd} O + Olsp]

Z A0 (04405, + {055,104 + {04431 055, + O] (B22)
p#qpq a
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In the last two terms, a simplifying assumption of using a common couplings /1”’ and 43¢ for the terms in the

pq
scalar potential that are generated from various combinations of (®'®) (ART AR ), all four of the fields involved being triplets
of A4.

b. Singlet-triplet inter-sector terms

In this case, the following combinations come into play:

T=TAR A T =TUARAT O, = 0T T Ol = 0u(T5 T5,)
Tontp = O1(Thy T35 Poipg = O1(T0. Thng)s Oy = 0,(AF AL O3, = 0,(A5,AY);
O;izp =0 (va;w AL) O;A;zp =0 (Télm AI;)’ O;fzpq =0 (Tginp Alr;)’ ynlp =0 (Ttvlnl’ Ag)’ (B23)

where (y = 1,2,3); (p,q = a,b,c) and (n,] = a, b) Needless to mention, p # g and n # [.
Following the convention introduced already,

0[8

ynp = Oy(AIIST’ INE oy,

s, =0,(AR AL, (y =1,2,3); (p=a,b,c) and (n=a,b). (B24)

The inter-sector potential for this case is given by

3 b
070+ 53, (0501 e #3303 HullQ70t) +He)

S
i
N | —
-
Mm

i=1 j=1 j 1 n=a
1 - 1
+§Z lgszp QUO +Z Z l’?lpq QttOqu Ezzjﬂlnnpp Ott 0” +{0 }TO +{0 }TOW lsnp}
i=1 p=a i=1 p#q:p.q=a p=an=a

Z 2/142nnpq OZIIn ’ i;?q + {02]761}Jr + {0 }T02pq + Ollinpq]

p#qpq an=a

+5 Z Z Aisnippl 1n10”+{0”} 0%, +{0%,}" 03, + lsnlp]

p an#ln,l=a
1 c b

+§ Z Z ﬂéélnlpq[ tltnl lpq { 2pq} 02nl+{0l‘2nl}]L 2pq isnlpq]
P#q:p.q=an#lnl=a

+ZZZ/1?1PP” O:’;I’AlLT—'—H c. +Z Z Z/I?qun Og;lﬂthLT—’—H C)

Tl i=1 p#q:p.q=an=a
3 ¢
12 R R
+Zzzl6lnnp OlflpA T"’HC —I—ZZ Z )’tﬁsmlp( m[pA T—FHC)
=l pan=a i=1 p=an#lnl=a

+ZZ 5 0%, (ATTAR+ ASTAR + ALY AR) +Hec. +ZZ 505, (AT AR+ ALY AR+ ALTAR) + Hec

p=a n=a p=a n=a

s Ot i s TART T
+ZZ A5 0%, (A AR+ ATTAR +ASTAR) + H.c +ZZ [ 0%, , (A AR AL ART 4 AFT AR 1 He

p=a n=a p=a n=a

c b
- Z Z i 0%, (AFTAT + ATTART+ ATTALT) + He ]+ ) 0 (0%, (AT AT + ALTAST + ATTALT) + Hecl.

p=a n=a p=a n=a

(B25)

It must be noted that while writing the last %' |, terms the different couplings corresponding to the combinations of O}

with (A”AR) and Offlp with (AI»LTAfT) are set to be equal.

inp
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6. The conditions for minimization

With the scalar potential in hand, it is necessary to derive the conditions for which the particular vev configurations used
in this model—see Eqs. (3)—(5) and Table IlI—corresponds to the local minimum. For immediate reference the vevs are

1 1 1
v o ~
(@°) VE] Lo % =u. (A =v, | 0], (A% =w, | 1], (A1) =(A50)=(AL0)=u,, (B26)
0 1
1 1 1
<A§O> =vga| 1], <Ab0> =UVpp| @ |, <A§O> = VURe w* ) (B27)
1 ®? 0
<Af0> = UiR, <A§O> = Uog, <A§O> = U3R- (B28)

where the SU(2), nature of the scalars has been suppressed.

Eq. (B26) shows that the A4 triplet fields—A"R and d—
have vev configurations that have been verified to be the
global minima in [25]. This result was for a single A4 triplet
considered in isolation. In the current scenario since many
other fields are involved, it is not straightforward to directly
adopt the conclusions of [25].

The conditions for which the vev configurations shown
in Egs. (3)—(5) correspond to minimum are shown sector by
sector.

For minima of the scalar potential, the first derivatives of
the scalar potential with respect to the vevs have to vanish
and the second derivatives have to satisfy some conditions.
Since the scalar sector is very rich, the expressions look
very complicated. The conditions arising by setting the first
derivatives to be zero have been discussed for each of the
SU(2), sectors. As a sample, constraints coming from the

second derivatives have been shown only for the SU(2),
|

singlet sector. Similar exercise can be carried out for the
other SU(2), sectors but are not presented here.

a. SU(2), singlet sector

The SU(2), singlet vevs are much larger than those of
the doublet and triplet scalars. Thus, it is safe to neglect the
contributions to the minimization equations from the inter-
sector terms.

Let us remind ourselves that vg, (p = a, b, c) are real
and define

URa] = URq> vRaz = VRqa> vRa3 = URq>

P — P — g — 2.

URb, = URb>» URb, = VRp®, URby = VRa®";

o — o — 2 g —

UR¢, = URe> URc, = VR, URcy = URcD- (B29)

For ease of presentation, let us set the following masses and
couplings equal:

Mg = M = My = R =k, =k, = s wd, = i = mi, = mi
A=A ¥ (i=123); Aoy = A3z = A3 = 43 Mg = Ay = B3, = 433 jga = j’%b = jgc = ;1‘,%;

Moy =Moo =2 =4 A, =2, Y (p=ab.c) and (i=12.3);
Katab = H1ac = Haive = Ahoap = Hoac = Yhave = Aizap = Mizac = Mizpe = ;12;

By =2y = Mo =5 My =0 = By =2 W =Xy =X =48 Aoy = Kae = Aope = 40

By =2y = 05e =055 My =Moo == X1 Ay, =4 Y (p=ab.c) and (i=1273)
K1ab = Miac = Rive = Moab = 482ac = Mo2pe = A3ap = A83ac = A3pe = 23

/hf,ip:/lg Y (p=a,b,c) and (i=1,2,3);

s __ s __ s __ s s __ s __ s __ s s _ s
l9lab - j’916/16 - j'9lbc - /192ab - 292616 - )’92175' - l93ab - }“93ac - j'93[10 - /19' (B3O)

With the help of the singlet sector potential in Eq. (B10), the equalities in Eq. (B30) and the vev in Egs. (3)-(5) one can
obtain
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ov

singlet |Inir1 -0
— e, =
ouip

§ (% s * * 31
= mpuig + A (Ui guig) + Bl (5gu0r) + (uigusr)] + 5+

s

24 MIR[UIZM + v%?b + v%?c] + 3A§U%a

s 2 2 Sk 002 8%
— 3450Ra(Vky + VRe) + 643U R VR, + OAZUT R VRL VR

+ 325 (s vk, + U3RVE) + 35 [Vra (U3 vRy + WigVR)] = O,

8Vsinglet |min _

8Vsinglet|min -0
~ % -
ov Ra,

*
avRa]

(B31)

7. P&
= mIZQZURa + mIZQS(URb + URC) + E’% v??a + <3/13 + 83> URa(UIZQb + U%Qc)

s

2

+ | Zvga + A (v + URC):| (UigUig + Ugog + Wigusg) + AV, (Uig + 2u1p)

(VRaVRb + VRaVre)(2U1R + Uig)] + A0k, (U5 — Uog)

3]

+ %[ (21}Rb — Uk,
+ 233 (20RaVRY — VRaVRe —
+
+

v%b + 21)12%)

(uigltag + UigUsR + UspttzR)[2A5 VR, + 25 (vgp + vge)] = 0.

— VraVrp + 20RpVR:) — WsgUra(VRp + Vre)] + A0, (Whg — U3g)

- MERURa(URb + ch)]

(ui Uig + M%R + ”%R)[zflsvlea + ZES;(URb + Vge)]

(B32)

Besides the first derivatives discussed above, second derivatives are also needed to established minimality. For example,

azvgzgj;"mi“ >0 = Lulg + 6450%, + 623vpyvp. > 0 (B33)
IR
and
82‘:52%‘;;'““ >0 = vk, + 43 (v}, + vh,) + 205 (U3 + g + udg) + 223 (usgUsg + U gUag + tgUzg) > 0 (B34)
Further mixed derivatives such as
M _A4 VRattir + 24 (VRp + Vre)Uig + AV, — H0Ra(VRp + VRe) (B35)

_—
Oui g VR, 2

are also necessary to establish minimality in the most
general case. The results presented for the first and second
derivatives are calculated using the most general expression
of the scalar potential in terms of the vevs and putting
(VRal = VRa2 = VRa3 = VRa)s (VRb1 = VRbs VRb2 = @VRp,
Ugps = @*0gy)  and  (Ugey = Ve, Upea = @O Vge, Vpe3 =
@vg,.) where vg,, Ugp, Vg are real. Needless to mention
that 17}}1,’ =g, for (p=a,i=1, 2, 3) and
(p =b,c and i=1). Similar equations can be obtained
by minimizing the potential with respect to usg, Usg,
URa2» Upaz and Tgp; for (p = Db, ¢) and (i =1, 2, 3). For
the sake of brevity those are not mentioned. Similar

strategy will be adopted for the SU(2); doublet and
SU(2), triplet sector. It is worth noting that this exercise
for all the three sectors are for illustrative purpose only and
the minimization equations are achieved by setting the
different couplings equal.

b. SU(2); doublet sector

For this sector contributions from both the doublet sector
itself—Eq. (B13)—together with the singlet-doublet inter-
sector are considered. Let us define Vp = Vyoupier + Vsd
Also let us call (®;) =v; where v; = v, = v3 = v

being real.
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The following couplings are set to be equal:

M=t Bl=x" VYV (i=123)
=g, ol =ad. =2 2 =at sl =x0 Y (p=a.b.o);

p
2, = ago = =B, =2t = ad =0 (B36)

For the vevs in Egs. (B26)—(B28) correspond to the minimum of the scalar potential it is necessary to satisfy the following
conditions:

aVD|min * K : * 3 K -
= 0= u|m}+ Auu+ 150> + 2} ,Ezl (uiguig) + 5/13d pgza v3,| =0. (B37)
and
OVl .
D|m1n -0
ovy

vl A S Al .
= \—@ mg + 212; + E(” u) + 5 2 (ujpu;g) + 5 (20pq = Vrp = Vge) (U1 + UjR)

/1Sd c 1
+2- KZ 3%) + 5 (20ka = vy = v%ec)]
p=a

sd
A

1
+ BN |:6(URaURb + URaURe + VRpUR:) F 5 (VRaVRb + VRaVRe = 2“Rb”Rc)” =0. (B38)

In order to satisfy Eqs. (B37) and (B38), some degree of fine-tuning is necessary that involve both SU(2), doublet

and singlet vev of varying magnitudes. Similar equations can be obtained by minimizing the potential with respect to v
and v3.

c. SU(2), triplet sector

In analogy to the doublet sector, let us define V7 = Vi + V using Eqs. (B19) and (B25). Let us also recall,
ULal = VLa> Va2 = Vra3 = 0 and vpp = v = Vpps = Upyp.
This sector has several couplings involved. For simplicity of presentation, let us implement the following choices:

ML = ML = MpL = My MmiL = mzL = Mp; Mgy = M35 Ay=2 Y (i=1,2,3);
Ay = Aozy = A3y = 453 Wy = My = N3 2y, = 25 Loy = 253
Aajn = Aajni = A4 Agjn = Agjni = 4g; Aojn = Aojmy = Ao, ¥ (j=1,2,3), (n,l=a,b) and n#l;
Asq = A5y = A50p = 453 Asa = Aop = Aap = 463 Yo = Mp = Map = 275
A=A Y (i,j=123) and i#j; =25 ¥V (j=12,3), (nl=ab) and n#l;
Api = Wpgin ¥V (i=123), (p.q=abc) and p#gq;
Ainpp = Yimipp = Minpg = Mijipg =48+ Y (1=12.3), (p.g=a,b.c). (nl=ab) and p#q. n#l;
Wippn = jpgn =45, ¥ (j=123), (p=a,b.c), (n=a,b)
Ainnp = Mojmip =46 ¥ (j=123), (p=a,b,c), (nl=a,b) and n#l. (B39)

In order to minimize V+ such that one can arrive at the vevs furnished in Egs. (B26)—(B28), the following conditions are to
be ensured:
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aVg|min

=0
ouj |

t
= Iy + (g )3+ 24) + 2

A
+ 2 (v, + 303, + 2up,0p)] + A507,(BuL, + vLg)

+ 228w (V3 , + 303, 4 vpavpp) + 2250 (v + v1p) + AUy Z Wigltig)

3
‘ 2 P 2
+ 525U [Vky + Uiy + VRe + VrbURe

2

2
+ 25 Urb

(vLu + 31}Lb)[27)?€a - - U%?c

+ (37

[(ll

(25"
Also, one gets

av’f |min

=0
81)2“1

]

i=1

—20Ra (VR + VRp) + 4VRpVUR,]

g + A5ui ) [0ra(VRa + Vrp + Vre) + 3URa VL)
usp + AuiR) [0ra(VRa + Vrp + Vre) + 3URVLY)

urp + A3 R) V10 (VRa + VR + VRe) + 3URpVLS)

]
]
| = (B40)

3. 3
= Vpq |:mt1 + mp + 22507, + 4/13%1; +5 '13 ULb:| + EAQ(MZML)(ULa +vpp)

+ (22— 2

3

>

i=1

a2
1)

L
Uiglir | + =

+ 5 [3(ULa +v15) (VRaVRH + VRHVRC)

01+ 00

2

+ 28 Bug (2vg, — vk,

2
— Uke

+ [t (Vra + VR + Vre)][[(Ug + U5 + u3) (AT
5]l

+ [(u1g + uog + usg) (A + 47 +
It is worth noticing that certain fine-tuning is essential to
satisfy Eqgs. (B40)—(B41). Also similar equations can be
obtained by minimizing the potential with respect to u; ;
where (j = 2, 3), v}, where forn = bone has (i = 1, 2, 3)
and for n = a we have (i = 2, 3). Those are not mentioned
here. This exercise is performed to illustrate the scenario in
a simplified limit achieved by setting several masses and

couplings to be equal.
|

1
3(vea + vLp) Z U%ep + EULb(zv%u = Ukp = Uke)

1
+71}Lb

— M)k up + Ahui (2up, + 3vy) + Aut Qv + vip)

C

|

p=a

2 (VRaVRb + VRaVRe + VRp URC):|

— 20RaVRp — 2VRa Ve + 4VRpVR,)]

A )

~0. (B41)

APPENDIX C: FLAVOR BASIS FORM
OF THE MASS MATRICES

Mass matrices expressed in the Lagrangian basis in Egs. (6)
and (7) can be transformed to simpler forms in the flavor basis
as in Egs. (9) and (10) with the help of a unitary trans-
formation written in Eq. (8). Certain straightforward algebraic
calculations related to this derivation of the forms the mass
matrices in the flavor basis is furnished in this Appendix.

The Lagrangian in Eq. (2) produces the following mass matrix for the charged leptons and the left-handed Majorana

neutrinos,
Vi Yo 3 (Yf +2Y§)“L %?IJ;ULb %?éULb
v A A~ A
M. = % yio oy, oy |, M, = %Yi”u; (Y% Y%)”L %(YgULa + YI%ULb) . (C1)
Y1 (1)2y2 wy3 %?iva %(?SULa—’_f/vab) (Y%—Y%)ML
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where the Yukawa coupling Y% is chosen to be equal to Y%.
Also, yjv =m,,y,v =m,,y3v =m, is satisfied. The
dominant type-1I seesaw component of the neutrino mass
matrix, M,;, gives rise to the atmospheric splitting and
maximal atmospheric mixing but is devoid of solar splitting

and is therefore characterized by two masses mgo) and mgo).

It is useful to define m* = mgo) £ m(l()). Thus, m~ is
positive (negative) for normal (inverted) ordering.
Certain identifications of the vev and Yukawa products
are essential viz. 3(Yt +2Y5)u, = (mgo) +m"), 6(YE —
Y u, = Ytv,, = m* and 3Ytv,, = —2m~ to generate
the desired structures of the mass matrices as presented in
Eq. (9). The neutrino Dirac mass matrix and the right-
handed Majorana neutrino mass matrix in the Lagrangian
basis are

X1 Xe X5
Mp = ful, My =mg| x6 x2 xs|. (C2)
X5 X4 X3
where
mpyy = (YRuig + Y8uop + YSusg)
mexs = (YRuig + oYSuyp + 0?YRusp)
mpys = (Yuig + @ Yusg + 0Y5usg)
1 . N N
Mpys = E(vaRa + YRvgy + YR0g,)
1 . N N
MRYs =7 (Y20, + @Y vgy, + 0*YEvp,)
1 . N N
mR)(6EE(Yfl)Ra+0)2Y§URb+O)Y§URC). (C3)

Here my, is the right-handed Majorana neutrino mass scale
and y; are dimensionless O(1) quantities. In order to
achieve the right-handed Majorana neutrino mass matrix
of the form expressed in Eq. (10), the vev and Yukawa
couplings products have to obey

YRuig = mg(ryy + 2rp3), YRupp = mg(ry +2r3),

YRusg = mg(ry; +2rp) VRopy = 2mg(ry) — r23).
I7{5711%17 = 2mp(ry —ry3) and IA/vac =2mpg(rs3 = ri2).

(C4)

The r;; in Eq. (C4) are given by

ri1 =V 2bsin269, +asin®6?,,

b
ry=—V2bsiné?, —Esin20?2 —acos®, +g00529?2 —1—3,

b
ry = —7§sin2€?2 —V/2bsiné?, +acosd), —I—gcoszg?z +%,
a a

r1, =bcos260% +——sin?6Y, + bcos#Y, ———sind?,,

12 2Ty AR 127550
ri3=—bcos26!, _ZL\/iSiHQH?Z + bceosd, —%sin&‘fz,

b

123 =3sin26f, —gcoszﬁ?2 +g. (C5)

where a and b are dimensionless quantities of O(1).
The charged lepton mass matrix is not diagonal in the
Lagrangian basis. In order to go to a basis in which the
charged lepton mass matrix M, is diagonal, a unitary
transformation U; is applied on the left-handed lepton
doublets. The transformation Vj is applied on the right-
handed neutrino singlets of SU(2), such that the Dirac
neutrino mass matrix remains proportional to identity in
this transformed basis as well. This basis in which the
charged lepton mass matrix is diagonal and the entire
lepton mixing is dictated by the neutrino sector is called the
flavor basis. The right-handed charged leptons were kept
unchanged. The transformation matrices are given by

. 1 1 1
U =— |1 &* o | =V, C6
L= i R (Co)
]l o w
The mass matrices in the flavor basis are
m, 0 O
flavor __
M‘eﬁl" = 0 m, 0 [,
0O 0 m,
2m” 0 0
MEer = 0 mt m |, (C7)
0 m~- mt
rny T2 T3
Mp = ful Miavor — R r r r (C8)
D ) VR dab 12 Tn I3

rs I a3

One can identify fu = mp where myp, is the scale of the
Dirac masses of the neutrinos. The type-I seesaw mecha-
nism contribution is given by the matrices in Eq. (C8).
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