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Consistency of trans-unification renormalization group (RG) evolution is used to discuss the domain of
definition of the New Minimal Supersymmetric SO(10)GUT (NMSGUT). We define the 1-loop RGE β
functions, simplifying generic formulae using constraints of gauge invariance and superpotential structure.
We also calculate the 2 loop contributions to the gauge coupling and gaugino mass and indicate how to get
full 2 loop results for all couplings. Our method overcomes combinatorial barriers that frustrate computer
algebra based attempts to calculate SO(10) β functions involving large irreps. Use of the RGEs identifies a
perturbative domain Q < ME, where ME < MPlanck is the scale of emergence where the NMSGUT, with
GUT compatible soft supersymmetry breaking terms emerges from the strong UV dynamics associated
with the Landau poles in gauge and Yukawa couplings. Due to the strength of the RG flows the Landau
poles for gauge and Yukawa couplings lie near a cutoff scale ΛE for the perturbative dynamics of the
NMSGUTwhich just aboveME. SO(10) RG flows into the IR are shown to facilitate small gaugino masses
and generation of negative Non Universal Higgs masses squared needed by realistic NMSGUT fits of low
energy data. Running the simple canonical theory emergent at ME through MX down to the electroweak
scale enables tests of candidate scenarios such as supergravity based NMSGUT with canonical kinetic
terms and NMSGUT based dynamical Yukawa unification.
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I. INTRODUCTION

Renormalization group equations (RGE) are an impor-
tant mathematical tool to study the evolution of the
parameters (couplings and masses) of a quantum field
theory with energy scale. For example the three gauge
couplings of the standard model (SM) evolve with energy
and tend to meet roughly around energy 1015 GeV: this was
the first dynamical hint supporting the “grand unification”
vision [1–3]. However the SM has a problem in the
sensitivity of the Higgs mass to quantum effects of super-
heavy particles which give rise to large loop corrections due
to their circulation within loops correcting the Higgs
propagator. This implies a mass correction: Δm2

H∼αM2
X.

Supersymmetry (susy) is the best known tool to cure
this problem. The two loop RGEs of gauge couplings,

superpotential parameters [4] and soft terms [5,6] of a
generic softly broken supersymmetric theory have long
been available. The exact relation between the beta func-
tions for dimensionless and dimensionful couplings is also
known [7]. In particular these results give the explicit
formulas for the MSSM β functions which are routinely
used to study the evolution of MSSM parameters from UV
scales into physically meaningful quantities that describe
physics near the electroweak scale.
The combination of supersymmetry and RG flows leads

to nearly exact convergence of the three gauge couplings of
the MSSM at M0

X ¼ 1016.3 GeV. This striking and robust
result has remained the most convincing hint of physics
beyond the standard model for nearly 30 years since it was
predicted to be possible by Marciano and Senjanovic [8] if
the top quark mass was found to be near to 200 GeV and
sin2θW was larger than 0.23: as was found to be the case
after more than a two decades of searches and measure-
ments [9]. Apart from the hints from neutrino oscillations
this amazing convergence has for long stood as the unique
guide post to the nature of extreme ultraviolet physics.
The closeness of the MSSM unification scale to the

Planck scale where gravity becomes strong has long
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tantalized theorists. We have advocated that induced
gravity is a natural partner for Asymptotically strong
GUTs [10,11] since their scale of asymptotic strength
and UV condensation should function both as a UV cutoff
for the perturbative GUT and set the scale for its contri-
butions to the strength of gravity. Recent theoretical argu-
ments [12] renew the old speculation [13] that the observed
Planck mass may receive dominant or significant contri-
butions ∼

ffiffiffiffiffiffiffi
NX

p
MGUT (weakening or inducing gravity by

raising the effective Planck mass from a nominal value M0
P

to Meff
P ¼ M0

Pl þ #
ffiffiffiffiffiffiffi
NX

p
MGUT) if there are a large number

(NX) of heavy particle degrees of freedom (d.o.f.) of
mass MGUT. To our mind the most appealing scenario
[10,11] is the interpretation of the strong coupling scale
of the NMSGUT as a physical UV momentum cutoff.
Simultaneously gravitational variables (metric, vierbein,
gravitino) are demoted to the role of a background even as
they are supplied with kinetic terms by the effect of matter
quantum fluctuations. Their effective action and strength
are determined by GUT scale wave function renormaliza-
tion of the dummy variables introduced firstly to implement
general covariance. Situational boundary conditions rel-
evant to large scale astrophysical and cosmological con-
texts which are, very plausibly, the only ones where gravity
is actually relevant will then specify the stress densities that
source the classical gravitational fields and waves. Such an
acceptance of the secondary and induced nature of the
gravitational field which needs no quantization might
finally lay quantum gravity to rest as an irrelevant incubus,
at least to the satisfaction of those concerned with testable
hypotheses, provided it were anchored in a interpretation
of the Planck cutoff as a physical cutoff arising from
the breakdown of GUT perturbativity. Induced gravita-
tional kinetic terms have long been postulated [13] on
grounds of perturbative wave function renormalization of
the graviton due to heavy particles. If we take the Planck
mass as its experimental value (1018.4 GeV) and Λ ¼
MX ¼ 1016.3 GeV this seems to indicate N ∼ 104. Thus
it is interesting to note that in the NMSGUT there are 640
chiral superfields and 45 Vector superfields. This large
number of SO(10) coupled fields are precisely what make
the couplings diverge strongly in the UV. If we count each
chiral and vector superfield as 4 d.o.f. we see that number
of heavy particle d.o.f. is N ∼ 103.4. This is in the right ball
park to justify the claim that the NMSGUT corrections to
the graviton propagator actually reduce gravity to the
weakly coupled theory we observe. By this line of
reasoning the Planck scale is determined by the unification
scale of the NMSGUT or its flavor unifying generalization
(the so called “YUMGUT” [14] which has even more
superfields). In this picture the Landau pole(s) of the
NMSGUT signal a physical cutoff for the perturbative
GUTat a scaleΛX ∼ 1017.0–1017.5 GeV, are the scale of UV
condensation driven by SO(10) gauge forces and moreover
set the observed strength of gravity. Conversely the

observed strength of gravity actually dictates the precise
value of the UV momentum cutoff to be used when
computing GUT quantum effects in any renormalization
scheme. Thus the relation between different cutoff schemes
is presumably deducible. However, it must be admitted that
there are technical obstacles [15] in the way of these largely
intuitive arguments which may not only render the Newton
constant uncalculable but necessitate the introduction of the
Planck Length as a fundamental parameter and require
independent quantization of gravity.
In the Landau polar region the gauge coupling is

strong and the theory has entered some sort of condensed
phase [10,11]. Thus the range of scales where the gauge
symmetry of the unified gauge group has unsuppressed
play seems confined to a narrow range of scales
∼1015.5 < Q < 1017.5 GeV. The UV flows of asymptoti-
cally free GUTs (of which, in our opinion, no fully realistic
example as successful as the realistic asymptotically strong
susy SO(10) models [16,17] really exists) cannot further
constrain these scales and only seem to offer the picture of a
weakly coupled gauge theory crushed as an irrelevance by
the strength of gravity above Meff

Planck. In contrast we argue
that asymptotically strong GUTs (ASGUTs) [10,11] point
to simple yet phenomenologically and calculationally
viable linkage between gravity and grand unification of
nongravitational forces and matter.
The very asymptotic strength of NMSGUT RG flows

also hints how the weakly coupled gauge theory and a
weakly coupled gravitational theory can emerge supernatant
at large length scales upon the condensate of strongly
coupled physics at the smallest length scales. The IR flows
of these theories very rapidly drive the coupling from
arbitrarily strong coupling to the typical values found via
RGanalyses near the supersymmetric unification scale g10 ∼
g5=

ffiffiffi
2

p
∼ 0.5 (subscripts 5 and 10 refer toSUð5Þ andSOð10Þ

normalizations for the running gauge coupling constant).
From this point of view the transunification flows of the
GUT gauge and Yukawa couplings that presumably under-
write the convergence of MSSM couplings(and third gen-
eration Yukawa couplings [18]) at or nearM0

X ∼ 1016.3 GeV
require the existence of a regime Q < ME where a pertur-
bative unified theory actually operates as the proper renor-
malizable effective theory describing all particle phenomena
except gravity. The nature of the RG flows in the transu-
nification or sub-Planckian regime has a vital bearing on
many interesting physical questions such as flavor violation
in susy theories [19] and the freedom to choose soft susy
breaking parameters required by realistic fits beginning from
simple and universal susy breaking scenarios such as
canonical supergravity (cSUGRY) type parameters at the
upper limit ME where the GUT emerges from the strongly
coupled UV regime proper.
The so called new minimal susy GUT (NMSGUT) based

on SO(10) gauge group and the 210 ⊕ 126 ⊕ 126 ⊕ 10 ⊕
120 Higgs system [16,17,20–22] is the simplest and most
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phenomenologically successful ASGUT in existence. It
has repaid thirty years of detailed investigation by
exhibiting a remarkable flexibility to accommodate emer-
gent phenomena and their associated data in one over-
arching calculable theoretical framework and resolve
long outstanding problems of unification in terms of
the quantum effects implied by its spontaneous symmetry
breaking and associated mass spectra. This has resulted
[16,17] in a realistic unification model which is compat-
ible with the known data and with distinctive predictions
for the susy spectra one hopes to observe at the LHC and/
or its successors. Thus it is now topical to examine
the RG flows of this theory in the sub-Planckian/trans-
unification regime to see whether they allow consistent
definition of a perturbative GUT over an appreciable
energy range.
The NMSGUT requires [16,17] small gaugino masses,

large squark masses and negative non universal Higgs mass
squared (NUHM) soft parameters to accomplish EW
symmetry breaking and fit fermion masses. Such param-
eters require justification, in particular for simple cSUGRY
scenarios (gravity mediation with canonical gauge and
scalar kinetic terms). Soft susy breaking parameters in
minimal supergravity (mSUGRY) are typically assumed to
be generated well above the GUT scale i.e., near the Planck
scale MP ≡ ð8πGNÞ−1=2 ¼ 1018.4 GeV. To consider the
effect of renormalization from Planckian scales to GUT
scale, when the GUT symmetry is unbroken, one needs the
explicit form of GUT RGEs. As is well known the
NMSGUT exhibits a Landau pole in the generic UV
running of the gauge coupling [10,11] quite close to the
perturbative scale of grand unification. In fact the large
coefficients in the β functions of its other couplings imply
the Landau polar regime involves all couplings. Thus there
can only be a small energy interval MX < E < ME during
which the NMSGUT RGEs are usable. Due to the strength
of the running it can still have important effects even over
the short energy range available in ASGUTs as compared to
the evolution over three decades of energy in the flavor
violation study of SU(5) SUGRY-GUTs [19]. If the
unification program is carried out by running down simple
and perturbative data initially defined at ME using first the
ASGUT RGEs and then the effective MSSM RGEs (with
added neutrino Seesaw and other exotic effective operators)
then the rapid weakening of ASGUT couplings towards the
IR ensures that a the transunification flow remains pertur-
bative and the calculation well defined. On the other hand
the UV flow of such theories enters the Landau polar region
just above ME implying that we must assume a physical
UV cutoff ΛE ≃ME for the whole grand unification
scenario. Beyond this energy lies the true cielo incognito
where all couplings are no longer weak: “Whereof one
cannot speak, one must be silent.”
In spite of their relevance the RGEs for the NMSGUT

had so far never been presented. In principle the application

of the generic formulas of Martin and Vaughn is algorith-
mic and straightforward. However Computer Algebra
programs [23] that aim to calculate the RG functions
automatically given the Lagrangian cannot, in practice,
handle the combinatorial complexity in theories with as
many fields as the MSGUT or NMSGUT. Using the vertex
structure of the superpotential and SO(10) gauge invariance
as constraints makes the sums over the components of the
large irreps (210, 126, 126 and 120) required by the
formulas of [6] tractable. The form of the RGEs for
supersymmetric theories is governed by the supersymmet-
ric non-renormalization theorem [24] whereby holomor-
phic (superpotential) couplings are free of renormalization
except that arising from wave-function renormalization.
A similar simplification is observable in the formulas for
the soft couplings and masses. Once the tricks for comput-
ing the one loop anomalous dimensions are mastered the
two loop anomalous dimensions and thus β functions also
follow with some additional combinatorics. In this paper
we present the NMSGUT one loop β functions. However
for the case of the gauge coupling and gaugino mass we
also give the two loop results. We have also calculated the
two loop results for the rest of the hard couplings and soft
susy breaking parameters [25] and we indicate how the
methods used for the one loop calculation suffice to yield
also the two loop results. The other explicit two loop
formulas and their effect on running will be discussed in a
sequel.
With strict assumptions such as canonical kinetic terms

and canonical supergravity type soft breaking terms the
gravitino mass parameter (m3=2) and the universal trilinear
scalar parameter A0 (∼m3=2) are the only free parameters
since then there are not even any gaugino masses, the
common scalar soft Hermitian mass is m3=2 and the soft
bilinear (“B” type) parameters are determined by A0, m3=2

[26]. Then the soft susy breaking parameters at GUT scale
MX are determined by running down soft parameters of
NMSGUT from ME with just these two soft parameters as
input. Of course in general one may also consider intro-
ducing more general soft terms, but our idea here is to show
the power of the SO(10) RG flow to generate suitable soft
terms at MX even when placed under such strong con-
straints. The NMSGUT SSB and effective theory are
explicitly calculable in terms of the fundamental parame-
ters. In practice the extreme non linearity of the connection
between these parameters and the low energy data implies
that only a random search procedure (for parameters
defined at ME) combined with RG flows past intervening
thresholds down to MZ can find acceptable fits of the SM
data. The degree of confidence in the completeness of the
search diminishes exponentially with the increase in
number of fundamental parameters. Thus every reduction
in the number of free parameters represents significant
progress towards defining a falsifiable model. The present
work may thus be seen as an attempt not only to improve
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the UV consistency but also to enforce a simplification of
the fitting problem by using constraints from the consis-
tency of transunification RG flows.
In fact we shall see that the SO(10) RG flow will identify

an additional constraint or tuning that must be imposed to
keep the soft holomorphic scalar bilinear (“B”) terms for
the MSSM Higgs pair in the TeV2 region mandated by
NMSGUT fits [16,17] as well as a RG flow based scenario
whereby the values of the B parameters may naturally be
left in this region. Various seemingly peculiar aspects of the
NMSGUT parameter choices may find an explanation in
terms of the RG flows at high scales. For instance the
negative non universal Higgs mass squared parameters
m2

H;H̄ which are found in NMSGUT are also justifiable by
the RG flows between ME and MX. Minimal SUGRY
predicts that all soft scalar masses squared are positive and
equal to m2

3=2 at the scale where they are generated. Soft
gaugino masses will be generated at two loops from the
other soft terms but do not arise at one loop if set to zero to
begin with. This justifies the typical hierarchy we observed
in NMSGUT fits whereby sfermions are in the 5–50 TeV
range and are much heavier than the gauginos of the
effective MSSM (which lie in 0.2–3 TeV range: depending
on the lower limits imposed by hand in the search). Also the
NUHM with negative masses are preferred to have con-
trolled lepton flavor violation in susy-GUTs [27]. Similarly
choice of the SUGRY emergence scale below the Planck
scale may also allow adjustment of the gaugino mass and
other low energy parameters. The existence of (quasi) fixed
points [28–30] of the RG flow is an important question with
a bearing on the physical interpretation of the theory. We
have analyzed this question for the NMGUT RG equations
but find that neither fixed nor quasi-fixed points exist.
In Sec. II we introduce the formulas of [6] and evaluate

them in terms of the parameters in the superpotential of the
NMSGUT. In Sec. III we present examples of running in
the sub-Planckian domain. We discuss the possibility of
fixed and quasifixed points of the NMSGUT RG flow in
Sec. IV. A summary and discussion of our results is given in
Sec. V. In the Appendix we collect the explicit form of the
1-loop RG β functions of the NMSGUT for soft and hard
parameters.

II. APPLICATION OF MARTIN-VAUGHN
FORMULAS TO THE NMSGUT

The generic renormalizable Superpotential without sin-
glets is [6]

W ¼ 1

6
YijkΦiΦjΦk þ

1

2
μijΦiΦj ð1Þ

Here Φi are chiral superfields which contain a complex
scalars ϕi and Weyl fermions ψ i. The generic collective
indices i, j, k run over both the different SO(10) irreps of
the NMSGUT and dimension of those irreps. The generic

Lagrangian corresponding to soft susy breaking terms is
given by

LSoftSusy ¼ −
1

6
hijkϕiϕjϕk −

1

2
bijϕiϕj −

1

2
ðm2Þijϕ�iϕj

−
1

2
Mλλþ H:c: ð2Þ

hijk are the soft supersymmetry breaking trilinear cou-
plings, bij the soft breaking bilinear masses, ðm2Þij the
Hermitian scalar masses andM is the SOð10Þ gaugino mass
parameter. The arrays Yijk, hijk, μij, bij are all symmetric
and we have allowed for SO(10) invariant universal
gaugino masses only corresponding to canonical diagonal
gauge kinetic term functions and SO(10) invariant 2-loop
generation of gaugino masses.
The theory we now call the new minimal supersym-

metric SO(10) GUT was proposed [21] by Mohapatra and
one of us (CSA) in the early days of supersymmetric GUTs
and was essentially the first complete and consistent
supersymmetric SO(10) GUT. Its natural and minimal
structure led another group [22] to independently propose
it around the same time. Following neutrino mass discovery
and formulation [31] of high scale left-right and B-L
breaking minimal left right supersymmetric models in
the last years of the last millennium, it was realized [32]
in 2003 that it—and not another R-parity preserving
supersymmetric SO(10) GUT based on 45 ⊕ 54 [33],
nor any other competing model such as supersymmetric
SU(5) with right handed neutrinos added—was the param-
eter counting minimal realistic susy SO(10) model. In the
same paper it was shown that the GUT SSB can be reduced
to the solution of a simple cubic equation for one of the
vevs. Thereafter it was the subject of intense study which
calculated its spectra [34–37] and specified the roles
(coupling magnitudes) required of the different Higgs
representations for complete fermion fits [38–40] taking
proper account of the role of threshold effects at MS and
MX (on gauge unification). Recently we established [17,20]
that if proper account was taken of the threshold effects at
MX on the relation between effective MSSM and GUT
Yukawa couplings then the latter -which determine fermion
masses and proton decay- can emerge so small as to
suppress the long standing problematic fast proton decay
due to dimension 5 operators completely. The 210, 126 and
126 Higgs break susy SO(10) to MSSM. The 10 and 120
Higgs are mainly responsible for the larger charged fermion
masses while the small Yukawa couplings of 126 produce
adequately large left handed neutrino masses via the Type I
seesaw mechanism, instead of failing to do so due to too
large right handed neutrino Majorana masses: as feared
from the early days of this model [22]. Moreover these
quantum corrected effective Yukawas restore a welcome
freedom from the onerous constraints (such as yb − yτ ≃
ys − yμ, yb=yτ ≃ ys=yμ [41]) on fermion Yukawas imposed
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by the NMSGUT proposal [16,39] to use mainly the 10,
120 irreps for charged fermion masses. Thus the model as it
stands [16,17] is fully realistic and invites further scrutiny.
The current study is a part of an effort to simplify and unify
the fitting procedure by matching the MSSM parameters

implied by randomly chosen GUT parameters at ME to the
electroweak and fermion mass data at MZ after RG
evolution through, and threshold corrections at, the inter-
vening scales (MX, MS).
The superpotential of the NMSGUT is

W ¼ 1

2
μHH2

I þ
μΦ
4!

ΦIJKLΦIJKL þ λ

4!
ΦIJKLΦKLMNΦMNIJ þ

μΣ
5!

ΣIJKLMΣIJKLM

þ η

4!
ΦIJKLΣIJMNOΣKLMNO þ 1

4!
HIΦJKLMðγΣIJKLM þ γΣIJKLMÞ

þ μΘ
2ð3!ÞΘIJKΘIJK þ k

3!
ΘIJKHMΦMIJK þ ρ

4!
ΘIJKΘMNKΦIJMN

þ 1

2ð3!ÞΘIJKΦKLMNðζΣLMNIJ þ ζΣLMNIJÞ þ hABΨT
AC

ð5Þ
2 γIΨBHI

þ 1

5!
fABΨT

AC
ð5Þ
2 γI1…γI5ΨBΣI1…I5 þ

1

3!
gABΨT

AC
ð5Þ
2 γI1…γI3ΨBΘI1I2I3 ð3Þ

Here middle roman capitals I; J; K… are indices of the
vector of SO(10). All SO(10) tensors are completely
antisymmetric and the 5 index ones also obey duality
conditions which halve their independent components. The
indices i, j, k of the generic notation refer to both the
representation and its internal (independent) components:
i≡ fR; rg; r ¼ 1…dðRÞ. So for example for the 10-plet
i≡ f10; Ig, but for the 45-plet i≡ f45; ½IJ�g with only one
ordering of each anti-symmetrized pair (I < J) included.
Similarly for the 120-plet the index i will run over all the
120 different combinations of 3 anti-symmetrized vector
indices: i≡ ½120; ½IJK�∶I < J < K�.
As familiar from the MSSM the chiral gauge invariants

in the superpotential are the templates for the SOð10Þ
invariant soft supersymmetry breaking terms. So corre-
sponding to each term in the superpotential we have a
soft term in LSoftSusy. For example we have λ̃ correspond-
ing to λ, bΦ corresponding to μΦ and a Hermitian mass
squared parameter for each Higgs representation. In all

we have fλ̃; k̃; ρ̃; γ̃; γ̃; η̃; ζ̃; ζ̃; h̃; f̃; g̃g, fbΦ; bΣ; bH; bΘg and
fm2

Φ; m
2
Σ; m

2
Σ̄; m

2
Θ; m

2
H;m

2
Ψg parameters in the NMSGUT

soft Lagrangian,where m2
Ψ is a 3 by 3 hermitian matrix.

Our successful fits [16,17] show that fermion data and
EW symmetry breaking requires negative Higgs soft
masses m2

H;H̄ and soft parameter bH both negative with
magnitudes ∼1010 GeV2 in (bH runs positive at low
scales) along with gaugino masses in the TeV (gluino)
and sub-TeV (Bino,Wino) range. In the following sec-
tions we will see that such initial values of the soft
parameters can be generated by running of the SO(10)
theory specified above even over the short range from
ME to MX ¼ MGUT and even when beginning from very
restricted scenarios for the initial parameter values: such
as those implied by cSUGRY.

We define the β functions at n-loop order for any
parameter x after extracting n powers of 1=ð16π2Þ for
convenience in presentation:

dx
dt

¼
X

n¼1

βðnÞx

ð16π2Þn ð4Þ

- The one-loop β-functions for the SO(10) gauge
coupling and gaugino mass parameter M have the generic
form:

βð1Þg ¼ g3½SðRÞ − 3CðGÞ�; βð1ÞM ¼ 2βð1Þg M=g ð5Þ

here SðRÞ and CðGÞ are Dynkin index (including contri-
bution of all superfields) and Casimir invariant respectively.
Table I gives the Dynkin index and Casimir invariant for
different representations of NMSGUT. We get a total index
SðRÞ ¼ 1þ ð3 × 2Þ þ 28þ 35þ 35þ 56 ¼ 161. So one-
loop β functions for the SO(10) gauge coupling and
gaugino mass parameter are

TABLE I. Dynkin index and Casimir invariant for different
representations of NMSGUT.

d S(R) CðRÞ ¼ dðGÞSðRÞ=dðRÞ
45 8 8
10 1 9=2
16 2 45=8
120 28 21=2
126 35 25=2
126 35 25=2
210 56 12
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βð1Þg10 ¼ 137g310 ð6Þ

βð1ÞM ¼ 274Mg210 ð7Þ

The general form of 1-loop beta function for Yukawa
couplings is [6]:

½βð1ÞY �ijk ¼ Yijpγð1Þkp þ ðk ↔ iÞ þ ðk ↔ jÞ ð8Þ

where γð1Þ is the one loop anomalous dimension matrix.
Thus we need to calculate the anomalous dimensions for
each superfield. SO(10) gauge invariance implies that γij
must be field-wise and (irrep) componentwise diagonal.
This simplifies their computation enormously. The generic
one-loop anomalous dimension parameters are given by

γð1Þji ¼ γ̄ð1Þji − 2g2δjiCðiÞ; γ̄ð1Þji ≡ 1

2
Yjpq
ipq ð9Þ

with Yijk ≡ Yijk�.
To see what is involved in calculating γ̄ð1Þji consider the

example of the 210-plet. The independent components
of this irrep correspond to non identical combinations of
four ordered and unequal vector indices: I < J < K < L.
Let us select one say 1234. SO(10) invariance requires that
γ̄ji is diagonal so that i≡ 1234 requires j≡ 1234: the
propagator correction will obviously not allow mixing with
a different representation than 210. So we are required
to sum over all possible symmetric combinations of
independent 210 components pq≡ ðfI < J < K < Lg;
fI0 < J0 < K0 < L0gÞ.
To calculate γð1ÞΦ we must therefore
(i) Identify the combinations of the chosen component

(1234) of Φ with other superfields of the model in
trilinear gauge invariants.

(ii) For any given coupling vertex, calculate the number
of ways the (conserved) chosen (1234) line gets
wave function corrections from the fields it couples
to in the considered vertex. Since it must emerge
with the same SO(10) quantum numbers as it entered
with and the counting will apply equally to every
such field component, a little practice suffices to get
all 1-loop anomalous dimensions.

Consider first the coupling ρΦIJKLΘIJMΘKLM

ρ

4!
ΦIJKLΘIJMΘKLM

¼
X

M

ρ

4!
4.2.Φ1234ðΘ12MΘ34M − Θ13MΘ24M þ Θ14MΘ23MÞ

Here M runs over remaining 6 values (M ¼ 5; 6…10 since
the 120 plet is totally antisymmetric). In this example we

can have 18 possible combinations that couple to Φ1234.
Therefore the contribution to ðγð1ÞÞ12341234 is

1

2
jYfΦ1234:Θ:Θgj2 ¼ 18jρj2

9
¼ 2jρj2 ð10Þ

Similarly

γ

4!
ΦIJKLHMΣIJKLM ¼ γΦ1234ðH5Σ12345 þH6Σ12346 þ � � �Þ

ð11Þ

The six allowed index values for H (i.e., 5-10) give—in an
obvious shorthand with SO(10) indices suppressed—

X

H;Σ
YfΦ1234:H:ΣgYfΦ1234:H:Σg ¼ 6jγj2 ð12Þ

The invariant kHIΘJKLΦIJKL will contribute to γð1ÞΦ

k
3!
HIΘJKLΦIJKL

¼ kΦ1234ðH1Θ234 −H2Θ134 þH3Θ124 −H4Θ312Þ þ � � �
ð13Þ

X

H;Θ
YfΦ1234:H:ΘgYfΦ1234:H:Θg ¼ 4jkj2 ð14Þ

Thus the anomalous dimension matrix reduces to a
common anomalous dimension for each independent com-
ponent of each field and only for the triplicated matter
16-plets need one consider mixing.
In this way one finds that the one loop anomalous

dimension for the 210-plet Φ is

γð1ÞΦ ¼ 4jkj2 þ 180jλj2 þ 2jρj2 þ 240jηj2 þ 6ðjγj2 þ jγ̄j2Þ
þ 60ðjζj2 þ jζ̄j2Þ − 24g210 ð15Þ

Using the anomalous dimensions one can compute the beta
functions for all the superpotential parameters. For example
the one loop β function for λ is

βð1Þλ ¼ 3γð1ÞΦ λ: ð16Þ

The formulas for the soft terms are closely analogous to
those for the superpotential couplings on which they are
modeled. Indeed the exact prescription for obtaining the
soft from hard beta functions is known [7] in terms of a
differential operator in the couplings operating on the
anomalous dimensions. This yields the generic formulas
given in [6,7]
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½βð1Þh �ijk ¼ 1

2
hijlYlmnYmnk þ YijlYlmnhmnk

− 2ðhijk − 2MYijkÞg2CðkÞ þ ðk ↔ iÞ þ ðk ↔ jÞ
¼ hijlγ̄ð1Þkl þ 2Yijlγ̃ð1Þkl − 2ðhijk − 2MYijkÞg2CðkÞ
þ ðk ↔ iÞ þ ðk ↔ jÞ ð17Þ

where

γ̃ð1Þkl ≡ 1

2
Ylmnhmnk: ð18Þ

The index patterns of the soft and hard couplings being
identical one can calculate the one-loop β function for the
soft parameter λ̃ using the same counting rules used above
to sum over independent loops. For example the β function
for the soft trilinear analog of the 210 cubic superpotential
coupling λ (called λ̃) is given by:

βð1Þ
λ̃

¼ 3λ̃γ̄ð1ÞΦ þ 6λγ̃ð1ÞΦ − 72g210ðλ̃ − 2MλÞ ð19Þ

where γ̄ð1ÞΦ ¼ 1
2
YΦmnYmnΦ and γ̃ð1ÞΦ ¼ 1

2
YΦmnhmnΦ are

anomalous dimensions. The first was given above in
Eq. (15) while its soft (tilde) counterpart is

γ̃ð1ÞΦ ¼ 4κ̃κ� þ 180λ̃λ� þ 2ρ̃ρ� þ 240η̃η� þ 6ðγ̃γ� þ ˜̄γγ̄�Þ
þ 60ðζ̃ζ� þ ˜̄ζζ̄�Þ: ð20Þ

These are calculated in the way described earlier with
substitution of a soft coupling (h) for a hard coupling (Y)
(on which h is modeled) and thus the numerical coefficients
follow γ̄Φ closely.
The generic form of the β functions for the soft bilinear

“B” terms is also known in terms of an exact relation given
by the action of a differential operator in the couplings
acting on the anomalous dimensions [7] and can be found
in [6,7]

½βð1Þb �ij ¼ 1

2
bilYlmnYmnj þ 1

2
YijlYlmnbmn þ μilYlmnhmnj

− 2ðbij − 2MμijÞg2CðiÞ þ ði ↔ jÞ; ð21Þ

which can again be written in terms of γ̄ and γ̃. Then
arguments similar to those given above yield:

βð1ÞbΦ
¼ 2bΦγ̄

ð1Þ
Φ þ 4μΦγ̃

ð1Þ
Φ − 48g210ðbΦ − 2MμΦÞ: ð22Þ

Similarly the Hermitian soft masses have generic β
functions

½βð1Þ
m2 �ji ¼

1

2
YipqYpqnðm2Þjn þ 1

2
YjpqYpqnðm2Þni

þ 2YipqYjprðm2Þqr þ hipqhjpq − 8δjiMM†g2CðiÞ
þ 2g2tAji Tr½tAm2�: ð23Þ

Again the previous results and a similar one for the doubly
soft contribution (i.e., from hjpqhipq) yields for example for
the 210 soft Hermitian mass:

βð1Þm2
Φ
¼ 2γ̄ð1ÞΦ m2

Φþ 720m2
Φjλj2þm2

Hð12jγj2þ 12jγ̄j2þ 8jkj2Þ
þm2

Θð8jρj2þ 120ðjζj2þjζ̄j2Þþ 8jkj2Þ
þm2

Σð480jηj2þ 12jγj2þ 120jζj2Þ
þm2

Σ̄ð480jηj2þ 12jγ̄j2þ 120jζ̄j2Þ
þ 2γ̂ð1ÞΦ − 96jMj2g210; ð24Þ

where

γ̂ð1Þji ¼ 1

2
hipqhjpq: ð25Þ

Thus for example

γ̂ð1ÞΦ ¼ 240jη̃j2 þ 4jκ̃j2 þ 180jλ̃j2 þ 2jρ̃j2 þ 6ðjγ̃j2 þ j ˜̄γj2Þ
þ 60ðjζ̃j2 þ j ˜̄ζj2Þ: ð26Þ

As a final example of one loop functions consider matter
field (ΨA) wave function renormalization due to the matter
Higgs superpotential couplings

W ¼ hABΨAαðCΓIÞαβΨBβHI ð27Þ

where the SO(10) conjugation matrix C and Gamma
matrices ΓI may be found in [37], α, β are Spin(10) spinor
indices and A;B… are the generation indices. To calculate
the contribution to wavefunction renormalization we need
to contract this vertex and its conjugate so as to leave
ΨAα,Ψ�

A0α0 as external fields. The remaining numerical
factors are

X

B;β

hABh�A0BðCΓIÞαβðCΓIÞ�α0β ¼ ðC�Γ�
IΓT

I C
TÞα0αðh�hTÞA0A:

ð28Þ

Then [37] either C ¼ Cð5Þ
1 ≡ τ1 × ϵ × τ1 × ϵ × τ1 or

C ¼ Cð5Þ
2 ≡ ϵ × τ1 × ϵ × τ1 × ϵ and Γi ¼ Γ†

i easily
give 10δα0αðh�hTÞA0A. Similarly the 120plet contributes
120ðg�gTÞ while the 126 − 126 pair give 252ðf�fTÞ (since
there is a double counting of the 126-plet components due
to duality within the 252 independent antisymmetric order-
ings of 5 vector indices). Finally since h, f, g are either
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symmetric or antisymmetric h�hT ≡ h†h, g�gT ≡ g†g etc.
The complete 1-loop anomalous dimensions and β func-
tions are given in Appendix.

A. Two loop anomalous dimensions

In this paper we study RG flows at one loop level with
two important exceptions. First the gauge coupling is
strongly driven to a Landau pole and it is natural to first
ask what is the two loop correction to the huge positive
coefficient in the one loop term. The generic two loop
formula is

βð2Þg ¼ g5f−6½CðGÞ�2 þ 2CðGÞSðRÞ þ 4SðRÞCðRÞg
− g3YijkYijkCðkÞ=dðGÞ; ð29Þ

where the factor in the last term simplifies as CðkÞ=dðGÞ ¼
SðkÞ=dðkÞ. Since for any given field type k

P
ij Y

ijkYijk is
diagonal in field type it follows that the sum over k will just
cancel the dimension of the representation (dðkÞ) leaving
the index S(k) as an overall factor weighting the con-
tribution of that field type in the last term in Eq. (29).
This yields

βð2Þg10 ¼ 9709g510 − 2g310ðγ̄ð1ÞH þ 28γ̄ð1ÞΘ þ 35γ̄ð1ÞΣ þ 35γ̄ð1ÞΣ̄

þ 56γ̄ð1ÞΦ þ 2Tr½γ̄ð1Þψ �Þ: ð30Þ
The general formula for the two loop gaugino mass β
function is very similar to the gauge beta function

βð2ÞM ¼ 4g4f−6½CðgÞ�2 þ 2CðGÞSðRÞ þ 4SðRÞCðRÞgM
þ 2g2ðhijk −MYijkÞYijkÞCðkÞ=dðGÞ ð31Þ

and this readily evaluates to

βð2ÞM ¼ 38836g410M þ 4g210ððγ̃ð1ÞH −Mγ̄ð1ÞH Þ
þ 2Tr½γ̃Ψ −Mγ̄Ψ� þ 28ðγ̃ð1ÞΘ −Mγ̄ð1ÞΘ Þ
þ 35ðγ̃ð1ÞΣ −Mγ̄ð1ÞΣ Þ þ 35ðγ̃ð1ÞΣ̄ −Mγ̄ð1ÞΣ̄ Þ
þ 56ðγ̃ð1ÞΦ −Mγ̄ð1ÞΦ ÞÞ:

This concludes the β equations we need in this paper.
However we have also computed the complete two
loop results [25]. Here we indicate how they are computed.
The two loop anomalous dimensions γð2Þ are the building
blocks of two loop β functions and have generic form:

γð2Þji ¼−
1

2
YimnYnpqYpqrYmrjþ g210YipqYjpq½2CðpÞ−CðiÞ�

þ 2δji g
4
ð10Þ½CðiÞSðRÞþ 2CðiÞ2 − 3CðGÞCðiÞ�: ð32Þ

Again they are field wise and independent component
wise diagonal. Only the first term requires attention. The
intermediate sums over n, r can be broken field wise and
thereafter using diagonality of the one loop anomalous
dimensions the first term collapses to a sum over inter-
mediate connected irreps weighted by their one loop γ̄ s:
Thus for example

YimnYnpqYpqrYmrj ¼YimnH γ̄
ð1Þ
H YmnHjþYimnΘ γ̄

ð1Þ
Θ YmnΘjþ���

ð33Þ

Thus the total contribution can be written with the help of
one loop anomalous dimension parameters. For example

γð2ÞΦ ¼ −ð240jηj2ðγ̄ð1ÞΣ þ γ̄ð1ÞΣ̄ Þ þ 4jkj2ðγ̄ð1ÞH þ γ̄ð1ÞΘ Þ
þ 6jγj2ðγ̄ð1ÞH þ γ̄ð1ÞΣ Þ þ 360jλj2γ̄ð1ÞΦ þ 4jρj2γ̄ð1ÞΘ

þ 6jγ̄j2ðγ̄ð1ÞH þ γ̄ð1ÞΣ̄ Þ þ 60jζj2ðγ̄ð1ÞΘ þ γ̄ð1ÞΣ Þ
þ 60jζ̄j2ðγ̄ð1ÞΘ þ γ̄ð1ÞΣ̄ ÞÞ þ g210ð6240jηj2 þ 24jkj2
þ 4320jλj2 þ 36jρj2 þ 60jγj2 þ 60jγ̄j2 þ 1320jζj2
þ 1320jζ̄j2Þ þ 3864g410: ð34Þ

III. PROBING THE DEEP CLEFT: APPLICATIONS
OF NMSGUT RG EQUATIONS

A. Landau polar versus emergence domain

Let us begin with the elephants in the room: the huge β
function coefficients in the 1-loop gauge β-function and
also in the β functions of almost all the chiral multiplet self-
couplings in the superpotential. Thus the coefficients of the
cubic terms for the couplings fg10; λ; η; γ; γ̄; κ; ζ; ζ̄; ρg are
seen from Eqs. (6)–(15) and the Appendix to be ð16π2Þ−1
times f137; 180; 640; 142; 142; 95; 265; 265; 16g. Except
for the couplings κ, ρ the other couplings grow even faster
than the gauge coupling. As noted [10,11] before the huge
gauge β functions imply very rapid change of g10 and lead
to a Landau pole in the gauge coupling at scales within an
order of magnitude or so of the perturbative unification
scale. For the usual (SU(5) normalization) value of the
gauge coupling at unification: α−15 ðM0

XÞ ¼ α−110 ðM0
XÞ=2 ¼

25.6 we find the SO(10) gauge coupling has a Landau
pole at about ΛE ≃ expð4π=137α5ðM0

XÞÞ ≃ 10.5M0
X. In the

NMSGUT, even with the multitude of threshold cor-
rections, α−15 ðM0

XÞ can consistently lie in (at most) the
range 10–40. This corresponds to θX ≡ Log10ðΛE=MXÞ
varying in the range θX ∈ ½0.4; 1.6� although the extreme
values are hard to achieve. Thus the furthest that one can
push the Landau polar boundary i.e., the scale beyond
which the theory is certainly fully strong coupled is about
1017.4 GeV. Note however that this “UV misbehavior”
pales in comparison with the effect of the combined growth
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of the Yukawa couplings which can reach strong coupling
over an scale change by 20% or less. In fact we find that this
is true of fits found by us earlier when they are extrapolated
into the UV. The strong divergence and instability of the
transunification flow into the UV implies that it is not
efficient to look for fits to the complete SM data by
parameters thrown at MX if one wishes to have any
significant range of energies where the SO(10) GUT is
perturbative and well defined. It is quite likely that the
parameters optimized for such a fit will prove to lead to a
Landau pole just aboveMX. Thus, to resolve this numerical
difficulty, we propose to turn the strong decrease in
couplings in the flow into the IR to good account by
searching for viable coupling flows valid in the entire range
½MX;ME ≃ ΛE� of definition by throwing the parameters—
subject to perturbative consistency constraints—at a can-
didate ME and considering downward (i.e., into the IR)
running of couplings. The scaleME (M0

X < ME ≪ MPlanck)
is defined to be the scale where a (weakly coupled) effective
GUTwith soft susy breaking has emerged as supernatant to
the unknown strongly coupled dynamics of trans-emer-
gence scales lying in (ΛE,MPlanck). The strong RG flows, as
well as the thousands of superheavy particles in the theory
with masses ∼MX make a value of ME well below MPlanck
plausible without forcing it to coincide with the usual
unification scale MX. At least prima facie, ME could lie
anywhere up to 1017.4 GeV. We accept that couplings will
enter the Landau polar region at ΛE just aboveME with the
reassurance that by choosing the initial values at ME the
strongly weakening effect of flow to lower scales will
reduce the couplings further and ensure that the theory
becomes more accurately weakly coupled as it approaches
the region where the GUT crosses over into the low energy
effective theory i.e., the MSSM (with seesaw suppressed
neutrino mass and other GUT scale suppressed exotic
operator supplements). This pattern of energy scales is
consistent with the expectation [12] that the large number
of massive d.o.f. in the NMSGUT will lead to the Planck
mass being dominated by their contribution to graviton
wave function renormalization: cutoff by the scale of the
NMSGUT Landau poles. The Landau polar latitude ΛE is
set by examining the UV flow from the values found to
define an consistent low energy theory and essentially
coincides with ME: it is to be interpreted as a perturbative
limit and thus physical cutoff of the effective SO(10)
GUT signaled by the theory itself. It also marks the point
where a peculiar and mysterious condensation analogous to
confinement in QCD but arising from UV flows takes place
in the SO(10) gauge dynamics. In sum, to probe viable
scenarios we should takeME to be free along with the hard
and soft parameters defined atME and conduct searches by
first running these parameters to a matching scaleMX close
to the standard MSSM unification scale M0

X ≃ 1016.33 GeV
and then -after applying threshold corrections at that scale
[17] run the resultant effective MSSM parameters down to

the electroweak scale MZ and there—after applying low
scale threshold corrections—match them to the observed
standard model values. This will be attempted in future
improvements of our fitting code. Here however we content
ourselves by showing that even running couplings down
over the short interval between the soft susy parameter
emergence scale ME and the GUT matching scale can
radically reshape the susy breaking parameter spectrum and
bring it closer to the type of parameter values we assumed
in earlier studies [16,34].

B. NMSGUT running down

To illustrate the actual effect of running down the
couplings using the 1-loop β functions, augmented by two
loop results for the gauge coupling and gaugino masses,
we present an example of a flow down from ME ¼
1017.4 GeV where g10ðMEÞ ¼ 1.0 is quite small enough
so that RGE flows are perturbative yet large enough that
g10ðMXÞ ≃ 0.5 required to match the MSSM unification
value without large threshold corrections can be achieved.
We note that beginning with g10 near to 3.0 at the Planck
scale (roughly where the RG equation solution by 4th
order Runge-Kutta methods becomes unstable) one can
still flow down close to unification gauge couplings g10 ∼
0.5 such as those found for the MSSM unification
coupling. Thus the strong SO(10) gauge RG flows into
the infrared, as well as the GUT induced gravity scenario,
provide a rationale for effective separation of the inevi-
table gauge-Yukawa condensed strong coupling region in
the UV from the weakly coupled susy SO(10) GUT
compatible with the gauge and fermion data. These strong
flows can explain and justify certain features of the
parameter values assumed in the extensive studies we
have performed elsewhere [16,17] to find fits of the
standard model parameters by matching to the effective
MSSM obtained from the GUT after RG flow from MX
to MZ.
In our example we take SO(10) gauge and Yukawa

couplings similar to those found in earlier NMSGUT
fits [16,17]. Examples of these features from the
two explicit fits found in[17] are quoted in Table II.
We see that these parameter choices exhibit the follow-
ing features:

(i) Small values of the gaugino masses m1=2 ≪ Msusy
qualifying them to be considered as an induced as a
secondary effect of the scalar soft susy breaking
parameters m0, A0 which are in the multiTeV to
100 TeV range

(ii) Large negative values ∼ − ð100 TeVÞ2 for the soft
breaking parameters associated with the light Higgs
doublets: i.e., mass squared values M2

H;H̄ and B
parameter (soft analog of μ parameter in the super-
potential)

(iii) μ parameter for the light Higgs doublets in 100 TeV
range.
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Searches for parameters using combined trans and cis
unification RG flows are not attempted here. We restrain
our numerical investigations to showing that soft breaking
parameters like those seen in Table II can be generated by
choosing soft breaking parameters according to canonical
kinetic term SUGRY form: all gaugino masses are zero, all
soft scalar masses equal the gravitino mass at the UV
emergence scale: mscalarðMEÞ ¼ m3=2ðMEÞ and (for illus-
tration) A0ðMEÞ ¼ 2m3=2. We also require that the soft
bilinears obey the strictest form of the gravity mediated
scenario [26]:

bi ¼ ðA0 −m3=2Þμi ð35Þ

at the emergence scale. We chose m3=2ðMEÞ ¼ 5 TeV and
examine the renormalization flow from ME to M0

X. The
values of hard and soft parameters at two scales (ME and
M0

X) are given in Tables III and IV. Clearly the RG
evolution can be very significant and in particular the
gauge coupling and soft masses change rapidly. Evolution
of the Hermitian soft masses from ME to MX is shown in
Fig. 1 and we can see that some of them become negative.

TABLE II. Examples of EWSB relevant parameters and soft susy breaking parameters at MX from explicit fits
with GUT scale threshold corrections [17].

Solution 1 Soft parameters at MX m1
2
¼ −152.899 m0 ¼ 11400.993 A0 ¼ −2.0029 × 105

μ ¼ 1.5966 × 105 B ¼ −1.7371 × 1010 tan β ¼ 51.0000
M2

H̄ ¼ −2.0655 × 1010 M2
H ¼ −1.7978 × 1010

Solution 2 Soft parameters at MX m1
2
¼ 0.000 m0 ¼ 12860.405 A0 ¼ −1.9844 × 105

μ ¼ 1.7240 × 105 B ¼ −1.4927 × 1010 tan β ¼ 50.0000
M2

H̄ ¼ −2.9608 × 1010 M2
H ¼ −2.8920 × 1010

TABLE III. Example of consistent hard NMSGUT-cSUGRY parameters emergent at ME ¼ 1017.4 GeV evolved
down to M0

X ¼ 1016.33 GeV using one-loop NMSGUT RGEs for all parameters except the gauge coupling and
gaugino mass which use two loop evolution.

Parameter Value at ME ¼ 1017.4 GeV Value at M0
Xð1016.33 GeVÞ

g10, g5 1.0,
ffiffiffi
2

p
0.497, 0.703

λ, η −0.0434þ 0.0078i, −0.313þ 0.08i −0.0133þ 0.0024i, −0.121þ 0.031i
ρ, κ 0.954 − 0.27i, 0.027þ 0.1i 0.21 − 0.06i, 0.0024þ 0.0088i
γ, γ̄ 0.471, −3.272 0.0493, −0.425
ζ, ζ̄ 1.009þ 0.831i, 0.36þ 0.59i 0.265þ 0.218i, 0.117þ 0.192i

h11=10−6 4.4602 1.241
h22=10−4 4.1031 1.1411
h33 0.0244 .00679
h12=10−12 0.0 −1.816þ 2.919i
h13=10−11 0.0 −1.823þ 1.811i
h23=10−9 0.0 −2.955þ 5.549i
f11=10−6 −.0044þ .16207 −0.0045þ .166i
f22=10−5 6.675þ 4.8457i 6.843þ 4.968i
f33=10−4 −9.264þ 2.7876i −9.498þ 2.858i
f12=10−6 −0.849 − 1.782i −.871 − 1.828i
f13=10−6 .5496þ 1.1479i 0.5635þ 1.177i
f23=10−4 −.4266þ 2.231i −0.4374þ 2.287i
g12=10−5 1.4552þ 1.599i 1.016þ 1.116i
g13=10−5 −11.784þ 4.9613i −8.227þ 3.464i
g23=10−4 −1.6648 − 1.18436i −1.162 − 0.827i

μΦ 1015 GeV 4.55 × 1014 GeV
μH 1015 GeV 5.23 × 1013 GeV
μΣ 1015 GeV 5.72 × 1014 GeV
μΘ 1015 GeV 3.29 × 1014 GeV
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Moreover some of the B parameters also turn negative. In
our realistic fits [16,17] we in fact find that the values of
soft Hermitian masses squared and B parameter relevant to
the light MSSM Higgs at the GUT scales need to be
negative (Table II): which at least the cSUGRY framework,
applied directly at MX, would contraindicate. The strong

RG flows show that this constraint can be easily evaded if
ME and MX do not coincide.
H, H̄ are constrained to be very light compared to the

GUT scale by imposing detH ¼ 0 on their mass matrix (H)
which is calculated using the MSGUT vevs [16,32,34–37].
The left and right null eigenvectors ofH furnish the “Higgs
fractions” [16,32,34] whereby the composition of the light
doublets in terms of 6 pairs of GUT doublets is specified
and the rule for passing to the effective theory: hi → αiH,
h̄i → ᾱiH̄ defined. Then the soft Hermitian scalar mass
terms will give

m2
i ðh†i hi þ h̄†i h̄iÞ → m2

HH
†H þm2

H̄H̄
†H̄

m2
H ¼

X6

i¼1

jαij2m2
i ; m2

H̄ ¼
X6

i

jᾱij2m̄2
i : ð36Þ

Since m2
i can turn negative when running from ME to MX

we see that negative m2
H;H̄ can be achieved. However note

that one also has the bij terms for each of the GUT Higgs
multiplets so that one will in fact also induce the B term for
the light Higgs as

16.6 16.8 17.0 17.2 17.4
Log_ 10 Q

2 107

1 107

1 107

2 107

mi
2

FIG. 1. Evolution of soft masses from Planck scale to GUT
scale. Dashed (red), dotted (purple), medium dashed (blue), thick
dashed (green) and solid (orange) lines represent m2

Φ̄, m
2
H , m

2
Θ,

m2
Σ and m2

Σ̄ respectively.

TABLE IV. Values of NMSGUT soft parameters at two different scales evolved by using one-loop SO(10) RGEs.
A0 ¼ 10 TeV, m3=2 ¼ 5 TeV.

Parameter Value at ME ¼ 1017.4 GeV Value at M0
Xð1016.33Þ GeV

λ̃, η̃ −434.0þ 78.0i, −3127.0þ 798.0i −17.47þ 3.14i, −335.8þ 85.69i

ρ̃, k̃ 954.4 − 269.8i, 273.0þ 991i −115.7þ 32.7i, −6.39 − 23.19i
γ̃, ˜̄γ 4711þ 0.0i, −32719þ 0.0i −80.3þ 0.116i, 142.7þ 0.021i

ζ̃, ˜̄ζ 10091þ 8305i, 3596þ 5898i 125.28þ 103.1i, 206.77þ 339.14i

h̃11=10−4 446.02 63.05þ 0.0028i

h̃22, h̃33 4.10, 244.19 0.58þ 2.647 × 10−5i, 34.52þ 0.00158i
h̃12=10−8, h̃13=10−7 0.0, 0.0 −3.65þ 5.88i, −3.071þ 4.62i

h̃23=10−5 0.0 −7.072þ 13.2i

f̃11=10−3, f̃22 −0.0436þ 1.621i, .667þ 0.4845i −0.042þ 1.58i, 0.65þ 0.472i

f̃33, f̃12=10−2 −9.264þ 2.787i, −0.85 − 1.78i −9.013þ 2.71i, −0.83 − 1.73i

f̃13=10−2, f̃23 0.55þ 1.15i, −0.427þ 2.23i 0.535þ 1.12i, −0.415þ 2.17i
g̃12 0.146þ 0.16i 0.073þ 0.08i
g̃13, g̃23 −1.178þ 0.496i, −1.665 − 1.184i −0.591þ 0.249i, −0.835 − .594i

Mg̃ 0 −1171.73þ 0.0016i

bΦ 5.0 × 1018 GeV2 −3.605 × 1017 þ 6.576 × 1012iGeV2

bH 5.0 × 1018 GeV2 −3.579 × 1017 þ 2.474 × 1013iGeV2

bΣ 5.0 × 1018 GeV2 3.881 × 1017 þ 6.82 × 1012iGeV2

bΘ 5.0 × 1018 GeV2 −8.72 × 1017 − 8.536 × 1011iGeV2

m2
Φ 2.5 × 107 GeV2 48070.7 GeV2

m2
H 2.5 × 107 GeV2 −1.388 × 107 GeV2

m2
Θ 2.5 × 107 GeV2 −5.154 × 106 GeV2

m2
Σ 2.5 × 107 GeV2 1.80955 × 106 GeV2

m2
Σ̄ 2.5 × 107 GeV2 9.564 × 106 GeV2

Eval m2
Ψ̃ 2.5 × 107 GeV2 f2.7892; 2.7892; 2.7889g × 107 GeV2
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B ¼ bHα1ᾱ1 þ bΣðα3ᾱ2 þ α2ᾱ3Þ þ bΦα4ᾱ4

þ bΘðα5ᾱ5 þ α6ᾱ6Þ: ð37Þ

An additional constraint(analogous to that imposed on μ)
to maintain the B term at magnitudes less than 1010 GeV2

(rather than the RG evolved values which tend to
have magnitude ðA0 −m3=2Þμi ∼MXm3=2 ≫ m2

3=2) is thus
required. The turning of sign of some of the b para-
meters may provide a mechanism whereby the short flow
lands these parameters closer to the TeV scale values
required.

IV. CONCERNING INVARIANT
PARAMETER SUBMANIFOLDS
UNDER THE MSGUT RG FLOW

The seminal work of Pendleton and Ross [28] on
quasifixed points of the SM RG flow successfully
estimated the approximate top quark mass before its
discovery on the basis of the intuition of an approximate
“quasi-infrared fixed point” in the RG flow governing the
ratio h2t =αs. Since then the same basic idea has been
applied to the dimensionless and even dimensionful(i.e.,
soft) parameters of (susy) GUTs to study [29] whether
the quasi-fixed point structure of the GUT Yukawa and
gauge couplings may be significant in fixing the cou-
plings at the Unification scale. It was found that such
structures are particularly relevant in the case where there
are many fields so that the GUT model is strongly
coupled in the ultraviolet. This is precisely the case for
the MSGUT and NMSGUT. If such invariant structures
could be identified they would obviously be an important
criterion for comparing different unified models. In the
present instance we have calculated the full set of RG
equations for both hard and soft couplings of the
MSGUT. Thus the optimistic view might be that these
complex flow equations somehow support novel invariant
structures when considered in their entirety. The generic
form of the 1 loop beta functions for the dimensionless
(gauge and Yukawa) couplings of a supersymmetric
model is

βg ¼
1

16π2
b0g3

βYijk ¼ 1

16π2
ðγi þ γj þ γkÞYijk; ð38Þ

where γi is given by Eq. (9) after using diagonality
(γij ≡ γiδ

i
j) of the anomalous dimension matrices, and b0

is a large integer or rational number (b0 ¼ 137 for the
MSGUT). It is clear that combining these two equations
and the 1-loop formula for γi we can derive fixed point

conditions in terms of Zijk ¼ jYijkj2=g2 for the squared
magnitudes of various couplings, while their phases
remain free. These conditions are readily seen to be
generically of the form

γi þ γj þ γk − b0g2 ¼ 0 ¼ γ̄i þ γ̄j þ γ̄k
g2

− ðbijk þ b0Þ

ð39Þ

where we have separated out the gauge (bijk) and
Yukawa (γ̄i;j;k) components of the anomalous dimensions
for fields i, j, k. Writing γ̄i ¼ aIi jYIj2 where I runs over
the different Ykawa couplings in the theory we get the
fixed point conditions in the form

ðaIi þ aIj þ aIkÞZI − ðbijk þ b0Þ ¼ 0 ð40Þ

where ZI ¼ jYIj2=g2.
The question as to whether any quasifixed points

of the full set of RG equations can possibly exist
then involves solving these equations subject to the con-
straints that all ZI are positive semidefinite. Unfortunately
the huge value of the coefficient b0 which is common
to all the conditions makes a solution impossible to
achieve.
We illustrate the difficulty for a simplified MSGUT

model with negligible first generation matter Yukawas
ðh; f; gÞ1A ≃ 0, diagonal h, f couplings h2;3, f2;3 and
g32 ¼ −g23. The relevant anomalous dimensions are

γ̄Φ
g2

¼ 4Zk þ 180Zλ þ 2Zρ þ 240Zη þ 6ðZγ þ Zγ̄Þ

þ 60ðZζ þ Zζ̄Þ
γ̄Σ̄
g2

¼ 200Zη þ 10Zγ̄ þ 100Zζ̄ þ 32ðZf2 þ Zf3Þ
γ̄Σ
g2

¼ 200Zη þ 10Zγ þ 100Zζ

γ̄H
g2

¼ 84Zk þ 126ðZγ þ Zγ̄Þ þ 8ðZh2 þ Zh3Þ
γ̄Θ
g2

¼ 7Zk þ 7Zρ þ 105ðZζ þ Zζ̄Þ þ 16Zg23

γ̄Tψ
g2

¼ 252ð0; Zf2 ; Zf3Þ þ 120ð0; Zg23 ; Zg23Þ

þ 10ð0; Zh2 ; Zh3Þ: ð41Þ

Consider first the case where the couplings to the
16-plets have been set to zero (Zh2;3;f2;3;g23 ≡ 0). The fixed
point conditions for the other couplings are then
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0 ¼ 3
γ̄Φ
g2

− ðb0 þ 72Þ

0 ¼ ðγ̄Φ þ γ̄Σ þ γ̄HÞ
g2

− ðb0 þ 58Þ

0 ¼ ðγ̄Φ þ γ̄Σ̄ þ γ̄HÞ
g2

− ðb0 þ 58Þ

0 ¼ ðγ̄Φ þ γ̄Σ þ γ̄Σ̄Þ
g2

− ðb0 þ 74Þ

0 ¼ ðγ̄Θ þ γ̄H þ γ̄ΦÞ
g2

− ðb0 þ 54Þ

0 ¼ ð2γ̄Θ þ γ̄ΦÞ
g2

− ðb0 þ 66Þ

0 ¼ ðγ̄Φ þ γ̄Σ þ γ̄ΘÞ
g2

− ðb0 þ 70Þ

0 ¼ ðγ̄Φ þ γ̄Θ þ γ̄Σ̄Þ
g2

− ðb0 þ 70Þ: ð42Þ

Solving these fixes Zη;k;ζ;ζ̄;ρ in terms of Zλ;γ;γ̄ and for
them to be semipositive gives 5 inequalities which can be

easily reduced by eliminating Zγ between them. However
this yields the condition Zλ ≤ −227=2700 which is incon-
sistent with the semipositive values allowed for Zλ. So there
is no fixed point.
One might hope that introducing the 16-plet couplings

might help. Then we restore Zh2;3;f2;3;g23 and obtain the addi-
tional conditions for the beta functions of these ratios:

0 ¼ ðγ̄H þ 2γ̄ψ2;3
Þ

g2
− ðb0 þ 63=2Þ

0 ¼ ðγ̄Σ̄ þ 2γ̄ψ2;3
Þ

g2
− ðb0 þ 95=2Þ

0 ¼ ðγ̄Θ þ γ̄ψ2
þ γ̄ψ3

Þ
g2

− ðb0 þ 87=2Þ ð43Þ

Solving these conditions one finds that Zζ;ζ̄;h3;f2;f3;g23;ρ

are determined in terms of Zη;γ;γ̄;k;λ;h2 ≥ 0 which are them-
selves undetermined. The question is whether there are any
semipositive values of these free parameters for which the
dependent variables remain semipositive. Solution of the
fixed point conditions yields the following solution vector

fZζ; Zζ̄; Zh3 ; Zf2 ; Zf3 ; Zg23 ; Zρg
¼ f53=75 − 2Zη − Zγ=10; 689=525 − 10Zη − Zγ̄=10 − 12Zλ;

41=6 − ð63ZγÞ=4 − ð63Zγ̄Þ=4 − Zh2 − ð21ZkÞ=2;
− ð613=756Þ þ ð25ZηÞ=2 − ð5ZγÞ=16 − ð5Zγ̄Þ=16 − ð5Zh2Þ=126 − 5Zk=24þ ð75ZλÞ=4;
− ð409=378Þ þ ð25ZηÞ=2þ ð5ZγÞ=16þ ð5Zγ̄Þ=16þ ð5Zh2Þ=126þ ð5ZkÞ=24þ ð75ZλÞ=4;

209=96 − ð105ZηÞ=4þ ð21ZγÞ=32þ ð21Zγ̄Þ=32þ ð7ZkÞ=16 − ð315ZλÞ=8;
− ð1081=42Þ þ 240Zη − ð2ZkÞ þ 270Zλg ≥ 0: ð44Þ

An elementary reduction of this system of inequalities [42]
leads to contradictory condition

−ð407þ 252Zk þ 11340ZλÞ=48 ≥ Zh2 ≥ 0 ð45Þ
showing that again there is no fixed point for the system
even when measuring in units of the (exploding in the UV)
value of g2. Although we have not obtained a general proof
it seems likely that no fixed point can be found. Support for
this can be found in recent investigations [30], based on the
so called nonperturbative a-theorem and the exact NSVZ
beta function(see [30] for a concise introduction and a fairly
complete list of references for these topics), of the
possibility of non-trivial superconformal UV fixed points
in the SO(10) MSGUT. They conclude that no such fixed
points exist without rather artificial requirements being
placed upon the couplings and R-charges of some of the
SO(10) multiplets or by introducing very large numbers of
additional multiplets and trivializing the superpotentials
allowed.

V. DISCUSSION

We have proposed a framework for a consistent inter-
pretation of asymptotically strong GUTs by considering
RG flows of GUT parameters from an emergence scaleME
of a weakly coupled GUT down to the scale MX where the
GUT is matched to its low energy effective theory.
Thereafter the MSSM flows from MX down to MZ
determine the experimental predictions of the GUT param-
eter set chosen at ME. This procedure allows extension of
the perturbative regime of the unified theory up to the
Landau polar latitude ΛE. Interestingly the large number of
d.o.f. further strengthen the intuition [10,11] that the scale
of gravity may be dominantly set by the effects of (the
thousands of) NMSGUT superheavy particles. Thus MPl
can lie well above ΛE which nevertheless plays a part in
raising MPl by serving as the physical cutoff scale for
graviton wave function renormalization corrections due to
the NMSGUT as well as the scale for SO(10) “confine-
ment” [11]. We presented the NMSGUT RG equations to
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determine the RG evolution of couplings between the scale
(ME) where the perturbative effective theory (NMSGUT
plus weakly coupled and softly brokenN ¼ 1 supergravity)
emerges and the matching scale between GUT and the low
energy effective theory (i.e., the MSSM) at MX. To
illustrate the application of these results we evaluated
the effects of the 1-loop evolution on randomly chosen
sets of parameter values assuming a minimal, canonical
kinetic term, supergravity scenario for the starting param-
eter ansatz. From the Tables and Fig. 1 we see that the RG
evolution has dramatic effects on the soft susy breaking
parameters. Firstly most of the soft susy breaking
Hermitian masses squared of the SO(10) Higgs irreps
become negative even though they start from a common
positive mass. This provides a potentially robust justifica-
tion of the negative values of M2

H;H̄ used in NMSGUT fits
[16,17]. Note that the distinctive normal s-hierarchy at low
scale is strongly correlated with the large negativeM2

H;H̄ we
use in the fits. Gaugino masses (Mλ) will be generated by
two loop RG evolution between MX and MZ, even if
Mλ ¼ 0 at the scaleMX. On the other hand the same applies
to the evolution betweenME andMX. Thus even canonical
gauge kinetic terms in the GUT can still generate adequate
gaugino masses. This is pleasing since we have always
resisted invoking non canonical Kähler potential and gauge
kinetic terms on grounds of minimality/predictivity and to
preserve renormalizability of the gauge sector.
Another notable effect is the intermediate scale

ðOðm3=2MXÞÞ values of the soft parameters bΦ;Σ;Θ;H
required by the canonical mSUGRY ansatz and induced
by the dependence db

dt ∼MXm3=2. So we may need to impose
an additional condition in order that the contribution from
the soft terms to bH;H̄ is Oðm2

3=2Þ unless this is achievable via
the RG flow of Bij towards negative values itself.
The running of trilinear soft coupling and s-fermion mass

squared parameters (m2
Ψ̃) will give distinct values at the

GUT scale for the three generations (considered the same in
earlier studies of NMSGUT [16,17]). In sequels we will
integrate these RG flows with our previous code that
incorporates the MSSM flows between MX and MZ.
Then one will throw the core soft parameters m3=2, A0 at
ME and run down over thresholds toMZ with one additional
fine tuning constraint. Thus the total number of soft
parameters will be significantly reduced. Improvements
would include the 2-loop RG coefficients we have already
computed [25]. Finally the straightforward (since the super-
potential vertex connectivity is preserved) generalization of
these results to the case of YUMGUTs [14] will allow us
also to perform the RG flows from the Planck scale for
dynamical flavor generation models based on the MSGUT.
These theories have around 6 times as many fields as the
NMSGUTand are thus even more capable of separatingMX
and MPl. We note that the techniques we have used to
actually evaluate the 2-loop RGEs have overcome the

combinatorial complexity that prevented their calculation
by automated means. They can be used for any susy GUT.
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APPENDIX

1. One-loop RGEs

One-loop anomalous dimension parameters associated
with different superfields:

γð1Þji ¼ 1

2
YipqYjpq − 2g210δ

j
iCðiÞ

γð1ÞΣ ¼ 200jηj2 þ 10jγj2 þ 100jζj2 − 25g210

γð1ÞΣ̄ ¼ 200jηj2 þ 10jγ̄j2 þ 100jζ̄j2 þ 32Tr½f†:f� − 25g210

γð1ÞH ¼ 84jκj2 þ 126ðjγj2 þ jγ̄j2Þ þ 8Tr½h†:h� − 9g210

γð1ÞΘ ¼ 7ðjκj2 þ jρj2Þ þ 105ðjζj2 þ jζ̄j2Þ
þ 8Tr½g†:g� − 21g210

ðγð1ÞΨ ÞBA ¼ ðγð1ÞΨ ÞAB ¼ 252f†:f þ 120g†:gþ 10h†:h −
45g210
4

ðA1Þ

γ̄ð1Þji ¼ 1

2
YipqYjpq

γ̄ð1ÞΣ ¼ 200jηj2 þ 10jγj2 þ 100jζj2

γ̄ð1ÞΣ̄ ¼ 200jηj2 þ 10jγ̄j2 þ 100jζ̄j2 þ 32Tr½f†:f�
γ̄ð1ÞH ¼ 84jκj2 þ 126ðjγj2 þ jγ̄j2Þ þ 8Tr½h†:h�
γ̄ð1ÞΘ ¼ 7ðjκj2 þ jρj2Þ þ 105ðjζj2 þ jζ̄j2Þ þ 8Tr½g†:g�
γ̄ð1ÞΨ ¼ 252f†:f þ 120g†:gþ 10h†:h ðA2Þ

One-loop beta functions for the SO(10) superpotential
parameters and Yukawa couplings are

βð1Þλ ¼ 3γð1ÞΦ λ; βð1Þη ¼ ηðγð1ÞΣ þ γð1ÞΣ̄ þ γð1ÞΦ Þ ðA3Þ

βð1Þγ ¼ γðγð1ÞH þ γð1ÞΣ þ γð1ÞΦ Þ; βð1Þγ̄ ¼ γ̄ðγð1ÞH þ γð1ÞΣ̄ þ γð1ÞΦ Þ
ðA4Þ

βð1Þk ¼ kðγð1ÞH þ γð1ÞΘ þ γð1ÞΦ Þ; βð1Þζ ¼ ζðγð1ÞΘ þ γð1ÞΣ þ γð1ÞΦ Þ
ðA5Þ
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βð1Þ
ζ̄

¼ ζ̄ðγð1ÞΘ þ γð1ÞΣ̄ þ γð1ÞΦ Þ; βð1Þρ ¼ ρðγð1ÞΦ þ 2γð1ÞΘ Þ
ðA6Þ

βð1Þh ¼ hγð1ÞH þ ðγð1ÞΨ ÞT:hþ h:γð1ÞΨ ;

βð1Þf ¼ fγð1ÞΣ̄ þ ðγð1ÞΨ ÞT:f þ f:γð1ÞΨ ðA7Þ

βð1Þg ¼ gγð1ÞΘ − ðγð1ÞΨ ÞT:gþ g:γð1ÞΨ ðA8Þ

βð1ÞμΦ ¼ 2γð1ÞΦ μΦ; βð1ÞμH ¼ 2γð1ÞH μH ðA9Þ

βð1ÞμΣ ¼ ðγð1ÞΣ þ γð1ÞΣ̄ ÞμΣ; βð1ÞμΘ ¼ 2γð1ÞΘ μΘ ðA10Þ

2. Soft parameters RGEs

γ̃ð1Þji ¼ 1

2
Yipqhjpq

γ̃ð1ÞΣ ¼ 200η̃η� þ 10γ̃γ� þ 100ζ̃ζ�

γ̃ð1ÞΣ̄ ¼ 200η̃η� þ 10 ˜̄γγ̄� þ 100 ˜̄ζζ̄� þ 32Tr½f†:f̃�
γ̃ð1ÞH ¼ 84κ̃κ� þ 126ðγ̃γ� þ ˜̄γγ̄�Þ þ 8Tr½h†:h̃�
γ̃ð1ÞΘ ¼ 7ðκ̃κ� þ ρ̃ρ�Þ þ 105ðζ̃ζ� þ ˜̄ζζ̄�Þ þ 8Tr½g†:g̃�
γ̃ð1Þψ ¼ 252f†:f̃ þ 120g†:g̃þ 10h†:h̃ ðA11Þ

γ̂ð1Þji ¼ 1

2
hipqhjpq

γ̂ð1ÞΦ ¼ 240jη̃j2 þ 4jκ̃j2 þ 180jλ̃j2 þ 2jρ̃j2 þ 6ðjγ̃j2 þ j ˜̄γj2Þ
þ 60ðjζ̃j2 þ j ˜̄ζj2Þ

γ̂ð1ÞΣ ¼ 200jη̃j2 þ 10jγ̃j2 þ 100jζ̃j2

γ̂ð1ÞΣ̄ ¼ 200jη̃j2 þ 10j ˜̄γj2 þ 100j ˜̄ζj2 þ 32Tr½f̃†:f̃�
γ̂ð1ÞH ¼ 84jκ̃j2 þ 126ðjγ̃j2 þ j ˜̄γj2Þ þ 8Tr½h̃†:h̃�
γ̂ð1ÞΘ ¼ 7ðjκ̃j2 þ jρ̃j2Þ þ 105ðjζ̃j2 þ j ˜̄ζj2Þ þ 8Tr½g̃†:g̃�
γ̂ð1ÞΨ ¼ 252f̃†:f̃ þ 120g̃†:g̃þ 10h̃†:h̃ ðA12Þ

One-loop beta functions for the soft parameters:

βð1Þη̃ ¼ η̃ðγ̄ð1ÞΦ þ γ̄ð1ÞΣ þ γ̄ð1ÞΣ̄ Þ þ 2ηðγ̃ð1ÞΦ þ γ̃ð1ÞΣ þ γ̃ð1ÞΣ̄ Þ − 74g210ðη̃ − 2MηÞ ðA13Þ

βð1Þγ̃ ¼ γ̃ðγ̄ð1ÞΦ þ γ̄ð1ÞΣ þ γ̄ð1ÞH Þ þ 2γðγ̃ð1ÞΦ þ γ̃ð1ÞΣ þ γ̃ð1ÞH Þ − 58g210ðγ̃ − 2MγÞ ðA14Þ

βð1Þ˜̄γ
¼ ˜̄γðγ̄ð1ÞΦ þ γ̄ð1ÞΣ̄ þ γ̄ð1ÞH Þ þ 2γ̄ðγ̃ð1ÞΦ þ γ̃ð1ÞΣ̄ þ γ̃ð1ÞH Þ − 58g210ð ˜̄γ − 2Mγ̄Þ ðA15Þ

βð1Þκ̃ ¼ κ̃ðγ̄ð1ÞΦ þ γ̄ð1ÞΘ þ γ̄ð1ÞH Þ þ 2κðγ̃ð1ÞΦ þ γ̃ð1ÞΘ þ γ̃ð1ÞH Þ − 54g210ðκ̃ − 2MκÞ ðA16Þ

βð1Þρ̃ ¼ ρ̃ðγ̄ð1ÞΦ þ 2γ̄ð1ÞΘ Þ þ 2ρðγ̃ð1ÞΦ þ 2γ̃ð1ÞΘ Þ − 66g210ðρ̃ − 2MρÞ ðA17Þ

βð1Þ
ζ̃

¼ ζ̃ðγ̄ð1ÞΦ þ γ̄ð1ÞΣ þ γ̄ð1ÞΘ Þ þ 2ζðγ̃ð1ÞΦ þ γ̃ð1ÞΣ þ γ̃ð1ÞΘ Þ − 70g210ðζ̃ − 2MζÞ ðA18Þ

βð1Þ˜̄ζ
¼ ˜̄ζðγ̄ð1ÞΦ þ γ̄ð1ÞΣ̄ þ γ̄ð1ÞΘ Þ þ 2ζ̄ðγ̃ð1ÞΦ þ γ̃ð1ÞΣ̄ þ γ̃ð1ÞΘ Þ − 70g210ð ˜̄ζ − 2Mζ̄Þ ðA19Þ

βð1Þ
h̃

¼ γ̄ð1ÞH h̃þ h̃:γ̄ð1ÞΨ þ ðγ̄ð1ÞΨ ÞT:h̃þ 2γ̃ð1ÞH hþ 2ðh:γ̃ð1ÞΨ þ ðγ̃ð1ÞΨ ÞT:hÞ − 63

2
g210ðh̃ − 2MhÞ ðA20Þ

βð1Þg̃ ¼ γ̄ð1ÞΘ g̃ − g̃:γ̄ð1ÞΨ þ ðγ̄ð1ÞΨ ÞT:g̃þ 2γ̃ð1ÞΘ :gþ 2ðg:γ̃ð1ÞΨ − ðγ̃ð1ÞΨ ÞT:gÞ − 87

2
g210ðg̃ − 2MgÞ ðA21Þ

βð1Þ
f̃

¼ γ̄ð1ÞΣ̄ f̃ þ f̃:γ̄ð1ÞΨ þ ðγ̄ð1ÞΨ ÞT:f̃ þ 2γ̃ð1ÞΣ̄ :f þ 2ðf:γ̃ð1ÞΨ þ ðγ̃ð1ÞΨ ÞT:fÞ − 95

2
g210ðf̃ − 2MfÞ ðA22Þ
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βð1ÞbΦ
¼ 2bΦγ̄

ð1Þ
Φ þ 4μΦγ̃

ð1Þ
Φ − 48g210ðbΦ − 2MμΦÞ ðA23Þ

βð1ÞbH
¼ 2bH γ̄

ð1Þ
H þ 4μH γ̃

ð1Þ
H − 18g210ðbH − 2MμHÞ ðA24Þ

βð1ÞbΘ
¼ 2bΘγ̄

ð1Þ
Θ þ 4μΘγ̃

ð1Þ
Θ − 42g210ðbΘ − 2MμΘÞ ðA25Þ

βð1ÞbΣ
¼ bΣðγ̄ð1ÞΣ þ γ̄ð1ÞΣ̄ Þ þ 2μΣðγ̃ð1ÞΣ þ γ̃ð1ÞΣ̄ Þ − 50g210ðbΣ − 2MμΣÞ ðA26Þ

βð1Þm2
Φ
¼ 2γ̄ð1ÞΦ m2

Φ þ 720m2
Φjλj2 þm2

Hð12jγj2 þ 12jγ̄j2 þ 8jκj2Þ
þm2

Θð8jρj2 þ 120ðjζj2 þ jζ̄j2Þ þ 8jκj2Þ þm2
Σð480jηj2 þ 12jγj2 þ 120jζj2Þ

þm2
Σ̄ð480jηj2 þ 12jγ̄j2 þ 120jζ̄j2Þ þ 2γ̂ð1ÞΦ − 96jMj2g210 ðA27Þ

βð1Þm2
H
¼ 2γ̄ð1ÞH m2

H þm2
Φð252ðjγj2 þ jγ̄j2Þ þ 168jκj2Þ þ 168m2

Θjκj2 þ 252m2
Σjγj2

þ 252m2
Σ̄jγ̄j2 þ 2γ̂ð1ÞH − 36jMj2g210 þ 32Tr½h†:m2

Ψ̃:h� ðA28Þ

βð1Þ
m2

Θ
¼ 2γ̄ð1ÞΘ m2

Θ þm2
Φð14ðjκj2 þ jρj2Þ þ 210ðjζj2 þ jζ̄j2ÞÞ þ 14m2

Θjρj2 þ 14m2
Hjκj2

þ 210m2
Σjζj2 þ 210m2

Σ̄jζ̄j2 þ 2γ̂ð1ÞΘ − 84jMj2g210 þ 32Tr½g†:m2
Ψ̃:g� ðA29Þ

βð1Þ
m2

Σ
¼ 2γ̄ð1ÞΣ m2

Σ þm2
Φð400jηj2 þ 20jγj2 þ 200jζj2Þ þ 200m2

Θjζj2 þ 20m2
Hjγj2

þ 400m2
Σ̄jηj2 þ 2γ̂ð1ÞΣ − 100jMj2g210 ðA30Þ

βð1Þm2
Σ̄
¼ 2γ̄ð1ÞΣ̄ m2

Σ̄ þm2
Φð400jηj2 þ 20jγ̄j2 þ 200jζ̄j2Þ þ 200m2

Θjζ̄j2 þ 20m2
Hjγ̄j2

þ 400m2
Σjηj2 þ 2γ̂ð1ÞΣ̄ − 100jMj2g210 þ 128Tr½f†:m2

Ψ̃:f� ðA31Þ

βð1Þ
m2

Ψ̃
¼ γ̄ð1ÞΨ :m2

Ψ̃ þm2
Ψ̃:γ̄

ð1Þ
Ψ þ 10h†:m2

Ψ̃:hþ 120g†:m2
Ψ̃:gþ 252f†:m2

Ψ̃:f þ 10m2
Hh

†:h

þ 120m2
Θg

†:gþ 252m2
Σ̄f

†:f þ 2γ̂ð1ÞΨ − 45jMj2g210 ðA32Þ
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