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We present a practical Monte Carlo determination of the scaling dimensions ΔQ of flux Q Abelian
monopoles through finite-size scaling analysis of the free energy to introduce the background field of
classical Dirac monopole-antimonopole pair at critical points of three-dimensional lattice theories. We
validate the method in free fermion theory, and by verifying the particle-vortex duality between the
monopole scaling dimension at the inverse-XY fixed point and the charge scaling dimension at the
XY fixed point. At the Oð2Þ Wilson-Fisher fixed point of the XY model, we determine the critical
exponents Δ1 ¼ 0.13ð2Þ, Δ2 ¼ 0.29ð1Þ and Δ3 ¼ 0.47ð2Þ, which we find to be proportional to the finite-
size critical spectrum of monopoles on square torus.
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I. INTRODUCTION

Classification of all possible relevant operator deforma-
tion of critical points is central to understanding critical
phenomena, and the field theories which either have their
continuum limits at the critical point or flow to the fixed
point in the infrared limit [1]. This involves a computation
of scaling dimension of operators at the fixed point. In three
dimensions, in addition to the usual local operators which
are analytic functions of the field or spin variables in the
underlying theory, there are also the disorder operators
whose action is to introduce non-trivial winding of the field
or spin variables about the insertion point [2,3]. In the case
of theories with Uð1Þ symmetry, these are the magnetic
monopole operators which introduce 2πQ total magnetic
flux on spheres enclosing them, and their scaling dimen-
sions ΔQ are a new set of critical exponents.
The relevance of monopole terms in the renormalization

group flow could drive quantum field theories to different
long distance behaviors, a well known example being the
Abelian non-compact and compact QED3 [4], coupled to
small number of massless fermion flavors [5,6]. In addition
to serving as a possible scale-inducing deformation that can
be added to a fixed point, the monopoles are one of the
actors in the three dimensional particle-vortex dualities in
various forms (e.g., [7–11]). These dualities map particles
charged under Uð1Þ of one theory to monopoles of another
theory, with the two theories in many cases being tuned to
their critical points. The most basic three-dimensional
duality is the mathematical correspondence between the
Villain form of the XYmodel at zero electric charge and the
gauged XY model at zero temperature but nonzero electric
charge [7]. However, many recent particle-vortex dualities

are well motivated but nevertheless conjectural (e.g., [8,9]).
Thus, it is imperative that one should be able to compute the
critical exponents of monopole operators using standard
Monte Carlo methods, to go hand in hand with such recent
theoretical developments and also to complement the
advancements in bootstrap methodology in finding scaling
dimensions [12].
The monopole operators are nonlocal in terms of the

fundamental fields, but behave as local operators [3]. This
follows from the state-operator correspondence, in which
by construction, the monopole operators are the local
primary operators at the origin to which the ground states
of a CFT in S2 × R with net fluxes 2πQ over S2, are
mapped onto [13,14]. Denoting such a primary monopole
operator as MQðxÞ, its scaling dimension ΔQ at a critical
point is determined from its power-law behavior:

hMQðxÞM−QðyÞi ∝
1

jx − yj2ΔQ
: ð1Þ

In spite of the simplicity of the definition, the actual
construction of a monopole operator itself is subtle in
R3, making them notoriously difficult to study using the
standard Monte Carlo methods [14]. In most cases, the
ab initio understanding of monopole operators proceed on a
case by case basis, wherein one maps the monopole
operator to trivial local operators in a different theory
related by an established duality or in the same universality
class [15–17].
The motivation for the current work is to use a

Monte Carlo method for finding ΔQ, that generalizes to
various systems without appealing to properties special to
any lattice model, and demonstrate that it works. We do so
by coupling the static background Uð1Þ field from a
monopole and antimonopole separated by a non-zero*nkarthik@bnl.gov
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distance, to the conserved currents of critical lattice theories
and we measure the free energy required to do so. This
technique was first introduced in [2] for the case of CP∞

model where the partition function can be exactly com-
puted, and now routinely used in analytic perturbative
computations of ΔQ using the state-operator correspon-
dence [2,5,6,13,14,18]. From the asymptotic scaling of this
free energy with the distance between the monopole and
antimonopole, which is kept proportional to the lattice size
itself, we determine the monopole scaling dimension. The
underlying assumption is that the introduction of a flux Q
Dirac monopole background field leads to dominant con-
tributions from the same configurations that would con-
tribute to the constrained path integral resulting from the
insertion of the scaling operatorMQ, not just in the limit of
infinite number of species, N, of spins or matter fields but
for any number N.

II. METHOD

We consider simple fermion and spin systems with Uð1Þ
global symmetry in L3 periodic lattice. TheUð1Þ symmetry
can be gauged by coupling the spins to dynamical gauge
fields aμðxÞ which are defined on the links connecting the
lattice site x to xþ μ̂. In addition to the dynamical gauge
fields, one can couple the conserved currents of the systems
to external background fields A in order to construct A
dependent partition function and effective action, ZðAÞ and
FðAÞ ¼ − logZðAÞ respectively. In the present work, we
setA to be a superposition of gauge fields from a monopole
at r0 and an antimonopole at r00, which are separated by a
distance r ¼ jr0 − r00j, and compute the response of the
system to change in r. That is, the superposed field
AQQ̄ðr; rÞ ¼ AQðr; r0Þ −AQðr; r00Þ, where AQðr; r0Þ is
the classical, scale-covariant field at a point r ¼ ðx; y; zÞ
from a Dirac monopole of magnetic charge Q ∈ Z at r0 ¼
ðx0; y0; z0Þ (cf. [19]):

AQðr; r0Þ ¼
Q
2

ðr − r0Þ × ẑ
jr − r0jðjr − r0j − ðz − z0ÞÞ

: ð2Þ

Instead of naively discretizing the continuum solution on

the lattice, we compute the gauge transporters ÃQQ̄
μ ðr; rÞ ¼R

rþμ̂
r dxμA

QQ̄
μ ðx; rÞ exactly, and couple it to the conserved

current of the models. On the lattice, we separate Q and Q̄
by r0 − r00 ¼ rẑ, such that the center of mass of the QQ̄-
pair is at the center of the lattice. For this choice, r is the
length of the Dirac string that runs betweenQ and Q̄. Since
the lattice is periodic, we takeAQðxÞ to be (2) if xμ ≤ L and

force periodicity otherwise. Any jump in AQQ̄ðxÞ itself at
xμ ¼ L is proportional to 1=L, and the corresponding jump

in the gauge invariant field tensor FQQ̄ is proportional to
1=L3. Any contribution of such a jump to the effective
action will be suppressed further by a surface to volume

factor in the thermodynamic limit as well as due to charge
conjugation symmetry which allows only the terms with
even products of FQQ̄ in the effective action.
The monopole-antimonopole correlator in the back-

ground field method is simply

GðrÞ≡ ZðÃQQ̄ðrÞÞ
Zð0Þ : ð3Þ

One can compute such a difference in free energies with
and without the background field through Monte Carlo
simulation by introducing auxiliary variables in the action
[20]. Let ζ ∈ ½0; Q� be such an auxiliary variable, then

FðÃQQ̄ðrÞÞ − Fð0Þ ¼
Z

Q

0

dζWðζÞ;

Wðζ; rÞ≡ ∂
∂ζFðζÃ

11̄Þ: ð4Þ

The quantity W is a measurement that can be made in
Monte Carlo simulation of ZðζA11̄Þ theory. Henceforth, we
refer to the above difference in free energies simply
as FQðrÞ.
We assume that the monopole-antimonopole correlator

at the critical point of lattice theories is a scaling function,
Gðr; L; ξLÞ ∼ r−2ΔQgð r

ξL
; rLÞ, where ξL is the finite correla-

tion length in the finite system which we will grow linearly
with L at the critical point. There could be corrections from
finite size scaling from subleading L−ω terms. A finite-size
scaling method to determine the exponents ΔQ is to
consider the correlation functions at r ¼ ρL for a fixed
fraction ρ in different lattice sizes [21]. In such a case,
GðρL;L; ξLÞ ∼ L−2ΔQð1þOðL−ωÞÞ. Therefore, we look
for the following finite size behavior of free energy with
a leading logarithmic term

FQðρLÞ ¼ f0ðρ; QÞ þ 2ΔQ logðLÞ þ f1ðρ; QÞ
Lω ; ð5Þ

in order to extract ΔQ. The value of ω for local operators is
known in 3d XY and Ising models to be close to 0.8
[22–24]. Due to our lack of knowledge about such scaling-
violation exponent for background insertions, we simply
use an analytic ω ¼ 1 which empirically accounts for any
corrections to scaling in the volumes we study. Throughout
this paper, we set ρ ¼ r=L ¼ 1=4 for finite-size scaling
studies. One could also take an alternative approach by
studying FQðrÞ as a function of r. However, in order to
extract ΔQ in this method, one has to take the thermody-
namic limit at each fixed value of r to remove the
contribution from gðr=LÞ. We do not take this approach
in this paper.
We also study the lattice system on L2 × 4L lattice as

an approximation for T2 × R. If the thermodynamic limit
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L → ∞ is taken while keeping r=L > 1, one is essentially
studying the lattice system on a 2-torus, in which case
the linear extent of the torus sets a scale in the
otherwise critical system. Therefore, one expects gðr=LÞ ∝
exp ½−ðEQLÞðr=LÞ� with a critical mass-scale EQL having
a finite limit as L → ∞. We also study this critical spectrum
EQL in this paper by looking for a linear behavior of FQðrÞ
for r > L.

III. SYSTEMS

To serve as a sanity check, we study the partition
function ZFðAÞ for a single two-component free Dirac
fermion coupled to the external field AQQ̄. We use the
two-component Wilson-Dirac fermion for this purpose, in
which case, ZF ¼ det ðDWðAÞÞ withDW being the Wilson-
Dirac operator. Then, we study the chargeless limit and the
zero temperature limit of the lattice superconductor model
with the action [25]

S ¼ −β
X
x

X3
μ¼1

cos ð∇μθðxÞ þ eaμðxÞ þ ÃQQ̄
μ ðxÞÞ

þ 1

2

X
x

X3
μ>ν¼1

ð∇μaνðxÞ −∇νaμðxÞÞ2; ð6Þ

where ∇μfðxÞ ¼ fðxþ μ̂Þ − fðxÞ. The first e ¼ 0 case is
the XY model, whose critical point at βc ¼ 0.4541652 lies
in the Oð2Þ universality class [22,26]. The second β → ∞
limit corresponds to the frozen superconductor (FZS)
model whose critical point [25,27] at e2c ¼ 13.148997 is
in the inverse-XY universality class [25]. In the FZS limit,
the arguement of cosine is forced to take the values 2πnμ for
integer valued nμ [27]. The FZS action becomes

S¼ 2π2

e2
X
x

X3
μ>ν¼1

�
∇μnνðxÞ−∇νnμðxÞ−

F̃QQ̄
μν ðxÞ
2π

�2

; ð7Þ

with F̃QQ̄
μν ðxÞ ¼ ∇μÃ

QQ̄
ν ðxÞ −∇νÃ

QQ̄
μ ðxÞ. An exact par-

ticle-vortex duality mapping between the XY model and
FZS model was worked out by Peskin [7]. In this duality,
the charge-Q operators eiQθðxÞ maps onto the monopole
operators MQðxÞ in the FZS model. The critical exponents
for the charge-Q operators at XY fixed point are well
known [21,28]. In free fermion theory as well as the XY
model, the Uð1Þ symmetry is not gauged. However, the
effective action for monopole background field and the
corresponding monopole scaling dimension are still invari-

ant under transformations AQQ̄
μ ðxÞ → AQQ̄

μ ðxÞ þ∇μχðxÞ
and well defined [5].

IV. MONOPOLE CRITICAL EXPONENTS

For the finite-size scaling study, we used periodic L3

lattices for L ¼ 12, 16, 20, 24, 28, 32 and 36. For each
fixed values of L and Q, the different ζ corresponds to
independent Monte Carlo simulations. We used 48 different
values of ζ from 0 to 3 for each L3 lattice in order to study
Q ¼ 1, 2, 3. We simulated the XY model at the critical
point βc using Hybrid Monte Carlo (HMC) global updates
[29]. We made about 5.106 measurements in all our lattice
sizes. For the FZS model, we used single-hit Metropolis
algorithm and made 108 such updates. Error estimates were
made using block Jack-knife to account for autocorrela-
tions. For the free Wilson-Dirac fermion, we evaluated
WðζÞ ¼ −trðD−1

W D0
WÞ stochastically using 104 random

vectors. We also tuned the Wilson mass on A11̄ background
so that the lattice fermion is massless [30].
In Fig. 1, we show Wðζ; rÞ as a function of ζ for the

critical XY model. In order to obtain the curves, we
interpolated the equally spaced Monte-Carlo data points
for Wðζ; rÞ using cubic spline. The different curves
correspond to different L at fixed ρ ¼ 1=4. In order to
obtain the free energy for Q-monopole, we integrate the
splines from 0 up to Q. We obtain similar such curves for
the free fermion as well as the critical FZS model. For all
such cases, we observe distinct oscillations in Wðζ; rÞ of
period Oð1Þ, and the curves corresponding to fixed ρ
approximately intersect each other close to integer values of
ζ. Due to the charge conjugation symmetry, Wðζ; rÞ is odd
in ζ, and in our numerical simulations we do find
Wð0; rÞ ¼ 0 is satisfied well within error bars, serving as
a check. At present, we lack a theoretical understanding of
such curves which could help extrapolate the results to
larger Q.
In Fig. 2, we show the behavior of free energy FQðrÞ at

fixed ρ ¼ 1=4 as a function of logðLÞ. The three panels
from left to right correspond to free Wilson-Fermion,

FIG. 1. The function WðζÞ is shown in the range 0 to 3 for
monopole-antimonopole separation r ¼ L=4 in the critical XY
model. The different colored curves are the interpolation curves
of WðζÞ from different L. Along the direction of the arrow,
L ¼ 12, 16, 20, 24, 28, 32 and 36.
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critical FZS and critical XY models respectively. The
symbols in the plots are the actual Monte Carlo data.
The most important observation in this paper is the clear
presence of logðLÞ behavior in the background field
method and also the onset on this logðLÞ behavior for
computationally accessible values of L. The curves are our
logðLÞ fits to the data; the solid curve is the straight line fit
including just a logðLÞ term using data from L > 12
lattices, while the dashed curves include any 1=L correc-
tions to the free energy in addition to the dominant logðLÞ
term. In all the cases, the χ2=DOF < 2 for the fits.
In the case of free continuum fermion, the values of ΔQ

are known exactly by computations of the Casimir energy
of free fermions on S2 with constant flux over it [3,5].
These values for free fermions are tabulated in Table I along
with the values of ΔQ extracted from fits to the data. There
is about 15% systematic dependence on the kind of fit. With
a 1=L correction term included in the fit, the free energy
from all L are well described by the fit (left panel of Fig. 2),
and the corresponding fit values ofΔQ agree quite well with

the analytical results from free continuum Dirac fermion.
While serving as a check on the method, it is also a
fascinating check on the universality of the nontrivial
monopole critical exponent itself as it is determined using
a lattice fermion which only lies in the same universality
class as the free continuum fermion.
The middle panel of Fig. 2 shows the result for the

critical FZS model. From the corresponding entries in
Table I, an excellent agreement with the charge scaling
dimensions in Oð2Þ fixed point is seen. This is expected
from the exact particle-vortex duality [7]. However, it is an
important check that the background field method leads to
the same critical exponents as those of the primary
monopole operators that enter the duality, thereby support-
ing our assumption.
Having demonstrated the method in two different cases

where the values of ΔQ are available from other means, we
apply the method to Oð2Þ fixed point. The logðLÞ depend-
ence of free energy data and the fits are shown in the
rightmost panel of Fig. 2, and we have tabulated the fit
values of ΔQ in Table I. There is about 10% systematic
dependence of ΔQ on the type of fit. Next to our estimates
of ΔQ, we also tabulate the expected values from 1=N
extrapolation of ΔQ calculated in Oð2NÞ fixed points for
large-N [5]. The estimated values are about twice the
extrapolated values, perhaps indicating non-negligible
higher order corrections in 1=N to ΔQ for smaller N.
However, the conclusion that monopoles with Q ¼ 1, 2, 3
are relevant (ΔQ < 3) at Oð2Þ fixed point still remains true.

V. FINITE-SIZE SPECTRUM

Recently, the universal features in the finite-size critical
spectrum of operators have been of interest [31–33]. Here,
we provide a computation of critical spectrum of Dirac
monopole at theOð2Þ fixed point of XYmodel. For this, we
use L2 × 4L lattices as an approximation for T2 ×R, and
compute the torus finite-size spectrum EQL from the slope
of a linear increase in FQðrÞ with r=L, for L < r < 2L
in the thermodynamic limit L → ∞. The free energy

FIG. 2. The free energy of monopole-antimonopole background field insertion is shown as a function of logðLÞ for fixed
ρ ¼ r=L ¼ 1=4. The left panel is for free Wilson-Dirac fermion, the middle panel for the critical frozen superconductor model and the
right panel for the critical XY model. The curves are fits to the data.

TABLE I. Table of estimated scaling dimensions for free
Wilson fermion, critical FZS model and critical XY model.
The third and the fourth columns tabulate the fit values of ΔQ
with and without a 1=L scaling correction term respectively. The
fifth column is the expected values; the entries marked (e) are
exact results, those marked (d) are inferred from particle-vortex
duality, while those marked (a) are expectations based on large-N
calculations.

Model Q ΔQ Expectation

Free fermion 1 0.227(4) 0.253(8) 0.265 (e)
2 0.561(8) 0.66(1) 0.673 (e)

1 0.51(1) 0.48(2) 0.516(3) (d)
FZS 2 1.18(1) 1.23(2) 1.238(5) (d)

3 1.97(1) 2.15(4) 2.116(6) (d)

1 0.107(4) 0.13(2) 0.065 (a)
XY 2 0.252(3) 0.29(1) 0.159 (a)

3 0.429(5) 0.47(2) 0.272 (a)
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corresponding to such an ‘exponential decay’ of the
monopole-antimonopole correlator is shown for XY model
in the top panel of Fig. 3 on 162 × 64 lattice for r=L > 1. In
the bottom panel, we show the thermodynamic limit of the
extracted EQL using quadratic polynomials in 1=L. The
existence of the thermodynamic limit of EQL is noteworthy
and indicates that the extracted spectrum indeed is that
of a critical theory. We find

ffiffiffiffiffiffi
4π

p
ΔQ=ðEQLÞ to be 0.29(5),

0.37(2), 0.33(2) for Q ¼ 1, 2, 3 respectively, indicating a
near proportionality between ΔQ and EQ starting from
small values of Q. Such a ratio for the charge-Q operators,
expðiQθÞ, in the XY model was shown to be about 1 even
for small Q [21,34].

VI. DISCUSSION

We demonstrated the effectiveness of a rather straight-
forward numerical implementation of the background field
method in determining the monopole scaling dimensions,
as applied to both fermionic and bosonic critical lattice
theories. We chose simple theories here in order to test the
feasibility of the approach. The successful application of
the method in demonstrating an exact particle-vortex
duality [7] provides ample motivation to apply the method
to recently conjectured particle-vortex dualities. It would
also be interesting to repeat this computation for the
monopole scaling dimension in the infrared fixed point
of noncompact QED3 with N flavors of massless Dirac

fermions to determine the critical N where monopoles
become irrelevant, and check if it matches with the
critical N for compact QED3 below which it develops a
condensate. The near proportionality of ΔQ with the torus
spectrumEQ also suggests there could be universality in the
monopole finite-size spectrum similar to the findings
in [31–33].
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APPENDIX A: MONOPOLE BACKGROUND
ON THE LATTICE

We use periodic Lx × Ly × Lz lattice; for finite-size
scaling studies, Lx ¼ Ly ¼ Lz ¼ L, while for extracting
torus spectrum, Lx ¼ Ly ¼ L and Lz ¼ 4L, and we use
even values of L. Let us arbitrarily choose a point on the
periodic lattice as the origin which has coordinates as
(1,1,1). With respect to this origin, consider a monopole of
magnetic charge Q at r0 ¼ ðx0; y0; z0Þ. The Dirac monop-
ole background is

AQðr; r0Þ ¼
Q
2

ðr − r0Þ × ẑ
jr − r0jðjr − r0j − ðz − z0ÞÞ

: ðA1Þ

These field variables are the parallel transporters which live
on the links of the lattice. Therefore, the link variables
connecting point n ¼ ðx; y; zÞ to nþ μ̂ is

ÃQ
μ ðn; r0Þ ¼

Z
nþμ̂

n
dxμA

Q
μ ðx; r0Þ: ðA2Þ

Doing the above integrals, we get

ÃQ
1 ðx; y; z; r0Þ ¼

Q
2

y − y0
jy − y0j

½f1ðx − x0 þ 1; y − y0; z − z0Þ

− f1ðx − x0; y − y0; z − z0Þ�;

ÃQ
2 ðx; y; z; r0Þ ¼ −

Q
2

x − x0
jx − x0j

½f2ðx − x0; y − y0 þ 1; z0Þ

− f2ðx0; y − y0; z − z0Þ�;
ÃQ
3 ðx; y; z; rÞ ¼ 0; ðA3Þ

where

FIG. 3. Spectrum EQ of monopoles on torus as determined on
L2 × 4L lattice is shown for the critical XY model. The top panel
shows the linear dependence of free energy with the monopole-
antimonopole separation r, for r > L. The bottom panel shows
the extrapolation of EQL to the thermodynamic limit.
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f1ðx;y;zÞ¼ tan−1
�
x
jyj

�
þ tan−1

�
xz

jyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
�
;

f2ðx;y;zÞ¼ tan−1
�
y
jxj

�
þ tan−1

�
yz

jyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
�
: ðA4Þ

On a periodic lattice it is not possible to have a single
monopole. So, we consider the background field to be the
superposition of the fields due to monopole at position r0
and an antimonopole at position r00, which we place in the
dual lattice, in such a way that the pair is almost at the
“center” of the periodic lattice with respect to the coor-
dinate system set by the arbitrary choice of the origin:

r0 ¼
8<
:

�
Lþ1
2

; Lþ1
2

; Lþrþ1
2

�
even r�

Lþ1
2

; Lþ1
2

; Lþr
2

�
odd r;

r00 ¼
8<
:

�
Lþ1
2

; Lþ1
2

; L−rþ1
2

�
even r�

Lþ1
2

; Lþ1
2

; L−r
2

�
odd r:

ðA5Þ

The superposed field from the monopole-antimonopole
pair is

ÃQQ̄
μ ðx; y; z; rÞ ¼ ÃQ

μ ðx; y; z; r0Þ − ÃQ
μ ðx; y; z; r00Þ; ðA6Þ

for 1≤x≤Lx, 1≤y≤Ly and 1≤z≤Lz. For xμ → xμ þ Lμ,

we force periodic boundary conditions on ÃQQ̄. In Fig. 4,
we show such a monopole-antimonopole field on a cubic
lattice.

APPENDIX B: HYBRID MONTE CARLO
FOR XY MODEL

We use hybrid Monte Carlo (HMC) [29] global updates
to simulate the XY model. Below, we give the HMC force
calculation for the general lattice superconductor model
with nonzero e, of which the XY model corresponds to
e ¼ 0. For HMC, we introduce the auxiliary momentaΠðxÞ

conjugate to θðxÞ and πμðxÞ conjugate to aμðxÞ. For the
fictitious Hamiltonian H,

H ¼ 1

2

X
x

Π2ðxÞ þ 1

2

X
x;μ

π2μðxÞ þ SXYðζA11̄Þ: ðB1Þ

where SXY is the action in Eq. (6) with the replacement
AQQ̄ → ζA11̄ in order to find WðζÞ. The molecular
dynamics evolution through Monte Carlo time τ is

dΠðxÞ
dτ

¼ −
∂S

∂θðxÞ ;
dπμðxÞ
dτ

¼ −
∂S

∂aμðxÞ ;
dθðxÞ
dτ

¼ ΠðxÞ; daμðxÞ
dτ

¼ πμðxÞ: ðB2Þ

The explicit expressions are

dΠðxÞ
dτ

¼ β
X3
μ¼1

½sin ð∇μθðxÞ þ eaμðxÞ þ ζA11̄
μ ðxÞÞ

− sin ð∇μθðx− μ̂Þ þ eaμðx− μ̂Þ þ ζA11̄
μ ðx− μ̂ÞÞ�;

dπμðxÞ
dτ

¼ −
1

2

X
ν≠μ

½aνðxþ μ̂Þ− aμðxþ ν̂Þ − aνðxÞ

þ aνðx− νÞ − aμðx− νÞ− aνðx− ν̂þ μ̂Þ�
− eβ sin ð∇μθðxÞ þ eaμðxÞ þ ζAμðxÞÞ: ðB3Þ

APPENDIX C: DETERMINATION OF WðζÞ
The definition of W is

Wðζ; rÞ≡ −1
ZðζA11̄Þ

∂ZðζA11̄Þ
∂ζ : ðC1Þ

The right-hand side can be expressed as an ensemble
average of quantities evaluated in the simulation with
actions SðζA11̄Þ. Denoting such ensemble averages as
h…iζ, the expression for W in the XY model is

WðζÞ ¼ β

�X
x

X3
μ¼1

A11̄
μ ðxÞ sinð∇μθðxÞ þ ζA11̄

μ ðxÞÞ
�

ζ

:

ðC2Þ

For the FZS model,

FIG. 4. The background field AQQ̄ from monopole-antimono-
pole pair (the blue arrows) in a periodic Lx × Ly × Lz lattice box.
The distance between monopole and antimonopole is r, and they
are separated along the z-direction.
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WðζÞ ¼ 4π2

e2
X
x

X3
μ>ν¼1

F̃ 11̄
μνðxÞ
2π

�
∇μnνðxÞ −∇νnμðxÞ

− ζ
F̃ 11̄

μνðxÞ
2π

�
: ðC3Þ

Now for the case of free Wilson-Dirac fermion. To avoid
the trivial zero mode in free field theory, we apply
antiperiodic boundary condition in the z-direction. The
Dirac operator is

DWðx; yÞ ¼ ð3 −MWÞδx;y þ
1

2

X3
k¼1

fðσk þ 1ÞUμðxÞδxþk̂;y

þ ð1 − σkÞU�
μðx − k̂Þδx−k̂;yg; ðC4Þ

where σk are Pauli matrices, UkðxÞ ¼ eiζÃ
11̄
k ðxÞ, and

MW is the Wilson mass which we tune such that the
second smallest eigenvalue of D†

WDW is minimized as a
function of MW on A11̄ background. Taking the derivative
of FðζA11̄Þ ¼ − log detDW ,

WðζÞ ¼ −
1

detDW

∂
∂ζ detDW;

¼ −Tr
�
D−1

W
∂DW

∂ζ
�
: ðC5Þ

The explicit expression for the derivative is

∂
∂ζDWðx;yÞ¼

i
2

X3
k¼1

fðσkþ1ÞA11̄
k ðxÞUμðxÞδxþk̂;y

− ð1−σkÞA11̄
k ðx− k̂ÞU�

μðx− k̂Þδx−k̂;yg: ðC6Þ

Using these expressions, we determine the trace stochas-
tically using Nv ≈ 104 Gaussian random vectors Ri satisfy-
ing R�a

i Rb
j ¼ δi;jδa;b:

WðζÞ ¼ −
1

Nv

XNv

i¼1

	
R†
i D

−1
W

∂DW

∂ζ Ri



: ðC7Þ

We used 48 different values of ζ from 0 to 3 in the case of
XYand FZS models, and up to 2 for free fermion due to the
extra computation with the fermion inversion. We interpo-
lated the actual Monte Carlo data for WðζÞ using cubic-
spline and integrated the spline to get the free energy. In the
top panel of Fig. 5, we show the data as circles and the
cubic spline interpolation of this data as the red, 1 − σ error

band. The middle and bottom panels of Fig. 5 show the
behavior ofWðζÞ for free Wilson-Dirac fermion and critical
FZS model respectively.

FIG. 5. Top panel shows WðζÞ for the critical XY model at
r=L ¼ 1=4 on L ¼ 20 lattice. The measurements ofWðζÞ are the
red circles, while the red band is the 1 − σ error band from the
cubic spline interpolation. The middle panel shows WðζÞ for free
Wilson-Dirac fermion and the bottom one for the critical FZS
model. The different color bands correspond to different L at
fixed r=L ¼ 1=4. Along the direction of the arrow, the values of L
for free fermion are L ¼ 12; 16; 20; 24; 28; 32; 36; 40; 44 respec-
tively. For the FZS model, it is L ¼ 12, 16, 20, 24, 28, 32, 36
respectively.
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