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A model for neutrino masses and mixing is presented using the seesaw mechanism. The model
combines type-I and type-II seesaw contributions of which the latter dominates. The scalars and
the leptons in the model are assigned A4 charges suitable to obtain the mass matrices required for
the scheme. The type-II seesaw accommodates atmospheric mass splitting and maximal mixing in the
atmospheric sector (θ23 ¼ π=4). It is characterized by vanishing solar mass splitting and θ13 whereas the
third neutrino mixing angle can acquire any value, θ012. Particular alternatives of θ012 viz. θ012 ¼ 35.3°

(tribimaximal), 45.0° (bimaximal), 31.7° (golden ratio) are accounted for. Another choice of θ012 ¼ 0° (no
solar mixing) is also considered. Incorporating the corrections provided by the subdominant type-I
seesaw involves degenerate perturbation theory due to vanishing solar splitting in the type-II seesaw
enabling the solar mixing angle to receive substantial corrections. Apart from amending the solar sector,
the type-I seesaw also tunes all the neutrino oscillation parameters into the allowed ranges, thus
interrelating them all. Thus, the model is testable in the light of future experimental data. As an example,
θ23 emerges in the first (second) octant for normal (inverted) ordering. CP-violation is controlled by
phases present in the right-handed Majorana neutrino mass matrix, MνR. Only normal ordering is
allowed if these phases are absent. If MνR is complex the Dirac CP-violating phase δ, can be large, i.e.,
∼� π=2, and inverted ordering is also allowed. T2K and NOVA preliminary data favoring normal
ordering and δ ∼ −π=2 predicts lightest neutrino mass to be 0.05 eV or more within the model
framework.
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I. INTRODUCTION

Intensive experimental investigations worldwide
have determined neutrino masses and mixing to a great
extent. In spite of these, neutrinos retain certain mysteries
including the ordering of their masses, their absolute
mass scale, their Dirac or Majorana nature, the octant
of the atmospheric mixing angle θ23 and CP-violation
in lepton sector. While future experiments address
these riddles, here a model of neutrino masses and
mixing in concord with the experimental observations
is proposed. The two small quantities θ13 and the ratio
R≡ Δm2

solar=Δm2
atmos can get interrelated when both are

derived from a single perturbation [1]. In [2], larger
mixing parameters like Δm2

atmos and θ23 ¼ π=4 were
ascribed to the dominant fundamental structure of neu-
trino masses and mixing, whereas the other oscillation
parameters i.e., θ13, θ12, the deviation of θ23 from π=4,
and Δm2

solar originated from a smaller seesaw [3] gen-
erated perturbation.1 This induces constraints on the
measured parameters. Certain symmetries can give rise
to vanishing θ13 rather easily, and new models based on
perturbations of such structures are also common in
literature [5,6].
Here, a schematic outline of the current exercise

is given. The following standard parametrization of the
lepton mixing matrix—the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) matrix—U has been used as*soumita509@gmail.com
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1Earlier attempts on neutrino mass models with some
oscillation parameters much smaller than the others can be
located in [4].
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U ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 þ s23s13c12eiδ c23c12 þ s23s13s12eiδ s23c13
s23s12 þ c23s13c12eiδ −s23c12 þ c23s13s12eiδ c23c13

1
CA; ð1Þ

where cij ¼ cos θij and sij ¼ sin θij. Neutrino masses and
mixing are generated by a two-component Lagrangian, one
of the dominant type-II seesaw structures, while the
subdominant contribution originates from the type-I see-
saw. The larger atmospheric mass splitting, Δm2

atmos, and
maximal atomspheric mixing (θ23 ¼ π=4) are embedded
within the type-II seesaw structure, whereas the solar
splitting, Δm2

solar and θ13, are kept at zero. The solar
mixing angle can vary continuously and acquire any
desired value of θ012. Needless to mention, neither
Δm2

solar nor θ13 are vanishing [7]. Evidences of nonmaximal
yet large θ23 exist. The solar mixing angle θ12 is also
constrained by experiments. The type-I seesaw alleviates
all these issues. Since the solar splitting is vanishing in the
type-II seesaw scenario, the first two mass eigenstates are
degenerate. In order to lift this degeneracy with the help of
the type-I seesaw contribution, one has to use degenerate
perturbation theory. As a consequence of this, corrections
to the solar mixing angle can be large.
The starting structure can be of tribimaximal (TBM),

bimaximal (BM), and golden ratio (GR) mixings. All of
these have θ13 ¼ 0 and θ23 ¼ π=4, with θ012 being the only
discriminating factor as specified in Table I. In this Table,
the fourth option corresponds to no solar mixing (NSM)
i.e., θ012 ¼ 0, which has the virtue of the mixing angles to be
either maximal, i.e., π=4 (θ23) or vanishing (θ13 and θ012).
An A4-based model with identical objectives only for the
NSM case was studied in [8]. This attempt along with [8]
differs from the other earlier works on A4 [9–11], as in most
of them, the neutrino mass matrix was derived as an
outcome of a type-II seesaw mechanism, and obtaining
TBM was of chief importance. Recent activities directed
towards more realistic mixing patterns [12] often leading to
breaking of A4 symmetry can be found in [13].
A few distinctive aspects of this model are worth noting

at this point. First, a combination of the type-I and type-II
seesaw is considered. Second, the model is constructed to
accommodate many popular mixing patterns. This is the
first attempt of this kind using A4 flavor symmetry that
amends several popular lepton mixing patterns in a single
stroke in which the type-II seesaw is the dominant

contribution and the type-I seesaw is subdominant. The
symmetries are broken spontaneously. Further, soft sym-
metry breaking terms are prohibited. All symmetry con-
serving terms are included in the Lagrangian. Scalars and
leptons involved in the model are assigned suitable A4
charges to implement this feature. An analogous pursuit
based on S3 × Z3 resulted in [14].
All the three neutrino mixing angles and the solar mass

splitting receives first-order corrections from a single
source—the type-I seesaw—in this model. Owing to the
common origin, they all get interrelated. These correlations
are characteristic features of this particular model. Indeed
the model has a large number of parameters, but it must
noted that only the region of the parameter space allowed
by the neutrino mass and mixing data obeying these
correlations is considered.
An analysis of the model initiates the discussion. In the

next section, the operational strategy is described. The
results so obtained are compared to the experimental data in
the following section, succeeded by the conclusions and
inferences of this work. Some essential ideas of the of the
discrete symmetry A4 are presented in Appendix A.
A detailed study of the rich scalar sector to the extent of
local minimization of the scalar potential is furnished in
Appendix B. In Appendix C, algebraic details of the mass
matrix calculations while going to the flavor basis of the
neutrinos from the Lagrangian basis can be found.

II. THE MASS MODEL

The model comprises of scalars and leptons with specific
A4 charges. All terms allowed by the symmetries under
consideration are included in the Lagrangian. No soft
symmetry-breaking term is included.
The right-handed charged leptons transform as 1ðeRÞ,

10ðμRÞ, and 100ðτRÞ under A4. The left-handed lepton
doublets of three flavors constitute an A4 triplet, so does

TABLE I. θ012 for different popular lepton mixing patterns viz.
TBM, BM, and GR mixing. NSM represents the case with
vanishing solar mixing.

Model TBM BM GR NSM

θ012 35.3° 45.0° 31.7° 0.0°

TABLE II. The lepton catalog of the model. The A4 quantum
numbers assignments of the fields are featured together with their
SUð2ÞL properties. The hypercharge, Y, and lepton number, L,
are displayed.

Fields Notations A4 SUð2ÞL (Y) L

Left-handed leptons ðνi; liÞL 3 2 ð−1Þ 1
Right-handed charged leptons l1R 1 1 ð−2Þ 1

l2R 10
l3R 100

Right-handed neutrinos NiR 3 1 (0) −1
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the right-handed neutrinos.2 Table II shows the lepton
constituents of the model together with their transformation
properties under A4 and SUð2ÞL. The hypercharge and
lepton number assignments are also shown.3 The choices of
A4 properties of the fields are not unique. A list of all
possible options can be found in [15] of which this model
adopts class B. The model is restricted to leptons only.4

Masses of all leptons originate from A4-invariant
Yukawa couplings. Several scalar fields have to be
included5 that acquire suitable vacuum expectation values
(vevs). The strategy of choosing the scalar field multiplets
requires some elaboration. An idea of the mass matrices of
the left- and right-handed neutrinos in the flavor basis
(charged lepton mass matrix diagonal) that are suitable for
our avowed goal can be acquired from our previous work
[14]. The Lagrangian is written down in a basis which is
unitarily related to the flavor basis. Consequently, the mass
matrices in this defining basis have somewhat complicated
structures for which the motivation is not initially obvious.
These forms of the mass matrices (below) arise from a
rather large set of scalars and their vevs.
The charged leptons acquire their masses through the

SUð2ÞL doublet scalar fieldsΦi (i ¼ 1, 2, 3) forming an A4
triplet. The neutrino Dirac mass matrix is generated by an
A4 invariant SUð2ÞL doublet η, having lepton number 2.

SUð2ÞL triplet scalars are required for the type-II seesaw for
left-handed neutrino mass matrix that include A4 triplet
fields Δ̂L

a and Δ̂L
b along with ΔL

ζ , ζ ¼ 1, 2, 3 transforming
as 1, 10, 100 of A4. These are used to construct the dominant
type-II seesaw neutrino mass matrix. Effects of the sub-
dominant type-I seesaw contribution is included perturba-
tively. A4 conserving Yukawa couplings produce the
right-handed neutrino mass matrix as well. Several
SUð2ÞL singlet scalars are involved in generation of the
Majorana masses for the right-handed neutrinos viz. Δ̂R

p

(p ¼ a, b, c) transforming as A4 triplets and ΔR
γ (γ ¼ 1, 2,

3) transforming as 1, 10 and 100 under A4. Table III evinces
transformation properties of the model scalars under A4
and SUð2ÞL together with their hypercharge, lepton number
and vev configurations. The vevs of the SUð2ÞL doublet
scalars are of OðMWÞ while that of the SUð2ÞL triplets are
several orders of magnitude smaller than the doublet vevs
in concord with the small neutrino masses as well as the ρ
parameter of electroweak symmetry breaking. As expected,
the vevs of the SUð2ÞL singlets responsible for right-
handed neutrino mass lies much above the electroweak
scale. The mass terms of the neutrinos (both type-I and
type-II seesaw) and that of the charged leptons are
generated by a SUð2ÞL ×Uð1ÞY conserving Lagrangian
that preserves A4 as well6:

Lmass ¼ yjρjikl̄LilRjΦ0
k ðcharged leptonmassÞ þ fρ1ikν̄LiNRkη

0 ðneutrinoDiracmassÞ

þ 1

2

�X
n¼a;b

ŶL
nαijkν

T
LiC

−1νLjΔ̂L0
nk þ YL

ζ ρζijν
T
LiC

−1νLjΔL0
ζ

�
ðneutrino type-II seesawmassÞ

þ 1

2

� X
p¼a;b;c

ŶR
pαijkNT

RiC
−1NRjΔ̂R0

kp þ YR
γ ργijNT

RiC
−1NRjΔR0

γ

�
ðrh neutrinomassÞ þ H:c: ð2Þ

The scalars acquire the following vevs (SUð2ÞL part is suppressed):

hΦ0i¼ vffiffiffi
3

p

0
B@
1

1

1

1
CA; hη0i¼u; hΔ̂L0

a i¼vLa

0
B@
1

0

0

1
CA; hΔ̂L0

b i¼vLb

0
B@
1

1

1

1
CA; hΔL0

1 i¼hΔL0
2 i¼hΔL0

3 i¼uL; ð3Þ

hΔ̂R0
a i ¼ vRa

0
B@

1

1

1

1
CA; hΔ̂R0

b i ¼ vRb

0
B@

1

ω

ω2

1
CA; hΔ̂R0

c i ¼ vRc

0
B@

1

ω2

ω

1
CA; ð4Þ

2The notation followed closely resembles that of [9].
3Opposite lepton numbers are assigned to νL and NR in order to prohibit their coupling with Φ so that the Dirac mass matrix can

remain proportional to the identity matrix.
4Quark models based on A4 has been explored in [16,17].
5Models addressing this issue by separating the breaking of SUð2ÞL and A4 are widely studied in literature [10]. The former is

mediated by the usual doublet and triplet scalars of SUð2ÞL that are invariant under A4. The breaking of A4 is induced by the vev of
“flavon” scalar fields that are singlets of SUð2ÞL but their transformations under A4 is nontrivial. Though such models are economic
effective dimension-5 interactions comes into play in order to connect the fermions with the two types of scalar fields simultaneously
leading to an interpretation as an effective theory.

6Lepton number is also conserved for the mass terms of Dirac kind.
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hΔR0
1 i ¼ u1R; hΔR0

2 i ¼ u2R; hΔR0
3 i ¼ u3R: ð5Þ

An elaborate study of the A4 conserving scalar potential
involving the fields listed in Table III is presented
in Appendix B of this paper. Local minimization is

performed and the conditions corresponding to the par-
ticular vev structures as indicated in Eqs. (3)–(5) are
obtained.
The mass matrix for the charged leptons and the left-

handed Majorana neutrinos so obtained are:

Meμτ ¼
vffiffiffi
3

p

0
B@

y1 y2 y3
y1 ωy2 ω2y3
y1 ω2y2 ωy3

1
CA;

MνL ¼

0
BB@

ðYL
1 þ 2YL

2 ÞuL 1
2
ŶL
bvLb

1
2
ŶL
bvLb

1
2
ŶL
bvLb ðYL

1 − YL
2 ÞuL 1

2
ðŶL

avLa þ ŶL
bvLbÞ

1
2
ŶL
bvLb

1
2
ðŶL

avLa þ ŶL
bvLbÞ ðYL

1 − YL
2 ÞuL

1
CCA; ð6Þ

TABLE III. The scalar sector of the model. The A4 charges as well as the SUð2ÞL nature of the scalars are exhibited. The hypercharge,
Y, lepton number, L, and the vacuum expectation value (vev) configurations of the scalars are also presented.

Purpose Notations A4 SUð2ÞL (Y) L Vev

Charged fermion mass
Φ ¼

 ϕþ
1 ϕ0

1

ϕþ
2 ϕ0

2

ϕþ
3 ϕ0

3

!
3 2 (1) 0

hΦi ¼ vffiffiffi
3

p
 
0 1

0 1

0 1

!

Neutrino Dirac mass η ¼ ðη0; η−Þ 1 2 ð−1Þ 2 hηi ¼ ðu; 0Þ
Type-II seesaw mass

Δ̂L
a ¼

0
B@ Δ̂þþ

1a Δ̂þ
1a Δ̂0

1a
Δ̂þþ

2a Δ̂þ
2a Δ̂0

2a
Δ̂þþ

3a Δ̂þ
3a Δ̂0

3a

1
CA

L 3 3 (2) −2
hΔ̂L

a i ¼ vLa

 
0 0 1

0 0 1

0 0 1

!

Type-II seesaw mass
Δ̂L

b ¼

0
B@ Δ̂þþ

1b Δ̂þ
1b Δ̂0

1b
Δ̂þþ

2b Δ̂þ
2b Δ̂0

2b
Δ̂þþ

3b Δ̂þ
3b Δ̂0

3b

1
CA

L 3 3 (2) −2
hΔ̂L

b i ¼ vLb

 
0 0 1

0 0 1

0 0 1

!

1 3 (2) −2 hΔL
1 i ¼ ð0; 0; uLÞ

Type-II seesaw mass ΔL
ζ ¼ ðΔþþ

ζ ;Δþ
ζ ;Δ0

ζÞL 10 3 (2) −2 hΔL
2 i ¼ ð0; 0; uLÞ

100 3 (2) −2 hΔL
3 i ¼ ð0; 0; uLÞ

Right-handed neutrino mass
Δ̂R

a ¼
 Δ̂0

1a
Δ̂0

2a
Δ̂0

3a

!
R 3 1 (0) 2

hΔ̂R
a i ¼ vRa

 
1

1

1

!

Right-handed neutrino mass
Δ̂R

b ¼
 Δ̂0

1b
Δ̂0

2b
Δ̂0

3b

!
R 3 1 (0) 2

hΔ̂R
b i ¼ vRb

 
1

ω
ω2

!

Right-handed neutrino mass
Δ̂R

c ¼
 Δ̂0

1c
Δ̂0

2c
Δ̂0

3c

!
R 3 1 (0) 2

hΔ̂R
c i ¼ vRc

 
1

ω2

ω

!

Right-handed neutrino mass ΔR
1 ¼ ðΔ0

1ÞR 1 1 (0) 2 hΔR
1 i ¼ u1R

Right-handed neutrino mass ΔR
2 ¼ ðΔ0

2ÞR 10 1 (0) 2 hΔR
2 i ¼ u2R

Right-handed neutrino mass ΔR
3 ¼ ðΔ0

3ÞR 100 1 (0) 2 hΔR
3 i ¼ u3R
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where the choice of YL
2 ¼ YL

3 is made. The Yukawa
couplings involved in the charged lepton mass matrix
satisfies y1v ¼ me, y2v ¼ mμ, y3v ¼ mτ. The neutrino
mass matrix of Dirac nature and the right-handed neutrino
mass matrix of Majorana kind acquires the following
structures:

MD ¼ fuI; MνR ¼ mR

0
B@

χ1 χ6 χ5

χ6 χ2 χ4

χ5 χ4 χ3

1
CA: ð7Þ

mD sets the scale of Dirac masses of the neutrinos
where one can identify fu ¼ mD. The scale of the
type-II seesaw neutrino masses is much smaller than that
of the charged leptons i.e., OðMνLÞ ∼ uL; vLa; vLb where
uL; vLa; vLb ≪ v. Such a possibility that the triplet vev is
much smaller than the doublet vev can be obtained as
shown in [18], albeit in a model with fewer scalars. The
scale of the right-handed Majorana neutrino masses is set
by mR and χi in Eq. (7) are dimensionless quantities7

of Oð1Þ.
The mass matrices in Eq. (6) could be expressed in a

more convenient form by applying a couple of trans-
formations. The non-Hermitian charged lepton mass matrix
can be diagonalized by applying a transformation UL
(below) on the left-handed lepton doublets and no trans-
formation on the right-handed charged leptons. The trans-
formation matrices are expressed as

UL ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA: ð8Þ

This basis in which the charged lepton mass matrix is
diagonal and the entire lepton mixing is governed by the
neutrino sector is termed as the flavor basis in which the
mass matrices acquire the following forms:

Mflavor
eμτ ¼

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CA;

Mflavor
νL ¼ 1

2

0
B@ 2mð0Þ

1 0 0

0 mþ m−

0 m− mþ

1
CA: ð9Þ

Here m� ≡mð0Þ
3 �mð0Þ

1 . Therefore, m− is positive (neg-
ative) for normal (inverted) ordering. As noted earlier,
Mflavor

νL , which arises from the type-II seesaw, is the
dominant contribution to the neutrino mass.

Demanding that the neutrino Dirac mass matrix, which
couples the left- and right-handed neutrinos, preserves its
proportionality to the identity matrix necessitates that the
transformation applied on the right-handed neutrino fields
must be VR ¼ UL. Thus, we get

MD ¼ fuI;

Mflavor
νR ¼ ðV†

RMνRV
†
RÞ ¼

mR

4ab

0
B@

r11 r12 r13
r12 r22 r23
r13 r23 r33

1
CA: ð10Þ

The matrices in Eq. (10) will take part in the type-I seesaw
mechanism.8 Various identification of the products of the
Yukawa couplings and the vevs with the neutrino mass and
mixing parameters are necessary for the mass matrices to be
expressed in the forms as presented in Eqs. (9) and (10).
Appendix C comprises of these algebraic details.

III. MODUS OPERANDI

The four mass matrices in the flavor basis obtained from
the model are given in Eqs. (9) and (10). In this basis the
entire lepton mixing and CP-violation is controlled solely
by the neutrino sector to which we restrict our discussion
now onwards. The subdominant contribution given by the
type-I seesaw is incorporated by perturbation theory to the
dominant component Mflavor

νL coming from the type-II
seesaw. The flavor basis mass matrices have to undergo
one more basis transformations for successful implemen-
tation of this scheme. More precisely they ought to be
expressed in the mass basis of the neutrinos which by
definition has the left-handed neutrino mass matrix diago-
nal in it. Thus,

M0¼Mmass
νL ¼U0TMflavor

νL U0¼

0
BB@
mð0Þ

1 0 0

0 mð0Þ
1 0

0 0 mð0Þ
3

1
CCA; ð11Þ

where

U0 ¼

0
BB@

cos θ012 sin θ012 0

− sin θ0
12ffiffi
2

p cos θ0
12ffiffi
2

p 1ffiffi
2

p

sin θ0
12ffiffi
2

p − cos θ0
12ffiffi
2

p 1ffiffi
2

p

1
CCA: ð12Þ

The left-handed neutrino fields in the mass basis (jνmass
L i)

are connected to the ones in the flavor basis (jνflavorL i) by
this U0 furnished in Eq. (12). One can obtain the jνmass

L i by
applying U0† on jνflavorL i i.e., jνmass

L i ¼ U0†jνflavorL i. It
immediately follows from Eqs. (11), (1) and (12) that, in
the type-II seesaw component, solar splitting is absent,

7See Appendix C for exact expressions of χi in Eq. (7). 8Explicit forms of rij in Eq. (10) can be found in Appendix C.
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θ13 ¼ 0 and θ23 ¼ π=4. The columns of U0 are the
unperturbed flavor basis.
Once again we demand that in the mass basis the

neutrino Dirac mass matrix remains proportional to iden-
tity. In order to satisfy this, the same transformation (U0†)
has to be applied on the right-handed neutrino fields. This
leads to changes in form of right-handed neutrino mass
matrix given by Mmass

νR ¼ ðU0†Mflavor
νR U0Þ. The matrices

contributing in the type-I seesaw are as follows:

MD ¼ mDI and Mmass
νR ¼ mR

2
ffiffiffi
2

p
ab

0
B@

0 b b

b affiffi
2

p − affiffi
2

p

b − affiffi
2

p affiffi
2

p

1
CA:

ð13Þ
Here a and b are dimensionless quantities9 of Oð1Þ. It is
imperative to note that a and b can in general be complex.
One can in principle trade off a and b in terms of complex
numbers ye−iϕ2 and xe−iϕ1 respectively, where x and y are
dimensionless real quantities of Oð1Þ. The type-I seesaw
contribution is obtained by

M0 ¼½MT
DðMνRÞ−1MD�¼

m2
D

mR

0
BB@

0 yeiϕ1 yeiϕ1

yeiϕ1 xeiϕ2ffiffi
2

p −xeiϕ2ffiffi
2

p

yeiϕ1 −xeiϕ2ffiffi
2

p xeiϕ2ffiffi
2

p

1
CCA: ð14Þ

Here the Dirac mass matrix is proportional to identity. It
was checked that the same results can follow as long asMD
is diagonal. Mmass

νR exhibits a N2R ↔ N3R discrete sym-
metry. The results remain intact even if that choice is
relaxed. Now onwards the entire procedure is carried on in
the mass basis of the neutrinos using the mass matrices
expressed in Eqs. (11) and (14).
The method followed below essentially consists of the

following steps. From the type-II seesaw, a lepton mixing
of the form of Eq. (12) is generated, with θ012 of any
preferred value. At this stage, only the atmospheric mass
splitting is nonzero and atmospheric mixing is maximal.
Next, the type-I seesaw is included using degenerate
perturbation theory. The solar mass splitting and the desired
θ12 are first obtained. Then the third column of the mixing
matrix is calculated and compared with Eq. (1) to extract
θ13, θ23, and δ.

IV. RESULTS

The neutrino mass matrices derived from the type-I and
type-II seesaw mechanism have been discussed in the
previous section, of which the former is significantly
smaller than the latter. In the absence of the type-I seesaw
contribution, the leptonic mixing matrix characterized by

θ13 ¼ 0, θ23 ¼ π=4, and θ012 is free to vary. Consequences
for the four choices of the value of θ012, corresponding to the
TBM, BM, GR, and NSM cases together with the vanishing
solar splitting, are examined. This, along with the atmos-
pheric mass splitting allowed by the data, depict the type-II
seesaw structure. Inclusion of type-I seesaw corrections
perturbatively up to first order modulates the neutrino
oscillation parameters into the ranges preferred by data.
Owing to the vanishing solar splitting in the type-II seesaw
contribution, the first two mass eigenstates are degenerate.
Thus, in the solar sector degenerate perturbation theory has
to be applied. Hence, the first-order corrections to the solar
mixing angle can be large. The global best-fit of the
oscillation parameters are displayed in the next section.

A. Data

The current 3σ global fits of the neutrino oscillation
parameters are: [19,20]

Δm2
21 ¼ð7.02–8.08Þ × 10−5 eV2;

θ12 ¼ð31.52–36.18Þ°;
jΔm2

31j ¼ð2.351–2.618Þ × 10−3 eV2;

θ23 ¼ð38.6–53.1Þ°;
θ13 ¼ð7.86–9.11Þ°; δ ¼ ð0–360Þ°: ð15Þ

These numbers are taken from NuFIT2.1 of 2016 [19].
Needless to mention, Δm2

ij ≡m2
i −m2

j , such that Δm2
31> 0

for normal ordering (NO) and Δm2
31 < 0 for inverted

ordering (IO). Two best-fit points of θ23 are evinced by
the data in the first and in the second octants. Towards the
end of the paper it is discussed how the model can
accommodate the recent T2K and NOVA hints [21,22]
of δ close to −π=2.

B. Real MνR (ϕ1 = 0 or π, ϕ2 = 0 or π)

As a warm-up exercise let us consider the simpler case of
MνR real. In such a scenario there is no CP-violation as the
phases ϕ1;2 of Eq. (14) are 0 or π. This leads to four
different alternatives available for choosing ϕ1 and ϕ2.
These are captured compactly by taking x and y real and
allowing them to assume both signs for notational con-
venience. It will be soon clear how the experimental
observations prefer one or the other of these four alter-
natives. Thus, for real MνR, the type-I seesaw contribution
appears like:

M0 ¼ m2
D

mR

0
B@

0 y y

y xffiffi
2

p − xffiffi
2

p

y − xffiffi
2

p xffiffi
2

p

1
CA: ð16Þ

The degeneracy of the two neutrino masses in the type-II
seesaw ensuring the vanishing solar splitting necessitates9See Eq. (C5) in Appendix C for details.
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the application of degenerate perturbation theory to obtain
the corrections for the solar sector mixing parameters.10

The entire dynamics of this sector is dictated by the upper
2 × 2 submatrix of M0 given by:

M0
2×2 ¼

m2
D

mR

�
0 y

y x=
ffiffiffi
2

p
�
: ð17Þ

This gives rise to

θ12 ¼ θ012 þ ζ; tan 2ζ ¼ 2
ffiffiffi
2

p �
y
x

�
: ð18Þ

For functional ease, it is useful to define a quantity ϵ as

sin ϵ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

p and cos ϵ ¼ x=
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

p ;

i:e:; tan ϵ ¼ 1

2
tan 2ζ: ð19Þ

Once a mixing pattern is selected, the corresponding θ012
gets fixed and the experimental bounds of θ12 determines
the 3σ ranges of ζ and ϵ by means of Eqs. (15) and (19) as
featured in Table IV. The ratio (y=x) is positive (negative)
when ζ is positive (negative). From Eq. (19), it is evident
that the sign of y is regulated by the value of ϵ. Putting all
these facts together it is easy to infer that x is positive
always, or in other words ϕ2 must be 0, while y has to be
positive, ϕ1 ¼ 0 (negative, ϕ1 ¼ π) for NSM (BM). In case
of TBM and GR, both signs of y are admissible. The solar
splitting provided by the type-I seesaw as extracted from
Eq. (17) is

Δm2
solar ¼

ffiffiffi
2

p
m2

D

mR
mð0Þ

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 8y2

q
¼

ffiffiffi
2

p
m2

D

mR
mð0Þ

1

x
cos 2ζ

:

ð20Þ

For the mass basis form of the mass matrix in Eq. (11),
the mixing in the leptonic sector is completely given by the
U0 given in Eq. (12). After including the type-I seesaw

correction to the mass matrices, there is a further contri-
bution to the mixing matrix as well, now given by

U ¼ U0Uν

where Uν ¼

0
B@

cos ζ − sin ζ κr sin ϵ

sin ζ cos ζ −κr cos ϵ
κr sinðζ − ϵÞ κr cosðζ − ϵÞ 1

1
CA;

ð21Þ

with

κr ≡ m2
D

mRm−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2=2

q
¼ m2

D

mRm−
xffiffiffi

2
p

cos ϵ
: ð22Þ

The third column of the lepton mixing matrix is:

jψ3i ¼

0
BB@

κr sinðϵ − θ012Þ
1ffiffi
2

p ½1 − κr cosðϵ − θ012Þ�
1ffiffi
2

p ½1þ κr cosðϵ − θ012Þ�

1
CCA: ð23Þ

As already pointed out, x is always positive, κr is positive
(negative) for NO (IO).
Eq. (23) when mapped to the third column of Eq. (1)

leads to

sin θ13 cos δ ¼ κr sinðϵ − θ012Þ; ð24Þ

and

tanðπ=4 − θ23Þ≡ tanω ¼ κr cosðϵ − θ012Þ: ð25Þ

The allowed ranges of ðϵ − θ012Þ for the different mixing
patterns is given in Table IV. The CP-phase δ is 0 (π) when
sinðϵ − θ012Þ is positive (negative) in case of normal order-
ing.11 It can be immediately concluded that δ ¼ 0 for the
NSM from Table IV and δ ¼ π for the rest of the options
under study. CP is conserved for both the values of δ.
Using Eqs. (20), (22), and (24), we find

Δm2
solar ¼ 2m−mð0Þ

1

sin θ13 cos δ cos ϵ
cos 2ζ sinðϵ − θ012Þ

: ð26Þ

TABLE IV. Data allowed 3σ ranges of ζ [Eq. (18)], ϵ [Eq. (19)], and ðϵ − θ012Þ for different popular mixing patterns
are shown.

Model (θ012) TBM (35.3°) BM (45.0°) GR (31.7°) NSM (0.0°)

ζ −4.0° ↔ 0.6° −13.7° ↔ −9.1° −0.4° ↔ 4.2° 31.3° ↔ 35.9°
ϵ −4.0° ↔ 0.6° −14.5° ↔ −9.3° −0.4° ↔ 4.2° 44.0° ↔ 56.7°
ϵ − θ012 −39.2°↔ −34.6° −59.5° ↔ −54.4° −39.2° ↔ −30.0° 44.0° ↔ 56.7°

10Since degenerate perturbation theory is used in the solar
sector, the first-order correction to the solar mixing angle ζ is not
constrained to be small. 11Inverted ordering is prohibited for real MνR.
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For real MνR inverted ordering is forbidden as can be seen
from Eq. (26). In order to justify this, one can define

z≡m−mð0Þ
1 =Δm2

atmos and tan ξ≡m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

atmosj
q

;

ð27Þ

where z is positive for both the orderings of neutrino
masses. With the help of Eq. (26) it can be written as

z ¼
�

Δm2
solar

jΔm2
atmosj

��
cos 2ζ sinðϵ − θ012Þ
2 sin θ13j cos δj cos ϵ

�
: ð28Þ

From Eq. (27), it is straightforward to show that

z¼ sinξ=ð1þ sinξÞ i:e:; 0≤ z≤
1

2
ðfornormalorderingÞ;

z¼ 1=ð1þ sinξÞ i:e:;
1

2
≤ z≤ 1 ðfor invertedorderingÞ:

ð29Þ

The lightest neutrino mass m0 has a one-to-one correspon-
dence with z. In the quasidegenerate limit, i.e., m0 → large,
z → 1

2
for both orderings. For real MνR, j cos δj ¼ 1 in

Eq. (28). It simply follows from the global fit mass splittings
andmixing angles in Sec. IVA and Table IV that z ∼ 10−2 or
smaller for all four popular mixing alternatives. Thus,
inverted ordering is forbidden for real MνR.
Using Eqs. (24) and (25), the deviation of the atmos-

pheric mixing angle from maximality is found to be:

tanω ¼ sin θ13 cos δ
tanðϵ − θ012Þ

: ð30Þ

Eq. (25) implies that ω is positive always for normal
ordering irrespective of the mixing pattern. Thus, θ23 is
confined only to the first octant for real MνR. ϵ can be
expressed in terms of θ12 using Eqs. (18) and (19). Thus, ω
in Eq. (30) can be expressed as a function of θ13 and θ12
only. Figure 1 exhibits ω as a function of θ12 for BM (thin
pink lines) and NSM (thick green lines) alternatives. θ12
and ω varied within 3σ allowed ranges as shown in
Sec. IVA. The TBM and GR cases are excluded because,
for the allowed values of θ12, they predict θ23 beyond the 3σ
range. The 3σ limiting values of θ13 are marked by the solid
lines, whereas the dashed lines indicate its best-fit value.
The vertical and horizontal blue dot-dashed lines denote the
3σ experimental limits of θ12 and θ23.
With the help of Eq. (28), one can translate any allowed

point in the ω − θ12 plane and the θ13 associated with it to a
value of z, or equivalently m0, when the solar and the
atmospheric mass splittings are provided. For both the
allowed mixing patterns m0 varies over a very small range.
This range is found to be 2.13 meV ≤ m0 ≤ 3.10 meV
(3.20 meV ≤ m0 ≤ 4.42 meV) for NSM (BM) when both

mass splittings and all the three mixing angles are allowed
to vary over their entire 3σ ranges.
The salient features of the real MνR case are
(1) Only the normal ordering of neutrino masses is

allowed.
(2) Only the first octant of θ23 is admissible.
(3) Type-I seesaw corrections is unable to make the

TBM and GR mixing patterns consistent with the
allowed ranges of the mixing angles.

(4) NSM and BM alternatives can produce solutions in
agreement with the observed neutrino masses and
mixing. The allowed ranges of lightest neutrino
mass is very narrow.

C. Complex MνR

Real MνR has several limitations viz. inverted ordering
and CP-violation is forbidden. Moreover, TBM and GR
mixing patterns cannot be included within the ambit of the
model when MνR is real. In order to overcome these
constraints, the general complex form of MνR leading to
the type-I seesaw contributionM0 furnished in Eq. (14) has
to be considered. It is worth reminding ourselves that this
choice introduces the complex phases ϕ1;2, while x and y
can only be positive.
Thus,M0 is no longer Hermitian. To retain the Hermitian

nature, the combination ðM0 þM0Þ†ðM0 þM0Þ is consid-
ered, among which M0†M0 and ðM0†M0 þM0†M0Þ are
treated as the leading term and the perturbation at the
lowest order, respectively. The unperturbed eigenvalues are

given by ðmð0Þ
i Þ2 and perturbation matrix is

 4.5

 5

 5.5

 6

 6.5

 7

 31  32  33  34  35  36

ω
 =

 (
π/

4−
θ 2

3)
 in

 d
eg

re
es

θ12 in degrees

BM

NSM

Real MνR, Normal Ordering, First Octant

FIG. 1. ω ¼ ðπ=4 − θ23Þ -vs- θ12 plot for normal ordering. The
3σ allowed range of sin θ13 is marked by the solid lines whereas
the dashed line indicates the best-fit value. Thin pink (thick
green) lines denote the BM (NSM) case. The horizontal and
vertical lines represent the data allowed 3σ range. The first octant
of θ23 is preferred since ω is positive always. Although ω is
positive for TBM and GR mixing patterns its value lies beyond
the 3σ range. Best-fit values of atmospheric and solar mass
splittings are taken. Inverted ordering is disallowed for MνR real.
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ðM0†M0 þM0†M0Þ

¼m2
D

mR

0
BBB@

0 2ymð0Þ
1 cosϕ1 yfðϕ1Þ

2ymð0Þ
1 cosϕ1

ffiffiffi
2

p
xmð0Þ

1 cosϕ2 − xffiffi
2

p fðϕ2Þ
yf�ðϕ1Þ − xffiffi

2
p f�ðϕ2Þ

ffiffiffi
2

p
xmð0Þ

3 cosϕ2

1
CCCA;

ð31Þ

where

fðφÞ≡mþ cosφ − im− sinφ: ð32Þ

The rest of the procedure is analogous to what was done in
case of realMνR keeping in mind the discriminating factors
of Eq. (31). Now, instead of Eqs. (18) and (19) of the
real MνR case, the solar mixing obtained from Eq. (31) is
given by

θ12 ¼ θ012 þ ζ; tan 2ζ ¼ 2
ffiffiffi
2

p y
x
cosϕ1

cosϕ2

; ð33Þ

and

sin ϵ ¼ y cosϕ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

p ;

cos ϵ ¼ x cosϕ2=
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

p ;

tan ϵ ¼ 1

2
tan 2ζ: ð34Þ

Table IV shows the allowed ranges of ζ and ϵwhich depend
on the mixing patterns. For all mixing alternatives cos ϵ is
found to be positive. Thus, from Eq. (34), ϕ2 must always
lie in the first or fourth quadrants. For the different mixing
patterns the ranges of ϕ1 are also given by that of ϵ. When ϵ
is positive (negative) then from the first relation contained
in Eq. (34), it is evident that ϕ1 has to be in the first or
fourth (second or third) quadrants. Using the results
displayed in Table IV, one can infer that the first (second)
option holds for the NSM (BM) patterns. In case of TBM
and GR, ϵ varies over positive and negative values making
both options equally admissible.
Applying degenerate perturbation theory the solar mass

splitting attributed completely to the type-I seesaw con-
tribution can be obtained from Eq. (31):

Δm2
solar ¼

ffiffiffi
2

p
mð0Þ

1

m2
D

mR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2cos2ϕ2 þ 8y2cos2ϕ1

q
¼

ffiffiffi
2

p
mð0Þ

1

m2
D

mR

x cosϕ2

cos 2ζ
¼

ffiffiffi
2

p
mð0Þ

1

m2
D

mR

2
ffiffiffi
2

p
y cosϕ1

sin 2ζ
: ð35Þ

In place of Eq. (23), one gets

jψ3i ¼

0
BBBBBBBB@

κc
h

sin ϵ
cosϕ1

fðϕ1Þ cos θ012 − cos ϵ
cosϕ2

fðϕ2Þ sin θ012
i
=mþ

1ffiffi
2

p
�
1 − κc

h
sin ϵ
cosϕ1

fðϕ1Þ sin θ012 þ cos ϵ
cosϕ2

fðϕ2Þ cos θ012
i
=mþ

�

1ffiffi
2

p
�
1þ κc

h
sin ϵ
cosϕ1

fðϕ1Þ sin θ012 þ cos ϵ
cosϕ2

fðϕ2Þ cos θ012
i
=mþ

�

1
CCCCCCCCA
; ð36Þ

where

κc ¼
m2

D

mRm−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2cos2ϕ1 þ x2cos2ϕ2=2

q
; ð37Þ

Here Eq. (34) and the complex function fðϕ1;2Þ defined in
Eq. (32) have been used. κc is positive (negative) for NO
(IO). Comparing Eq. (36) with the third column of Eq. (1)
leads to

sin θ13 cos δ ¼ κc sinðϵ − θ012Þ; ð38Þ

sinθ13 sinδ¼ κc
m−

mþ cosϕ1 cosϕ2

½sinϵ sinϕ1 cosϕ2 cosθ012

− cosϵcosϕ1 sinϕ2 sinθ012�: ð39Þ

From Table IV, it is obvious that ðϵ − θ012Þ exists in the
first (fourth) quadrant for the NSM (BM, TBM, and GR)
mixing pattern. From Eq. (38), one can immediately
conclude that for NSM (BM, TBM, and GR) case(s) δ
remains in the first or fourth (second or third) quadrants in
case of normal ordering. κc changes sign for inverted
ordering. Thus, the quadrants get modified accordingly.
The different alternatives are furnished in Table V. There
are two allowed quadrants of δ having sin δ of opposite sign
for any mixing option and ordering of neutrino masses. The
sign of the right-hand-side of Eq. (39) governs the phases
ϕ1;2 which in its turn decides the quadrants CP-phase δ out
of the two allowed options. As already discussed, ϕ2 can be
in either the first or fourth quadrants. The quadrant of ϕ1
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depends on the mixing pattern in such a manner that sinϕ1

can be of either sign. Therefore, the phases ϕ1 and ϕ2 can
be chosen in a way such that sin δ can acquire any particular
sign. Thus, the two alternate quadrants of δ for every case in
Table V are equally allowed in the model.
The type-I seesaw perturbative contribution to the

atmospheric mixing angle can be obtained from Eq. (36) as

tanω ¼ sin θ13 cos δ
tanðϵ − θ012Þ

: ð40Þ

Let us recall that Eq. (38) relates δ and ðϵ − θ012Þ through
κc. Thus, for all mixing alternatives θ23 always remains in
first (second) octant for NO (IO). This is one of the most
important results of the model as shown in Table V.
In the solar splitting expressed in Eq. (35), the factor of

m2
D=mR can be replaced in terms of κc. This together with

Eq. (38) gives,

Δm2
solar ¼

2m−mð0Þ
1 sin θ13 cos δ cos ϵ

sinðϵ − θ012Þ cos 2ζ
: ð41Þ

Predictions of the model can be extracted from Eqs. (40)
and (41). The three mixing angles θ13, θ12, and θ23 are
taken as inputs. Equation (40) determines a value of the

CP-violating phase δ. With the help of these and the
experimentally observed solar splitting the combination

mð0Þ
1 m−, or equivalently the variable z can be calculated

using Eq. (41) that fixes the lightest neutrino mass m0. It
may seem that arbitrarily large values of m0, and hence

mð0Þ
1 m−, may be accounted for by tuning cos δ to smaller

and smaller values. However, this certainly is not the case.
Experimental data necessitate ω ¼ ðπ=4 − θ23Þ to be
restricted within observed limits. As all other factors have
ranges determined experimentally, Eq. (40) also puts lower
and upper bounds on δ. Subsequently,m0 lies within a fixed
range for any mixing pattern.
Figure 2 contains the CP-phase δ (θ23) as a function of

the lightest neutrino mass m0 for different mixing patterns
as predicted by this model in the left (right) panel while the
best-fit values of the various measured angles and mass
splittings are used. The NSM, BM, TBM and GR are
depicted by green solid, pink dashed, red dot-dashed, and
violet dotted curves respectively. The thick (thin) curves of
each kind indicate NO (IO). Normal and inverted orderings
are always associated with the first and second octants of
the atmospheric mixing angle θ23 respectively. For NSM
case δ lies in the first (second) quadrant for normal
(inverted) ordering, while for the rest of the mixing options
it is in the second (first) quadrant. For inverted neutrino
mass ordering, jδj remains close to π=2 for the complete
range of m0. The CP-phase δ lies near π=2 for normal
ordering for m0 larger than around 0.05 eV.
From Table V, it is evident that if δ is a solution for some

m0 then by properly choosing alternate values of the phases
ϕ1;2 appearing inMνR one can also obtain a second solution
with the phase −δ. This mirror set of solutions are not
shown in Fig. 2. The preliminary data presented by the T2K
[21] and NOVA [22] collaborations can be considered as
primary hint of normal ordering associated with δ ∼ −π=2.
The consistency of this model with these observations is
clearly visible from Fig. 2 with δ ∼ −π=2 favoringm0 in the

TABLE V. The octant of θ23 and the quadrants of the CP-phase
δ for different mixing patterns for both orderings of neutrino
masses are exhibited.

Normal ordering Inverted ordering

Mixing
pattern δ Quadrant θ23 Octant δ Quadrant θ23 Octant

NSM First=fourth First Second=third Second
BM, TBM,
GR

Second=third First First=fourth Second

 50
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FIG. 2. In the left (right) panel, theCP-phase δ (θ23) predicted by thismodel is plotted as a functionof the lightest neutrinomassm0 for all the
fourmixing patternswhen thebest-fit values of thedata are taken as input. TheNSM,BM,TBMandGRmixing alternatives are represented by
the green solid, pink dashed, red dot-dashed, and violet dotted curves respectively. Thick (thin) curves of each kind denote NO (IO).
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quasidegenerate regime, i.e., m0 ≥ Oð0.05 eVÞ, for normal
ordering. If this result is determined with better accuracy in
the future analysis then the model will predict neutrino
masses to be in a range that ongoing experiments are
capable of probing [23,24].
These interrelationships between the octant of θ23, the

quadrant of the CP-violating phase δ, and the neutrino
mass ordering provide a clear set of correlations character-
istic of this A4 based model. In the model the corrections to
the three neutrino mixing angles and Δm2

solar all have a
common origin—the type-I seesaw. As a result these
parameters get correlated. Such interrelationships are spe-
cific to this model. Although the model has a large number
of parameters, only this correlated region of the parameter
space allowed by neutrino mass and mixing data leads to
testable predictions in Table V.

V. CONCLUSIONS

In this paper, an A4 based seesaw model for neutrino
masses and mixing has been proposed. The flavor quantum
numbers suitable for the model are assigned to the leptons
and the scalars. The Lagrangian is inclusive of all the
symmetry conserving terms. No soft breaking of symmetry
is entertained. The Yukawa couplings induce the charged
lepton masses, Dirac and Majorana masses for the left- and
right-handed neutrinos after the symmetry is broken spon-
taneously. Neutrino masses are produced by a combined
effect of both type-I and type-II seesaw terms present in the
Lagrangian of which the former can be thought of to be a
small correction. The type-II seesaw dominant contribution
is associated with the atmospheric mass splitting, no solar
splitting, keeps θ23 ¼ π=4, and θ13 ¼ 0 and θ12 can be
given any preferred value. In particular, this model is
scrutinized in context of tribimaximal, bimaximal, golden
ratio, and ‘no solar mixing’ patterns. The contribution of
type-I seesaw can be treated as a perturbation that generates
the solar splitting and tunes the mixing angles to values in
agreement with the global fits. As a corollary, a correlation
between the octants of θ23 and neutrino mass ordering
followed—the first (second) octant is allowed for normal
(inverted) ordering of neutrino mass. The model has several
testable predictions including that of the CP-phase δ,
relationships between mixing angles and mass splittings.
Moreover, inverted ordering got associated with near-
maximal CP-phase δ and arbitrarily small neutrino masses
are allowed. In the case of normal ordering, δ can vary over
a larger range and maximality is accomplished in the
quasidegenerate regime. The lightest neutrino mass has
to be at least a few meV for this case.
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APPENDIX A: THE GROUP A4

A4 is the even permutation group of four objects having
12 elements and two generators S and T satisfying the
property S2 ¼ T3 ¼ ðSTÞ3 ¼ I. It has four inequivalent
irreducible representations viz. one 3-dimensional repre-
sentation and three 1-dimensional representations, namely,
1; 10 and 100. These three dimension-one representations are
singlets under S, whereas they transform as 1, ω, and ω2,
respectively, under the action of T, with ω being a cube root
of unity. Therefore, it is apparent that 10 × 100 ¼ 1. The
pertinent form of the generators S and T acting on the three-
dimensional representations are given by12

S ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA and T ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ðA1Þ

It is imperative to note that the product rule for the three-
dimensional representation is

3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3 ⊕ 3: ðA2Þ

When two triplets of A4 given by 3a ≡ ai and 3b ≡ bi, with
i ¼ 1, 2, 3, are combined according to Eq. (A2), then the
resulting triplets can be represented by 3c ≡ ci and 3d ≡ di,
where

ci ¼
�
a2b3 þ a3b2

2
;
a3b1 þ a1b3

2
;
a1b2 þ a2b1

2

�
;

or; ci ≡ αijkajbk;

di ¼
�
a2b3 − a3b2

2
;
a3b1 − a1b3

2
;
a1b2 − a2b1

2

�
;

or; di ≡ βijkajbk; ði; j; k; are cyclicÞ ðA3Þ

and the 1, 10 and 100 so obtained can be scripted as

1 ¼ a1b1 þ a2b2 þ a3b3 ≡ ρ1ijaibj;

10 ¼ a1b1 þ ω2a2b2 þ ωa3b3 ≡ ρ3ijaibj;

100 ¼ a1b1 þ ωa2b2 þ ω2a3b3 ≡ ρ2ijaibj: ðA4Þ

The group is studied in extensive detail in [9,10].

12This choice of basis has the generator S diagonal. One can
equivalently perform an analogous analysis in a basis in which
the generator T is diagonal. Needless to mention that the two
bases are related by some unitary basis transformation.
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APPENDIX B: MINIMIZATION
OF THE SCALAR POTENTIAL

Some detailed analysis of the nature of the scalar
potential is presented in this Appendix. The conditions
that have to be satisfied by the parameters of the potential
so that the vevs acquire the values considered in the model
are extracted. The conditions so obtained guarantee the
potential is locally minimized by those choices. To confirm
if those choices concur with the globalminimum is beyond
the scope of this work.13

The fields cataloged in Table III are comprised of scalars
having lepton numbers as well as A4, SUð2ÞL, and Uð1ÞY
charges. The scalar potential must be of the most general
quartic nature conserving all the symmetries under con-
sideration. Thus, all the terms allowed by the symmetries
are included in the discussion below. Verification of
SUð2ÞL, Uð1ÞY and lepton number are familiar exercises.
A4 invariance requires elaborate discussion as presented in
the following section.

1. A4 conserving terms: Notations
and general principles

Let us summarize a few salient features of this model to
fix the notations to be followed for the A4-invariant terms.
As already noted, the scalar spectrum has fields trans-
forming as 1; 10; 100, and 3 under A4. One has to consider all
the combinations of these fields up to quartics that can yield
A4 invariants. The product rules for 1; 10 and 100 are easy,
but that for the triplets of A4 needs to be emphasized. If
there are two A4 triplet fields A≡ ða1; a2; a3ÞT and B≡
ðb1; b2; b3ÞT where ai, bi may possess SUð2ÞL ×Uð1ÞY
transformation properties that are not considered for the

time being in the immediate course of discussion. As
furnished in Eq. (A2), one can combine A and B to obtain

3A ⊗ 3B ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3 ⊕ 3: ðB1Þ
For notational simplicity, let us denote the irreducible

representations on the right-hand side by O1ðA;BÞ,
O2ðA;BÞ, O3ðA;BÞ, TsðA; BÞ and TaðA;BÞ, respectively,
where, as already noted, in Eqs. (A3) and (A4),

O1ðA;BÞ≡ 1 ¼ a1b1 þ a2b2 þ a3b3 ≡ ρ1ijaibj;

O2ðA;BÞ≡ 10 ¼ a1b1 þ ω2a2b2 þ ωa3b3 ≡ ρ3ijaibj;

O3ðA;BÞ≡ 100 ¼ a1b1 þ ωa2b2 þ ω2a3b3 ≡ ρ2ijaibj;

ðB2Þ

and

TsðA;BÞ≡3¼
�
a2b3þa3b2

2
;
a3b1þa1b3

2
;
a1b2þa2b1

2

�
T
;

TaðA;BÞ≡3¼
�
a2b3−a3b2

2
;
a3b1−a1b3

2
;
a1b2−a2b1

2

�
T
:

ðB3Þ

It is worth noting that O3ðA†; AÞ ¼ ½O2ðA†; AÞ�† and
TaðA; AÞ ¼ 0.
The scalar potential can be formulated implementing this

notation and keeping in mind that the scalar sector of this
model is devoid of any field which is invariant under all the
symmetries under consideration. Therefore the scalar
potential will contain terms of the following kind (only
A4 properties are exhibited):

(i) Quadratic: W†W,
(ii) Cubic: XiX0

jX
00
k; XiXjXk, X0

iX
0
jX

0
k, X

00
i X

00
jX

00
k , O1ðYi; YjÞXk, O2ðYi; YjÞX00

k , O3ðYi; YjÞX0
k,

(iii) Quartic: ðW†
i WiÞ ðW†

jWjÞ; ðXiXjÞ ðXkXlÞ; ðXiXjÞ ðX0
kX

00
l Þ; ðX0

iX
00
j Þ ðX0

kX
00
l Þ; ðX0

iX
0
jÞ ðX0

kXlÞ; ðX00
i X

00
j Þ ðX00

kXlÞ,
O1ðYi; YjÞXkXl; O1ðYi; YjÞX0

kX
00
l ; O2ðYi; YjÞX0

kX
0
l; O2ðYi; YjÞXkX00

l , O3ðYi; YjÞX00
kX

00
l ; O3ðYi; YjÞXkX0

l,
O1ðYi; YjÞO1ðYk; YlÞ; O2ðYi; YjÞ†O2ðYk; YlÞ; O3ðYi; YjÞ†O3ðYk; YlÞ; O2ðYi; YjÞO3ðYk; YlÞ, O1ðTsðYi; YjÞ;
TsðYk; YlÞÞ, O1ðTsðYi; YjÞ; TaðYk; YlÞÞ, O1ðTaðYi; YjÞ; TaðYk; YlÞÞ. O1ðTsðYi; YjÞ; YkÞXl, O2ðTsðYi; YjÞ; YkÞX00

l ,
O3ðTsðYi; YjÞ; YkÞX0

l, O1ðTaðYi; YjÞ; YkÞXl, O2ðTaðYi; YjÞ; YkÞX00
l , O3ðTaðYi; YjÞ; YkÞX0

l.

Here W is any field, X, X0, and X00 represent generic
fields transforming as 1, 10, and 100 under A4 while Y
happens to be generic A4 triplet field. The invariants
constructed by using X†, X0†, X00†, and Y† are not listed
separately.
Owing to the large number of scalars in the model—e.g.,

SUð2ÞL singlets, doublets, and triplets—the scalar potential
consists of many terms. In order to simplify the discussion,
cubic terms in the fields are excluded and all the couplings
are taken to be real. The antisymmetric triplet arising from

13As an example, one can take a look at [25], where a
comparatively simpler scenario, consisting of an A4 triplet
composed of three SUð2ÞL doublet scalar or, in other words,
an A4 symmetric three Higgs doublet model (3HDM), was
analyzed in terms of the global minimization of the scalar
potential. In [26], it is shown that alignment follows as a natural
consequence when the vevs acquire the configurations correspond-
ing to those global minima. Three Higgs doublets symmetric under
the A4 group has been vividly discussed in [27]. A model for
leptons using an A4 symmetric 3HDM can be found in [28].
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the combination of two A4 triplets i.e., the terms denoted by
Ta in Eq. (B3) are not included in the potential throughout
for ease of calculation. The potential is studied piecewise:
(a) consisting of terms that arise from a combination of fields
belonging to same SUð2ÞL sector, and (b) comprising terms
obtained by combining scalars of different SUð2ÞL sectors.
The vev of the SUð2ÞL singlets giving rise to the right-
handed neutrino mass are larger than the vev of the other
scalar fields. Thus, in the latter category the combinations of
SUð2ÞL singlets with the doublets and triplets of SUð2ÞL are
considered, whereas, doublet-triplet inter-sector terms are
dropped owing to the smallness of the triplet vev responsible
for the left-handed Majorana neutrino mass. Also the
electroweak precision measurements put a stringent bound
on the triplet vev compelling it to be very small.

2. SUð2ÞL singlet sector

The SUð2ÞL singlet scalar sector consists of three A4
triplets Δ̂R

p with p ¼ a, b, c denoting each one of them.
These three triplets possess identical quantum numbers,
their vev being the only discriminating criterion. Also there
are three more fields viz. ΔR

1 , ΔR
2 and ΔR

3 transforming as 1,
10 and 100 under A4. From Eq. (B1) we can see that two
same Δ̂R

p triplets can combine to produce several A4
irreducible representations. For notational simplicity let
us define:

Oss
1p ≡O1ðΔ̂R†

p ; Δ̂R
pÞ; Oss

2p ≡O2ðΔ̂R†
p ; Δ̂R

pÞ;
Tss
sp ≡ TsðΔ̂R

p; Δ̂R
pÞ; ðp ¼ a; b; cÞ: ðB4Þ

Using two different triplets Δ̂R
p and Δ̂R

q where p ≠ q
analogous combinations can be defined:

Ôss
1pq ≡O1ðΔ̂R†

p ; Δ̂R
q Þ; Ôss

2pq ≡O2ðΔ̂R†
p ; Δ̂R

q Þ;
T̂ss
spq ≡ TsðΔ̂R

p; Δ̂R
q Þ; ðp; q ¼ a; b; c and p ≠ qÞ:

ðB5Þ

Generically, it is convenient to use Õip or T̃sp if the second
triplet in the argument is replaced by its Hermitian con-
jugate. As an example,

Õss
1p ≡O1ðΔ̂R†

p ; Δ̂R†
p Þ; Õss

2p ≡O2ðΔ̂R†
p ; Δ̂R†

p Þ;
Õss

3p ≡O3ðΔ̂R†
p ; Δ̂R†

p Þ and T̃ss
sp ≡ TsðΔ̂R

p; Δ̂R†
p Þ; ðB6Þ

One can also consider

Õss
1pq ≡O1ðΔ̂R†

p ; Δ̂R†
q Þ; Õss

2pq ≡O2ðΔ̂R†
p ; Δ̂R†

q Þ;
Õss

3pq ≡O3ðΔ̂R†
p ; Δ̂R†

q Þ: ðB7Þ

Also the following combinations are required:

Oss
1p ≡O1ðΔ̂R

p; T
ss†
sp Þ; Oss

2p ≡O2ðΔ̂R
p; T

ss†
sp Þ;

Oss
3p ≡O3ðΔ̂R

p; T
ss†
sp Þ; ðp ¼ a; b; cÞ: ðB8Þ

The A4 singlets ΔR
i (i ¼ 1, 2, 3) can be combined to yield

Qss
i ≡ ΔR†

i ΔR
i ; ði ¼ 1; 2; 3Þ: ðB9Þ

Needless to mention that such terms are singlets of all the
symmetries under consideration.
Having devised the essential notations one can write the

most general scalar potential for the SUð2ÞL singlet sector
of this model as

Vsinglet ¼
X3
i¼1

m2
ΔR

i
Qss

i þ
Xc
p¼a

m2
Δ̂R

p
Oss

1p þ
� Xc
p≠q;p;q¼a

m2
Δ̂R

pq
Ôss

1pq þ all possible permutations

�

þ 1

2

X3
i¼1

λs1i½Qss
i �2 þ

1

2

X2
k<j;k≠j;k¼1

X3
j¼2

λs2jkfQss
j Q

ss
k g þ

1

2

Xc
p¼a

λs3pf½Oss
1p�2 þ ðOss

2pÞ†Oss
2p þO1pðTss

sp; T
ss†
sp Þg

þ
Xc

p≠q;p;q¼a

λs3pqf½Ôss
1pq�2 þ ðÔss

2pqÞ†Ôss
2pq þ H:c:g þ 1

2

Xc
p≠q;p;q¼a

λ̃s3pqfðÔss
1pqÞ†Ôss

1pq þO1ðT̂ss
spq; T̂

ss†
spqÞg

þ
Xc
p¼a

X3
i¼1

�
1

2
λs4ipðQss

i O
ss
1pÞ
�
þ
X3
i¼1

Xc
p≠q;p;q¼a

λs4ipq½ðQss
i Ô

ss
1pqÞ þ H:c:� þ 1

2

Xc
p¼a

λs5pðOss
1pΔR

1 þ H:c:Þ

þ
Xc

p≠q;p;q¼a

λs5pq½fðΔR
1O1ðΔ̂R

p; T̂
ss†
spqÞ þ ðΔR

1O1ðΔ̂R
q ; T̂

ss†
spqÞg þ H:c:�

þ 1

2

Xc
p¼a

λs6pðOss
3pΔR

2 þ H:c:Þ þ
Xc

p≠q;p;q¼a

λs6pq½fðΔR
2O3ðΔ̂R

p; T̂
ss†
spqÞ þ ðΔR

2O3ðΔ̂R
q ; T̂

ss†
spqÞg þ H:c:�
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þ 1

2

Xc
p¼a

λs7pðOss
2pΔR

3 þ H:c:Þ þ
Xc

p≠q;p;q¼a

λs7pq½fðΔR
3O2ðΔ̂R

p; T̂
ss†
spqÞ þ ðΔR

3O2ðΔ̂R
q ; T̂

ss†
spqÞg þ H:c:�

þ
Xc
p¼a

X3
i¼1

λs8ipðΔR
i
2Õip þ H:c:Þ þ

Xc
p≠q;p;q¼a

X3
i¼1

λs8ipqðΔR
i
2Õipq þ H:c:Þ

þ
Xc
p¼a

½λs91pΔR
2ΔR

3 Õ1p þ λs92pΔR
1ΔR

3 Õ2p þ λs93pΔR
1ΔR

2 Õ3p þ H:c:�

þ
Xc

p≠q;p;q¼a

½λs91pqΔR
2ΔR

3 Õ1pq þ λs92pqΔR
1ΔR

3 Õ2pq þ λs93pqΔR
1ΔR

2 Õ3pq þ H:c:�: ðB10Þ

Here λs3p, λ
s
3pq and λ̃

s
3pq are taken as the common coefficient

of the different A4 invariants generated by combining two
Δ̂R and two ðΔ̂RÞ† fields. Similar policy will be adopted for
the fields with other SUð2ÞL properties.

3. SUð2ÞL doublet sector

The SUð2ÞL doublet scalar precinct consists of the two
fields Φ and η transforming as 3 and 1 of A4 respectively.
Opposite hypercharges are assigned to Φ and η. The A4
triplet Φ combinations are denoted as

Odd
1 ≡O1ðΦ†;ΦÞ; Odd

2 ≡O2ðΦ†;ΦÞ;
Tdd
s ≡ TsðΦ;ΦÞ; ðB11Þ

and that of the A4 singlet η are

Qdd
η ≡ η†η: ðB12Þ

The potential for the SUð2ÞL doublet sector is given by

Vdoublet ¼ m2
ηQdd

η þm2
ΦO

dd
1 þ 1

2
λd1½Qdd

η �2

þ 1

2
λd2f½Odd

1 �2 þ fOdd
2 g†Odd

2

þO1ðTdd
s ; Tdd†

s Þg þ 1

2
λd3½Qdd

η Odd
1 �: ðB13Þ

4. SUð2ÞL triplet sector

The SUð2ÞL triplet sector is comprised of five fields.
There are two A4 triplets Δ̂L

a and Δ̂L
b together with the fields

the ΔL
1 , ΔL

2 and ΔL
3 transforming as 1, 10, 100 of A4

respectively.
It is useful to define:

Ott
1n ≡O1ðΔ̂L†

n ; Δ̂L
n Þ; Ott

2n ≡O2ðΔ̂L†
n ; Δ̂L

n Þ;
Ttt
sn ≡ TsðΔ̂L

n ; Δ̂L
n Þ; ðn ¼ a; bÞ; ðB14Þ

Ôtt
1nl ≡O1ðΔ̂L†

n ; Δ̂L
l Þ; Ôtt

2nl ≡O2ðΔ̂L†
n ; Δ̂L

l Þ;
Ôtt

3nl ≡O3ðΔ̂L†
n ; Δ̂L

l Þ; T̂tt
snl ≡ TsðΔ̂L

n ; Δ̂L
l Þ;

ðn; l ¼ a; b and n ≠ lÞ; ðB15Þ

Qtt
i ≡ ΔL†

i ΔL
i ; ði ¼ 1; 2; 3Þ; ðB16Þ

and

Ott
γn ≡OγðΔ̂L

n ; T
tt†
sn Þ; Ott

γnl ≡OγðΔ̂L
n ; T̂

tt†
sl Þ;

ðγ ¼ 1; 2; 3Þ and ðn; l ¼ a; bÞ; ðB17Þ

Õtt
jn ≡OjðΔ̂L†

n ; Δ̂L†
n Þ; Õtt

jnl ≡OjðΔ̂L†
n ; Δ̂L†

l Þ;
ðj ¼ 1; 2; 3Þ and ðn; l ¼ a; b and n ≠ lÞ: ðB18Þ

The scalar potential for this sector:

V triplet ¼
X3
i¼1

m2
ΔL

i
Qtt

i þ
Xb
n¼a

m2
Δ̂L

n
Ott

1n þ
� Xb

n≠l;n;l¼a

m2
Δ̂L

nl
Ôtt

1nl þ all possible permutations

�

þ 1

2

X3
i¼1

λt1i ½Qtt
i �2 þ

1

2

X2
k<j;k¼1

X3
j¼2

λt2jkQ
tt
j Q

tt
k þ 1

2

Xb
n¼a

λt3nf½Ott
1n�2 þ fOtt

2ng†Ott
2n þO1ðTtt

sn; T
tt†
sn Þg

þ 1

2

Xb
n≠l;n;l¼a

λt3nlf½Ôtt
1nl�2 þ fÔtt

2nlg†Ôtt
2nl þ H:c:g þ 1

2

Xb
n≠l;n;l¼a

λ̃t3nlf½Ôtt
1nl�†Ôtt

1nl� þO1ðT̂tt
sn; T̂

tt†
sn Þg
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þ 1

2

X3
j¼1

Xb
n¼a

λt4jn ½ðΔL†
j ΔL

j ÞOtt
1n� þ

X3
j¼1

Xb
n≠l;n;l¼a

λt41nl ½ðΔL†
j ΔL

j ÞÔtt
1n þ H:c:� þ 1

2

Xb
n¼a

λt5n½fΔL
1O

tt
1ng þ H:c:�

þ
Xb
n;l¼a

λt5nl½fΔL
1O

tt
1nlg þ H:c:� þ 1

2

Xb
n¼a

λt6n½fΔL
2O

tt
3ng þ H:c:�

þ
Xb
n;l¼a

λt6nl½fΔL
2O

tt
3nlg þ H:c:� þ 1

2

Xb
n¼a

λt7n½fΔL
3O

tt
2ng þ H:c:� þ

Xb
n;l¼a

λt7nl½fΔL
3O

tt
2nlg þ H:c:�

þ
Xb
n¼a

X3
j¼1

λt8jn½ðΔL
j
2Õtt

jnÞ þ H:c:� þ
Xb

n≠l;n;l¼a

X3
j¼1

λt8jnl½ðΔL
j
2Õtt

jnlÞ þ H:c:�

þ
Xb
n¼a

½fλt91nðΔL
2ΔL

3 Õ
tt
1nÞg þ fλt92nðΔL

1ΔL
3 Õ

tt
2nÞg þ fλt93nðΔL

1ΔL
2 Õ

tt
3nÞg þ H:c:�

þ
Xb

n≠l;n;l¼a

½fλt91nlðΔL
2ΔL

3 Õ
tt
1nlÞg þ fλt92nlðΔL

1ΔL
3 Õ

tt
2nlÞg þ fλt93nlðΔL

1ΔL
2 Õ

tt
3nlÞg þ H:c:�: ðB19Þ

5. Inter-sector terms in the scalar potential

The terms in the scalar potential involving scalar fields of
identical SUð2ÞL behavior are already taken into account.
Apart from them, the scalar potential will also receive
contributions from terms generated by combining scalars of
two different SUð2ÞL sectors that constitute the main

objective of the following discussion. In this category
the combinations of the SUð2ÞL singlet scalars with that
belonging to either of the doublet or the triplet sector. The
other variety of inter-sector terms—doublet-triplet type—
are not included. This seems to be a reasonable approxi-
mation as the vevs of the singlet fields are the largest.

a. Singlet-doublet inter-sector terms

Let us consider the combinations:

T̃ss
sp ≡ TsðΔ̂R

p; Δ̂R†
p Þ; T̃ss

spq ≡ TsðΔ̂R
p; Δ̂R†

q Þ and T̃dd
s ≡ TsðΦ;Φ†Þ; ðp; q ¼ a; b; c and p ≠ qÞ ðB20Þ

and

Osd
1sp ≡O1ðT̃dd

s ; T̃ss
spÞ; Ôsd

1spq ≡O1ðT̃dd
s ; T̃ss

spqÞ;
Osd

pγ ≡OγðΔ̂R
p; T̃dd

s Þ; ðγ ¼ 1; 2; 3Þ and ðp; q ¼ a; b; c with p ≠ qÞ: ðB21Þ

Using this notation,

Vsd ¼
1

2

X3
i¼1

½λsd1i ðQss
i Q

dd
η Þ þ ðλsd2i Qss

i O
dd
1 Þ� þ 1

2

Xc
p¼a

λsd3p½Qdd
η Oss

1p� þ
1

2

Xc
p≠q;p;q¼a

½Qdd
η Ôss

1pq�

þ
Xc
p¼a

½λsd4pðfOsd
1pgΔR

1 þ H:c:Þ þ λsd5pðfOsd
2pgΔR

2 þ H:c:Þ þ λsd6pðfOsd
3pgΔR

3 þ H:c:Þ�

þ 1

2

Xc
p¼a

λsd7p½Odd
1 Oss

1p þ fOss
2pg†Odd

2 þ fOdd
2 g†Oss

2p þOsd
1sp�

þ 1

2

Xc
p≠q;p;q¼a

λsd7pq½Odd
1 Ôss

1pq þ fÔss
2pqg†Odd

2 þ fOdd
2 g†Ôss

2pq þ Ôsd
1spq�: ðB22Þ
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In the last two terms, a simplifying assumption of using a common couplings λsd7p and λsd7pq for the terms in the

scalar potential that are generated from various combinations of ðΦ†ΦÞðΔ̂R†Δ̂RÞ, all four of the fields involved being triplets
of A4.

b. Singlet-triplet inter-sector terms

In this case, the following combinations come into play:

T̃tt
sn ≡ TsðΔ̂L

n ; Δ̂L†
n Þ; T̃tt

snl ≡ TsðΔ̂L
n ; Δ̂

L†
l Þ; Ots

1snp ≡O1ðT̃tt
sn; T̃ss

spÞ; Ôts
1snpq ≡O1ðT̃tt

sn; T̃ss
spqÞ;

Ôts
1snlp ≡O1ðT̃tt

snl; T̃
ss
spÞ; Ôts

1snlpq ≡O1ðT̃tt
snl; T̃

ss
spqÞ; Ots

γnp ≡OγðΔ̂R†
p ; Δ̂L

n Þ; Õts
γnp ≡OγðΔ̂R

p; Δ̂L
n Þ;

Ots
γnp ≡OγðT̃ss

sp; Δ̂L
n Þ; Õts

γnp ≡OγðT̃tt
sn; Δ̂R

pÞ; Ôts
γnpq ≡OγðT̃ss

spq; Δ̂L
n Þ; Õts

γnlp ≡OγðT̃tt
snl; Δ̂

R
pÞ; ðB23Þ

where ðγ ¼ 1; 2; 3Þ; ðp; q ¼ a; b; cÞ and ðn; l ¼ a; bÞ Needless to mention, p ≠ q and n ≠ l.
Following the convention introduced already,

Ots
γnp ≡OγðΔ̂R†

p ; Δ̂L
n Þ; Õts

γnp ≡OγðΔ̂R
p; Δ̂L

n Þ; ðγ ¼ 1; 2; 3Þ; ðp ¼ a; b; cÞ and ðn ¼ a; bÞ: ðB24Þ

The inter-sector potential for this case is given by

Vts¼
1

2

X3
i¼1

X3
j¼1

λts1ij½Qss
i Q

tt
j �þ

1

2

X3
j¼1

Xb
n¼a

λts2jn½ðQss
j O

tt
1nÞþH:c:�þ1

2

X3
j¼1

Xb
n≠l;n;l¼a

λts2jnl½ðQss
j Ô

tt
1nlÞþH:c:�

þ1

2

X3
i¼1

Xc
p¼a

λts3ip½Qtt
i O

ss
1p�þ

X3
i¼1

Xc
p≠q;p;q¼a

λts3ipq½Qtt
i Ô

ss
1pq�þ

1

2

Xc
p¼a

Xb
n¼a

λts41nnpp½Ott
1nO

ss
1pþfOss

2pg†Ott
2nþfOtt

2ng†Oss
2pþOts

1snp�

þ1

2

Xc
p≠q;p;q¼a

Xb
n¼a

λts42nnpq½Ott
1nÔ

ss
1pqþfÔss

2pqg†Ott
2nþfOtt

2ng†Ôss
2pqþÔts

1snpq�

þ1

2

Xc
p¼a

Xb
n≠l;n;l¼a

λts43nlpp½Ôtt
1nlO

ss
1pþfOss

2pg†Ôtt
2nlþfÔtt

2nlg†Oss
2pþÔts

1snlp�

þ1

2

Xc
p≠q;p;q¼a

Xb
n≠l;n;l¼a

λts44nlpq½Ôtt
1nlÔ

ss
1pqþfÔss

2pqg†Ôtt
2nlþfÔtt

2nlg†Ôss
2pqþÔts

1snlpq�

þ
X3
i¼1

Xc
p¼a

Xb
n¼a

λts5ippnðOts
inpΔL

i
†þH:c:Þþ

X3
i¼1

Xc
p≠q;p;q¼a

Xb
n¼a

λts5ipqnðÔts
inpqΔL

i
†þH:c:Þ

þ
X3
i¼1

Xc
p¼a

Xb
n¼a

λts6innpðÕts
inpΔR

i
†þH:c:Þþ

X3
i¼1

Xc
p¼a

Xb
n≠l;n;l¼a

λts6inlpðÕts
inlpΔR

i
†þH:c:Þ

þ
Xc
p¼a

Xb
n¼a

½λts7 Ots
1npðΔL†

1 ΔR
1 þΔL†

2 ΔR
2 þΔL†

3 ΔR
3 ÞþH:c:�þ

Xc
p¼a

Xb
n¼a

½λts8 Ots
2npðΔL†

1 ΔR
3 þΔL†

2 ΔR
1 þΔL†

3 ΔR
2 ÞþH:c:�

þ
Xc
p¼a

Xb
n¼a

½λts9 Ots
3npðΔL†

3 ΔR
1 þΔL†

1 ΔR
2 þΔL†

2 ΔR
3 ÞþH:c:�þ

Xc
p¼a

Xb
n¼a

½λts10Õts
3npðΔL†

3 ΔR†
1 þΔL†

1 ΔR†
3 þΔL†

2 ΔR†
2 ÞþH:c:�

þ
Xc
p¼a

Xb
n¼a

½λts11Õts
2npðΔL†

2 ΔR†
1 þΔL†

1 ΔR†
2 þΔL†

3 ΔR†
3 ÞþH:c:�þ

Xc
p¼a

Xb
n¼a

½λts12Õts
1npðΔL†

1 ΔR†
1 þΔL†

3 ΔR†
2 þΔL†

2 ΔR†
3 ÞþH:c:�:

ðB25Þ

It must be noted that while writing the last λts7–12 terms the different couplings corresponding to the combinations of Ots
inp

with ðΔL†
i ΔR

j Þ and Õts
inp with ðΔL†

i ΔR†
j Þ are set to be equal.
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6. The conditions for minimization

With the scalar potential in hand, it is necessary to derive the conditions for which the particular vev configurations used
in this model—see Eqs. (3)–(5) and Table III—corresponds to the local minimum. For immediate reference the vevs are

hΦ0i¼ vffiffiffi
3

p

0
B@
1

1

1

1
CA; hη0i¼u; hΔ̂L0

a i¼vLa

0
B@
1

0

0

1
CA; hΔ̂L0

b i¼vLb

0
B@
1

1

1

1
CA; hΔL0

1 i¼hΔL0
2 i¼hΔL0

3 i¼uL; ðB26Þ

hΔ̂R0
a i ¼ vRa

0
B@

1

1

1

1
CA; hΔ̂R0

b i ¼ vRb

0
B@

1

ω

ω2

1
CA; hΔ̂R0

c i ¼ vRc

0
B@

1

ω2

ω

1
CA; ðB27Þ

hΔR0
1 i ¼ u1R; hΔR0

2 i ¼ u2R; hΔR0
3 i ¼ u3R: ðB28Þ

where the SUð2ÞL nature of the scalars has been suppressed.

Eq. (B26) shows that the A4 triplet fields—Δ̂L;R andΦ—
have vev configurations that have been verified to be the
global minima in [25]. This result was for a single A4 triplet
considered in isolation. In the current scenario since many
other fields are involved, it is not straightforward to directly
adopt the conclusions of [25].
The conditions for which the vev configurations shown

in Eqs. (3)–(5) correspond to minimum are shown sector by
sector.
For minima of the scalar potential, the first derivatives of

the scalar potential with respect to the vevs have to vanish
and the second derivatives have to satisfy some conditions.
Since the scalar sector is very rich, the expressions look
very complicated. The conditions arising by setting the first
derivatives to be zero have been discussed for each of the
SUð2ÞL sectors. As a sample, constraints coming from the
second derivatives have been shown only for the SUð2ÞL

singlet sector. Similar exercise can be carried out for the
other SUð2ÞL sectors but are not presented here.

a. SUð2ÞL singlet sector

The SUð2ÞL singlet vevs are much larger than those of
the doublet and triplet scalars. Thus, it is safe to neglect the
contributions to the minimization equations from the inter-
sector terms.
Let us remind ourselves that vRp (p ¼ a, b, c) are real

and define

ṽRa1 ≡ vRa; ṽRa2 ≡ vRa; ṽRa3 ≡ vRa;

ṽRb1 ≡ vRb; ṽRb2 ≡ vRbω; ṽRb3 ≡ vRaω2;

ṽRc1 ≡ vRc; ṽRc2 ≡ vRcω2; ṽRc3 ≡ vRcω: ðB29Þ

For ease of presentation, let us set the following masses and
couplings equal:

m2
ΔR

1

¼ m2
ΔR

2

¼ m2
ΔR

3

¼ m2
R1; m2

Δ̂R
a
¼ m2

Δ̂R
b
¼ m2

Δ̂R
c
¼ m2

R2; m2
ab ¼ m2

ac ¼ m2
bc ¼ m2

R3;

λs1i ¼ λs1 ∀ ði ¼ 1; 2; 3Þ; λs221 ¼ λs231 ¼ λs223 ¼ λs2; λs3a ¼ λs3b ¼ λs3c ¼ λs3; λ̃s3a ¼ λ̃s3b ¼ λ̃s3c ¼ λ̃s3;

λs3ab ¼ λs3ac ¼ λs3bc ¼ λ̂s3; λs4ip ¼ λs4 ∀ ðp ¼ a; b; cÞ and ði ¼ 1; 2; 3Þ;
λs41ab ¼ λs41ac ¼ λs41bc ¼ λs42ab ¼ λs42ac ¼ λs42bc ¼ λs43ab ¼ λs43ac ¼ λs43bc ¼ λ̃s4;

λs5a ¼ λs5b ¼ λs5c ¼ λs5; λs5ab ¼ λs5ac ¼ λs5bc ¼ λ̃s5; λs6a ¼ λs6b ¼ λs6c ¼ λs6; λs6ab ¼ λs6ac ¼ λs6bc ¼ λ̃s6;

λs7a ¼ λs7b ¼ λs7c ¼ λs7; λs7ab ¼ λs7ac ¼ λs7bc ¼ λ̃s7; λs8ip ¼ λs8 ∀ ðp ¼ a; b; cÞ and ði ¼ 1; 2; 3Þ;
λs81ab ¼ λs81ac ¼ λs81bc ¼ λs82ab ¼ λs82ac ¼ λs82bc ¼ λs83ab ¼ λs83ac ¼ λs83bc ¼ λ̃s8;

λs9ip ¼ λs9 ∀ ðp ¼ a; b; cÞ and ði ¼ 1; 2; 3Þ;
λs91ab ¼ λs91ac ¼ λs91bc ¼ λs92ab ¼ λs92ac ¼ λs92bc ¼ λs93ab ¼ λs93ac ¼ λs93bc ¼ λ̃s9: ðB30Þ

With the help of the singlet sector potential in Eq. (B10), the equalities in Eq. (B30) and the vev in Eqs. (3)–(5) one can
obtain
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∂Vsingletjmin

∂u�1R ¼ 0

⇒ m2
R1u1R þ λs1ðu�1Ru21RÞ þ λs2½ðu�2Ru2RÞ þ ðu�3Ru3RÞ� þ

3λs4
2

u1R½v2Ra þ v2Rb þ v2Rc� þ 3λs5v
3
Ra

− 3λ̃s5vRaðv2Rb þ v2RcÞ þ 6λs8u
�
1Rv

2
Ra þ 6λ̃s8u

�
1RvRbvRc

þ 3λs9ðu�3Rv2Rb þ u�2Rv
2
RcÞ þ 3λ̃s9½vRaðu�2RvRb þ u�3RvRcÞ� ¼ 0; ðB31Þ

∂Vsingletjmin

∂ṽ�Ra1
¼ ∂Vsingletjmin

∂v�Ra1
¼ 0

⇒ m2
R2vRa þm2

R3ðvRb þ vRcÞ þ
7

2
λs3v

3
Ra þ

�
3λ̂3 þ

λ̃s3
8

�
vRaðv2Rb þ v2RcÞ

þ
�
λs4
2
vRa þ λ̃s4ðvRb þ vRcÞ

�
ðu�1Ru1R þ u�2Ru2R þ u�3Ru3RÞ þ λs5v

2
Raðu�1R þ 2u1RÞ

− λ̃s5½ðvRavRb þ vRavRcÞð2u1R þ u�1RÞ� þ λs6v
2
Raðu�2R − u2RÞ

þ λ̃s6½u2Rð2v2Rb − v2Rc − vRavRb þ 2vRbvRcÞ − u�2RvRaðvRb þ vRcÞ� þ λs7v
2
Raðu�3R − u3RÞ

þ λ̃s7½u3Rð2vRavRb − vRavRc − v2Rb þ 2v2RcÞ − u�3RvRaðvRb þ vRcÞ�
þ ðu21R þ u22R þ u23RÞ½2λs8vRa þ λ̃s8ðvRb þ vRcÞ�
þ ðu�1Ru2R þ u�1Ru3R þ u�2Ru3RÞ½2λs9vRa þ λ̃s9ðvRb þ vRcÞ� ¼ 0: ðB32Þ

Besides the first derivatives discussed above, second derivatives are also needed to established minimality. For example,

∂2Vsingletjmin

∂u�21R > 0 ⇒ λs1u
2
1R þ 6λs8v

2
Ra þ 6λ̃s8vRbvRc > 0 ðB33Þ

and

∂2Vsingletjmin

∂ṽ�2Ra1
> 0 ⇒ λs3v

2
Ra þ 4λ̂3ðv2Rb þ v2RcÞ þ 2λs8ðu21R þ u22R þ u23RÞ þ 2λs8ðu2Ru3R þ u1Ru2R þ u1Ru3RÞ > 0 ðB34Þ

Further mixed derivatives such as

∂2Vsingletjmin

∂u�1RṽRa1
¼ λs4

2
vRau1R þ λ̃s4ðvRb þ vRcÞu1R þ λs5v

2
Ra − λ̃s5vRaðvRb þ vRcÞ ðB35Þ

are also necessary to establish minimality in the most
general case. The results presented for the first and second
derivatives are calculated using the most general expression
of the scalar potential in terms of the vevs and putting
ðvRa1 ¼ vRa2 ¼ vRa3 ¼ vRaÞ, ðvRb1 ¼ vRb; vRb2 ¼ ωvRb;
vRb3 ¼ ω2vRbÞ and ðvRc1 ¼ vRc; vRc2 ¼ ω2vRc; vRc3 ¼
ωvRcÞ where vRa, vRb, vRc are real. Needless to mention
that ṽ�Rpi

¼ ṽRpi
for (p ¼ a; i ¼ 1, 2, 3) and

(p ¼ b; c and i ¼ 1). Similar equations can be obtained
by minimizing the potential with respect to u2R; u3R,
ṽRa2; ṽRa3 and ṽRpi for (p ¼ b, c) and (i ¼ 1, 2, 3). For
the sake of brevity those are not mentioned. Similar

strategy will be adopted for the SUð2ÞL doublet and
SUð2ÞL triplet sector. It is worth noting that this exercise
for all the three sectors are for illustrative purpose only and
the minimization equations are achieved by setting the
different couplings equal.

b. SUð2ÞL doublet sector

For this sector contributions from both the doublet sector
itself—Eq. (B13)—together with the singlet-doublet inter-
sector are considered. Let us define VD ¼ Vdoublet þ Vsd.
Also let us call hΦii≡ vi where v1 ¼ v2 ¼ v3 ¼ vffiffi

3
p , v

being real.
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The following couplings are set to be equal:

λsd1i ¼ λsd1 ; λsd2i ¼ λsd2 ∀ ði ¼ 1; 2; 3Þ;
λsd3p ¼ λsd3 ; λsd4p ¼ λsd4 ; λsd5p ¼ λsd5 ; λsd6p ¼ λsd6 ; λsd7p ¼ λsd7 ∀ ðp ¼ a; b; cÞ;
λsd3ab ¼ λsd3ac ¼ λsd3bc ¼ λ̃sd3 ; λsd7ab ¼ λsd7ac ¼ λsd7bc ¼ λ̃sd7 : ðB36Þ

For the vevs in Eqs. (B26)–(B28) correspond to the minimum of the scalar potential it is necessary to satisfy the following
conditions:

∂VDjmin

∂u� ¼ 0 ⇒ u

�
m2

η þ λd1u
�uþ λd3v

2 þ λsd1
X3
i¼1

ðu�iRuiRÞ þ
3

2
λsd3
Xc
p¼a

v2Rp

�
¼ 0: ðB37Þ

and

∂VDjmin

∂v�1 ¼ 0

⇒
vffiffiffi
3

p
�
m2

Φ þ 2λd2
v2

3
þ λd3

2
ðu�uÞ þ λsd2

2

X3
i¼1

ðu�iRuiRÞ þ
λsd4
2

ð2vRa − vRb − vRcÞðu1R þ u�1RÞ

þ λsd7
2

��Xc
p¼a

3v2Rp

�
þ 1

2
ð2v2Ra − v2Rb − v2RcÞ

�

þ λ̃sd7
2

�
6ðvRavRb þ vRavRc þ vRbvRcÞ þ

1

2
ðvRavRb þ vRavRc − 2vRbvRcÞ

��
¼ 0. ðB38Þ

In order to satisfy Eqs. (B37) and (B38), some degree of fine-tuning is necessary that involve both SUð2ÞL doublet
and singlet vev of varying magnitudes. Similar equations can be obtained by minimizing the potential with respect to v�2
and v�3.

c. SUð2ÞL triplet sector

In analogy to the doublet sector, let us define VT ¼ V triplet þ Vts using Eqs. (B19) and (B25). Let us also recall,
vLa1 ¼ vLa, vLa2 ¼ vLa3 ¼ 0 and vLb1 ¼ vLb2 ¼ vLb3 ¼ vLb.
This sector has several couplings involved. For simplicity of presentation, let us implement the following choices:

mΔL
1
¼ mΔL

2
¼ mΔL

3
¼ mt1; mΔ̂L

a
¼ mΔ̂L

b
¼ mt2; mab ¼ mt3; λt1i ¼ λt1; ∀ ði ¼ 1; 2; 3Þ;

λt221 ¼ λt232 ¼ λt231 ¼ λt2; λt3a ¼ λt3b ¼ λt3; λ
t
3ab ¼ λ̂t3; λ̃t3ab ¼ λ̃t3;

λ4jn ¼ λ4jnl ¼ λ4; λ8jn ¼ λ8jnl ¼ λ8; λ9jn ¼ λ9jnl ¼ λ9; ∀ ðj ¼ 1; 2; 3Þ; ðn; l ¼ a; bÞ and n ≠ l;

λt5a ¼ λt5b ¼ λt5ab ¼ λt5; λt6a ¼ λt6b ¼ λt6ab ¼ λt6; λt7a ¼ λt7b ¼ λt7ab ¼ λt7;

λts1ij ¼ λts1 ; ∀ ði; j ¼ 1; 2; 3Þ and i ≠ j; λts2jn ¼ λts2jnl; ∀ ðj ¼ 1; 2; 3Þ; ðn; l ¼ a; bÞ and n ≠ l;

λts3pi ¼ λts3pqi; ∀ ði ¼ 1; 2; 3Þ; ðp; q ¼ a; b; cÞ and p ≠ q;

λts4jnnpp ¼ λts4jnlpp ¼ λts4jnnpq ¼ λts4jnlpq ¼ λts4 ; ∀ ðj ¼ 1; 2; 3Þ; ðp; q ¼ a; b; cÞ; ðn; l ¼ a; bÞ and p ≠ q; n ≠ l;

λts5jppn ¼ λts5jpqn ¼ λts5 ; ∀ ðj ¼ 1; 2; 3Þ; ðp ¼ a; b; cÞ; ðn ¼ a; bÞ;
λts6jnnp ¼ λts6jnlp ¼ λts6 ; ∀ ðj ¼ 1; 2; 3Þ; ðp ¼ a; b; cÞ; ðn; l ¼ a; bÞ and n ≠ l: ðB39Þ

In order to minimize VT such that one can arrive at the vevs furnished in Eqs. (B26)–(B28), the following conditions are to
be ensured:
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∂VTjmin

∂u�L1 ¼ 0

⇒ uL½m2
t1 þ ðu�LuLÞðλt1 þ λt2Þ þ

λt4
2
ðv2La þ 3v2Lb þ 2vLavLbÞ� þ λt5v

2
Lbð3vLb þ vLaÞ

þ 2λt8u
�
Lðv2La þ 3v2Lb þ vLavLbÞ þ 2λt9vLaðvLa þ vLbÞ þ λts1 uL

X3
i¼1

ðu�iRuiRÞ

þ 3

2
λts3 uL½v2Ra þ v2Rb þ v2Rc þ vRbvRc�

þ λts5 ðvLa þ 3vLbÞ½2v2Ra − v2Rb − v2Rc − 2vRaðvRa þ vRbÞ þ 4vRbvRc�
þ ½ðλts7 u1R þ λts12u

�
1RÞ½vLaðvRa þ vRb þ vRcÞ þ 3vRavLb��

þ ½ðλts8 u3R þ λts10u
�
3RÞ½vLaðvRa þ vRb þ vRcÞ þ 3vRcvLb��

þ ½ðλts9 u2R þ λts11u
�
2RÞ½vLaðvRa þ vRb þ vRcÞ þ 3vRbvLb�� ¼ 0: ðB40Þ

Also, one gets

∂VT jmin

∂v�La1
¼ 0

⇒ vLa

�
m2

t1 þm2
t2 þ 2λt3v

2
La þ 4λ̂t3v2Lb þ

3

2
λ̃t3v

2
Lb

�
þ 3

2
λt4ðu�LuLÞðvLa þ vLbÞ

þ ð2λt5 − λt6 − λt7Þv2LbuL þ λt8u
2
Lð2vLa þ 3vLbÞ þ λt9u

2
Lð2vLa þ vLbÞ

þ λts2
2

�
ðvLa þ vLbÞ

X3
i¼1

u�iRuiR

�
þ λts4

2

�
3ðvLa þ vLbÞ

Xc
p¼a

v2Rp þ
1

2
vLbð2v2Ra − v2Rb − v2RcÞ

�

þ λ̃ts4

�
3ðvLa þ vLbÞðvRavRb þ vRbvRcÞ þ

1

2
vLbðvRavRb þ vRavRc þ vRbvRcÞ

�
þ λts5 ½3uLð2v2Ra − v2Rb − v2Rc − 2vRavRb − 2vRavRc þ 4vRbvRcÞ�
þ ½uLðvRa þ vRb þ vRcÞ�½½ðu�1R þ u�2R þ u�3RÞðλts7 þ λts8 þ λts9 Þ�
þ ½ðu1R þ u2R þ u3RÞðλts10 þ λts11 þ λts12Þ�� ¼ 0: ðB41Þ

It is worth noticing that certain fine-tuning is essential to
satisfy Eqs. (B40)—(B41). Also similar equations can be
obtained by minimizing the potential with respect to u�Lj;
where (j ¼ 2, 3), v�Lni where for n ¼ b one has (i ¼ 1, 2, 3)
and for n ¼ a we have (i ¼ 2, 3). Those are not mentioned
here. This exercise is performed to illustrate the scenario in
a simplified limit achieved by setting several masses and
couplings to be equal.

APPENDIX C: FLAVOR BASIS FORM
OF THE MASS MATRICES

Massmatrices expressed in theLagrangian basis inEqs. (6)
and (7) can be transformed to simpler forms in the flavor basis
as in Eqs. (9) and (10) with the help of a unitary trans-
formationwritten inEq. (8). Certain straightforward algebraic
calculations related to this derivation of the forms the mass
matrices in the flavor basis is furnished in this Appendix.

The Lagrangian in Eq. (2) produces the following mass matrix for the charged leptons and the left-handed Majorana
neutrinos,

Meμτ ¼
vffiffiffi
3

p

0
B@

y1 y2 y3
y1 ωy2 ω2y3
y1 ω2y2 ωy3

1
CA; MνL ¼

0
BB@

ðYL
1 þ 2YL

2 ÞuL 1
2
ŶL
bvLb

1
2
ŶL
bvLb

1
2
ŶL
bvLb ðYL

1 − YL
2 ÞuL 1

2
ðŶL

avLa þ ŶL
bvLbÞ

1
2
ŶL
bvLb

1
2
ðŶL

avLa þ ŶL
bvLbÞ ðYL

1 − YL
2 ÞuL

1
CCA; ðC1Þ
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where the Yukawa coupling YL
2 is chosen to be equal to YL

3 .
Also, y1v ¼ me; y2v ¼ mμ; y3v ¼ mτ is satisfied. The
dominant type-II seesaw component of the neutrino mass
matrix, MνL, gives rise to the atmospheric splitting and
maximal atmospheric mixing but is devoid of solar splitting

and is therefore characterized by two massesmð0Þ
1 andmð0Þ

3 .

It is useful to define m� ≡mð0Þ
3 �mð0Þ

1 . Thus, m− is
positive (negative) for normal (inverted) ordering.
Certain identifications of the vev and Yukawa products

are essential viz. 3ðYL
1 þ 2YL

2 ÞuL ¼ ðmð0Þ
3 þmþÞ, 6ðYL

1 −
YL
2 ÞuL ¼ ŶL

avLa ¼ mþ and 3ŶL
bvLb ¼ −2m− to generate

the desired structures of the mass matrices as presented in
Eq. (9). The neutrino Dirac mass matrix and the right-
handed Majorana neutrino mass matrix in the Lagrangian
basis are

MD ¼ fuI; MνR ¼ mR

0
B@

χ1 χ6 χ5

χ6 χ2 χ4

χ5 χ4 χ3

1
CA; ðC2Þ

where

mRχ1 ≡ ðYR
1u1R þ YR

2u2R þ YR
3u3RÞ

mRχ2 ≡ ðYR
1u1R þ ωYR

2u2R þ ω2YR
3u3RÞ

mRχ3 ≡ ðYR
1u1R þ ω2YR

2u2R þ ωYR
3u3RÞ

mRχ4 ≡ 1

2
ðŶR

avRa þ ŶR
bvRb þ ŶR

c vRcÞ

mRχ5 ≡ 1

2
ðŶR

avRa þ ωŶR
bvRb þ ω2ŶR

c vRcÞ

mRχ6 ≡ 1

2
ðŶR

avRa þ ω2ŶR
bvRb þ ωŶR

c vRcÞ: ðC3Þ

Here mR is the right-handed Majorana neutrino mass scale
and χi are dimensionless Oð1Þ quantities. In order to
achieve the right-handed Majorana neutrino mass matrix
of the form expressed in Eq. (10), the vev and Yukawa
couplings products have to obey

YR
1u1R ¼ mRðr11 þ 2r23Þ; YR

2u2R ¼ mRðr22 þ 2r13Þ;
YR
3u3R ¼ mRðr33 þ 2r12Þ ŶR

avRa ¼ 2mRðr11 − r23Þ;
ŶR
bvRb ¼ 2mRðr22 − r13Þ and ŶR

c vRc ¼ 2mRðr33 − r12Þ:
ðC4Þ

The rij in Eq. (C4) are given by

r11≡
ffiffiffi
2

p
bsin2θ012þasin2θ012;

r22≡−
ffiffiffi
2

p
bsinθ012−

b
2
sin2θ012−acosθ012þ

a
2
cos2θ012þ

a
2
;

r33≡−
bffiffiffi
2

p sin2θ012−
ffiffiffi
2

p
bsinθ012þacosθ012þ

a
2
cos2θ012þ

a
2
;

r12≡bcos2θ012þ
a

2
ffiffiffi
2

p sin2θ012þbcosθ012−
affiffiffi
2

p sinθ012;

r13≡−bcos2θ012−
a

2
ffiffiffi
2

p sin2θ012þbcosθ012−
affiffiffi
2

p sinθ012;

r23≡b
2
sin2θ012−

a
2
cos2θ012þ

a
2
: ðC5Þ

where a and b are dimensionless quantities of Oð1Þ.
The charged lepton mass matrix is not diagonal in the
Lagrangian basis. In order to go to a basis in which the
charged lepton mass matrix Meμτ is diagonal, a unitary
transformation UL is applied on the left-handed lepton
doublets. The transformation VR is applied on the right-
handed neutrino singlets of SUð2ÞL such that the Dirac
neutrino mass matrix remains proportional to identity in
this transformed basis as well. This basis in which the
charged lepton mass matrix is diagonal and the entire
lepton mixing is dictated by the neutrino sector is called the
flavor basis. The right-handed charged leptons were kept
unchanged. The transformation matrices are given by

UL ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA ¼ VR: ðC6Þ

The mass matrices in the flavor basis are

Mflavor
eμτ ¼

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CA;

Mflavor
νL ¼ 1

2

0
B@ 2mð0Þ

1 0 0

0 mþ m−

0 m− mþ

1
CA; ðC7Þ

MD ¼ fuI; Mflavor
νR ¼ mR

4ab

0
B@

r11 r12 r13
r12 r22 r23
r13 r23 r33

1
CA: ðC8Þ

One can identify fu ¼ mD where mD is the scale of the
Dirac masses of the neutrinos. The type-I seesaw mecha-
nism contribution is given by the matrices in Eq. (C8).
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