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In Ref. [1] we have presented the results of an exploratory lattice QCD computation of the long-distance
contribution to the K™ — n"vi decay amplitude. In the present paper we describe the details of this
calculation, which includes the implementation of a number of novel techniques. The K+ — ztwi decay
amplitude is dominated by short-distance contributions which can be computed in perturbation theory with
the only required nonperturbative input being the relatively well-known form factors of semileptonic kaon
decays. The long-distance contributions, which are the target of this work, are expected to be of O(5%) in
the branching ratio. Our study demonstrates the feasibility of lattice QCD computations of the K+ — zvi
decay amplitude, and in particular of the long-distance component. Though this calculation is performed on
a small lattice (16® x 32) and at unphysical pion, kaon and charm quark masses, m, = 420 MeV, my =

563 MeV and mlcm(Z GeV) = 863 MeV, the techniques presented in this work can readily be applied to a

future realistic calculation.

DOI: 10.1103/PhysRevD.98.074509

I. INTRODUCTION

K — mvv decays provide an excellent probe for search-
ing for new physics (as recalled in Sec. I A below). The
decays are dominated by short-distance contributions (from
top-quark loops with also a significant contribution from
the charm quark in K™ — z7vp decays) which can be
calculated to a good precision using perturbation theory
with the only required nonperturbative input being the
relatively well-known form factors of semileptonic kaon
decays. The target of the current study is the evaluation of
the long-distance (LD) contributions to the K™ — ztvp
decay amplitude and phenomenological estimates suggest
that they are of the order of about 5% [2].

The techniques required to compute the long-distance con-
tributionsto K™ — z v decay amplitudes were developed in
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Ref. [3]. They have subsequently been applied to an explor-
atory computation on a 16 x 32 lattice at unphysical pion,
kaon and charm quark masses (m, =420 MeV, myg =

563 MeV and mM5(2 GeV) = 863 MeV) and the results
were reported in the paper [1]. The purpose of this paper is to
present the details of this computation, demonstrating how the
various novel ideas from Ref. [3] can be implemented in an
actual calculation. Our study demonstrates the feasibility of
lattice QCD computations of the K™ — z v decay ampli-
tude, and in particular its long-distance component so that
these techniques can readily be applied to a future realistic
calculation.

As a strangeness (S) changing second-order weak
interaction process, within the standard model the calcu-
lation of the KT — zvi decay amplitude involves dia-
grams with the exchange of two W bosons (W-W
diagrams), or those with the exchange of one W and one
Z boson (Z-exchange diagrams) or those with a loop
containing a W-W-Z vertex. The long-distance contribu-
tions are given by the W-W and Z-exchange diagrams.
Their evaluation requires the computation of the matrix
elements of bilocal operators composed of two local
operators of the effective Hamiltonian (in which the Ws
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and Zs are contracted to a point) and we include all the
connected, closed quark-loop and disconnected contrac-
tions in the correlation functions. The three main difficul-
ties which had to be overcome, and which will be described
in detail in the following sections, are

(i) the removal of the unphysical terms which appear in
second-order Euclidean correlation functions. When
there are intermediate states propagating between
the two local operators which are lighter than the
mass of the kaon, my (we take the kaon to be at rest),
then these terms grow exponentially with the range
of the integration over the temporal separation of the
two operators (see Sec. III E 4);

(ii) the subtraction of the additional ultraviolet diver-
gences which arise from the integration region
where the two local operators comprising the bilocal
operator approach each other (see Secs. II B, IIC
and IV) and

(iii) the finite-volume corrections associated with on-
shell intermediate states with energies smaller than
myg (see Sec. VI A 3).

The plan for the remainder of this paper is as follows. In
the following section we present an overview of the
importance of K — zvr decays as a probe for possible
new physics, explain what we mean by long-distance
contributions and give an outline of how lattice computations
can be used to compute their contribution to the decay
amplitude. The following three sections contain the details of
the three main elements of the computation of the long-
distance contributions to the amplitude for the rare-kaon
decay K™ — ntwvii. Section III contains a description of the
computation of the matrix element of bare lattice bilocal
operators, i.e., of the product of the two local weak operators
in the effective Hamiltonian. As the two operators approach
each other, new ultraviolet divergences appear and we
discuss the subtraction of these divergences in Sec. IV. In
the next section, Sec. V, we discuss two perturbative aspects
of the calculation. One of these is the calculation of the
matching factor relating the matrix elements computed
nonperturbatively to those in the (purely perturbative) MS
scheme. In this section we also follow the standard pro-
cedure of integrating out the charm quark so that the
amplitude can be obtained using perturbation theory and
the form-factors from K,; decays. We compare this result
with the nonperturbative lattice determination of the ampli-
tude in Sec. VI where we combine the elements from the
earlier sections to obtain our final results. In Sec. VII we
present a brief summary and discuss prospects for our future
calculations at physical quark masses. There are three
appendices in which we discuss the free lepton propagator
in the overlap formalism (Appendix A); the details of
the evaluation of the matching constant for bilocal opera-
tors in the RI-SMOM and MS renormalization schemes
(Appendix B) and finally a discussion of the finite-volume
effects for the W-W class of diagrams (Appendix C).

II. BRIEF OVERVIEW OF K* — z*vv DECAYS

We begin this section with a brief overview of the
importance of K — zvi decays as a probe for possible new
physics and summarize the current status of experimental
measurements of their decay widths. We then explain what
we mean by the long-distance contributions to the K™ —
v decay amplitude in Sec. I1 B and quote phenomeno-
logical estimates that they are of the order of a few percent
[2]. In Sec. II C we outline the procedure for calculating the
long-distance contributions nonperturbatively in lattice
simulations, focussing in particular on the renormalization
of bilocal operators. More details are then given in the
following sections.

A. Probing new physics with the rare
kaon decays K — mvv

As flavor-changing-neutral-current (FCNC) processes,
the leading contributions to K — zvi decay amplitudes are
genuine one-loop electroweak effects, usually described by
the following O(G?%) effective Hamiltonian [4,5]

GF a
=5 A X A XC
Heff.() \/5271'511’126“/ bp:ze;.‘[[ t t(xt) T A X (xc)}

X [(8d)y_s(Tpve)y_al, (1)

where X,(x,) and X%(x.) indicate the top and charm
quark contributions respectively and the label ¢ indicates
the leptonic flavor quantum number. The loop functions

_ m? .
X,(x,) behave as X, (x,) OCquM%/ [6] leading to a

quadratic Glashow-Iliopoulos-Maiani (GIM) mechanism.
Thus the dominant contribution to the K — zvw amplitude
comes from the internal top quark loop. From Eq. (1) we
see that compared to the tree-level semileptonic decay
K — nfv,, the rare kaon decay is suppressed by a factor of

N % X,(x,). The Cabibbo-Kobayashi-Maskawa

iy A
(CKM) factor 1, is defined as 4, = VyV 4, 4= |V,
and numerically ’17 = O(4*). a is the electromagnetic fine-
structure constant and 6y, is the Weinberg angle. The top-
quark loop function X,(x;) is known up to NLO QCD
corrections [5,7] and two-loop EW contributions [8]. The
estimate of X, (x,) = 1.481(9) [9] suggests a suppression of
N ~2 x 107 in the standard model (SM). Thus this decay
channel can be used to probe the new physics at the scales
of N2My, = O(10 TeV) or higher.

The theoretical cleanliness described above is an impor-
tant reason making K — zvi decays among the most
interesting processes in the phenomenology of rare decays.
The loop functions X, (x,) and X% (x..) can be calculated using
QCD and electroweak perturbation theory [5,7,8,10-12].
The nonperturbative hadronic matrix element of the
local four-fermion operator in Eq. (1) can be determined
accurately from the experimental measurement of the
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semileptonic decay K — nfv, using an isospin rotation
[13]. As aresult, the SM predictions for the branching ratios
of K — mu decays, [9]

Br(K" — ntui)gy = 9.11(72) x 1071,
Br(K; — n'vi)gy = 3.00(30) x 107!, (2)

can be determined to a precision of about 10%. This is
considerably better than the precision of the previous
experimental measurements [14-20]

Br(K" — ztvi),,, = 1.737]3 x 10717,

Br(K; = n°u0) ey, < 2.6 x 1078, (3)

motivating the new generation of experiments designed to
search for these rare decay events. The NA62 experiment
at CERN aims to obtain O(100) events in 2-3 years and
will thus test the SM at a 10% precision [21]. The search
for K; — n’vi decays is more challenging, since all the
particles in the initial and final state are neutral. The KOTO
experiment at J-PARC is designed to search for K; decays
[22]. It has observed one candidate event while expecting
0.34(16) background events and set an upper limit of 5.1 x
1073 for the branching ratio at 90% confidence level [23].

B. Long-distance contributions to K — mvv decays

We have seen that the dominant contribution to K — zvi
decay amplitudes comes from the top quark loop. As a CP-
violating decay, whose amplitude is proportional to the
imaginary parts of the 4,, the K; — v process is
completely short-distance (SD) dominated and thus does
not require a lattice QCD calculation of long-distance
effects. On the other hand, for the CP-conserving K+ —
ntvp decay, there is an enhancement of the charm-quark
contribution, since the corresponding CKM factor, 4., is
much larger than that for the top-quark loop, 4. > 4,. This
enhancement makes the charm quark contribution impor-
tant; neglecting it would reduce the theoretical estimate for
the branching ratio by a factor of about 2. At leading order
of QCD perturbation theory, i.e., O(a}), Inami and Lim’s
calculation [6] suggested that the charm-quark contribution
is dominated by SD physics, which receives contributions
from energy scales ranging from the mass of the W-boson,
u=O0(My), to that of the charm quark, u = O(m.),
leading to an enhancement factor of In(M3,/m2) ~ 8.4.
However, when higher-order QCD corrections are
included, this enhancement is significantly reduced [4].
As a consequence, the precise determination of the long-
distance (LD) contribution becomes more important.

We now clarify what we mean by the LD contributions
by sketching the general procedure used to perform the
calculation. We start by integrating out the W and Z bosons
in order to explore the bilocal structure of the charm-quark

contribution to the K" — ztwvw decay amplitude. The
transition amplitude takes the form:

(v { CYS QXS CYS QYIS IMS | K +)
+ O () (| O () [K ), (4)

where we have used the notation {Q3503}% =
[ d*xT{Q5(x)03(0)}%. Here Q45 are local operators
appearing in the first-order effective weak Hamiltonian
from W and Z exchange, the superscript S indicates the
renormalization scheme used to define them and C, p are
the corresponding Wilson coefficient functions. The label
S’ specifies the scheme used to define the bilocal operator
and to remove the additional ultraviolet divergence present
when x — 0. A sum over the relevant operators Q4 p is
implied. In Eq. (4) both S and S’ denote the MS scheme, but
in order to obtain the matrix elements in the MS scheme
from a lattice simulation we need to introduce intermediate
renormalization schemes as discussed in the following
subsection. At the scale y (at this stage m,. <u < My,), the
transition amplitude is separated into a bilocal component

{CYSONSCYS OYSIMS and the local term CY'S (1) OF'S (u).

The local operator OMS = (5d)_,(v),_, and the second
term on the right-hand side of Eq. (4) is required to fully
match the SM, and in particular the SD contributions, to the
effective theory. The coefficients Cy(p), Cz(u) and Co(u)
can be determined using NNLO QCD perturbation
theory [11].

The next step in the conventional approach is to integrate
out the charm quark field in the bilocal term; this is
schematically represented by

{CYSOCE QNS — PP (W rE () 085 ().
(5)
MS

where the parameter r); (#) can be calculated using QCD
perturbation theory and the hadronic matrix element of

MS(u) can be determined from the experimental meas-
urement of K,; decays. To estimate the remaining LD
contributions, the authors of Ref. [2] have taken into
account and estimated the matrix elements of local
FCNC operators of dimension eight, such as (5T°0,d) x
(oI'0"v), where T represents a Dirac matrix, and used chiral
perturbation theory. They find that this contribution is
0P, =0.04 £0.02 which enhances the branching ratio
Br(K"™ — ztwi)gy by 6%. However, at the charm quark
mass scale u = O(1 GeV), it is doubtful whether the
operator product expansion converges very well and one
can also have reservations about the precision of perturba-
tion theory. Integrating out the charm quark may therefore
constitute a source of uncontrolled theoretical uncertainty.
We therefore, proposed in Ref. [3] to keep the charm quark
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as a dynamical degree of freedom and to calculate the
bilocal matrix element (7" vi|{C}S QY CYS Q)5 }VS|K ™)
directly using lattice QCD at a scale u > m,. where
perturbation theory can be used more reliably. In this
way we calculate the transition amplitude in Eq. (4) fully
and directly. In principle therefore, we do not need to
talk about the separation of long- and short- distance
contributions, but to be definite we simply call the
long-distance contributions to be the bilocal term
(7t Lo {CYSONSCYS OYSIMS|K™) in Eq. (4). This matrix
element of the bilocal operator is of course scale dependent;
here we simply require that 4 > m,. and is sufficiently large
for perturbation theory to be reliable.

An interesting question is to what extent is P, — PFT, the
difference between the full lattice result of the charm-quark
contribution to the amplitude P, and that obtained using
perturbation theory PYT combined with the matrix element

of Qg/ls from K,; decays, estimated reliably. Lattice
computations will be able to answer this question. We
have seen above that a phenomenological study has
estimated a correction of 6P, = 0.04 + 0.02 [2].

Using the results from NNLO QCD perturbation theory
[11], we find that at a scale of u = 2.5 GeV, the bilocal

contribution C1S (1) CMS (1) X3 (1) is of similar size to the

local contribution C)™ (). Thus we would expect that the
lattice calculation of the bilocal operator at such scales
would account for approximately half of the full charm
quark contribution.

The operators in Eq. (4) are defined in the MS scheme.
Since this scheme is purely perturbative, we cannot
compute matrix elements of operators defined in the MS
scheme directly using lattice QCD. In the following
subsection we explain the procedure used to overcome this.

C. Introduction to the lattice methodology

There has been a series of lattice QCD studies of rare
kaon decays [1,3,24-32]. The general lattice QCD method
to calculate second-order electroweak amplitudes has been
developed in Refs. [33-35]. It has been successfully
applied to the lattice calculation of the K;-Kg mass
difference [36,37] and is currently being applied to the
evaluation of the LD contribution to the indirect CP-
violating parameter ex [38]. The possibility of calculating
rare kaon decay amplitudes using lattice QCD was first
proposed in Ref. [24]. A more detailed method to calculate
the K —» n£ "¢~ decay amplitude was later developed in
Ref. [28] and applied to a first exploratory lattice QCD
calculation in Ref. [32]. These same techniques were
also applied to the calculation of the LD contribution to
the K* — z"vo decay amplitude in Ref. [3], in which
a method was presented to combine the LD contri-
bution computed using lattice QCD with the SD compo-
nents determined using perturbation theory, including a

consistent treatment of the logarithmic singularities pre-
sent in the LD and SD contributions.

The discussion below follows Ref. [3]. Since the MS
scheme is purely perturbative, we cannot compute matrix
elements of operators defined in the MS scheme directly
using lattice QCD. We therefore employ an intermediate
RI/SMOM scheme and write the MS bilocal operator
in (4) as

{ONSONSEIS = Z8=NS (/o) Z5 ™S (/o)
< {QF' QR A + Yan (k. 1) O (o)- (6)

Given an operator Q, ZEI"W is a conversion factor
from the RI/SMOM to the MS scheme: QMS(u) =

Z5MS (/1) QR (no) (more generally, when there is
mixing of operators, as in the present case, Z is a matrix).
For compactness of notation we denote operators renor-
malised in the RI/SMOM scheme with the superfix RI
and the precise choice of momenta used to define this
scheme will be presented in Sec. IV. The local term
Y ap(u, o) O (1) accounts for the difference between
the bilocal operators in the MS and RI/SMOM scheme.
The bilocal operator { Q}'QF'}R! is defined as

(R O5 IR = 2 (ano) 24 ) (O 0} 1
- XAB(#Oa a) gl(ﬂo)- (7)

Here Q}f‘ and ng‘ are bare lattice operators and a is the
lattice spacing. A counterterm X,z (uo, @) Q8 (1y) is intro-
duced to remove the SD singularity in the product

lat(x) Q%(0) as x — 0. After including the counterterm
the bilocal operator {Q}'OF'}R! is independent of the
ultraviolet cutoff 1/a. The explicit renormalization con-
ditions used to determine the coefficient X5 (uy, a) and
Yap(u, o) are given in Ref. [3].

III. NUMERICAL EVALUATION OF
HADRONIC MATRIX ELEMENTS

In this section we describe the details of the computation
of the bilocal operators in lattice simulations. We start by
presenting the parameters and details of our exploratory
simulation in Sec. III A. We then, in Sec. III B, discuss the
kinematics of the K™ — z"vi decays and explain our
choice of the momenta of the external particles. The bilocal
operators relevant for these rare decays are explicitly
introduced in Sec. III C. The evaluation of the amplitude
also requires the determination of a number of matrix
elements of local operators; these are identified in Sec. III D
together with a detailed discussion of their evaluation. The
evaluation of the matrix elements of the bilocal operators
for the W-W and Z-exchange diagrams (introduced in
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Sec. IIIC below) is presented in Secs. IIIE and IIIF
respectively.

A. Details of the simulation

In this work we use configurations generated by the
RBC-UKQCD collaborations with 2 + 1 flavors of domain
wall fermions and the Iwasaki gauge action. Because of the
importance of the GIM cancellation in this decay, we use
four flavors of valence quarks including an active charm
quark. However, we neglect the contribution of the charm
quark to the fermion determinant. The results presented
here are from an ensemble on 163 x 32 x 16 lattices with
an inverse lattice spacing of a=! = 1.729(28) GeV and a
box size of L = 16 a = 1.83 fm [39]. The residual mass is
determined to be m, a = 0.00308(4) and the extent of the
fifth-dimension is L, = 16. The pion and kaon masses are
m, = 421(1)(7) MeV and myg = 563(1)(9) MeV and the
corresponding input bare light and strange quark masses
are am; = 0.010 and am; = 0.032. The valence charm
quark mass is am, = 0.330, which corresponds to the MS
mass mM5(2 GeV) = 863(24) MeV with the mass renor-
malization factor Z)S(2 GeV) = 1.498(34) [40], where
mMS(2 GeV) = ZMS(2 GeV)(m, + my). To achieve a
high statistical precision, we use 800 configurations,
each separated by 10 trajectories. For simplicity, all the
results presented below are given in lattice units unless
otherwise specified.

B. The kinematics

Given the momenta pg, p,, p, and p;, one can define
three Lorentz invariants

u=—(px—ps)*
(8)

where two of them are independent: s +  + u = m% + m2.
Here we use a Euclidean metric with the signature
(++++) so that an on-shell momentum is written as p, =
(iE,,p,) for a pion, and a minus sign appears in the
definition for s, # and u. Defining A = u — ¢, the physical
region for (A, s) is denoted by the bounds

s=—(px—pz)* t=—(pxk—p,)%

s >0, A2 < (mk +m2—5)? —4mim?:  (9)
and is illustrated in Fig. 1.

In our lattice calculation we take the kaon to be at rest so
that pg = (img,0). The pion’s three-momentum is then
given by

V/s? = 2(m% + m2)s + (my — m2)?

ZmK

P2l = (10)

Without loss of generality, we choose the direction of the

pion’s momentum to be p, = ‘3’%‘ (e + e, +e.), where e;

I

2 2

s=m,+m_
0.25 |
02 ]

%
o 0.15 - SZ(mK‘mn)z ]
0.1 - |
0.05 Physical Region _
ok

A [GeV?]

FIG. 1. Dalitz plot for K — avi.

is the unit vector in the i-direction. We decompose the
spatial momenta of the neutrino and anti-neutrino into
components parallel and perpendicular to p, writing

P.=P|+P.  Py=-P.—p P (1)
where pj (1) is parallel (perpendicular) to p,. The values of
p| and p, are given by

1 (m,( - Eﬂ)A }
pi=—5{t T 1,
| 2 { 2mK|p7z|2
1 A 2 (mg — E;)A\2)?
== - ” , 12
Pt 2{s+ <2m1(> ( 2mg|p,| o 12)
where e is any unit vector perpendicular to p,. We use
twisted boundary conditions to implement the momenta
given by Egs. (10)—(12).
Using the Dirac equation for the massless neutrinos,
one can show that the magnitude of the decay amplitude
vanishes at the edge of the physically allowed region,

where the momenta satisfy the condition A? = (m% +

m2 —s5)2 — 4mim?. We are therefore more interested in
momenta that are well inside the region and a natural choice
is (A, s) = (0,0), which corresponds to the case in which
the v and © carry the same spatial momentum and the pion
moves in the opposite direction with twice the momentum
of each of the v and . Since we perform the calculation at
m, = 420 MeV, the allowed momenta for the final-state
particles are constrained to lie in a small region. Given this
small momentum range we expect that it will be difficult to
extract reliably the momentum dependence. For this reason,
in this exploratory study we devote our computational
resources to evaluating the amplitude at the single kin-
ematical point with (A,s) = (0,0). The situation is
expected to change once we perform the calculation at
physical quark masses. In that case we will need to compute
the K™ — n"vi amplitude at several values of (A, s) to gain

074509-5



ZIYUAN BAI et al.

PHYS. REV. D 98, 074509 (2018)

a better understanding of the momentum dependence.
Another consequence of the heavy pion mass is that the
momenta of the pion and the neutrinos are very small. For

(A, s) = (0,0) these are
p, = p» = (0.0207,0.0207,0.0207),
p. = (—0.0414,—-0.0414, —0.0414). (13)

Here |p,| =0.0717 is only about 18% of the lowest
lattice momentum with periodic boundary conditions,
2z/L = 0.3927.

C. The bilocal operators

There are two classes of diagrams which contribute
to KT — ztvi decays, we call these the W-W and
Z-exchange diagrams. In the W-W diagrams the second-
order weak transition proceeds through the exchange of
two W-bosons, while for the Z-exchange diagrams the
decay occurs through the exchange of one W-boson and
one Z-boson; both classes of diagrams are illustrated in
Fig. 2. The bilocal contribution to the decay amplitude is a
combination of these two types of diagrams so that it can be
written in terms of the matrix element (z"vo|B(0)|K™),
where the bilocal operator B(y) receives contributions from
both Byw(y) and Bz(y)

Type 2

W-W diagrams
v v
\\\‘ \* LN v
\\ NN
- 1
with self-loop

a >
XQM .7r+
connected Z-exchange diagrams

without self-loop
@,

finccan St &

with self-loop Wlthout self-loop
disconnected Z-exchange diagrams

FIG. 2. From top to bottom: quark and lepton contractions for
W-W, connected and disconnected Z-exchange diagrams.

a 7?
B(y) = %mﬁ/[—%‘/ﬂc(gww@) + Bz(y)).  (14)
Here
Bww(y) = Z BWW ) = Z B(Zf)(y) (15)

f=eusr ‘=epu,t

and B%V(y) and B(Zf) (v) are defined as

B () = / FAT[0A ()03 (y)] — {u > ¢} (16)

and

BY(y) = / FT[OY ()04 — {u = ). (17)

Here, as in Ref. [1,3], we find it convenient to use the letter
O to represent an operator which incorporates a Wilson
coefficient and the letter Q for an operator which does not
include such a coefficient. In Eq. (16) OAS 'and OAS 0a

the appropriate products, CY¥SQMS and C%‘SQII}/[S, for the
W-W diagrams. We can write them in terms of bare lattice
operators as

OASZI = ZV(§Q)V—A(17?’ﬂ) V-A>

OAS 0= =Zy(qd)y_ A(f’/)v A (18)

where Z,, = Z, is the renormalization factor relating the
local lattice vector or axial-vector current (which we use) to
the conserved or partially conserved ones and is effectively
the corresponding Wilson coefficient. By taking the ratio of
two-point functions computed with the local and conserved
axial currents we obtain Z, = 0.7163, which is consistent
with the result quoted in Ref. [41].

The two effective operators for the Z-exchange diagrams
are given by

0y = C1Qy,+C:0,,. 0% = ZyJ;[oer"(1 = 1s)v/]

(19)

with Q; , and O, , the conventional current-current oper-
ators and Jf the quark current which couples to the Z°.
Their definition is given in Eq. (15) of Ref. [3], where a
discussion of the corresponding operator renormalization
from the lattice to the MS scheme is also presented.

D. Matrix elements of local operators

In addition to the evaluation of the matrix elements of the
bilocal operators discussed in Sec. III C, which is the main
task of this work, there are three types of matrix elements
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of local operators which must be computed in order to
determine the K — zvi decay amplitude.

(i) Matrix elements for the SD contributions,
(m"v|Qp|K™), for which the hadronic effects are
obtained from matrix elements of the form
(m*(ps)|Sy,d|K*(p;)). The labels i and f indicate
the initial and final states, and are used to distin-
guish these states from the intermediate states
discussed below.

unphysical contribution from the |z*) intermediate
state in the Z-exchange diagrams. We will discuss
this in more detail in the following sections. In other
applications, one also frequently subtracts a term
proportional to the pseudoscalar density from the
effective Hamiltonian to remove a low-lying state
from the correlation function. However, in this case
there is no contribution from the vacuum state and
the operator §y°d cannot mediate transitions to = 2

(i1) Matrix elements for low-lying intermediate states. two-pion states (by isospin conservation). We there-
This type of matrix element corresponds to unphys- fore do not make the subtraction Hy — H}, =
ical 'contr.ibutions which grow exponenti.ally in T, Hy —c, §7°d here.
the time interval over which the separation of the  The three types of hadronic matrix elements are summa-
two local operators Q3 and Q3 are integrated [see  rized in Table I and will be used below for the analysis of
the discussion around Eq. (4)]. Such terms arise  the second-order weak transition amplitude. We now
when there are intermediate states whose energies  proceed to a discussion of the evaluation of the matrix
are smaller than the kaon mass [3]. For the W-W  ¢lements of these local operators.
diagrams, see Fig. 2, we study the effects from the
lowest two intermediate states: |#v) and |z°Zv). The
unphysical contribution from the multihadron state 1. Correlators and propagators
|zzfv) can be neglected due to phase space sup- In Table I, except for the matrix elements
pression. For the Z-exchange diagrams we examine (7" (p)|ity,ysd|0) and (0[Sy,ysu|K*(p;)) which are pro-
and subtract the exponentially growing effects from  portional to the leptonic decay constants and can be
|zt) and |(z*2"),_,) states, where I is the total  determined from 2-point correlation functions, the remain-
isospin of the two-pion state. Note that because of  ing matrix elements of local operators can be extracted
charge and angular momentum conservation only ~ from 3-point correlation functions of the general form
the / =2 nn state can contribute to Z-exchange (g, (r A)O(fo)d’g(fla», where ¢, and ¢E are interpolating

diagr.ams. ) operators which can annihilate hadron A or create hadron

(iii) Matrix elemepts of the local sgalar density §d,  B. We define the quantity
(z"]5d|K™). Since the scalar density operator does
not contribute to the on-shell matrix element, we 2E\2Eg !
can shift the effective Hamiltonian by Hy, — Hy =  Maos(tas to. tg) = NN (@a(14)O(t0)95(15))

Hy, — cy5d without changing the amplitude [36]. By A™B
choosing an appropriate value for ¢, we remove the x eFalta=to) gEp(to=1s) (20)
TABLEI. Hadronic matrix elements of local operators required for the calculation of the K+ — z v amplitude (third column). p; and

P are the momenta of the initial state kaon and final state pion, whereas the momenta of the intermediate states are not shown explicitly.
The second column includes the neutrinos and for the W-W and Z-exchange diagrams displays the corresponding contributions to the

bilocal matrix elements.

Matrix element for the SD contribution

Qo

Matrix element relevant for low-lying intermediate states

(m"vo|Qo|K ™)

wW-W (mt L] O45=0|2v) (fv|05S=1 K )
(mtvp| 05570 20v) (22 Pu| 0551 K )
Z-exchange (xt | OZ| ) (x*| Oy |KT)

(" wo| OF|(x* %) 1) (7" 7°) 1| O | KT)

Matrix element for the shift in the Hamiltonian
Z-exchange Hy — Hy —c5d

(m*(Py)|Sy,d|K* (pr))

(" (Py)lity,ysd|0), (Ol5y,rsulK™(p:))
(" (Bp)liy,d|z"), (z°|5y,ulK* (5;))
(x* (pp)liay,ulz®), (x*(pys)ldy,d|n")
(1 glK™(P)), (m7[Qo | KT (P1))

(" (pp)liay,rsul(z* %))

(" (Po)ldy,rsd|(z* %))

(7" 7%) 12| Q1| K* (Bi))

(7" 7°)1 2512l K* (1))

(z'|5d|K* (P:))
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where we do not exhibit the dependence of the operators on
the spatial coordinates. Here A and B indicate initial-,
intermediate- or final-state particles, i.e., K*, 7% and
(n7°),_,. We use Coulomb gauge-fixed wall sources for
the ¢, and ¢y interpolating operators. Such wall-source
operators have a good overlap with the z, K and (z*7°),_,
ground states. The coefficients N4 and N can be extracted
from the corresponding 2-point correlation functions
using the same wall-source operators. E, and Ep are the
ground-state energies which can also be determined
from 2-point functions. The matrix element (A|O|B) =
M op(t4, to, tg) can then be determined from the three-
point correlation functions using Eq. (20) at large ¢4 —
to>0and 1ty —t3 > 0.

In Eq. (20) the operator O can be a vector or axial-vector
current, the current-current operators Qy, and Q,, or the
scalar density §d. The interpolating operators ¢, p are
constructed using twisted boundary conditions to ensure
that the corresponding states have the required momenta.
Translation invariance then implies that the correlation
functions in Eq. (20) do not depend on the spatial position X
of the operator O(,, X). In order to obtain a better precision
we treat X as the sink of the quark propagators and sum over
X with the appropriate phase factor to account for the
momentum transfer between states A and B. The resulting
volume factor in the 3-point function cancels with that from
the 2-point functions used to determine N, and Njp.

The operators Q) , and Q,, can induce closed quark
loops in the contractions. We therefore need to calculate
the light and charm quark propagators DL (x,x) for all
possible x and using random-source propagators is a
natural way to evaluate these quark loops [32]. For a
similar cost, one can either put one random wall source at
each of the T time slices or use N, = T random volume
sources with no dilution in the time slices. Although the
cost of these two choices is almost the same, the latter one
reduces the error by a factor of 1.5 compared to the former.
We thus use N, = T = 32 random volume source propa-
gators to calculate the light and charm quark propagator
D; L (x,x) for all possible x. We also make use of the time
translation invariance and average the correlator over all T
time translations

) =
Maop(t2.11) :fZMAOB(tz‘Hv n+n). (21
=0

By doing this, our results show that the statistical error can
be efficiently reduced by nearly a factor of v/7. The time
translation average requires the wall-source propagators to
be generated on all time slices. This can be achieved in an
efficient way by calculating the low-lying eigenvectors of
the Dirac operator using the Lanczos method and then
using low-mode deflation to accelerate the light-quark
inversions. Working on the 16° x 32 lattice, we find that
by using 100 eigenvectors in low-mode deflation the

light-quark conjugate gradient (CG) time is reduced to
16% of that required for the CG inversions without low-
mode deflation.

2. Exploiting isospin symmetry to simplify the
derivation of the contractions
Since this computation is performed in the isospin-
symmetric limit, we can exploit this symmetry to derive
the necessary contractions more readily. For example, we
have the following relations between the matrix elements:

. 1 .
<7r°|smu|1<+>:\ﬁ@f*lmdlKﬂ

(" |ay,d|n°) =V/2(x"|dy,d|=")
(mtlay,rsu—dy,ysd|(x* %)) = (a* |dy,ysul(z* 7)),
(22)

The matrix elements on the right-hand side have simpler
contractions since they do not involve the neutral pion, the
7°. More precisely, although the final set of contractions is
of course the same, by using the relations in Egs. (22) there
are fewer cancellations of diagrams in intermediate steps of
the calculation.

We now express some of the matrix elements in Table I
in terms of invariant form factors:

Zy(m " (px)|57,d|K* (pk))
= i{(px + Pa)f+(5) + (P = Px) f-(5)}  (23)

(my = mg)(x* (pg)|5d|K* (p)) =(my —mz)fo(s) (24)
Zy(z"(po)ldy,dlxt(p1)) = iFo(s)(p1 + p2),»  (25)

where s = —(pg — p,)?* for the K3 form factors f, _o(s)
and s = —(p, — p,)* for the pion form factor F,(s). In
Egs. (23) and (25), Zy is the renormalization constant
relating the local vector current to the conserved one. The
momentum p; is a Euclidean four-momentum defined
as p; = (iE;,p;) with E; and p; the energy and spatial
momentum of the corresponding on-shell particle. The
scalar form factor is a linear combination of f_ (s) and

f-(s):

Fol$) = Fo(8) 4 fo(s). (26)

K 4
which follows from Egs. (23) and (24) and a chiral Ward
identity.

The current-current operators Q;, in Eq. (19) are
linear combinations of Al = 3/2 and Al = 1/2 operators.
Only the Al =3/2 component contributes to the K+ —
(n*x°),_, transition. For the K — (#x),_, transition we
have
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(7 7°)122] Qi K*) = 2| QALK ),

i=1.2 (27)

),

where the operator with isospin Al =3/2, AI, =1/2 is
given by

1 _ - _ _
7 (=(3d)y_a(dd)y_s + (5d)y_y (i) y_4

+ (Su)y_a(@d)y_s)- (28)

One can now use the Wigner-Eckhart theorem for isospin
symmetry and write the matrix element for the K —
(z*7°),_, decay in terms of that into the maximally
extended state |7z "):

QAIJ A=} _

<(”+”0)I=2|Qi,u‘K+>
(29)

where (5d),_,(idd)y_, isa Al = 3/2, AI, = 3/2 operator.
The determination of the necessary contractions is simpler
using the matrix element for the K™ — (z*z"),_, decay
than for the K™ — (z*z°),_, transition. (Note that
Eq. (29) was used throughout the RBC-UKQCD collab-
orations’ computations of the Al = % K — 7z amplitude
A, [42-44]. The motivation in Refs. [42—-44] was different
however; there it was to use antiperiodic boundary con-
ditions on the u quark to match the I = 2, zz ground-state
energy to the mass of the kaon, mg.)

3. Around-the-world effects
To extract the matrix elements one needs to determine
the coefficients N4 and N for A, B = KT, 29, (z*7°),_,.
For the case when A = B = (77 2%),_, one has to consider
the subtlety of round-the-world effects. The corresponding
two-point function is given by

Ti50 N2,

CJTﬂ(t) = <¢rm( )¢ﬂﬂ(0)> 2FE
x (e~Erst 4 e~Ex(T=0) 1 N(T).  (30)

Here an unwanted term, Ny(7) (proportional to e=£T

where E is the energy of a single pion), is induced by the
around-the-world effects in which each of ¢, interpolating
operators in Eq. (30) creates one pion and annihilates
another. We can remove this term by performing the
subtraction through

2

Cmr(t)_ 2E

Cﬂﬂ(t+ 1)

E
™ (—4e~%7)sinh(E,,#)sinh 5”

(31)

:%<(”+”+>1=2‘ (3d)y_y(@d)y_p|KT),

where ' =t+1/2—T/2. For the single-pion 2-point
function, C,(t), where the pion has energy E,, we have

4
C2(1)—Ci(t+1)= (2E:)2 (—4eET)sinh(2E, ') sinh E,.
(32)
By constructing the ratio R(z +1) = % we can
determine N, and 6E = E,, — 2E, from [45]
R(t+ 1/2) = Ag(cosh(6EY)
+ sinh(8EY') coth(2E 1)), where
N2, (2E,)* s, sinhfz=
AR _ nn ( zr) —oET ! 2 (33)

2E,, N sinhE,
At threshold (i.e., with E,=m;) we obtain OF =
0.01803(32) from which, using Liischer’s finite-size for-
mula [46], we find m,a,, = —0.2816(43), where a, is the
n-m scattering length. This result is close to the estimate

m,atd = 8"'}2 = —0.2978(23) from leading-order chiral
perturbation theory (ChPT) [47]. Here we have used the
values am, = 0.24360(47) and af, = 0.08904(19) from
our simulation. The difference between the values deduced
from 6E and LO ChPT is expected to be due to higher-order

terms in ChPT, as well as to possible systematic effects.

4. Lattice results

Consider the time-dependent amplitude M ,p(t,.1;.0)
defined in Eq. (21). We require #, —¢; and #; — 0 to be
sufficiently large to suppress the contamination from
excited states and 7, < T to suppress around-the-world
effects. In practice we define MR, (1) = Mypp(2.4,0)
(or if ¢ is odd, then M, (1) =1[Myop(1.5.0) +
Maop(t,%1,0))) and choose appropriate values for 7 to
control both the excited-state and around-the-world effects.
By studying the ¢ dependence of M1, (1) we determine
the local matrix element (A|O|B) and present the corre-
sponding results in Table II. In the table we present the
values of the K—n, 7—7x, K- (z72°),_, and
(n*7°),_, = = matrix elements required for the analysis,
and in particular for the subtraction of the exponentially
growing contributions from low-lying states. Although in
this simulation myg < 2m,, so that there are no exponen-
tially growing contributions from two-pion intermediate
states, we include below an explicit discussion of the
|(z7°),_,) state and the evaluation of the corresponding
matrix elements in preparation for simulations with
physical quark masses for which mg > 2m. In the final
two columns of Table II we present the K3 form factors
f1(s), f_(s) and fy(s), the pion form factors F,(s), and
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TABLE II

Lattice results for the local matrix elements. The state |z"(p)) denotes a z* with momentum p = |p,| where p, given in

Eq. (13). For the matrix element (z*(p)|5y,d|K*(0)), s = (mg — E,)* — p* whereas for (z*(p)|iy,d|z°(0)), s = (E, — m,)* — p*.
Similarly, when the 7 in the intermediate state is at rest, s = Sy, = (mg — m,)?. The matrix elements ((7"7°);_,(0)|Q; ,|K*(0))

and ((777"),_,(0)|0,|K™(0)) are equal.

Matrix elements for the SD contribution

(z™(p)|5y:d|KT(0)) —i0.06014(77) f4(s) 0.993(3)

(z*(p)|57,d|K*(0)) —0.7970(14) f-(s) —0.048(12)
fols) 0.993(3)

(z(0)[57,d|K*(0)) —0.7992(15) Jo(Smax) 1.006(3)

Matrix elements relevant for the contributions of low-lying intermediate states

w-w

(7°(0)|57,ulK*(0)) —0.7992(15) So(Smax) 1.006(3)

(n*(p)|iy;d|z°(0)) —i0.05612(62) F,(s) 0.971(11)

(z*(p)|iy,d)|z°(0)) —0.6830(15) FL(s) 0.986(2)

Z-exchange

(77(0)[Q1,41K*(0)) 1.697(87) x 107* C§1) 0.795(41) x 107*

(7*(0)|Q,,,|K*(0)) 3.828(98) x 107# 2 1.794(46) x 10~

(% 7%),25(0)[ Qi 4|K*(0)) —i4.165(18) x 107

(7 (0) |y ysu — dyysd|(z*2°),5(0)) i2.4930(84)

Matrix element for the subtraction in the effective Hamiltonian

(z*(0)]5d|KT(0)) 2.1335(58) Fo(Smax) 1.007(2)

the coefficient cgi)

: (i) _ (7Qi4lK)
from the ratio c¢;’ = TR We

determine fo(Spax) With Sy = (mg—m,)?> from both
(m7(0)|57,d|K*(0) and (z*(0)|5d|K"(0) and obtain con-
sistent results. The matrix element (z"(p)|iy,d|=°(0))
yields consistent results for F,(s) from the spatial and
temporal polarization directions, although the former one is
much noisier.

For the 7zt 7% contribution to the Z-exchange diagrams,
we determine the matrix element (z7(0)|(ay,ysu —
dyysd)|(z7°),_,(0)) = i2.4930(84) by performing the
isospin rotation (z72%),_, — (z7z"),_, in Eq. (22). Here
the two-pions are in the ground state, i.e., at threshold.

E. Evaluation of the matrix element of the bilocal
operator for the W-W diagrams

In this section we discuss the evaluation of the matrix
element of the bilocal operator By (y) defined in Eq. (16).
The matrix element 7'y, for the W-W diagrams is given by

uw = [ Eale {0357 (9000} K
— {u - C}. (34)

As explained in Ref. [3], Ty can be written in terms of the
scalar amplitude Fyy(A,s) and leptonic spinor product

i(p,)px(1—7rs)v(ps):

Tyww = iFww(A,$)[a(p,)px (1 —7s)v(ps)],  (35)

where the variables A and s are defined in the paragraph
following Eq. (8). In practice one can obtain Fyy (A, s)
through [3]

Fun(B.5) =i [ dxty(5.) Y e, Tr

X {Faﬁ(x’y)yﬂ(l +YS)]1 (36)

where the coefficient ¢, is given by

b,
# prK

1
where b, = ZTT[}’,,ﬁaﬁK(l —¥5)P,)-
(37)

The hadronic and leptonic parts, H,z(x,y) and Ty4(x, y),
are defined by

Hop(x.y) = Z3(x* (pa)|T[57a(1 = vs5)u(x)iiys (1= y5)d(y)]
x|K*(pg)) —{u—c}
Lop(x.) =1a(1=75)Se(x.y)75(1 —ys)e™"Pe™ P, (38)

where S,(x,y) is the free lepton propagator for £ = e,
Y OrT.

1. Construction of the correlation function

Similarly to the calculation of the matrix elements
of local operators, we use Coulomb-gauge wall-source
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interpolating operators to create the kaon in the initial state
and the pion in the final state. For the two weak operators
027~ (x) and 057=(y), one is evaluated at a fixed point
which is used as the source for the internal quark lines
connected to that operator. The second operator acts as the
sink for all the propagators joined to it and is summed over
the spatial volume. To gain a higher precision from the time
translation average, we calculate the point source propa-
gators at all 7 time slices. We also exchange the source and
sink locations between the two weak operators and average
over both choices.

2. Lepton propagator with infinite time extent

A subtlety in the calculation of the W-W diagrams is the
inclusion of the lepton propagators, S,(x,y). For the light
leptons £ = e, u the round-the-world effects are significant
in our lattice calculation with temporal extent 7 = 32. To
solve this problem, we first write the lepton propagator in
the spatial momentum-time mixed representation

T 1 i 2
s¢(p.1) = TZSK(P’ pa)e,  py= 7"
P4

n=01,..T-1, (39)

where S, (p, p4) is the lepton propagator in momentum
space. We then construct the propagator with infinite time
extent as

7 d .
S (ppa)e™. (40)
T

-

Instead of using SL(,,T) (p, t) with periodic boundary con-

dition we use the time-truncated lepton propagator
(7]

S, (p. 1) to avoid round-the-world effects

S(p.1) for —T/2<t<T/2

0 fort>T/2 or t<—T/2'
(41)

0.0 = {

Such a time-truncated lepton propagator is implemented
using an overlap fermion formulation. The detailed expres-

sion of S[fT] (p. t) can be found in Appendix A.

3. Using twisted boundary conditions to insert momenta

In the present computation, the kaon is at rest, while the
pion, neutrino and antineutrino in the final state have
nonzero momenta as indicated by Eq. (13). We therefore
use twisted boundary conditions for the d quark to insert
the nonzero momentum p, for the pion in the final state.
Spatial momentum conservation implies that in the process
K" - (¢*X)*v - n'uvi, the intermediate state (£ X)* has
the nonzero momentum px — p,. Here the superscript *

indicates that the particles are off-shell and X represents
hadrons or the vacuum. We use twisted boundary con-
ditions for the lepton field and periodic boundary condition
for internal up and charm quark fields. In this way, the
lepton #* has momentum p, = px —Pp, + ZL—”n, where
n = (ny,n,,n3), n; €{0,1,...,L — 1}, and the hadronic
particles X have a total spatial momentum py = — 2,_—” n. For
the intermediate ground state p, = px — p, and py = 0.

4. Exponentially growing unphysical terms

In the evaluation of integrals of matrix elements of
bilocal operators over a large, but finite Euclidean time
interval, there exist unphysical terms which grow expo-
nentially as the range of the time integration is increased.
Given the bilocal matrix element [ d*x(ztvd|T x
[025=1(x)0*5=9(0)]|K*), one can insert a complete set
of intermediate states between the two interpolating oper-
ators, O*5=! and O*5=Y. Integrating over an interval of
-T,<xo<Ty, (T, T, > 0) gives

/_Z dxo/d3f<ﬂ+VE|T[0AS—1(x)OAS_O(O)]|K+>

=S (" v|0%% |, ) (n,|O*OIKT)

(1 — e(EK_EnS)Tb)
E, —Eg

> (w00| 02570 n) (n] OA5=1 | K *)

(1 —_ e(EK_En)Ta)'
EK - En

n

(42)

The second and third lines of Eq. (42) give the second-order
weak matrix element together with the unwanted expo-
nential terms. For the intermediate states |n) = |£*v) and
|z°¢* V), the factor e(Fx=EnTa increases exponentially as
T, increases. We have determined the hadronic matrix
elements (7"|3y,ysd|0) and (0|5y,ysu|K*) from 2-point
correlation functions and (z*|iy,d|2°) and (z°|5y,u|K™)
from 3-point correlation functions (see Table II for the
results). Therefore we can remove these exponentially
growing terms directly. At m, = 420 MeV, the exponential
terms from the states |n) = |7z v) and [37£v) vanish at
large T,. At the physical pion mass, although the unphys-
ical terms from |zz¢"v) and |37£v) grow exponentially
at large T,, they are significantly suppressed by phase
space and are expected to be negligible in lattice QCD
calculations [3].

5. Double integration method

Since the point-source propagators are placed on each
time slice, we can adopt the method proposed in Ref. [36]
and perform the time integral over the time locations of
both 027=" and 0~°
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b
/ &x(x VB T[0%571 (x, 1) 03570(0, 1)] K *)

t, tath=t,

. / X (05 0357 (x,0) 085 0(0,0)|K+)+Z

(00| 0327°(0)|n) (n| 02~ (0) K ™)

2 E,—Ex

n

(Tbox +

where the interval size T, = t;, — t, + 1. Given the time
locations g for the kaon interpolating operator and ¢, for
the pion operator, ¢, and ¢, are required to satisfy 1x < 1,
and t,> 1, to guarantee ground-state dominance. In
practice, we find that for 1, — tx > 6 and 1, — t, > 6, the
excited-state effects can safely be neglected. Therefore,
given t, and tg, we can change T, in a range of
[1,1, —tx —11]. We can also increase the separation
between ¢, and fx to increase the upper bound for T},.
On the other hand, 7, — 7x should not be too large in order
to suppress the around-of-world effects. In our calculation,
the time extent of the lattice is 7 = 32. We compute
propagators for both periodic and antiperiodic boundary
conditions in the temporal direction and use their average in
the calculation. This trick effectively doubles the temporal
extent of the lattice and suppresses round-the-world effects
to a negligible level when we choose the maximal value of
t, —tx = 30. For each t, — tx separation, we shift the
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E,

(x+05] 05571 (0) n,) (n,|055-0(0 >|K+>< e(EK‘E"»v)TbOX—1>

Enx - EK

e(EK_En)Tbox - 1

|
whole system in the temporal direction and perform the
average over all time slices by using time translation
invariance. We find that such an averaging effectively
reduces the statistical uncertainty by a factor of about
1/VT.

After we obtain the matrix element using the double-
integration method for various values of T,,, we remove
the unphysical terms associated with the |#*v) and |z°¢ 1)
intermediate states. We then fit the T, dependence of the
double-integrated matrix element to a linear function
by + b1 Ty, The slope b, yields the physical bilocal
matrix element.

6. Lattice results for the W-W diagrams

To show the time dependence of the W-W diagrams
explicitly, we define the unintegrated scalar amplitude
Fyww(t) as a function of the variable ¢ =t — fa5—0»

3 T T T T T T
I I I I =
L o € 4
o M
3 o T =
3 A WU, w.exp term
= 2_ —
=
o
£
< #*
o]
o1 L i
3
<
5 &
Q
=
”—l l_ e —
g
o~ e
)
g - :
o
—
o
[
>~
F

The scalar amplitude for the Type 1 diagram. In the left panel the unintegrated scalar amplitude F () is shown as a function

of t = tpg—| — tas—o. The black circles, red squares and green diamonds show the contributions from each of the three leptons e, x and =
respectively. In the right panel, the integrated scalar amplitude is shown as a function of 7',,,. The exponentially growing term has been
removed. For comparison, we also show the results for the muon before the subtraction of the unphysical exponentially growing term
(red triangles).
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TABLE III.  Lattice results, in lattice units, for the scalar amplitude from the W-W diagrams. The third and fifth
columns show the contributions from the ground states as explained in the text.
Fyw Type 1 |£y) & |KYate—i) Type 2 |z%¢+0)
e —1.685(47) x 1072 —1.740(6) x 1072 1.123(17) x 107!
—1.818(40) x 1072 —1.822(6) x 1072 1.194(18) x 107! 1.869(14) x 1072
T 1.491(36) x 1073 1.471(5) x 1073 4.690(77) x 1072 1.026(3) x 1073
where 75g—; is the time at which the operator Oquzl is  (ultraviolet) divergence which needs to be removed as

inserted and 755—o is the time of the insertion of 057=":

Fun(0) =1 [ @xtop(x.5) Y6, lx3)ra(1 4 7))

(44)

where x = (X,f55—;) and y = (y,fas—0)- Recalling
Eq. (36), the scalar amplitude Fyy(A,s) is obtained by
integrating Fyy () over the time separation 7.

For the Type 1 diagram shown in Fig. 2, the correspond-
ing unintegrated scalar amplitude is shown in the left panel
of Fig. 3. For the time region in which #,g_; < #p5—, this
amplitude is dominated by the contribution from ground
state, i.e., the |/Tv) state. From among the three lepton
flavors £ = e, u, 7, we observe the exponentially growing
time dependence for the muon. This is to be expected since
the muon mass is lighter than the initial kaon mass. For the
electron e, the exponentially growing behavior does not
appear due to the helicity suppression in the process of
K+ — etv — zvi. For the 7 flavor, since the intermediate
states are much heavier than the initial state, there are no
exponentially growing contributions.

We perform the double integration and show the matrix
element as a function of Ty, in the right panel of Fig. 3.
The data points marked by the red triangles show the
amplitude for the muon, which contains the exponentially
growing term. The red square points show the same
amplitude after the subtraction of the unphysical exponen-
tially growing terms. After removing the unphysical term,
the data is well described by a linear function and by
performing a fit we determine the scalar amplitude
Fww(A,s) for the three lepton flavors. The corresponding
results are shown in Table III. For comparison, we also
calculate the scalar amplitude including only the contribu-
tions from the ground |n) and |n) states, |/tv) &
|KT7 "¢~ D) respectively. This contribution to Fyy is [3]

—fxf T where ¢> = (px — p,)*,  (45)

K. ﬂqz + m; ’ q Pk —Puv)

and f, and fx are the pion and kaon decay constants. As

shown in Table III, the ground-state dominates the con-

tributions to the Type 1 diagram, and the effects of excited
intermediate states are very small (<3%).

In contrast to the Type 1 diagram, even after the GIM
subtraction, the Type 2 diagram contains a logarithmic SD

explained in detail in Sec. IV. The unintegrated scalar
amplitude is shown in Fig. 4 as a function of fpg_1 — fa5—0-
By zooming into the plots, we can observe the exponen-
tially growing time dependence for the muon. This expo-
nential behavior is not very significant however, since now
the intermediate ground state is [z°/ ") and its energy is
similar to myg. Nevertheless this unphysical term still
contributes a sizeable systematic effect and needs to be
subtracted. We therefore calculate the matrix elements
(m*vp|025=0(0)|2%*v) and (2%¢Fv|OA5=1(0)|KTF) to
remove this unphysical term. For the Type 2 diagram,
we do not observe the exponentially growing behavior for
the electron. In general we would expect there to be no
helicity suppression in this case, since the intermediate
ground state is now semileptonic, rather than the leptonic
one for the Type I diagram. In our calculation, we use the
discrete lattice momenta —(2z/L)n for the intermediate
hadronic particles and momenta px — p, + (2z/L)n for
the intermediate lepton #. With such assignments, in the
intermediate ground state, the neutral pion carries zero
momentum and the helicity suppression still holds for the
electron. This is the reason why we do not observe an
exponentially growing term for the electron. The assign-
ment of the spatial momenta for the intermediate-state
particles is clearly not unique. Different assignments will
introduce different finite-size effects [35] and we will
discuss this topic later.
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FIG. 4. Unintegrated scalar amplitude for the Type 2 diagram.
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Type 2 diagram, integrated amplitude

6 8 10 12 14 16 18 20

FIG.5. Integrated scalar amplitude for the Type 2 diagram. The
unphysical exponentially growing terms for the muon have been
subtracted.

The integrated scalar amplitude for the Type 2 diagram is
shown in Fig. 5. After removing the exponential unphysical
contributions and fitting the lattice data to a linear function
of Ty, we determine the values of Fyy, and include them
in Table III. We also compute the contributions from the
lowest |z°¢* 1) intermediate state and compare them with
the total result for the Type 2 diagram. For the muon the
contribution from |z%:*v) is only 16% of the total con-
tribution. Significant contributions come from the excited
states, suggesting that the amplitude for Type 2 diagram
contains a large SD contribution. This SD contribution is
cut off by the unphysical lattice scale 1/a. We must
introduce a counter term to obtain the physical amplitude,
as explained in Sec. IV below.

F. The matrix element of the bilocal operator
for the Z-exchange diagrams

Examples of Z-exchange diagrams are given in Fig. 2.
We write the bilocal matrix element in the form

Ty(pxebe) = [ dix(a ualTIOY () OZO)K )~ {u— )

=T (Px-P)[a(p,)r,(1=75)v(ps)], (46)

where O}/ and OZ are defined in Eq. (19). The hadronic
part of T, is given by

T (pkbe) = [ i (TOY (WIFO)IK) — (= .

(47)

We separate 77 into two parts: T7 = T + T*, corre-
sponding to the vector (V') and axial vector (A) components
of JZ. The K — nZ* form factors are conventionally
defined by

T (i Pr) = i(FZ'(5) (P + Pa)y + FZ7(5)(Pk = P),)s
i=V.A, (48)

where s = —(px — p,)*

Since the spinor product ii(p,)q (1 —ys)v(p;) vanishes
for massless neutrinos, only the form factors F%'(¢?)
contribute to the decay amplitude. For the vector current,
the Ward-Takahashi identity guarantees

(m3 —m2)F=Y (s) = —sF%V(s). (49)

For the axial vector current, in order to determine F%(s)
from T5*(pg.p,), we need to compute the amplitude
T%*(pg.p,) for different choices of the polarization u.
This requires that either the kaon in the initial state or the
pion in the final state (or both) carries a nonzero spatial
momentum.

Although we cannot determine F%'(s) directly from
T7'(0,0), where both kaon and pion are at rest, we still
calculate such matrix element for two reasons. First, in our
calculation we have used the local vector current rather than
the conserved vector current. Due to the violation of the
Ward-Takahashi identity, there will be a SD singularity
when the operator Jf‘v approaches the operator O,‘;V. This
SD contribution is independent of the kaon and pion
momenta py and p,. As a result, we can use 7% (0, 0)
to remove the SD divergence in 74" (pg. p,). Secondly, for
the insertion of the axial vector current (i = A), the matrix
element 7% (0, 0) provides the most accurate data we can
obtain for the Z-exchange diagrams. We define the scalar
function F{(s) by

Fit(s) = FAAs) + s F2A(s). (50)

k — Mz

Atpg = Oand p, = 0, we obtain from 77 (0, 0) the scalar
function of F g‘A(smax), where the variable s takes its
maximal value of s, = (mg —m,)?. As we will argue
later, F5™ (sma) gives a good approximation to F7'(s) at
s = 0 [for the momentum choice in Eq. (13)].

1. Quark loops and disconnected diagrams

The operators OZV defined in Eq. (19) can induce closed
quark loops through the contraction of u and c-quark loops.
Given each gauge configuration, the N, components of the
random volume-source light and charm quark propagators,
which have already been used for the 3-point correlator, can
also be used for the 4-point correlator. In addition, in order
to be able to evaluate the disconnected diagrams in which
7Oy K and JZ form two separate loops, we have also
calculated 32 random volume-source propagators for the
strange quark. Thus we can perform a full calculation,
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which includes all connected, self-loop and disconnected
diagrams.

2. Using chiral ward identities to remove
the unphysical terms

For the Z-exchange diagrams, we start by inserting a
complete set of intermediate states between the operators
O} and JZ in Eq. (47). In order to obtain the physical result
we need to remove the exponentially growing terms arising
from the intermediate states whose energies are smaller
than the mass of the initial kaon. For the vector current
component of JZ, the odd-parity intermediate states |7 ")
and |37) contain exponentially growing contributions [28].
The exponentially growing contribution from the three-
pion state can safely be neglected because of phase space
suppression (and in the present calculation it is absent since
mg < 3m,). The unphysical contribution from the single-
pion state can be removed by adding to the weak
Hamiltonian Hy = OY — OY a term proportional to the
scalar density: HY, = Hy — c,5d. The chiral Ward iden-
tities imply that the addition of the term proportional to the
scalar density does not change the on-shell matrix element
[28,36,37]. The coefficient ¢, can be determined by
requiring that

(" (0)|Hy(0) - ¢,5d(0)[KT(0)) =0 (51)

and our lattice results for ¢, are listed in Table II

For the axial-vector current component of JZ, the parity-
even state |2z) can produce an exponentially growing
unphysical term. In this case it is not possible to add a term
proportional to the pseudoscalar density (Hy — Hj, =
Hy —c,Sysd) in such a way as to remove the [ =2
two-pion contribution. This is because the combination
of initial K* state and the pseudoscalar density Sysd
cannot create an [ = 2 sz state. Instead, as shown in
Table II, we have explicitly calculated the matrix
elements ((777%),5(0)|Q; 4|[K*(0)) and (z*(0)]zy,ysu —
dy,ysd|(z*7°),_,(0)) and are therefore able to remove the
unphysical term from the |27) intermediate state (if it
exists). For the current lattice calculation, since mg < 2m,,
no removal of such an unphysical term is required.
Nevertheless the evaluation of these matrix elements of
local operators allows us to determine the contribution to
the Z-exchange diagrams from the zz intermediate ground
state in preparation for future simulations at physical light-
quark masses.

3. The local vector current and the
short-distance divergence

If one uses the conserved vector current, then gauge
invariance implies that one can write 77" (pg.p,) as

N

T!Zlvv(pl(’ pn’) - l<_F

(Pk + P2)y + (Pk = Pa)y
K — My

x FZV(s). (52)

The simplest choice of momenta for the K — zZ* tran-
sition is px = p, = 0, where px and p, are the spatial
momenta of the kaon in the initial state and the pion in the
final state. Such a choice of momenta is not very useful

however, since the kinematic factor — —~*— (px + p,), +
K t3

(Pk — Px), 1s then equal to 0. As a consequence, the

transition amplitude 77 (0,0) vanishes. However, by
using the local vector current instead of the conserved
one, this simple choice of momenta proves to be useful in
making a SD correction as we now explain.

With the local vector current we can no longer use the
Ward-Takahashi identity to obtain (52). The operator
product expansion of Qi,q(x)J,‘,/“’“(O) can be written in
the form

Qi.q(x)‘ll‘llluC (0) = leprtd + 0257{7 (825/41/ - a}lal/)d
+es§yLd,d,d + - - (53)

where y. =y,(1 —ys) and for compactness of notation
we have suppressed the label i on the right-hand side.
Dimensional analysis shows that the coefficient ¢, ~ 1/x°
at small distances, leading to a 1/a* quadratic divergence
after integration over x, while ¢, and c; both ~1/x*
corresponding to a log a® logarithmic divergence. All the
higher-dimension terms are accounted for by the ellipsis in
Eq. (53). It is the ¢,-term which is physical and the terms
with coefficients c¢; and c5 appear because of the use of the
local vector current. By applying the GIM mechanism, i.e.,
subtracting the charm quark contribution (i = ¢) from that
of the up quark (i = u) we reduce the divergence in the
integrated correlation function from the term proportional
to ¢ to a logarithmic one and remove the divergences from
the terms proportional to c,3, leaving them finite. The
logarithmic divergence in the term proportional to c; arises
from the contact term as x approaches 0 in Q; ,(x)J v (0).
In order to subtract this divergence we introduce a counter-
term Xy 5y d writing

T5Y (k. Pr) = Zy(T7 "™ (Px. Px)
— Xy(z"(p,)|5y£d(0)|KT (pg))., (54)

where
T (bwes) = [ dx(a (po) TTOY ()71 (O) K (b))
_{u—>c}, (55)

and the superscript V), indicates the insertion of the
local vector current. A natural condition which can be
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used to define and determine the coefficient Xy is
T4V(0,0) =0, ie.,

T;:"(0,0) = Xy (z* (0)[57,d(0)|[K* (0)) = 0. (56)

Once X, is determined, we obtain the form factor F%V(s)
for the choice of momenta in (13) with the contact term
removed using

FiV(s) = F7V(s) = Xyf (), (57)

Z, Vloc

where F7"(s) is obtained from

ZyTe ™ (pg.ps) = i(F2V™(s)(pk + Pa),
+F2V(s)(pk — pa),)  (58)

and f () is defined in Eq. (23). For the particular choice of
momenta given in Eq. (13) s = 0 and the Ward-Takahashi
identity (49) implies that F7"(s) = 0 at s = 0. We will
show later that our lattice result for F%"(s) is indeed
consistent with O within the statistical errors. For other
values of s, Fi’v(s) does not vanish and the procedure
described in this section allows for its determination.
Note that the term proportional to c; vanishes in the
continuum limit. Having used the GIM mechanism to
reduce the degree of divergence and subtracted the remain-
ing contact term by introducing the counterterm, we can

relate the conserved and local vector currents (J,‘:‘:0n and
J,Y“’“ respectively) by J,‘,/ o =ZyJ X e up to lattice artifacts.
Since the artifacts vanish in the continuum limit, so does c3.

4. Single integration method

As explained in Sec. [II E 5, when calculating the matrix
element for the W-W diagrams we have used the double
integration method. At large T, the method requires the
lattice data to be fit using a simple linear function.
However, the drawback of this method is that the lattice
data for small separations f, — t; of the two weak operators
are included only when the source-sink separation
t; — tx > Ty« In fact, this data will accurately contribute
to the bilocal matrix element provided 1, — rx > |t, — ;.
The smaller values of 7, — tx allowed by this less stringent
condition will give data with smaller errors. The single
integration method described in this section makes use of
this more accurate data, and are able to significantly
improve the precision for the Z-exchange diagrams. For
the W-W diagrams the lepton in the intermediate state is not
affected by the gauge noise and there would be no
improvement.

For the Z-exchange diagrams we adopt the single
integration method. Given the time locations of the kaon
and pion interpolating operators, fx and z, respectively, we
determine the unintegrated matrix element using

i 4E7rE i
T2t ) = A (el O () ()0 1)
x eEx(t=ty) gEx(ty=1x) (59)

By examining the numerical results for T4 (t,. 14,1, 1x)
as functions of 7 and ¢;, we conclude that for 1, — 5 ; > 6
and ty;—tx > 6, the effects from excited states can
be safely neglected (this is consistent with the corres-
ponding observations for the W-W diagrams). For such
time separations, by using time-translation invariance
TF (ty. ty.t;.tx) only depends on the time difference
between 7y and t;. For fixed time separations t =1ty —1t;
(but different locations of ;) we fit the matrix elements
T/ (t,.ty. 1), tx) to a constant and obtain the average value
TS (14,1, tx ). We then use these results for 75 (z,, 1, tx ), to
perform a second fit, this time over ¢, and 7 for each value
of ¢. In this way, we obtain the matrix element Tf"(t),
which contains the information from all the lattice data
constrained by {1, 1y, t;, tx|ty —t; =1ty —tx > 6,
t; —tyy > 6}. We then perform a single integration of
Tf”(t) over the variable 7 in the range —T}o < ¢ < Thox
and find the plateau for large T4, once the unphysical
terms growing exponentially with Ty, have been removed.
Since all the possible data for 5 — ¢; = ¢ have been used,
the single integration method decreases the statistical error
for the Z-exchange diagrams by 30%—40% when compared
to the double integration method.

5. Lattice results

We start by presenting the numerical results for the
vector current component of JZ. The unintegrated matrix

elements Tf V(1) as a function of the time separation ¢ =
ty — t; are shown in the upper panel of Fig. 6. Since the
four-fermion operator O‘q)V is a linear combination of Q, ,
and Q, ,, we show the numerical results for each operator.

When the polarization index of the vector current J, ,‘,/ “is a
spacial one, i.e., when u = i = x, y or z, the matrix element
is suppressed by a factor of p,;/my as shown in Eq. (52).
For this reason and in order to facilitate the comparison of
the matrix element at zero and nonzero p, we plot the
matrix element with g = ¢. The black circle data points
show the lattice results for the momentum px = p, = 0;
the red square points show the results for px = 0 and with
p, taking the nonzero value given in Eq. (13). As p, is
small, it is not surprising that the black circle and red square
data points are very close to each other.

In the time region ¢t < 0, the dominant intermediate state
is the |z*). Since this state is lighter than the initial kaon
there is an exponentially growing contribution as shown in
the upper panel of Fig. 6. We remove this unphysical
contribution by adding to the weak Hamiltonian a term
proportional to the scalar density c¢,5d, with the value of ¢,
given in Table II and show in the lower panel of Fig. 6 that
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FIG. 6. The unintegrated matrix elements for the Z-exchange diagrams with the vector current component of Jf . The vector current

polarization direction is chosen to be y = 7. In the upper panel, the matrix elements [ @*X(z " (p,)|T[Hy(X. t)JXE‘;(O)|K *(0)) (for the
0,4 and O, , components) are shown as functions of # =t — ;. The black circle data points show the lattice results for the momentum
mode px = p, = 0; the red square points show the results for pxy = 0 and with p, # 0 and taking the value in Eq. (13). The
exponentially growing time dependence can be seen at ¢ < 0. In the lower panel, the matrix elements are calculated using the modified
Hamiltonian H, = Hy, — ¢,5d, so that the exponentially growing terms have been removed.

after correction the lattice data does indeed converge to a
constant at r < 0.

For both the vector and axial-vector components of the
weak current J f we have only calculated the contribution of
the disconnected diagrams with pg = p, = 0. For the
vector current, the Ward identity implies that the amplitude
is zero in this case (i.e., the numerical results are simply
gauge noise) and so we do not include the contribution
from the disconnected diagrams in Fig. 6. For the axial
current the amplitude does not vanish for px = p, = 0 and
below we do include the contribution from the discon-
nected diagrams in Fig. 7 and the corresponding text.

For the axial-vector current component of Jﬁ it is not
possible to use the (partially) conserved current to avoid
having to make a subtraction of the short-distance diver-
gence, as was done for the vector current in Sec. III F 3. We
therefore use the local axial-vector current and follow the
general procedure for the subtraction of the SD divergence
using the RI/SMOM intermediate scheme, as explained in
detail in Sec. IV. The unintegrated matrix elements are
shown in Fig. 7. At <0 the time dependence is
dominated by the two-pion state, whose energy E,, =
2m, with, in this simulation, m, = 420 MeV which is
larger than the initial kaon mass. Thus we do not observe
the exponentially growing ¢ dependence.

In addition to the connected diagrams in Fig. 2, we also
calculate the disconnected diagrams and produce results
including all quark contractions. The summation of up,

down and strange quark loops vanish in the flavor SU(3)
limit. The remaining charm quark loop is suppressed due to
the heavy charm quark mass. So we expect that the absolute
size of the disconnected diagrams is small. This expectation
is confirmed by a comparison between disconnected data
points (the green diamond symbol in Fig. 7) and the
connected and self-loop ones (the black circle symbol).
Due their small size, although the disconnected diagrams
have much larger relative statistical errors, they do not
contribute a large uncertainty in the total decay amplitude.
Thus a complete lattice QCD calculation including all the
diagrams is practical.

The lattice results for the matrix elements of the bilocal
operators from the Z-exchange diagrams are summarized
in Table IV. The lattice data are shown in three columns for
the Qllafq and Qlﬁtq operators and also for the combination
CQy , + C5Q, 4. Here C1* = —0.2186 and C5* = 0.6424
are Wilson coefficients in the lattice regularization. They
can be related to the Wilson coefficients in the MS scheme
by a 2 x 2 conversion matrix Z'*~MS_The details will be
discussed in Sec. I'V. In Table IV, starting at the top we first
show the matrix elements for the K*(0) — z*(0) transi-
tion. For the vector-current component, these matrix
elements can be used to determine the coefficient Xy of
the counterterm and to correct the SD divergence for the
Qi,q(x)Jf’V‘“ (0) bilocal operator. For the axial vector-
current component, we can use these matrix elements to
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FIG. 7. Unintegrated matrix elements for the Z-exchange diagrams with the axial vector current component. The axial vector current
polarization direction is chosen to be y = . At m, = 420 MeV, no exponentially growing term is observed at t < 0. The black circle
data points show the lattice results for the momentum pgx = p, = 0; the red square points show the results for px = 0 and with p, # 0
and taking the value in Eq. (13). These results include only the connected and self-loop diagrams. For the disconnected diagrams, the
corresponding results are shown by the green diamond symbol. Although noisy, the disconnected contributions are much smaller than
the connected ones.

contributions from the disconnected diagrams in the cal-

culation of F OZ’A(smax); these data are labeled by the
subscript disc. This is not currently possible for the direct

evaluation of F£4%5¢(0), for which we need to use twisted

determine F g’A (Smax)- The calculation of F{f A (Smax) Proves
to be useful for our exploratory study as it provides
approximate information about F%* (s, ), see Eq. (50).
For the K*(0) - #*(0) transition, we also include the

TABLE IV. Summary of the matrix elements of the bilocal operators and the form factors for the Z-exchange diagrams. The
momentum transfer s is given by s = s, = (myg — m,)? for the K*(0) — x*(0) transition and s = 0 for the K*(0) — 7" (p,) with p,,
given in Eq. (13).

Z-exchange diagrams

K*(0) > #7(0) 0 0> C"0, + C5'Q,
(7 (0)[Hy )™ |KF(0))onn 31.5(1.8) x 107# 13.5(2.0) x 107# 1.8(1.5) x 10~
Xy defined by Eq. (56) —-39.4(2.2) x 10~ -16.9(2.5) x 10~ -2.2(1.9) x 107*

<77’-+ (0) |I{WJII“HOC |I(Jr (0)>conn
FOZ.A (Smax)

('t (0)|Hy
P (s)
K*(0) = 7" (px)

(7 () [Hwd " |K*(0))conn
(" (o) [ Hy ' |K*(0))
F(0)

FE(0) = Xy f(0)

<ﬂjL (pn) |]—]W‘];A‘loc |K+(0)>conn
<7ZﬂL (pﬂ)|HW‘]i e |K+(0)>c0nn

Aloc _ ZAwe
F(0) = F™(0)
F2ue (0)

K" (0)>disc

conn

)
7.313(41) x 1072
—-9.202(61) x 1072
11.1(1.3) x 107*
—-13.9(1.7) x 107

27.9(1.8) x 1074
i-3.4(0.8) x 107*
-37.3(2.5) x 107

)
—1.8(1.7) x 10~
7.276(44) x 1072
i-0.600(17) x 1072
—9.158(64) x 1072
1.22(27) x 1072

-0.121(22) x 1072
0.152(28) x 1072

-3.7(1.1) x 107*
4.7(1.4) x 10~

15.0(2.0) x 107*
i-1.5(0.8) x 107
—19.1(2.7) x 107*

—2.4(1.8) x 107*

—0.141(24) x 1072
—i-0.026(16) x 1072

0.204(41) x 1072

—0.24(24) x 1072

—-1.676(19) x 1072
2.109(25) x 1072
—-4.8(0.9) x 107#

6.0(1.2) x 10~

3.5(1.6) x 107
i-0.2(0.7) x 107
—4.1(2.1) x 107
-1.9(1.4) x 107*
—1.681(20) x 1072

—i-0.148(12) x 1072
2.133(32) x 1072
—0.42(18) x 1072
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boundary conditions. Next in Table IV we show the matrix
elements for the K" (0) - z"(p) transition, where the
spatial momentum of the pion is given by Eq. (13). Due
to the nonzero momentum of the pion, we are able to obtain
the scalar function F%(0) from these data. From Table IV
we obtain the following information.

(i) The contribution from the vector current F%"(s)
(which is proportional to s) is expected to be much
smaller than that from the axial vector current
F%Z4(s) (which is proportional to m2). This is
confirmed by our lattice data.

(ii) At the special momentum transfer s = 0 we expect
that F7"(0) = 0 because of the Ward-Takahashi
identity (49). This holds for the conserved vector
current or, as in the present case, by using the local
vector current and subtracting the SD counterterm.
We see from the table that after subtracting the
counterterm, F~"*(0)— Xy £ (0) is consistent with
zero within 1. We also see that F7’ “Vie(0) itself is
significantly different from O.

(iii) For the axial vector current, we observe that
FE (spmax) ® F&4(0) = FZ4(0). Although we are
interested in F%*(s), we conclude that the lattice
determination of F3*(s) can be used as a good
approximation for F% () for small values of s since
FZA(s) is much smaller than F%*(s).

(iv) The disconnected diagrams have been evaluated for
the transition K*(0) - z*(0). The contribution
from these diagrams F g'A’diSC(smax) is about 3% of
that from the connected diagrams F| g‘A(smax). If we
accept that F{*(s) approximates F7*(s), then the
disconnected diagrams only make a small contribu-
tion to the Z-exchange diagrams.

We end this section by estimating the contribution from
the lowest energy |(nx),_,) state to the Z-exchange
diagrams. Using the computed matrix elements A,,_,, =
(m*(0)|@y,ysu — dy,ysd|(7¥2°),5(0))  and  Ag_.p =
((x7°),,(0)]Q; ,|KT(0)) given in Table II we construct
the zz contribution as

1 1
e 2E7z7r Eim —mg
2 (Cllat + Cl2at)AK—>7m7 (60)

TZA””(smax) ZA(_Tg)A

where Z, = Zy, is the (axial) vector current renormalization
factor and T% = § is the weak isospin associated with the
axial vector current. The minus sign corresponds to that
in the V —A structure of the weak Hamiltonian. We
finally determine the zz contribution to the form factor
using  Fg ™ (Sman) = Trl™ (Sma) /(= (mg + my)) =
1.526(10) x 107, which is only 7% of the Fi™(smax)
given in Table IV, suggesting that the dominant contribu-
tion to the Z-exchange diagrams comes from higher excited

states and SD physics. Once simulations at physical quark
masses are performed, when the two-pion state contributes
exponentially growing contributions in 73,, which will
need to be subtracted, its contribution to F%* will have to
be studied again.

IV. REMOVAL OF THE SHORT-DISTANCE
DIVERGENCE USING NONPERTURBATIVE
RENORMALIZATION

In this section we discuss the subtraction of the addi-
tional ultraviolet divergences which appear when the two
local operators which are the components of a bilocal
operator approach each other. In Sec. IVA we review the
theoretical background and in Sec. IV B we present the
numerical results for the subtraction constants.

A. Nonperturbative renormalization using
RI/SMOM scheme

In Sec. III F 3, for the vector current insertion we have
used the matrix element of the transition K(0) — z(0) to
remove the SD divergence in the matrix element of the
bilocal operators. Here we describe a more general method
to remove the SD divergence, following the procedures
developed in Ref. [3].

Given a bare lattice bilocal operator { Q¥ QW }1at in order
to define and determine its SD component, we construct an
off-shell Green’s function

lat

G = (su(p1)up(p3) [ / d‘*xQA(x)QB(y)]dﬂ(pz) (pe)
(61)

where the fermionic fields s, d, v and 7 carry the nonexcep-
tional Euclidean 4-momenta

P1= (5,5,0,0),
P3 = (0’ _51 01 _f)s

P2 = (57 0’ 5’ 0)1
ps=(0,0,-¢,=¢).  (62)

The quark and lepton contractions contributing to the SD
divergence are shown in Fig. 8. We choose the external

d(p2)

7(/ )OASzl OAS:O \( ) Al O[Z
vip3 v P4 Y N
, AN
v(ps3) (p4)
FIG. 8. Left: SD divergent loop in W-W diagrams. Right: SD

divergent loop in Z-exchange diagrams.
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momenta p; to satisfy p? =2 = 2£2 The momentum
Ploop flowing into the internal loop is given by pjop =
(£,0,0,=¢) for W-W diagrams and Ploop = (0,&,=¢,0) for
Z-exchange diagrams.

For the Z-exchange diagrams the weak Hamiltonian is a
linear combination of two operators O, and O, , which
mix under renormalization. The second operator however,
is either the local vector or axial vector current with a
multiplicative renormalization constant Zy. For the W-W

diagrams both the operators Q4 and Qp, i.e., Qquzl and

Q,7~", renormalize multiplicatively. Nevertheless, in this

section we present a general discussion in which both Q4
and Qp mix with other operators and in the absence of
such mixing the corresponding renormalization matrices in
the formulas become numerical constants. In order to allow
the RI/SMOM normalization to be imposed at four-
momenta that can be held fixed in physical units in both
magnitude and direction when we later perform a con-
tinuum extrapolation, we will use twisted external momenta
whose components are not necessarily integer multiples of
2z/L [48].

We perform the calculation in the Landau gauge.
Imposing the twisted boundary condition on the quark
field, g(x + Lj) = e%q(x), is equivalent to multiplying
the gauge field by a factor of ¢’?: U, — U}, = '?+U,,, with
6, = p,L(mod 27). We can consider this multiplication as
a global U(1) rotation. Since p; # p,, we multiply the
gauge field by a different factor e’?» when calculating
the corresponding quark propagator. Calculating a zero-
momentum volume-source quark propagator on the rotated
gauge fields U), naturally assigns the nonzero external
momentum p; for the external quark propagator. For the
Z-exchange diagram, we rotate the gauge fields with a
phase factor of e/Peorsx, Combining the point-source quark
propagators with and without this gauge rotation, we can
arrange that the internal loop can carry an appropriately
twisted momentum  pj,,,. For the W-W diagram, the
momentum pi,,, is carried by the internal lepton field
while the internal quark propagators are calculated with
unrotated gauge fields. We treat the position x of one
operator as the source and the position y of the other
operator as the sink. The source x is treated as a fixed, point
source while the sink y is summed over the full space-time
volume after the other propagators connected to y have
been included. To improve the precision, we place the point
source at 32 different positions and then exploit translation-
invariance to average over these source locations.

When implementing the nonperturbative renormalization
as described above, we impose different (twisted) boundary
conditions within the same diagram for different fermion
propagators of the same flavor. We argue below that this
can be done consistently for connected diagrams evaluated
in the perturbative regime. This is in contrast to the use of
different boundary conditions for different portions of an

amplitude at low energies. For example, the effects of using
different boundary condition for the valence and sea quarks
require the study of an effective field theory and careful
consideration of possible on-shell intermediate states [49].
Our use of multiple boundary conditions is introduced to
allow specific external momenta and we now show that the
errors introduced by this approach fall exponentially with
the volume.

Because the usual RI/SMOM conditions are applied for
large nonexceptional Euclidean external momenta, the
amplitudes being studied are infrared safe and may be
represented by a standard, all-orders perturbative sum.
Further, we assume that the twist angles 6, are rational
multiples of 2z, 6, = 2x(r,/r) for five integers r,, 0 <
# <3 and r. For a quark-line-connected diagram of the
sort described above a sequence of twisted quark propa-
gators is introduced connecting the vertex at which the
twisted momentum enters to the vertex at which it exits so
that momentum will be conserved at each vertex of the
graph. If this same Green’s function were evaluated in a
much larger volume of side L’ = rL, all of the momenta
would be integral multiples of 2z/L’ with no twisting
needed.

We now use the Poisson summation formula to argue
that these two Green’s functions must differ by terms which
vanish exponentially in the length L. In both cases we can
use momentum conservation to route the twisted external
momenta on the same path through the graph. The internal
momentum sums for both volumes then involve momenta
that are added to the twisted momentum, when present,
carried by each quark line. For the original volume L*, the
result depends on the arbitrary routing of the twisted
momentum. For the larger volume (rL)* the loop momenta
can be redefined to move the path followed within the
graph by the external momentum. Since there are no nearby
singularities for such an off-shell Euclidean amplitude, the
Poisson summation formula guarantees that these two sums
over discrete internal momenta, one with »* more terms
than the other, will differ by terms which vanish exponen-
tially in the distance L [50].

In the next step we calculate the amputated vertex I,
from the Green’s function through
Latpe = (51 (P1))aw (S3' (P2)) g (7 (P3))
X <S1;1 (p4)>aa’G£’?f/p’d (63)

where S;b( p;) stand for the inverse of the full strange and
down quark propagators and S; (p;) for the inverse of free
neutrino propagators. Another amputated vertex Fgﬂ o Can
be obtained from the Green’s function in Eq. (61) if the
bilocal operator product [ d*xQ%(x)Q%(y) is replaced
by a bare local operator Qf(y). At tree level, TV is

simply given by I = [, (1= 75)], ® [r.(1 —75)],, where
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the subscript ¢ indicates the quark flavor space and v the
neutrino flavor space. The color structure is not shown
explicitly in [y, (1 — ys)], since at tree level it is trivial. We

use I to construct the projector

Ial
P= . e (64)
Tr, [T

where Tr, . requires the trace over both the spin and
color indices. When the projector acts on I it yields
Tr, [P] = 1.

We use the large external momenta p; = g > Agcp to
capture the SD contribution to the bilocal operator product
J d*xQ%(x)Q%(y) and then relate this contribution to the
projection of the amputated Green function I’ of the local
operator Qt(y), where with the same external momenta we
require:

Try o [PPY] = X3 (o, @) T, o[PT)]. (65)

Recall that the local operator is Qy = (5d)y_,(PV)y_y4.
Using the coefficient X' (a, uy), we remove the SD diver-
gence by constructing the subtraction [ d*xQ%(x) Q& (y)—
X5 (a, 1) OB ().

Following Ref. [3], we adopt the renormalization con-
dition

({QRIQRIRY) . = ({QRIQRIYE) oo — Xy (1. )
X (QR1(so)) oy = O, (66)

0

to define the bilocal operator in the RI/SMOM scheme

{QX' 05} = {OR Q5" — Xap(uo. @) OF (o). (67)

The local operators in the R/SMOM scheme QR (y) are
related to the bare lattice operators Q! (a) through the
renormalization relation  QR'(ug) = ZW~R (aug) Q% (a).
The angled brackets (---),:_,2 in Eq. (66) indicate the
amputated Green’s function with the momentum assign-
ments in Eq. (62). Given the external momenta p;, we
impose the standard RI/SMOM renormalization condition
for local operators. Specifically, the amputated Green’s
function of the renormalized operator in the RI/SMOM
scheme ORl(u) is required to be equal to the tree-level
amputated Green’s function at the scale p, and this
determines the matrix of renormalization constants
Z3 =R apg). Xap(po. a) defined in Eq. (66) is related to
X1 (4, a) defined in Eq. (65) by

thc_)m(aﬂo)z?;m(aﬂo)
25 apo)

Xap(no. a) = X&) (po. @), (68)

where it is understood that a sum is to be performed over
the operator types C and D which mix with A and B
respectively.

Once the renormalization condition (66) has been
specified, the bilocal operator {Q}' OF'}R! is defined with
no ambiguity. The bilocal operator in the MS scheme,
{ONSO)SINS, is given in terms of bilocal and local RI
operators as shown in Eq. (6). By multiplying the Wilson

coefficient CYS (1) C¥S (1), we have

CYS ()OS () { QS QNS 1S
= CRY(1g) CR! (o) { QY Q511!
+ O ()OS (1) Y a5 (1 110) OF (o).~ (69)

Here, for example, CX!(y) QR (uo) = CYS () ZRENS x

(/o) OF (1g) Where ZR=MS (11/p) is the RI — MS con-
version matrix and we sum over all operators C which mix
with A. There is a similar expression for Qp and all the
operators which mix with it. The parameter Yz (u, uo),
which is determined perturbatively, accounts for the differ-
ence between the bilocal operators in the MS and RI
schemes. We will discuss the determination of Y 4z (1, uo)
in Sec. VE.

It is useful to write the MS bilocal operators in terms of
the bare lattice operators whose matrix elements are
computed nonperturbatively

XSO {QF S
= Ci'(a)CY (@) ({ O O Y it = Xith (k0. @) O (@)
+ O WC )Y a ot p0) 28700 @), (70)

where

Ci'(a)Q4'(a)
= O () (ZR= (/1) 2R (apig)) 1 c Q@) (71)

and again there is a summation over all operators which
mix with A; a similar expression holds for Qp.

We now consider the specific case of the Z-exchange
diagrams where Qp is a vector or axial-vector current and
for O, we consider each of the two operators Q, and Q»,
which mix under renormalization. (Here we use the
conventional operators Q; and Q, rather than the combi-
nations Q; = Q; £+ O, which belong to different repre-
sentations of SU;(4) and do not mix under
renormalization.) The conversion matrix for these two

operators, ZR=MS (5 /40) = I + ArRI=MS | hag been given
by Ref. [51] at the scale y = u,. For the entries of the

renormalization matrix Z%~RI(gu;) we take the values
from Ref. [36]. At the scale y = puy =2.15 GeV, the
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TABLE V. Parameters relevant for the Z-exchange diagram. The Wilson coefficients in the MS scheme C¥_§ (1), the entries of the

RI — MS matching matrix ArRI=MS(

U, Ho), the entries of the nonperturbative lat — RI operator renormalization matrix Z"™*~RI(qu)

and the Wilson coefficients Cll'“‘.‘z(a), defined in Eq. (72), are evaluated at the scale y = py = 2.15 GeV.

CIIVIS CI%/[S Ar“ = Ar22 Ar12 = Aer

lat—RI _ ~7lat—RI
4 11 7 ZZZ

lat—RI _ 7lat—RI lat lat
Z 12 — ZZI Cl C2

—0.2911 1.1353 —6.482 x 1072 7.429 x 1073

0.5916 —0.05901 —0.2186 0.6424

parameters used to determine C{t and C{ are given in
Table V. These are given by

Ci(a) = Y C¥S(W)ZE=N (u/mug) Zi =™ (apy)
k=12
(i=1,2). (72)

The values for C* quoted here are about 1.4% different
from the values used in Ref. [36], as in this paper we use a
3-loop formula for the strong coupling evolution while
Ref. [36] used a 2-loop formula.

B. Lattice results for the renormalization
of bilocal operators

The coefficients X' (o, @) have been determined using
Eq. (65). From the full ensemble of 800 configurations, we
use one from every ten configurations to calculate the off-
shell Green’s function for both bilocal and local operators.
To study the scale dependence, we vary yu, from 1 GeV to
4 GeV in steps of 0.25 GeV and the results are presented in
Table VI. For the Z-exchange diagram, we give the results
for O, , and Q, , separately and also for the combination
CQ, , + C5Q,,. For the W-W diagrams, we write the
results for the three lepton flavors £ = e, u, 7 respectively.

V. PERTURBATIVE ELEMENTS IN THE
DETERMINATION OF THE
DECAY AMPLITUDE

The final elements which are required for our compu-
tation of the decay amplitude are the Wilson coefficients
and the subtraction constants Y,p(u,po) which first
appeared in Eq. (6). The determination of the Y,z is
necessarily perturbative since it requires a calculation in
the MS scheme. We outline their determination in Sec. V E
below with further details presented in Appendix B. The
determination of the Wilson coefficients is discussed in
Sec. V C.

An important aim of this paper is to calculate the decay
rate for the process K — ztvo without using perturbation
theory at the scale of m,. and, as already discussed
extensively, this requires us to evaluate the matrix elements
of bilocal operators. The results are presented in Sec. VI
below. However, in order to compare these results with
those which would be obtained in the traditional way for
the unphysical quark masses used in our simulations, in this
section we integrate out the charm quark reducing the
bilocal operators to a local one and use perturbation theory
to obtain an estimate of the amplitude. We present the result
of this calculation in Sec. V D, while in Secs. VA and VB
we discuss the running of a () and m.(¢) which are two
important elements of the perturbative calculations. The
perturbative results obtained by integrating out the charm

TABLE VI. Results for X! which are defined in Eq. (65). These results are given in units of 1072.

X' (o) from the Z-exchange diagrams

X' (ug) from the W-W diagrams

Ho [GeV] o 0> C*Q; + C¥'Q, e )2 T
1.00 —6.659(39) —1.671(18) 0.382(12) 4.958(140) 5.481(155) 2.866(80)
1.25 ~6.019(32)  —1.516(14) 0.342(9) 4697(115)  4.690(115)  2.613(63)
1.50 —5.379(26) —1.365(14) 0.299(10) 3.889(73) 3.878(72) 2.279(42)
1.75 —4.723(22) —1.211(12) 0.255(8) 3.304(48) 3.289(47) 2.030(29)
2.00 —4.112(20) —1.061(12) 0.217(7) 2.644(36) 2.679(36) 1.756(24)
2.25 —3.555(19) —0.932(12) 0.178(8) 2.215(28) 2.213(28) 1.506(19)
2.50 —3.045(18) —-0.815(12) 0.142(8) 1.821(21) 1.818(21) 1.276(15)
275 ~2.605(17)  —0.701(12) 0.119(7) 1.492(17) 1.487(17) 1.074(12)
3.00 —2.229(18) —-0.601 (1 1) 0.101(7) 1.200(13) 1.203(13) 0.897(10)
3.25 —1.897(19) —0.513(11) 0.085(7) 0.969(9) 0.968(9) 0.737(7)
3.50 —1.596(21) —0.441(12) 0.066(8) 0.778(7) 0.777(7) 0.602(5)
3.75 —1.347(23) —0.377(13) 0.052(9) 0.620(6) 0.618(6) 0.486(5)
4.00 —1.130(23) -0.327(12) 0.037(8) 0.483(5) 0.483(5) 0.387(4)
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quark suggest that the contributions from the bilocal and
local operators are comparable.

A. Evolution of the strong coupling constant

The evolution of the strong coupling constant a, from the
scale of M, to lower scales such as u.= m, has been
studied in detail in Ref. [11]. The resulting uncertainty in
a,(u.) makes only a negligible contribution to the total
uncertainty in Br[K™ — zvg]. In our calculation, we
evolve a, from ay(M;) to a,(u.) by solving the renorm-
alization group (RG) equation for @, numerically.

As the QCD perturbation theory calculation of the charm
quark contribution has been performed at NNLO [10,11],
we keep to this order and use the 3-loop RG formula for the
evolution of the running coupling constant

0
ﬂ2ﬁas = —poa; = pra; = paaj, (73)
u

where a, = a,/(4r) and the coefficients f; can be found,
for example, in Ref. [52] (see [53] for a complete
discussion of the running of ay). Solving the RG equa-
tion (73) directly, we have

2

i

% ., where
1

9(a;(u2)) = g(as(p1)) = log
H

2
(ﬂ—l — 2%’)) arctan (7’3 1+2hra, )

ot N
P = poa, N
P rog(poaz? + prazt + ). (74)
28

Using Eq. (74) we can evolve a, from high to low energy
scales following the path u = M, — p, — u,.

When a flavor threshold p = p; is crossed, the matching
conditions relating a; with f and f — 1 active quark flavors
are nontrivial [11]. Using the NNLO matching conditions
given in Ref. [11] and choosing the 5 — 4 flavor threshold
to be at y;, =5 GeV, we obtain

a,(uys) = 0.462(11), 0.304(4), 0.255(3), 0.230(2),
(75)
for ugg = 1,2,3,4 GeV respectively. These results were
obtained using the PDG input parameters [53]:
a,(Mz) =0.1185(6), M, =91.1876(21) GeV,
my(my) = 4.18(3) GeV. (76)
In Ref. [11], the threshold scale p;, was varied from
2.5 GeV to 10 GeV. It was found that this variation affects

the charm quark contribution at a level of only £0.2%
compared to the result obtained at u;, =5 GeV.

B. Running of the charm quark mass

Due to the quadratic GIM mechanism, the charm
quark contribution to the K™ — z"vi decay amplitude is
proportional to the square of the mass of the charm quark.
Thus the running of the charm quark mass plays an
important role in the cancellation of the yy;5 scale depend-
ence in the combination of the local and bilocal
contributions.

At the scale p.=m., the NNLO expression for the
charm quark mass m.(u,) is given by

) = (1 S0 (D) ),

iy 4 A
(77)

where . = (a,(u.)/a,(m,))= and £ are known coef-
ficients (see Eq. (88) in Ref. [11]). Here and below we use
m.(u) to represent the charm quark mass computed in the
MS scheme at the scale p.

Because of the relatively fast running of «; at scales of
O(m,), the coefficient k. makes a significant impact on
the evaluation of local and bilocal Green’s functions. For
example the value of x. at y. =3 GeV is about 40%
smaller than the value at . = 1 GeV. (Even if p,. is varied
in the range of 2-4 GeV, «k, still changes by 24%.)
Therefore we include the running of the charm quark mass
and the coefficient . in our calculation. Recall that this
calculation is performed with an unphysically light charm-
quark mass. Using the input parameter m.(2GeV) =
863 MeV, we obtain m.(m.) = 1.080 GeV to be com-
pared to the physical value m.(m.) = 1.28 £ 0.025 GeV
[53]. The charm-quark contribution in our simulation will
therefore be suppressed due to the use of an unphysical
charm-quark mass.

C. Determination of the Wilson coefficients

In the determination of the Wilson coefficients in the MS
scheme we follow the procedure given in Ref. [11]. For the
Z-exchange diagrams CII’I_S(#) and Cg/l_s(y) together with
the coefficient C@(y), which is associated with the local
operator (Jy, is written as a vector 6‘2 = (C,.,C_,Cyz).

Here Cy = C, &+ Cy. The evolution for C 7 can be deter-
mined using the equation

-

Cz(ﬂ) = U4(/"’ﬂb)M(ﬂh)US(ﬂhnuW)éZ(ﬂW) (78)

where C, (pw) indicate the Wilson coefficients at the scale
of uy = O(My). (In practice, we take uy = 80.0 GeV.)
The values of the coefficients C, (pw) are determined by
matching the Green’s functions in the full and the effec-
tive theory at uy using NNLO QCD perturbation theory.
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The evolution matrices Us(up, uyw), Us(u, ) and the b-
quark threshold matching matrix M (u;) are also known

[11]. Thus the values for E‘Z(y) at u = pu. = O(m,) can be

determined. At y=2.15GeV, we have CYS () =

—0.2911 and CYS(u) = 1.1353. These values have been
used in Table V and Eq. (72) to determine the Wilson
coefficients C'%(a) and C%'(a) for the bare lattice
operators.

For the W-W diagram, the vector of Wilson coefficients

is constructed as Cyyy = (1, Coww)- The Wilson coeffi-
cient for each two-quark-two-lepton operator does not run
because the anomalous dimension is zero. Thus it is simply
given by 1. The coefficient Cyyy accounts for the SD
contribution when the two local weak operators approach
each other and is nontrivial. It can be determined using a
renormalization group evolution equation, which takes a
similar form to Eq. (78).

m (1= n4) X N+ 0(a).
m. 2 2

ZE:I? (1 —1In mé‘(ﬂ)) + O(ay),

mA (34 gl + 585 + O(a).

where we have exhibited the x4 dependence of the charm
quark mass m,.(u). N. = 3 is the number of QCD colors. In
the W-W diagram, the parameter x, = m2/m?(u) indicates
the non-zero lepton mass correction to the loop diagram.
For the electron and muon this correction can be neglected
given the current precision of the computations. Although
the O(ay) corrections to 3 (1) are not shown explicitly in
Eq. (80), they have been calculated and detailed formulas
can be found in Ref. [11]. These O(a,) corrections have
been included in our calculation.

Note that in renormalization group improved perturba-
tion theory, the Wilson coefficients C, ; and Cy yy contain

large logarithms of the form log A’;—z These contribute as a
w

LO effect of order O(a;!'). The bilocal contribution 3 (x)
given in Eq. (80) contributes as a NLO contribution of order
0(a?). Both sets of Wilson coefficients C, and Cyy as
well as the parameter rg, have been calculated to NNLO

including the O(a!) corrections. The total charm quark
contribution can be written in the form

— (O (1) OIS () S () + CYS () (81)

and receives contributions from both the WW and
Z-exchange diagrams. We write PET(u) = PZ(u) +
PY%(u) where the superscripts WW and Z denote the

D. Perturbative estimate of the decay amplitude

In this subsection we digress from the main calculation
and estimate the amplitude using the standard procedure of
integrating out the charm quark and using perturbation
theory. This will allow us to determine the difference
between our nonperturbative computation of long-distance
effects and the standard calculation.

Having determined C,(u) and Cyyy (1), the next step is
to evaluate the amputated Green’s function for the bilocal

operators to determine the coefficient r%(,u) defined by
(CFOF RIS = A Q)

(79)

By integrating out the charm quark field, the parameter

3 (1) can be used to describe the bilocal contribution in
perturbation theory. At O(a?) one has the following

contributions to S (x)

from Z-exchange diagrams with O,
from Z-exchange diagrams with Q, (80)

from W-W diagrams

|

contributions from the WW and Z-exchange diagrams
respectively. We recall that for the WW diagrams one
has to average the contributions from the three intermediate
leptons. In Eq. (81) 1 = |V 5|/ /| Vual® + |Vus|* and My, is
the mass of the W-boson. We use the values A=
0.22537(61) and My, = 80.385(15) GeV taken from the
PDG [53]. At the unphysical charm quark mass
m.(2 GeV) = 863 MeV, PZ(u) and PV (i) at MS scales
u = 1-4 GeV are shown in Fig. 9.

(1) In the left-hand panel we show the scale (u)
dependence of the total contribution PYT(u) at LO
(indicated by the black dashed curve), NLO (red
dash-dotted curve) and NNLO (green solid curve).
We see that by including higher-order QCD correc-
tions the scale dependence becomes milder.

In the middle panel, we split the total NNLO result
PPT(4) into the W-W contribution PV (indicated
by the black dashed curve) and the Z-exchange
contribution PZ (red dash-dotted curve). The W-W
diagrams dominate PFT with the Z-exchange dia-
grams only making a small contribution.

In the right-hand panel, we compare the total bilocal
contribution to PET (indicated by the black dashed
curve) and the local contribution (red dash-dotted
curve) at various scales p. Both contributions in-
clude NNLO corrections. At a scale u ~2 GeV, the
bilocal contribution is of similar size to the local one.

(i)

(iii)
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FIG. 9. Evaluation of the charm quark contribution PET at the unphysical charm quark mass m.(2 GeV) = 863 MeV following the
procedure given in Ref. [11]. In the left-hand panel, we show the scale (1) dependence of total contribution PET(x) at the LO (black
dashed curve), NLO (red dash-dotted curve) and NNLO (green solid curve). In the middle panel, we show the NNLO result for the
PPT (1) by splitting it into the W-W (P¥") and Z-exchange (P?) contributions. In the right-hand panel, we compare the bilocal and local
contributions as a function of the scale y; both include the NNLO corrections.

We could also compile a figure similar to that shown in
Fig. 9 corresponding to the physical charm quark mass,
M, phys- The main difference is that PT would be enhanced

by a factor of (<22 where M unphys 1S the unphysical

M unphys
mass used in this simulation.

In Fig. 9, the bilocal contribution is estimated using the
perturbation theory by integrating out the charm quark
field. We question whether perturbation theory works well
at the scale of u = O(m,). We therefore replace the 3
term by the nonperturbative evaluation of the bilocal matrix
element together with a perturbative matching from RI/
SMOM scheme to MS scheme. The results are presented
in Sec. VL

E. Determination of the Y 5 (u.u)

The relation between the MS and RI/SMOM bilocal
operators takes the form given in Eq. (6) which we rewrite
here for the reader’s convenience:

{ONSOFSIIS = Z87Y (/o) ZE=S (/o) { 0 O} !
+ Y ap (. 110) Q8 (o) (82)
where u and y, are the MS and RI/SMOM renormali-

zation scales respectively. For compactness of notation, we
have written Eq. (82) as if there is no mixing of the

operators O, and Qp with other operators. When, as in
the case of the Z-exchange diagrams, there is a mixing
then the renormalization constants become matrices,
€.8., ZaQa = ZycQc-

In order to determine Y, z(u,py) we calculate the
amputated Green’s functions for both sides of Eq. (82)
at p? =3 and impose the renormalization condition
Eq. (66) so that:

WS v sy |, _ Za (o) RI

<{QA Op },4 >p,2:/4(2) = ZM_S(u) AB(ﬂvﬂ0)<Q0 >pg:”g.
q

(83)

Here Zl(}I and Z{}E are the quark’s wave function renorm-

alization constant. In the Landau gauge and setting the

renormalization scales of both MS and RI/SMOM schemes

to be equal y = py, we have ZR'/ZMS = 1 4 O(a?) [54].

On the right-hand side of Eq. (83), the definition of

the RI/SMOM renormalization scheme implies that

(O8) pry = <Q0>.(0%)=/45’ where the superscript (0) denotes

the tree-level amputated Green’s function.
We write Y 4 g(u, o) = Yu.5(1,0) + AY o (1, o), where

Y45(1,0) is exactly given by the r35(u) discussed in
Sec. VD. We present the determination of the AY,p at
O(a?) in Appendix B and the results are given in Egs. (B4),
(B7) and (B9).
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FIG. 10. Contributions to AY 45 (u, to), 7y B( ) and Y45 (i, po), multiplied by the corresponding Wilson Coefficients, from the W-W
diagrams (left panel) and Z-exchange diagrams (right panel). They are shown as a function of y = .

In our analysis, we take the expression for ! ( ) from
Ref. [11], where it has been calculated at O( D). We
estimate AY,p5(u, py) at O(a?). As we will show later,

AY 451, po) is of comparable size to )} ( ). Thus the
inclusion of the scale dependence of the charm quark mass
is important for the determination of both AY 4z (u, uy) and
(). In AS(4), the running charm quark mass only
depends on the MS scale p, while in AY z(p, 1), the
charm quark mass also depends on the RI/SMOM scale y,,.
For simplicity, we choose p = py. Note that the mass
renormalization conversion factors from the RI/SMOM
scheme to the MS scheme have been calculated to two-loop
order. At u = ug > 2 GeV these conversion factors only
deviate from 1 by a few percent [55]. We thus neglect the
RI/SMOM scale dependence and simply use the MS charm
quark mass from Eq. (77) for AY z5(p, u).

In Fig. 10, we show the contributions to CYSCYSA

Yan(ps o), C%SC%IS’”XS( ) and C%SCIJ\?AS Yap(p.po) as a
function of ¢ = p, from the W-W diagrams (left panel) and
the Z-exchange diagrams (right panel). Since the magnitude

of AY 45(u, ) is comparable to Y3 (1), it will be important
in future calculations to include the O(a;) correction and the
RI/SMOM scale dependence of the charm quark mass
running in AY 45(u, 4o). Another observation from Fig. 10

. 2 .
is that the ln”;—2 dependence, present in each of the terms

AY 45(p, p) and r% (1), cancels at O(a?) in the combination
S (1) + AY 5 (1. ) [see also Eq. (B12)].

VI. LATTICE RESULTS AND A DISCUSSION
OF SYSTEMATIC UNCERTAINTIES

In the previous sections we have discussed and com-
puted all the ingredients necessary to determine the decay
amplitude for the process K™ — ntvi. Before presenting
our final result for the amplitude, we briefly summarize
how these ingredients are combined to obtain this result.
We started in Sec. III with a calculation of the matrix
elements of the local and bilocal lattice operators relevant
for the rare kaon decays. These computations are naturally
nonperturbative. In the determination of the matrix ele-
ments of bilocal operators new ultraviolet divergences
appear when the two local operators Q4 and Qp which
comprise the bilocal operator approach each other. We
discuss the subtraction of these additional divergences
in Sec. IV, introducing and determining the subtraction
constants X' (1, a) [see Egs. (66) and (67)]. By sub-
tracting these divergences, we define and determine non-
perturbatively the matrix element of the bilocal operators
renormalised in the RI/SMOM scheme. Since Wilson
coefficients are generally calculated in the MS scheme,
we need to convert the RI/SMOM operators into those in
the MS scheme and this is necessarily a perturbative
calculation, which we describe in Sec. V. The RI —» MS
conversion of the bilocal operators is characterized by
the constants Y ,z(p, po) [see Eq. (82)]. In this way we
obtain the matrix elements of the bilocal operators in the
MS scheme without “integrating out” the charm quark.
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This matrix elements can be written generically in terms of
the individual ingredients as follows:

ANS o = (m vl {CYS QNS CYS QNS IS | K )
_ C}ftcglt<ﬂ+ylj|{Qldt ldt}lat|K+>
— CRCRXI (o, a) (v QFU|K )
+ CYSCYSY yp (. o) (2| QR | K )
= i[Fup(A. 5) = 22 CHCEXES (4. @) £ (s)
+ 2CFC$YAB(%MO)JC+(S)]
x [a(p,)px(1 =ys)v(ps)]. (84)

Depending on the choice of the operators Q4 5y, Eq. (84)
represents contributions to the W-W or Z-exchange dia-
grams. The scalar amplitude F 4pt(A, s) is given by
Fyw(A,s) for W-W diagram and 2F%'(s) (i =V, A)
for the Z-exchange diagram. The variables A and s are
defined in Eq. (8). The K43 form factor f, (s) is defined in
Eq. (23). The results for f, (s), Fyw (A, s) and F%/(s) have
been given in Tables II-IV respectively. The results for
X1 (4, a) in the range 1 GeV < py < 4 GeV are listed in
Table VI and Zy, = Z, = 0.7163(14). For the Z-exchange
diagrams in Table VI we also give the results with the cor-
responding Wilson coefficients (labeled C'Q, + C#Q,).
The results for Y 45(u, po) for 1GeV < u = pug < 4GeV are
shown in Fig. 10.
It is convenient to define the ratio R(A, s):

F4pt(A’ S)
2f 4 (s)

Since in this calculation we use a single choice of momenta
[see Eq. (13)], we are not able to determine the A and s
dependence of R(A,s). Here we simply neglect this
momentum dependence.

The bilocal matrix element can be written as

R(A,s) = (85)

ABI]OCdl - I[R(A’ S) - Z\_/l C}ftCIBatX}g]t_’} (/’40’ a) + C,IXISC%IS YAB]

X [2f 4 (8)a(p,)px (1 =vs)v(ps)], (86)
|

where the ~ symbol on the first line reminds us that the
momentum dependence of R(A s) has been neglected. We

denote the sum of the AB from the WW and Z-
MS.TOT

exchange diagrams by Ag;>.,; and combine it with the
contribution from the matrix element of the local operator

3 )

fﬂ‘r

x [2f 1 (s)a(p,)px (1 —ys)v(ps)]  (87)

ilocal

AMS = {Cg’lg

Local —

to obtain the total charm quark contributions to the decay

amplitude. It is conventional to relate the AMS TOT and

Bilocal
AMS to P, through

AYSTOT 1 A
4
= MR P )P p(1 = 7)u(p)l. (85)

ocal

We now separate P, into two parts: the standard charm-
quark estimate PPT calculated using perturbation theory
[see Eq. (81)] and a difference between the full non-
perturbative lattice result and the perturbative estimate,
P c P IC)T

1 72 ot At vl
P — P = /1_4M—2[R(A’ s) = Zy' C{* CEX i (uo. a)
14
+ CYSCYSAY pp (k. po)]- (89)
In Fig. 11 we show the unrenormalized quantity
%4”—2 (A,s) (gray band), the Rl-renormalized quantity

/1“M2 ~[R(A.s) = Zy' CBCRXRL (4.a)] (red circle), the total

charm contribution P, (blue diamond) and the difference
P, — PPT (green square) as a function of y = y,. From the
left to right, three panels show the results for the W-W
diagrams, the Z-exchange diagrams and their sum.
Atscales p = puy = 1,2, 3,4 GeV, we obtain respectively

P, = 0.2541(13),0.2529(13),0.2476(13),0.2408(13),

P PPT

As shown in Tables III and IV the statistical errors in the
unrenormalized bilocal matrix are about 1-2%. When these
uncertainties propagate to P., they only appear as sub-
percent effects, since in P, the largest contribution comes
from the perturbation theory.

0.0015(13),0.0040(13),0.0072(13), 0.0074(13). (90)

|

There is a curious cancellation evident in Fig. 11. The
figure shows that the contributions from each of the WW
and Z-exchange diagrams to P, — PPT clearly deviate
from O due to non-perturbative effects. However, they have
the opposite sign and as a result there is a significant
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FIG. 11. The unrenormalized lattice matrix elements A%A’;—zR (A, s) (indicated by the gray band), the RI-renormalized matrix elements

B2
My,

L2 [R(A,s) — Z;' CBCRXL (40 a)] (red circles), the total charm-quark contribution P, (blue diamonds) and the difference P, — PPT

(green squares) are shown as a function of y = y,. From left to right, the three panels show the contribution of the W-W diagrams, the

Z-exchange diagram and the total, i.e., the sum of the two.

cancellation. For illustration, at p = uy =2 GeV, the
contribution to P.— PYT from the WW diagram is
—2.99(12) x 1072 and from the Z-exchange diagram is
3.39(6) x 1072. The sum of the two contributions is about
10 times smaller than each contribution separately. It will
be very interesting to check whether such a cancellation
persists as the masses of the quarks are changed to their
physical values.

A. Systematic effects

Although the statistical errors are well under control, in
order to obtain a precise calculation of the long-distance
contribution to the K™ — zvi decay amplitude, it is
important also to have a good understanding of the
systematic uncertainties. In this subsection we discuss
some of the principle sources of these uncertainties.

1. The RI/SMOM and MS scale dependence

As can be seen from Eq. (90), the systematic uncertainty
arising from the scale dependence is much larger than the
statistical error. There are two main sources of this scale
dependence. At small scales y = ug~ 1 GeV, we expect
that higher-order QCD corrections, which are not included
in our calculation of AY 45, will cause a sizeable effect. At
larger scales, u = pug~4 GeV say, we expect that lattice
artifacts might be significant. We quote the results for P,
and PPT as

P.=02529(13)(32), P, —PPT =0.0040(13)(32)

o1

where the central values correspond to the scale y =
1o =2 GeV. The first error is statistical and the second
an estimate of the error implied by the residual scale
dependence of P, in the range 1 GeV < u = py < 3 GeV.

2. Contributions from disconnected diagrams

The calculation of disconnected diagrams usually suffers
from large noise. This is also the case for the calculation of
the rare kaon decay form factors, where the uncertainty of
the disconnected diagrams is about 10%—30% while for the
connected diagrams, the uncertainty is at the level of few
percent. This can be seen from Table IV. Fortunately, the
size of the form factor from the disconnected diagrams,
FEAase(s ) = 6.0(1.2) x 1074, is only a few percent of
that from the connected diagram. It only contributes to P,
at the level of 0.4%. Here we should point out that since we
do not use twisted boundary conditions for disconnected
diagrams, we only calculate them with the mesons at rest,
Px = p, = 0. We thus determine F g’A’d‘SC(smaX) instead of
FEA0Se(s) If we assume that F{*(sp.) is a good
approximation to F%(s), then the disconnected diagrams
only contribute to P, at a negligible level. Recall that at
S = Spax the vector current does not contribute to the
amplitude.
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3. Finite volume effects

As explained in Ref. [3], the main finite volume (FV)
effects in the lattice calculation of the K™ — n"vi decay
amplitude arise from the K™ — 777" — ztwi process for
the Z-exchange diagrams and K+ — 7% *v — z2vi for
the W-W diagrams. The transitions K™ — 3z — zvi and
Kt = 2z¢%v — nvi can be neglected due to significant
phase space suppression. We therefore exclude them from
our discussion.

For the transition K™ — 7z z°, since the pion mass used
in this calculation is 420 MeV (so that mg < 2m,), no
significant finite-volume effects are expected. Neverthe-
less, we have calculated two-pion scattering energy in the
isospin I =2 channel as well as the K* — z*7° and

|

atn° — #* transition amplitude. There are no expected

difficulties to evaluating the potentially large finite-volume
effects by using Lellouch-Liischer formula when we repeat
the calculation at physical quark masses (and therefore with
mg > 2m,) in the future.

Here we focus on the transition K+ — 7°¢*v — ztvi
and denote the potentially large, i.e., non-exponential, FV
correction by Aﬁi}f)+ =Ayw(L)—Ayw (o), where Ay (L)
and Ay (o0) are the contributions to the amplitude from
the WW diagrams in finite and infinite volumes respec-
tively. The label 7%+ indicates that the correction comes
from the 7%+ intermediate state; see Fig. 2. The neutrino
plays no role here beyond determining the energy-momen-

tum of the 7°¢" pair. Ag({,f " can be expressed as [3]

. 1 dk d*k 0 1 0+
Aﬂof I E “@ro / AK*—»;‘[ k AR =7 (|
FV (L3 - / o P (27[)4 a (pK7 ) k2 + m% B ( pn)

x {am)w(l )

where k is the momentum carried by the intermediate 7°
and P = pg — p, is the total momentum flowing into the
70 — £+ loop. AK" =" and A;j’o"”+ represent the transition
matrix elements indicated by the superscript and a, f are
the Lorentz indices of the weak currents.

The detailed steps needed to evaluate A%/ are given in
Appendix C. Here we only discuss the results. For our
current ensemble, with m, = 420 MeV, only the £+ = e*
state can satisfy the on-shell condition and thus suffers from
the nonexponential FV corrections. Our estimate of the FV
correction to the scalar amplitude for the electron mode is
Féw(L) — Féy(00) = 1.528 x 1072, which is about 14%
of the F%,, (L) as given in Table III. When this FV
correction propagates to P, it amounts approximately to
approximately a 2% contribution. After including this FV
correction, we write the results for P, and P, — PFT as

P, = 0.2529(+13)(+32)(—45),
P. — PPT = 0.0040(=£13)(£32)(—45). (93)

Since the calculations of the FV corrections require the
determination of AX =" and AZO"”+, which we can only

estimate at present, we choose not to decrease the central
values in Eq. (93) but to include the estimate of the FV
corrections in the uncertainty. In general, the FV correc-
tions depend on the lattice size L and how the momenta for
the intermediate pion and lepton are assigned and one needs
to examine them for each case. In the future, when
simulations are performed with physical quark masses, it
will be possible to use the calculated or measured values of

l(P—k) +my P
(P —k)? +ng

A1 —mv(pu-)}, (92)

the K,; and pion form factors at the corresponding
momenta to determine the FV corrections reliably.

4. The momentum dependence

Using the effective Hamiltonian H,¢ o in Eq. (1) and the
definition of P, in Eq. (88), one can write the K™ — zvi
decay amplitude as follows

_ G (Zﬂs A /10
AKT - ntwp) = 722”7 Z </1—§Xt(xt) +7PC>

sin’@y, P
x2f ()a(p,)px(1 =vs)v(ps),  (94)

where X,(x;) and P, are the top and charm quark
contributions, respectively and f_,(s) is the K, form
factor. Note that the charm quark contribution P, generi-
cally depends on two variables A and s. In Eq. (85) we have
taken the ratio between the bilocal matrix element and local
matrix element and assume this ratio does not have a
significant A and s dependence. As a consequence, P, in
Eq. (94) is approximated by a constant. We now examine
under what circumstance this is a good approximation.

With this aim in mind, we write out the explicit A and s
dependence for A(K™ — ztwy) and P,. Using the phase
space factor for three-body decays [53], the decay width for
K" — ztvp can be written as

1 Sl’“ﬂX
F[K+ - 7Z+Ul7] = 210”74’713[) dSAmdx/dQ|A(A, S)|2
K

(95)
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where dQ = sin 0d¢d0 is the element of solid angle of the
neutrino’s momentum in the center-of-mass frame of the v
pair and @ indicates the angle between the momenta of the
pion and neutrino in the same frame. We then have

Smax = (mK - mﬂ)z’

_ 2 2 2 2 .2
Amax - \/(mK + my — S) - 4meﬂ’

A = A cos0.
(96)

The square of the amplitude |A(A, s)|? is given by

AP o | ()

Rel, Re/ 2
# (Mo pdas + 55 |

X 4f i (5)?[Afax — A7, (97)

where the factor A2 . — A? arises from the relation
|ﬁ(pv)p/K<1 - 75)U(p,;) 2= Arznax - Az'

Assuming that the A and s dependence in P.(A,s) is
mild we perform a Taylor expansion writing

A
Po(A,s) = P(0,0) + by—s+ by—s+---.  (98)
my my

Using this simple expansion as an input, the branching ratio
of K¥ — n"vi is proportional to

Br[K" — nvi] « 1 +0.0716% + 0.202b,.  (99)

Here, we have used X,(x,) = 1.481, P.(0,0) = 0.404,
Imi, = 1.51 x 107, Red, =-320x10™* [9], A=
0.22537 and the PDG values for myg and m, [53]. We
also make the approximation that Rel.~ -1 and
fo(s) = 1.If|bs] < 0.37 and |by| < 0.05, then the momen-
tum dependence only amounts for a subpercent effect.

Of course, since the present simulation was performed at
a single choice of (s, A) we are unable to estimate the size
of the parameters b, and b,. Nevertheless, the above
discussion will be useful in our future studies (see
Sec. VII) in which we will determine these parameters
and use them to inform our choice of kinematics for
simulations at physical quark masses.

VII. CONCLUSIONS AND FUTURE PROSPECTS

In this paper we have presented an exploratory lattice
QCD calculation of the long-distance contribution to the
Kt — nvp decay amplitude with a pion mass of m, =
420 MeV and with a charm quark of mass mM5(2 GeV) =
863 MeV. The main results have previously been reported
in Ref. [1]. In this longer version we give the details
explaining how the bilocal hadronic matrix elements are

evaluated and how the three main technical difficulties can
be overcome. These are

(i) the treatment of the additional ultraviolet divergen-

ces which arise in second order perturbation theory
when two local operators approach each other;

(ii) the subtraction of the unphysical terms which appear
in Euclidean space and which grow exponentially
with the temporal extent of the region of integration
over the separation between the two local operators;

(iii) the correction for potentially large, i.e., nonexpo-

nential, finite-volume effects.

By using 800 gauge configurations, the statistical uncer-
tainty of the lattice result for P, is reduced to sub-percent
level. We also make an analysis of the systematic errors,
which gives us some guidance on how to control these
uncertainties in future calculations. A curious feature of our
results is that there is a very significant cancellation
between the contributions from the WW and Z-exchange
diagrams to P, — PPT, see Fig. 11 and the related dis-
cussion. It will be very important and interesting to see if
such a cancellation persists as the masses of the quarks are
changed towards their physical values in the future sim-
ulations discussed below.

Because of the unphysical quark masses used in this
simulation, it is premature to compare our current lattice
result with perturbative calculations [9] and the estimate of
LD effects from Ref. [2]. The technique presented in this
work can readily be generalized to a future realistic
calculation. Such a simulation requires both a small lattice
spacing to accommodate a physically heavy charm quark,
and a large volume to accommodate physically light pions.
We foresee that within four years adequate resources will
become available to make such a calculation possible with
controlled systematic errors.

We end the discussion with our more immediate plans.
We are currently performing a calculation with a lighter
pion mass, m, = 170 MeV, on a 323 x 64 ensemble. This
will help us to control the uncertainty from the unphysical
pion mass of 420 MeV which we are currently using and
provide information about the (A, s) momentum depend-
ence since the allowed momentum region will be larger.

To include the physical charm quark mass, a fine lattice
spacing is required. We are planning to use a 643 x 128
ensemble with an inverse lattice spacing of 1/a =
2.38 GeV and with physical values for the light, strange
and charm quark masses. As mentioned above, accurate
results with a complete systematic error budget should be
available within three to four years, which matches well
with the experimental schedule to measure precisely the
Kt — nvi branching ratio.
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APPENDIX A: FREE LEPTON PROPAGATOR
USING THE OVERLAP FORMALISM

The internal lepton is treated as an overlap fermion in
this calculation. We employ the overlap quark action from
Refs. [56,57], with the Dirac operator defined as
D(0) =

p(1 +yssgn[Hy (—p)]). Hy =ysDy

D(m) = (1 - 2ﬁ>D(0) +m,

; (A1)

where Dy, is the Wilson Dirac operator. Here we set the
Wilson parameter r = 1. The parameter p introduced into
the overlap fermion action is equivalent to the five-dimen-
sional domain wall height M5 in the domain wall fermion
action. m is the lepton mass.

It is useful to write the propagator of the free overlap
fermion in momentum space

1 (=X (p) + (o + Da(p)
o1 ) DP) A2
D B + (7).

X(p) = iZyﬂ sin p, + rZ(l —cosp,) —p
u

u

b(p) = rZ(l —Cosp,) —p

\/Zsm Pyt Z(l —cosp,) — p)z. (A3)

When 0 < p < 2r there is no pole at p, = 7 + iE, since

b(p) = (r(l + coshE) + rZ(l —cos p;) —p) >0

i

(A4)

and the constraint w(p) + b(p) = 0 (corresponding to the
massless case) cannot be satisfied. Thus the fermion

doubling problem is solved and the correct spectrum of
massless fermions is obtained in the range 0 < p < 2r. We

therefore only need to consider the pole at p = (p, iE,),
which satisfies the relation

) pm 200\ — _ 272

sin’p, = ————5—=b = —m*b*(p). A5
; Pu =~ ra P (p).  (AS5)

We next perform the Fourier transform in the time
direction and convert the propagator to the momentum-
time representation

=dp .
S0 = [“PESpoert. (A0

Here the integral f r d’” is used to obtain the propagator
with infinite time extens10n S(p, ) can be determined
using Cauchy integration. Note that the square root in w(p)
brings in two branch cuts, one from a starting point +iE), to
+ioco and the other from —iE), to —ico, where p = (p, iE},)
is the zero of w(p). So the contour of the Cauchy integral
should exclude these branch cuts as shown in Fig. 12. For
t > 0 we have

d icote (f
[ Bt = ires{ e, + P f (0

iEp+e
+ico—e dp4
- - [fp
/+iEb—e 2r ( 4)

with f(p,) = S(p, p4)eP*. In the first term on the right-
hand side res{f}, _;z is the residue of f(py) at the pole
ps = IE,. For t < 0, we can choose the contour along the
branch cut —iE;, to —ioco to determine S(p, ¢).

(A7)

overlap fermion, contour integral
T, Qoo 6 3 T, ico
1 1
1 1
1 1
1 1
1 1
1 1
5 4
7 2
= (0,1 E)
® (0.iE)
m,i0 line 1 mi0

FIG. 12. Line 1 is the contour of the integral on the left-hand
side of Eq. (A7) for p = 0. For ¢ > 0, we close the contour in the
upper-half plane picking up the residue of the pole at p, = iE,
and the contributions from the cut starting at (0, iEy) leading to
the three contributions on the right-hand side of Eq. (A7).
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The propagator S(p, #) can be written in two parts: the
residue of the pole at p, = +iE,, S,(p,t), and the
contribution from the branch cuts, S, (p, t). We first focus
on the contribution from the pole and find

C(sgn(r) sinh Eqy, — i sinpiyi) + M _p

) =
Sa(p’ ) 25
(A8)
with
72 _ _ . - .
cosh E, — mer(p —r rzl(_l cosp;)) +U
1 —m%r?
sinhE, ([, m? U
£== <’) +T> o(p. iE,)
2
U> = m? <p —r— rzi(l — cospi)>
+ (1 = m?r?) (1 + Zsinzp,)
m
—1-2
c=1-7
m
— " (p.iE,). A9
b iE,) (49)

In order to achieve O(a) improvement the propagator is
modified as follows:

S(p.1) = <1 -~ %?)) S(p.1) = éS(p, 1) —

(A10)

This modification cancels the coefficient C in S(p, ). The
mass term M and 1/(2p —m) do not contribute to this
calculation because of the V — A structure of the two weak
operators. We therefore write the modified propagator

S.(p.1) as
o sgn(t) sinh E,y, — i), sin p;y;
5, (p. ) ~ LR BT S
sinh £, sgn(t) sinh E,y, — iy ;sinpyy; "
= e Falll,
& 2sinh E,

(Al1)

We define the wave function normalization factor by Z, =
sinh £,

g A
large lepton masses, e.g., when £ = 7, we multiply S, (p, )
by Z;! in order to make the propagator have a closer form
to the continuum one. Another subtlety is that at p = 0, the
|

p—o- As the lepton mass approaches 0, Z, — 1. For

dPk Tr[yiS,(=k)yLySITelyiS,(k + p)yiv]

energy E, deviates from the input mass parameter m. For
p =r =1, we have

E
m=2tanh—" (A12)

p=0
We tune the parameter m for each lepton, e, u and 7, to
ensure that the pole mass E, at p = 0 takes the physical
value of the mass of the lepton.
The branch-cut contribution is suppressed at large ¢. Its
integral representation is

5, t)_/md_E (p—m/2)(p* +m?/4)wsinh E
bAP. )= g, 27 (p? +m?[4)20* + (p? —m? [4)*D?

—Eli]

(A13)

APPENDIX B: EVALUATION OF RI-MS
CONVERSION FOR THE BILOCAL
OPERATOR: Y, (1t.1t0)

In this Appendix we evaluate the amputated Green’s
function in Eq. (63) using naive dimensional regularization
(NDR) with a fully anticommuting y>. The external
momentum p; are given by Eq. (62). Since the external
legs are amputated, at O(a?) only the momentum p = pjq,,
enters as a parameter in the 4-momentum integral.

For the W-W diagram, we have

"W(p)=T/V(p)-TY"(p) where  (BI)

dPk
Y (p) = p / 207 vES,(=k)yE @ vES,(k+ p)rL,

(B2)

D is the number of space-time dimensions, € = 4 — D and
the factor x4 ensures that FZVW has the correct dimensions.
In the integrand on the right-hand side of Eq. (B2) S, (k) =

—L_ s the quark propagator with ¢ = u, ¢ and S,(k) =
I%Lmq

1 . . L R .
Frmr is the lepton propagator. The gamma matrix y, (y,) is

defined as 7; = 7,(1 —75) (i =v,(1 +75))-

As a result of the GIM cancellation in Eq. (B1), T"W(p)
is logarithmically divergent (I')/'"Y and I’V are separately
quadratically divergent). The standard way to evaluate I'}V
requires the use of the y matrix algebra in the D dimension.
However, if we perform the subtraction AI'W =
r"W(p) —TWW(0) then AT"Y is a finite quantity. We
can then let D — 4 and calculate AT"W directly using the
4-dimensional y-matrix algebra.

The conversion term YY" (4, o) is given by

YW (u, o) = p 20

Trly Ly R Te[yLyR]

~{u—c). (B3)
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where u3 = p?. Here we retain our general notation with At zero external momentum YWV (u,0) = ri¥¥ (),

th§ operators Fienoted by A and B on the 1§ft—hand §ide, but  where "W (1) is given by Eq. (80). The difference between
with the specific operators for the W-W diagrams included YW (1. o) and YW (4,0) is finite and we evaluate it at

on the right-hand side [see Eq. (18)]. order 0(0[0):

AY Y (s o) = Y (4, o) = Y i (1, 0)

= 16[(1,(0,mg. p) = I,(m.,mg, p)) = (1,(0.mz,0) = I, (m., my, 0))], (B4)
where p? = u? and
1 1 A
Ii(my,my,p)=— [ dx(A—A)In—, (B3)
167 0 H

x is a Feynman parameter, A = x(1 — x)p? +xm? + (1 —x)m3 and A = 2x(x — 1)p? —xm? — (1 — x)m3.
For the Z-exchange diagram with the insertion of the axial vector current, we evaluate the amputated Green’s function
writing
rza =it -4
Akt [ &k Sq(k+ p)rursS,(Krk ® vt for the Q, operator

—qan® [ G Trlrf Sy (k+ p)rursSy(R)lvf ® vk, forthe Oy operator

where g4 = —T% = and T% is the weak isospin for the up-type quarks
Performing the prOJeCtIOIl and evaluating AYZ = Y24 (4, o) — Y24 (1, 0), we find

Ay _ { 24A[(12(0. p) = Io(me. p)) + Io(me. 0)].  forthe O, operator -
M 20N [(1(0, p) = Iy (me, ) + Ix(m, 0)],  for the @, operator
where
1 x(1=x)p* +m?
IL(m,p) = WA dx[3x(1 = x)p* + 4m?] ln%. (B8)

For the insertion of the vector current, we can simply replace y,ys — 7, and g4 = qy = T4 — 2Q.m., sin® Oy in Eq. (B6),
where Q. , is the electric charge for up-type quarks and 6y, is the Weinberg angle. We have

AYZ’V( ) = { _261\/[<I3 (O, P) - 13(’"0 P)) + I5(m,, 0)]7 for the Q, operator (BY)
U =2gy N [(15(0. p) = I3(me. p)) + I3(m,,0)].  forthe O, operator
where
1 x(1 —x)p? + m?
I3(m, p) = 16”2/0 dx3x(1 —x)p?In==————. (B10)

Note that the contributions to AY 4 are finite and log #? cancels in each of the expressions in Egs. (B4), (B7) and (B9) at
lowest order.
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At large RI/SMOM scales, we have

wesmim? [ x,Inx, uz
AV o 8 (1

n’ 1 —x, m?
PR 2
Z.A Ho>mz mg; 5 125
AYSw (s pro) —> = <—Z+1nm—% , forthe Q, operator
Ho >>mc 3 m2

AYiBV(,u po)—>qy = 3 ﬂzc , forthe Q,operator.  (B11)
For the Z-exchange diagram, the results for the Q| operator
are obtained by simply multiplying those for the Q,
operator in Eq. (B11) by a factor of N,.

Combining AY 45(u, pg) with X (1) and taking o = p
we have

uymz 5 m
YXVBW(ﬂv/‘OMﬂ T 4 J)

;40>>mC %
2

1
Y4 (o o) | T for the Q, operator
3m

2>m?

Y4 (u o) g™ £ vy ﬂ—z‘ ,  forthe Q, operator.

(B12)

APPENDIX C: FINITE VOLUME EFFECTS IN
THE W-W DIAGRAMS

We rewrite the expression in Eq. (92) in a more general

form:
dky d*k
o1 (55220 [ £4)
ko, k
X 5 zf( 0 ) 5 50 (Cl)
(k* +m3)((P = k)* +m3)
where P = px — p,, m; = m, and m, = m; in our cal-

culation. For the moving frame (P # 0) and nonidentical
particles (m; # m,), the finite volume correction can be
written as

Zflm Clm )

Im

(€2)

where the superscript * indicates the center-of-mass frame.
The energy E* is the total energy in the center-of-mass
frame, satisfying E*> = PZ — P?, where the Minkowski and

J

TT[AW_)”O(I —7s)(P — k)A”O%+(1 —75)Popk (1

Euclidean energies, P, and P, respectively, are related
by Py = —iP,. The momentum p* satisfies the on-shell
condition E* = \/m} + p*> + \/m3 + p*2. The Lorentz
boost factor y is given by y = Py/E*. Under the Lorentz
transformation from the moving frame to the center-of-
mass frame, the function f(k) changes as f(k) — f*(k*).
The potentially large finite volume effects appear when the
two particles in the intermediate state are both on-shell. In
this case, the function f(k) corresponds to the on-shell

physical transition and thus is Lorentz invariant:
f(k) = f*(k*). In Eq. (C2) f;,(k*) is coefficient in the
partial wave expansion of the function f*(k*):
=3 Fin kY 1 (@) K = [k = p*. (C3)
Im
The function ¢}, (p*) is given by [58,59]
&k \ [k|'Y4 (Q4)
P m k
() =1 (5 2 -7 [ ) M) (s
P e
where the momentum Kk is defined as
. P m? —m3
k:y_l |:k|—§(1+ IE*Z 2>:| ‘l‘kL,
k-P

The subscripts || and L refer to parallel to and
perpendicular to P respectively. Each of the two terms
in Eq. (C4) is separately ultraviolet divergent but the
difference is convergent. The divergence can be regulated
by introducing an exponential factor e (P?=IkP) with a > 0
to the summand/integrand in Eq. (C4). By using the heat
kernel method proposed by Liischer [60], one can evaluate
cP (p*) in the limit of a — 0.

Once ¢} (p*) is determined, the remaining task is to
evaluate f] (k*). The scalar amplitude f(k) is defined
from the transition amplitude

AK+_)ﬂ0f+u —_ l.Aer_’”O(pK’ k)A” -t (k p;;) (pl/)

<y (1 =ys)(P =y’ (1= rs)v(ps)

= if(K)ia(p,)pk(1 —7s)v(ps). (Co)

The scalar amplitude f (k) is then obtained from Ag-_, ,0,+,
through the projection

flk) = Trlpi(l

—75)P0k (1 = 715)P.)

B 75)1”’1/} )
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We now make the following approximations: AX =% (p k)=~ i(px +k), and A;O_”ﬁ (k, pr) = i(py + k)4, which
correspond to setting the K,3 and pion form-factors to 1. (In future simulations with physical quark masses these
approximations can be relaxed by using the measured or computed form factors at the corresponding momentum transfers.)

After performing the Lorentz boost, we have

fr(k) =

—2Tr[(pk + K2 = §) (e + ) (L —vs)ropk (1 —75) Py
Trlpk (1 = vs)Popk (1 —1s)#i] ‘

(C8)

Finally, after performing the partial wave expansion for f*(k*), the finite volume corrections are given by Eq. (C2).
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