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In Ref. [1] we have presented the results of an exploratory lattice QCD computation of the long-distance
contribution to the Kþ → πþνν̄ decay amplitude. In the present paper we describe the details of this
calculation, which includes the implementation of a number of novel techniques. The Kþ → πþνν̄ decay
amplitude is dominated by short-distance contributions which can be computed in perturbation theory with
the only required nonperturbative input being the relatively well-known form factors of semileptonic kaon
decays. The long-distance contributions, which are the target of this work, are expected to be of Oð5%Þ in
the branching ratio. Our study demonstrates the feasibility of lattice QCD computations of the Kþ → πþνν̄
decay amplitude, and in particular of the long-distance component. Though this calculation is performed on
a small lattice (163 × 32) and at unphysical pion, kaon and charm quark masses, mπ ¼ 420 MeV, mK ¼
563 MeV and mMS

c ð2 GeVÞ ¼ 863 MeV, the techniques presented in this work can readily be applied to a
future realistic calculation.
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I. INTRODUCTION

K → πνν̄ decays provide an excellent probe for search-
ing for new physics (as recalled in Sec. II A below). The
decays are dominated by short-distance contributions (from
top-quark loops with also a significant contribution from
the charm quark in Kþ → πþνν̄ decays) which can be
calculated to a good precision using perturbation theory
with the only required nonperturbative input being the
relatively well-known form factors of semileptonic kaon
decays. The target of the current study is the evaluation of
the long-distance (LD) contributions to the Kþ → πþνν̄
decay amplitude and phenomenological estimates suggest
that they are of the order of about 5% [2].
The techniques required to compute the long-distance con-

tributions toKþ → πþνν̄decayamplitudesweredeveloped in

Ref. [3]. They have subsequently been applied to an explor-
atory computation on a 163 × 32 lattice at unphysical pion,
kaon and charm quark masses (mπ ¼ 420 MeV, mK ¼
563 MeV and mMS

c ð2 GeVÞ ¼ 863 MeV) and the results
were reported in the paper [1]. The purpose of this paper is to
present thedetails of this computation, demonstrating how the
various novel ideas from Ref. [3] can be implemented in an
actual calculation. Our study demonstrates the feasibility of
lattice QCD computations of the Kþ → πþνν̄ decay ampli-
tude, and in particular its long-distance component so that
these techniques can readily be applied to a future realistic
calculation.
As a strangeness (S) changing second-order weak

interaction process, within the standard model the calcu-
lation of the Kþ → πþνν̄ decay amplitude involves dia-
grams with the exchange of two W bosons (W-W
diagrams), or those with the exchange of one W and one
Z boson (Z-exchange diagrams) or those with a loop
containing a W-W-Z vertex. The long-distance contribu-
tions are given by the W-W and Z-exchange diagrams.
Their evaluation requires the computation of the matrix
elements of bilocal operators composed of two local
operators of the effective Hamiltonian (in which the Ws
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and Zs are contracted to a point) and we include all the
connected, closed quark-loop and disconnected contrac-
tions in the correlation functions. The three main difficul-
ties which had to be overcome, and which will be described
in detail in the following sections, are

(i) the removal of the unphysical terms which appear in
second-order Euclidean correlation functions. When
there are intermediate states propagating between
the two local operators which are lighter than the
mass of the kaon,mK (we take the kaon to be at rest),
then these terms grow exponentially with the range
of the integration over the temporal separation of the
two operators (see Sec. III E 4);

(ii) the subtraction of the additional ultraviolet diver-
gences which arise from the integration region
where the two local operators comprising the bilocal
operator approach each other (see Secs. II B, II C
and IV) and

(iii) the finite-volume corrections associated with on-
shell intermediate states with energies smaller than
mK (see Sec. VI A 3).

The plan for the remainder of this paper is as follows. In
the following section we present an overview of the
importance of K → πνν̄ decays as a probe for possible
new physics, explain what we mean by long-distance
contributions and give an outline of how lattice computations
can be used to compute their contribution to the decay
amplitude. The following three sections contain the details of
the three main elements of the computation of the long-
distance contributions to the amplitude for the rare-kaon
decay Kþ → πþνν̄. Section III contains a description of the
computation of the matrix element of bare lattice bilocal
operators, i.e., of the product of the two local weak operators
in the effective Hamiltonian. As the two operators approach
each other, new ultraviolet divergences appear and we
discuss the subtraction of these divergences in Sec. IV. In
the next section, Sec. V, we discuss two perturbative aspects
of the calculation. One of these is the calculation of the
matching factor relating the matrix elements computed
nonperturbatively to those in the (purely perturbative) MS
scheme. In this section we also follow the standard pro-
cedure of integrating out the charm quark so that the
amplitude can be obtained using perturbation theory and
the form-factors from Kl3 decays. We compare this result
with the nonperturbative lattice determination of the ampli-
tude in Sec. VI where we combine the elements from the
earlier sections to obtain our final results. In Sec. VII we
present a brief summary and discuss prospects for our future
calculations at physical quark masses. There are three
appendices in which we discuss the free lepton propagator
in the overlap formalism (Appendix A); the details of
the evaluation of the matching constant for bilocal opera-
tors in the RI-SMOM and MS renormalization schemes
(Appendix B) and finally a discussion of the finite-volume
effects for the W-W class of diagrams (Appendix C).

II. BRIEF OVERVIEW OF K + → π + νν̄ DECAYS

We begin this section with a brief overview of the
importance of K → πνν̄ decays as a probe for possible new
physics and summarize the current status of experimental
measurements of their decay widths. We then explain what
we mean by the long-distance contributions to the Kþ →
πþνν̄ decay amplitude in Sec. II B and quote phenomeno-
logical estimates that they are of the order of a few percent
[2]. In Sec. II C we outline the procedure for calculating the
long-distance contributions nonperturbatively in lattice
simulations, focussing in particular on the renormalization
of bilocal operators. More details are then given in the
following sections.

A. Probing new physics with the rare
kaon decays K → πνν̄

As flavor-changing-neutral-current (FCNC) processes,
the leading contributions to K → πνν̄ decay amplitudes are
genuine one-loop electroweak effects, usually described by
the following OðG2

FÞ effective Hamiltonian [4,5]

Heff;0 ¼
GFffiffiffi
2

p α

2πsin2θW

X
l¼e;μ;τ

½λtXtðxtÞ þ λcXl
cðxcÞ�

× ½ðs̄dÞV−Aðν̄lνlÞV−A�; ð1Þ

where XtðxtÞ and Xl
cðxcÞ indicate the top and charm

quark contributions respectively and the label l indicates
the leptonic flavor quantum number. The loop functions

XqðxqÞ behave as XqðxqÞ ∝ xq ≡ m2
q

M2
W

[6] leading to a

quadratic Glashow-Iliopoulos-Maiani (GIM) mechanism.
Thus the dominant contribution to the K → πνν̄ amplitude
comes from the internal top quark loop. From Eq. (1) we
see that compared to the tree-level semileptonic decay
K → πlνl, the rare kaon decay is suppressed by a factor of
N ≃ α

2πsin2θW
λt
λ XtðxtÞ. The Cabibbo-Kobayashi-Maskawa

(CKM) factor λq is defined as λq ¼ V�
qsVqd, λ ¼ jVusj

and numerically λt
λ ¼ Oðλ4Þ. α is the electromagnetic fine-

structure constant and θW is the Weinberg angle. The top-
quark loop function XtðxtÞ is known up to NLO QCD
corrections [5,7] and two-loop EW contributions [8]. The
estimate of XtðxtÞ ¼ 1.481ð9Þ [9] suggests a suppression of
N ≃ 2 × 10−5 in the standard model (SM). Thus this decay
channel can be used to probe the new physics at the scales
of N −1

2MW ¼ Oð10 TeVÞ or higher.
The theoretical cleanliness described above is an impor-

tant reason making K → πνν̄ decays among the most
interesting processes in the phenomenology of rare decays.
The loop functionsXtðxtÞ andXl

cðxcÞ canbecalculatedusing
QCD and electroweak perturbation theory [5,7,8,10–12].
The nonperturbative hadronic matrix element of the
local four-fermion operator in Eq. (1) can be determined
accurately from the experimental measurement of the
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semileptonic decay K → πlνl using an isospin rotation
[13]. As a result, the SM predictions for the branching ratios
of K → πνν̄ decays, [9]

BrðKþ → πþνν̄ÞSM ¼ 9.11ð72Þ × 10−11;

BrðKL → π0νν̄ÞSM ¼ 3.00ð30Þ × 10−11; ð2Þ

can be determined to a precision of about 10%. This is
considerably better than the precision of the previous
experimental measurements [14–20]

BrðKþ → πþνν̄Þexp ¼ 1.73þ1.15
−1.05 × 10−10;

BrðKL → π0νν̄Þexp ≤ 2.6 × 10−8; ð3Þ

motivating the new generation of experiments designed to
search for these rare decay events. The NA62 experiment
at CERN aims to obtain Oð100Þ events in 2–3 years and
will thus test the SM at a 10% precision [21]. The search
for KL → π0νν̄ decays is more challenging, since all the
particles in the initial and final state are neutral. The KOTO
experiment at J-PARC is designed to search for KL decays
[22]. It has observed one candidate event while expecting
0.34(16) background events and set an upper limit of 5.1 ×
10−8 for the branching ratio at 90% confidence level [23].

B. Long-distance contributions to K → πνν̄ decays

We have seen that the dominant contribution toK → πνν̄
decay amplitudes comes from the top quark loop. As a CP-
violating decay, whose amplitude is proportional to the
imaginary parts of the λq, the KL → π0νν̄ process is
completely short-distance (SD) dominated and thus does
not require a lattice QCD calculation of long-distance
effects. On the other hand, for the CP-conserving Kþ →
πþνν̄ decay, there is an enhancement of the charm-quark
contribution, since the corresponding CKM factor, λc, is
much larger than that for the top-quark loop, λc ≫ λt. This
enhancement makes the charm quark contribution impor-
tant; neglecting it would reduce the theoretical estimate for
the branching ratio by a factor of about 2. At leading order
of QCD perturbation theory, i.e., Oðα0SÞ, Inami and Lim’s
calculation [6] suggested that the charm-quark contribution
is dominated by SD physics, which receives contributions
from energy scales ranging from the mass of the W-boson,
μ ¼ OðMWÞ, to that of the charm quark, μ ¼ OðmcÞ,
leading to an enhancement factor of lnðM2

W=m
2
cÞ ≈ 8.4.

However, when higher-order QCD corrections are
included, this enhancement is significantly reduced [4].
As a consequence, the precise determination of the long-
distance (LD) contribution becomes more important.
We now clarify what we mean by the LD contributions

by sketching the general procedure used to perform the
calculation. We start by integrating out theW and Z bosons
in order to explore the bilocal structure of the charm-quark

contribution to the Kþ → πþνν̄ decay amplitude. The
transition amplitude takes the form:

hπþνν̄jfCMS
A QMS

A CMS
B QMS

B gMS
μ jKþi

þ CMS
0 ðμÞhπþνν̄jQMS

0 ðμÞjKþi; ð4Þ

where we have used the notation fQS
AQ

S
BgS0 ¼R

d4xTfQS
AðxÞQS

Bð0ÞgS0 . Here QA;B are local operators
appearing in the first-order effective weak Hamiltonian
from W and Z exchange, the superscript S indicates the
renormalization scheme used to define them and CA;B are
the corresponding Wilson coefficient functions. The label
S0 specifies the scheme used to define the bilocal operator
and to remove the additional ultraviolet divergence present
when x → 0. A sum over the relevant operators QA;B is
implied. In Eq. (4) both S and S0 denote the MS scheme, but
in order to obtain the matrix elements in the MS scheme
from a lattice simulation we need to introduce intermediate
renormalization schemes as discussed in the following
subsection. At the scale μ (at this stage mc<μ<MW), the
transition amplitude is separated into a bilocal component

fCMS
A QMS

A CMS
B QMS

B gMS
μ and the local term CMS

0 ðμÞQMS
0 ðμÞ.

The local operator QMS
0 ¼ ðs̄dÞV−Aðν̄νÞV−A and the second

term on the right-hand side of Eq. (4) is required to fully
match the SM, and in particular the SD contributions, to the
effective theory. The coefficients CAðμÞ, CBðμÞ and C0ðμÞ
can be determined using NNLO QCD perturbation
theory [11].
The next step in the conventional approach is to integrate

out the charm quark field in the bilocal term; this is
schematically represented by

fCMS
A QMS

A CMS
B QMS

B gMS
μ → CMS

A ðμÞCMS
B ðμÞrMS

AB ðμÞQMS
0 ðμÞ;

ð5Þ

where the parameter rMS
AB ðμÞ can be calculated using QCD

perturbation theory and the hadronic matrix element of

QMS
0 ðμÞ can be determined from the experimental meas-

urement of Kl3 decays. To estimate the remaining LD
contributions, the authors of Ref. [2] have taken into
account and estimated the matrix elements of local
FCNC operators of dimension eight, such as ðs̄Γ∂μdÞ×
ðν̄Γ∂μνÞ, where Γ represents a Dirac matrix, and used chiral
perturbation theory. They find that this contribution is
δPc ¼ 0.04� 0.02 which enhances the branching ratio
BrðKþ → πþνν̄ÞSM by 6%. However, at the charm quark
mass scale μ ¼ Oð1 GeVÞ, it is doubtful whether the
operator product expansion converges very well and one
can also have reservations about the precision of perturba-
tion theory. Integrating out the charm quark may therefore
constitute a source of uncontrolled theoretical uncertainty.
We therefore, proposed in Ref. [3] to keep the charm quark
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as a dynamical degree of freedom and to calculate the

bilocal matrix element hπþνν̄jfCMS
A QMS

A CMS
B QMS

B gMS
μ jKþi

directly using lattice QCD at a scale μ > mc where
perturbation theory can be used more reliably. In this
way we calculate the transition amplitude in Eq. (4) fully
and directly. In principle therefore, we do not need to
talk about the separation of long- and short- distance
contributions, but to be definite we simply call the
long-distance contributions to be the bilocal term

hπþνν̄jfCMS
A QMS

A CMS
B QMS

B gMS
μ jKþi in Eq. (4). This matrix

element of the bilocal operator is of course scale dependent;
here we simply require that μ > mc and is sufficiently large
for perturbation theory to be reliable.
An interesting question is to what extent is Pc − PPT

c , the
difference between the full lattice result of the charm-quark
contribution to the amplitude Pc and that obtained using
perturbation theory PPT

c combined with the matrix element

of QMS
0 from Kl3 decays, estimated reliably. Lattice

computations will be able to answer this question. We
have seen above that a phenomenological study has
estimated a correction of δPc ¼ 0.04� 0.02 [2].
Using the results from NNLO QCD perturbation theory

[11], we find that at a scale of μ ¼ 2.5 GeV, the bilocal

contribution CMS
A ðμÞCMS

B ðμÞrMS
AB ðμÞ is of similar size to the

local contribution CMS
0 ðμÞ. Thus we would expect that the

lattice calculation of the bilocal operator at such scales
would account for approximately half of the full charm
quark contribution.
The operators in Eq. (4) are defined in the MS scheme.

Since this scheme is purely perturbative, we cannot
compute matrix elements of operators defined in the MS
scheme directly using lattice QCD. In the following
subsection we explain the procedure used to overcome this.

C. Introduction to the lattice methodology

There has been a series of lattice QCD studies of rare
kaon decays [1,3,24–32]. The general lattice QCD method
to calculate second-order electroweak amplitudes has been
developed in Refs. [33–35]. It has been successfully
applied to the lattice calculation of the KL-KS mass
difference [36,37] and is currently being applied to the
evaluation of the LD contribution to the indirect CP-
violating parameter ϵK [38]. The possibility of calculating
rare kaon decay amplitudes using lattice QCD was first
proposed in Ref. [24]. A more detailed method to calculate
the K → πlþl− decay amplitude was later developed in
Ref. [28] and applied to a first exploratory lattice QCD
calculation in Ref. [32]. These same techniques were
also applied to the calculation of the LD contribution to
the Kþ → πþνν̄ decay amplitude in Ref. [3], in which
a method was presented to combine the LD contri-
bution computed using lattice QCD with the SD compo-
nents determined using perturbation theory, including a

consistent treatment of the logarithmic singularities pre-
sent in the LD and SD contributions.
The discussion below follows Ref. [3]. Since the MS

scheme is purely perturbative, we cannot compute matrix
elements of operators defined in the MS scheme directly
using lattice QCD. We therefore employ an intermediate
RI/SMOM scheme and write the MS bilocal operator
in (4) as

fQMS
A QMS

B gMS
μ ¼ ZRI→MS

QA
ðμ=μ0ÞZRI→MS

QB
ðμ=μ0Þ

× fQRI
A QRI

B gRIμ0 þ YABðμ; μ0ÞQRI
0 ðμ0Þ: ð6Þ

Given an operator Q, ZRI→MS
Q is a conversion factor

from the RI/SMOM to the MS scheme: QMSðμÞ ¼
ZRI→MS
Q ðμ=μ0ÞQRIðμ0Þ (more generally, when there is

mixing of operators, as in the present case, Z is a matrix).
For compactness of notation we denote operators renor-
malised in the RI/SMOM scheme with the superfix RI
and the precise choice of momenta used to define this
scheme will be presented in Sec. IV. The local term
YABðμ; μ0ÞQRI

0 ðμ0Þ accounts for the difference between
the bilocal operators in the MS and RI/SMOM scheme.
The bilocal operator fQRI

A QRI
B gRIμ0 is defined as

fQRI
A QRI

B gRIμ0 ≡ Zlat→RI
QA

ðaμ0ÞZlat→RI
QB

ðaμ0ÞfQlat
A Qlat

B glata
− XABðμ0; aÞQRI

0 ðμ0Þ: ð7Þ

Here Qlat
A and Qlat

B are bare lattice operators and a is the
lattice spacing. A counterterm XABðμ0; aÞQRI

0 ðμ0Þ is intro-
duced to remove the SD singularity in the product
Qlat

A ðxÞQlat
B ð0Þ as x → 0. After including the counterterm

the bilocal operator fQRI
A QRI

B gRIμ0 is independent of the
ultraviolet cutoff 1=a. The explicit renormalization con-
ditions used to determine the coefficient XABðμ0; aÞ and
YABðμ; μ0Þ are given in Ref. [3].

III. NUMERICAL EVALUATION OF
HADRONIC MATRIX ELEMENTS

In this section we describe the details of the computation
of the bilocal operators in lattice simulations. We start by
presenting the parameters and details of our exploratory
simulation in Sec. III A. We then, in Sec. III B, discuss the
kinematics of the Kþ → πþνν̄ decays and explain our
choice of the momenta of the external particles. The bilocal
operators relevant for these rare decays are explicitly
introduced in Sec. III C. The evaluation of the amplitude
also requires the determination of a number of matrix
elements of local operators; these are identified in Sec. III D
together with a detailed discussion of their evaluation. The
evaluation of the matrix elements of the bilocal operators
for the W-W and Z-exchange diagrams (introduced in
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Sec. III C below) is presented in Secs. III E and III F
respectively.

A. Details of the simulation

In this work we use configurations generated by the
RBC-UKQCD collaborations with 2þ 1 flavors of domain
wall fermions and the Iwasaki gauge action. Because of the
importance of the GIM cancellation in this decay, we use
four flavors of valence quarks including an active charm
quark. However, we neglect the contribution of the charm
quark to the fermion determinant. The results presented
here are from an ensemble on 163 × 32 × 16 lattices with
an inverse lattice spacing of a−1 ¼ 1.729ð28Þ GeV and a
box size of L ¼ 16 a ¼ 1.83 fm [39]. The residual mass is
determined to be mres a ¼ 0.00308ð4Þ and the extent of the
fifth-dimension is Ls ¼ 16. The pion and kaon masses are
mπ ¼ 421ð1Þð7Þ MeV and mK ¼ 563ð1Þð9Þ MeV and the
corresponding input bare light and strange quark masses
are aml ¼ 0.010 and ams ¼ 0.032. The valence charm
quark mass is amc ¼ 0.330, which corresponds to the MS

mass mMS
c ð2 GeVÞ ¼ 863ð24Þ MeV with the mass renor-

malization factor ZMS
m ð2 GeVÞ ¼ 1.498ð34Þ [40], where

mMS
c ð2 GeVÞ ¼ ZMS

m ð2 GeVÞðmc þmresÞ. To achieve a
high statistical precision, we use 800 configurations,
each separated by 10 trajectories. For simplicity, all the
results presented below are given in lattice units unless
otherwise specified.

B. The kinematics

Given the momenta pK, pπ, pν and pν̄, one can define
three Lorentz invariants

s ¼ −ðpK − pπÞ2; t ¼ −ðpK − pνÞ2; u ¼ −ðpK − pν̄Þ2;
ð8Þ

where two of them are independent: sþ tþ u ¼ m2
K þm2

π .
Here we use a Euclidean metric with the signature
(þþþþ) so that an on-shell momentum is written as pπ ¼
ðiEπ;pπÞ for a pion, and a minus sign appears in the
definition for s, t and u. Defining Δ≡ u − t, the physical
region for (Δ, s) is denoted by the bounds

s ≥ 0; Δ2 ≤ ðm2
K þm2

π − sÞ2 − 4m2
Km

2
π ð9Þ

and is illustrated in Fig. 1.
In our lattice calculation we take the kaon to be at rest so

that pK ¼ ðimK; 0Þ. The pion’s three-momentum is then
given by

jpπj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 2ðm2

K þm2
πÞsþ ðm2

K −m2
πÞ2

p
2mK

: ð10Þ

Without loss of generality, we choose the direction of the
pion’s momentum to be pπ ¼ jpπ jffiffi

3
p ðex þ ey þ ezÞ, where ei

is the unit vector in the i-direction. We decompose the
spatial momenta of the neutrino and anti-neutrino into
components parallel and perpendicular to pπ writing

pν ¼ pk þ p⊥; pν̄ ¼ −pπ − pk − p⊥; ð11Þ

where pkð⊥Þ is parallel (perpendicular) to pπ . The values of
pk and p⊥ are given by

pk ¼ −
1

2

�
�ðmK − EπÞΔ

2mKjpπj2
þ 1

�
pπ;

p⊥ ¼ 1

2

�
sþ

�
Δ

2mK

�
2

−
�ðmK − EπÞΔ

2mKjpπj
�

2
�1

2

e⊥; ð12Þ

where e⊥ is any unit vector perpendicular to pπ. We use
twisted boundary conditions to implement the momenta
given by Eqs. (10)–(12).
Using the Dirac equation for the massless neutrinos,

one can show that the magnitude of the decay amplitude
vanishes at the edge of the physically allowed region,
where the momenta satisfy the condition Δ2 ¼ ðm2

K þ
m2

π − sÞ2 − 4m2
Km

2
π. We are therefore more interested in

momenta that are well inside the region and a natural choice
is ðΔ; sÞ ¼ ð0; 0Þ, which corresponds to the case in which
the ν and ν̄ carry the same spatial momentum and the pion
moves in the opposite direction with twice the momentum
of each of the ν and ν̄. Since we perform the calculation at
mπ ¼ 420 MeV, the allowed momenta for the final-state
particles are constrained to lie in a small region. Given this
small momentum range we expect that it will be difficult to
extract reliably the momentum dependence. For this reason,
in this exploratory study we devote our computational
resources to evaluating the amplitude at the single kin-
ematical point with ðΔ; sÞ ¼ ð0; 0Þ. The situation is
expected to change once we perform the calculation at
physical quark masses. In that case we will need to compute
theKþ → πþνν̄ amplitude at several values of (Δ, s) to gain

-0.2 -0.1 0 0.1 0.2

Δ  [GeV
2
]

0

0.05

0.1

0.15

0.2

0.25

s 
 [

G
eV

2 ]

t=0

t=mπ
2

u=0

u=mπ
2

s=(m
K

-mπ)
2

s=m
K

2
+mπ

2

Physical Region

FIG. 1. Dalitz plot for K → πνν̄.
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a better understanding of the momentum dependence.
Another consequence of the heavy pion mass is that the
momenta of the pion and the neutrinos are very small. For
ðΔ; sÞ ¼ ð0; 0Þ these are

pν ¼ pν̄ ¼ ð0.0207; 0.0207; 0.0207Þ;
pπ ¼ ð−0.0414;−0.0414;−0.0414Þ: ð13Þ

Here jpπj ¼ 0.0717 is only about 18% of the lowest
lattice momentum with periodic boundary conditions,
2π=L ¼ 0.3927.

C. The bilocal operators

There are two classes of diagrams which contribute
to Kþ → πþνν̄ decays, we call these the W-W and
Z-exchange diagrams. In the W-W diagrams the second-
order weak transition proceeds through the exchange of
two W-bosons, while for the Z-exchange diagrams the
decay occurs through the exchange of one W-boson and
one Z-boson; both classes of diagrams are illustrated in
Fig. 2. The bilocal contribution to the decay amplitude is a
combination of these two types of diagrams so that it can be
written in terms of the matrix element hπþνν̄jBð0ÞjKþi,
where the bilocal operator BðyÞ receives contributions from
both BWWðyÞ and BZðyÞ

BðyÞ ¼ GFffiffiffi
2

p α

2π sin2θW

π2

M2
W
λcðBWWðyÞ þ BZðyÞÞ: ð14Þ

Here

BWWðyÞ ¼
X

l¼e;μ;τ

BðlÞ
WWðyÞ; BZðyÞ ¼

X
l¼e;μ;τ

BðlÞ
Z ðyÞ ð15Þ

and BðlÞ
WWðyÞ and BðlÞ

Z ðyÞ are defined as

BðlÞ
WWðyÞ ¼

Z
d4xT½OΔS¼1

ul ðxÞOΔS¼0
ul ðyÞ� − fu → cg ð16Þ

and

BðlÞ
Z ðyÞ ¼

Z
d4xT½OW

u ðxÞOZ
lðyÞ� − fu → cg: ð17Þ

Here, as in Ref. [1,3], we find it convenient to use the letter
O to represent an operator which incorporates a Wilson
coefficient and the letter Q for an operator which does not
include such a coefficient. In Eq. (16)OΔS¼1

ql andOΔS¼0
ql are

the appropriate products, CMS
A QMS

A and CMS
B QMS

B , for the
W-W diagrams. We can write them in terms of bare lattice
operators as

OΔS¼1
ql ¼ ZVðs̄qÞV−Aðν̄lÞV−A;

OΔS¼0
ql ¼ ZVðq̄dÞV−Aðl̄νÞV−A; ð18Þ

where ZV ¼ ZA is the renormalization factor relating the
local lattice vector or axial-vector current (which we use) to
the conserved or partially conserved ones and is effectively
the corresponding Wilson coefficient. By taking the ratio of
two-point functions computed with the local and conserved
axial currents we obtain ZA ¼ 0.7163, which is consistent
with the result quoted in Ref. [41].
The two effective operators for the Z-exchange diagrams

are given by

OW
q ¼ C1Q1;q þ C2Q2;q; OZ

l ¼ ZVJZμ ½ν̄lγμð1 − γ5Þνl�
ð19Þ

with Q1;q and Q2;q the conventional current-current oper-
ators and JZμ the quark current which couples to the Z0.
Their definition is given in Eq. (15) of Ref. [3], where a
discussion of the corresponding operator renormalization
from the lattice to the MS scheme is also presented.

D. Matrix elements of local operators

In addition to the evaluation of the matrix elements of the
bilocal operators discussed in Sec. III C, which is the main
task of this work, there are three types of matrix elements

FIG. 2. From top to bottom: quark and lepton contractions for
W-W, connected and disconnected Z-exchange diagrams.
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of local operators which must be computed in order to
determine the Kþ → πþνν̄ decay amplitude.

(i) Matrix elements for the SD contributions,
hπþνν̄jQ0jKþi, for which the hadronic effects are
obtained from matrix elements of the form
hπþðp⃗fÞjs̄γμdjKþðp⃗iÞi. The labels i and f indicate
the initial and final states, and are used to distin-
guish these states from the intermediate states
discussed below.

(ii) Matrix elements for low-lying intermediate states.
This type of matrix element corresponds to unphys-
ical contributions which grow exponentially in T,
the time interval over which the separation of the
two local operators QS

A and QS
B are integrated [see

the discussion around Eq. (4)]. Such terms arise
when there are intermediate states whose energies
are smaller than the kaon mass [3]. For the W-W
diagrams, see Fig. 2, we study the effects from the
lowest two intermediate states: jl̄νi and jπ0l̄νi. The
unphysical contribution from the multihadron state
jππl̄νi can be neglected due to phase space sup-
pression. For the Z-exchange diagrams we examine
and subtract the exponentially growing effects from
jπþi and jðπþπ0ÞI¼2i states, where I is the total
isospin of the two-pion state. Note that because of
charge and angular momentum conservation only
the I ¼ 2 ππ state can contribute to Z-exchange
diagrams.

(iii) Matrix elements of the local scalar density s̄d,
hπþjs̄djKþi. Since the scalar density operator does
not contribute to the on-shell matrix element, we
can shift the effective Hamiltonian by HW → H0

W ¼
HW − css̄d without changing the amplitude [36]. By
choosing an appropriate value for cs we remove the

unphysical contribution from the jπþi intermediate
state in the Z-exchange diagrams. We will discuss
this in more detail in the following sections. In other
applications, one also frequently subtracts a term
proportional to the pseudoscalar density from the
effective Hamiltonian to remove a low-lying state
from the correlation function. However, in this case
there is no contribution from the vacuum state and
the operator s̄γ5d cannot mediate transitions to I ¼ 2
two-pion states (by isospin conservation). We there-
fore do not make the subtraction HW → H0

W ¼
HW − cps̄γ5d here.

The three types of hadronic matrix elements are summa-
rized in Table I and will be used below for the analysis of
the second-order weak transition amplitude. We now
proceed to a discussion of the evaluation of the matrix
elements of these local operators.

1. Correlators and propagators

In Table I, except for the matrix elements
hπþðp⃗fÞjūγμγ5dj0i and h0js̄γμγ5ujKþðp⃗iÞi which are pro-
portional to the leptonic decay constants and can be
determined from 2-point correlation functions, the remain-
ing matrix elements of local operators can be extracted
from 3-point correlation functions of the general form
hϕAðtAÞOðtOÞϕ†

BðtBÞi, where ϕA and ϕ†
B are interpolating

operators which can annihilate hadron A or create hadron
B. We define the quantity

MAOBðtA; tO; tBÞ ¼
2EA2EB

NAN
†
B

hϕAðtAÞOðtOÞϕ†
BðtBÞi

× eEAðtA−tOÞeEBðtO−tBÞ; ð20Þ

TABLE I. Hadronic matrix elements of local operators required for the calculation of theKþ → πþνν̄ amplitude (third column). p⃗i and
p⃗f are the momenta of the initial state kaon and final state pion, whereas the momenta of the intermediate states are not shown explicitly.
The second column includes the neutrinos and for the W-W and Z-exchange diagrams displays the corresponding contributions to the
bilocal matrix elements.

Matrix element for the SD contribution

Q0 hπþνν̄jQ0jKþi hπþðp⃗fÞjs̄γμdjKþðp⃗iÞi
Matrix element relevant for low-lying intermediate states
W-W hπþνν̄jOΔS¼0

u jl̄νihl̄νjOΔS¼1
u jKþi hπþðp⃗fÞjūγμγ5dj0i, h0js̄γμγ5ujKþðp⃗iÞi

hπþνν̄jOΔS¼0
u jπ0l̄νihπ0l̄νjOΔS¼1

u jKþi hπþðp⃗fÞjūγμdjπ0i, hπ0js̄γμujKþðp⃗iÞi
Z-exchange hπþνν̄jOZ

l jπþihπþjOW
q jKþi hπþðp⃗fÞjūγμujπþi, hπþðp⃗fÞjd̄γμdjπþi

hπþjQ1;qjKþðp⃗iÞi, hπþjQ2;qjKþðp⃗iÞi
hπþðp⃗fÞjūγμγ5ujðπþπ0ÞI¼2i

hπþνν̄jOZ
l jðπþπ0ÞI¼2ihðπþπ0ÞI¼2jOW

q jKþi hπþðp⃗fÞjd̄γμγ5djðπþπ0ÞI¼2i
hðπþπ0ÞI¼2jQ1;ujKþðp⃗iÞi
hðπþπ0ÞI¼2jQ2;ujKþðp⃗iÞi

Matrix element for the shift in the Hamiltonian
Z-exchange HW → HW − css̄d hπþjs̄djKþðp⃗iÞi
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where we do not exhibit the dependence of the operators on
the spatial coordinates. Here A and B indicate initial-,
intermediate- or final-state particles, i.e., Kþ, πþ;0 and
ðπþπ0ÞI¼2. We use Coulomb gauge-fixed wall sources for
the ϕA and ϕB interpolating operators. Such wall-source
operators have a good overlap with the π, K and ðπþπ0ÞI¼2

ground states. The coefficients NA and NB can be extracted
from the corresponding 2-point correlation functions
using the same wall-source operators. EA and EB are the
ground-state energies which can also be determined
from 2-point functions. The matrix element hAjOjBi ¼
MAOBðtA; tO; tBÞ can then be determined from the three-
point correlation functions using Eq. (20) at large tA −
tO ≫ 0 and tO − tB ≫ 0.
In Eq. (20) the operator O can be a vector or axial-vector

current, the current-current operators Q1q and Q2q or the
scalar density s̄d. The interpolating operators ϕA;B are
constructed using twisted boundary conditions to ensure
that the corresponding states have the required momenta.
Translation invariance then implies that the correlation
functions in Eq. (20) do not depend on the spatial position x⃗
of the operatorOðtO; x⃗Þ. In order to obtain a better precision
we treat x⃗ as the sink of the quark propagators and sum over
x⃗ with the appropriate phase factor to account for the
momentum transfer between states A and B. The resulting
volume factor in the 3-point function cancels with that from
the 2-point functions used to determine NA and NB.
The operators Q1;q and Q2;q can induce closed quark

loops in the contractions. We therefore need to calculate
the light and charm quark propagators D−1

u;cðx; xÞ for all
possible x and using random-source propagators is a
natural way to evaluate these quark loops [32]. For a
similar cost, one can either put one random wall source at
each of the T time slices or use Nr ¼ T random volume
sources with no dilution in the time slices. Although the
cost of these two choices is almost the same, the latter one
reduces the error by a factor of 1.5 compared to the former.
We thus use Nr ¼ T ¼ 32 random volume source propa-
gators to calculate the light and charm quark propagator
D−1

u;cðx; xÞ for all possible x. We also make use of the time
translation invariance and average the correlator over all T
time translations

M̄AOBðt2; t1Þ ¼
1

T

XT−1
t¼0

MAOBðt2 þ t; t1 þ t; tÞ: ð21Þ

By doing this, our results show that the statistical error can
be efficiently reduced by nearly a factor of

ffiffiffiffi
T

p
. The time

translation average requires the wall-source propagators to
be generated on all time slices. This can be achieved in an
efficient way by calculating the low-lying eigenvectors of
the Dirac operator using the Lanczos method and then
using low-mode deflation to accelerate the light-quark
inversions. Working on the 163 × 32 lattice, we find that
by using 100 eigenvectors in low-mode deflation the

light-quark conjugate gradient (CG) time is reduced to
16% of that required for the CG inversions without low-
mode deflation.

2. Exploiting isospin symmetry to simplify the
derivation of the contractions

Since this computation is performed in the isospin-
symmetric limit, we can exploit this symmetry to derive
the necessary contractions more readily. For example, we
have the following relations between the matrix elements:

hπ0js̄γμujKþi¼ 1ffiffiffi
2

p hπþjs̄γμdjKþi

hπþjūγμdjπ0i¼
ffiffiffi
2

p
hπþjd̄γμdjπþi

hπþjūγμγ5u− d̄γμγ5djðπþπ0ÞI¼2i¼hπþjd̄γμγ5ujðπþπþÞI¼2i:
ð22Þ

The matrix elements on the right-hand side have simpler
contractions since they do not involve the neutral pion, the
π0. More precisely, although the final set of contractions is
of course the same, by using the relations in Eqs. (22) there
are fewer cancellations of diagrams in intermediate steps of
the calculation.
We now express some of the matrix elements in Table I

in terms of invariant form factors:

ZVhπþðpπÞjs̄γμdjKþðpKÞi
¼ ifðpK þ pπÞμfþðsÞ þ ðpK − pπÞμf−ðsÞg ð23Þ

ðms −mdÞhπþðpπÞjs̄djKþðpKÞi ¼ðm2
K −m2

πÞf0ðsÞ ð24Þ

ZVhπþðp2Þjd̄γμdjπþðp1Þi ¼ iFπðsÞðp1 þ p2Þμ; ð25Þ

where s ¼ −ðpK − pπÞ2 for the Kl3 form factors fþ;−;0ðsÞ
and s ¼ −ðp1 − p2Þ2 for the pion form factor FπðsÞ. In
Eqs. (23) and (25), ZV is the renormalization constant
relating the local vector current to the conserved one. The
momentum pi is a Euclidean four-momentum defined
as pi ¼ ðiEi;piÞ with Ei and pi the energy and spatial
momentum of the corresponding on-shell particle. The
scalar form factor is a linear combination of fþðsÞ and
f−ðsÞ:

f0ðsÞ ¼ fþðsÞ þ
s

m2
K −m2

π
f−ðsÞ; ð26Þ

which follows from Eqs. (23) and (24) and a chiral Ward
identity.
The current-current operators Qi;u in Eq. (19) are

linear combinations of ΔI ¼ 3=2 and ΔI ¼ 1=2 operators.
Only the ΔI ¼ 3=2 component contributes to the Kþ →
ðπþπ0ÞI¼2 transition. For the K → ðππÞI¼2 transition we
have
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hðπþπ0ÞI¼2jQi;ujKþi ¼ 1ffiffiffi
3

p hðπþπ0ÞI¼2jQΔI¼3
2
;ΔIz¼1

2jKþi;

i ¼ 1; 2 ð27Þ

where the operator with isospin ΔI ¼ 3=2, ΔIz ¼ 1=2 is
given by

QΔI¼3
2
;ΔIz¼1

2 ¼ 1ffiffiffi
3

p ð−ðs̄dÞV−Aðd̄dÞV−A þ ðs̄dÞV−AðūuÞV−A
þ ðs̄uÞV−AðūdÞV−AÞ: ð28Þ

One can now use the Wigner-Eckhart theorem for isospin
symmetry and write the matrix element for the K →
ðπþπ0ÞI¼2 decay in terms of that into the maximally
extended state jπþπþi:

hðπþπ0ÞI¼2jQi;ujKþi¼1

2
hðπþπþÞI¼2jðs̄dÞV−AðūdÞV−AjKþi;

ð29Þ

where ðs̄dÞV−AðūdÞV−A is a ΔI ¼ 3=2, ΔIz ¼ 3=2 operator.
The determination of the necessary contractions is simpler
using the matrix element for the Kþ → ðπþπþÞI¼2 decay
than for the Kþ → ðπþπ0ÞI¼2 transition. (Note that
Eq. (29) was used throughout the RBC-UKQCD collab-
orations’ computations of the ΔI ¼ 3

2
, K → ππ amplitude

A2 [42–44]. The motivation in Refs. [42–44] was different
however; there it was to use antiperiodic boundary con-
ditions on the u quark to match the I ¼ 2, ππ ground-state
energy to the mass of the kaon, mK .)

3. Around-the-world effects

To extract the matrix elements one needs to determine
the coefficients NA and NB for A;B ¼ Kþ; πþ;0; ðπþπ0ÞI¼2.
For the case when A ¼ B ¼ ðπþπ0ÞI¼2 one has to consider
the subtlety of round-the-world effects. The corresponding
two-point function is given by

CππðtÞ ¼ hϕππðtÞϕ†
ππð0Þi⟶T≫t≫0 N2

ππ

2Eππ

× ðe−Eππ t þ e−EππðT−tÞÞ þ N0ðTÞ: ð30Þ

Here an unwanted term, N0ðTÞ (proportional to e−EπT

where Eπ is the energy of a single pion), is induced by the
around-the-world effects in which each of ϕππ interpolating
operators in Eq. (30) creates one pion and annihilates
another. We can remove this term by performing the
subtraction through

CππðtÞ−Cππðtþ1Þ¼ N2
ππ

2Eππ
ð−4e−Eππ

2
TÞsinhðEππt0Þsinh

Eππ

2
:

ð31Þ

where t0 ¼ tþ 1=2 − T=2. For the single-pion 2-point
function, CπðtÞ, where the pion has energy Eπ, we have

C2
πðtÞ−C2

πðtþ1Þ¼ N4
π

ð2EπÞ2
ð−4e−EπTÞsinhð2Eπt0ÞsinhEπ:

ð32Þ

By constructing the ratio Rðtþ 1
2
Þ≡ CππðtÞ−Cππðtþ1Þ

C2
πðtÞ−C2

πðtþ1Þ , we can

determine Nππ and δE≡ Eππ − 2Eπ from [45]

Rðtþ 1=2Þ ¼ ARðcoshðδEt0Þ
þ sinhðδEt0Þ cothð2Eπt0ÞÞ; where

AR ¼ N2
ππ

2Eππ

ð2EπÞ2
N4

π
e−

δE
2
T sinh

Eππ
2

sinhEπ
: ð33Þ

At threshold (i.e., with Eπ ¼ mπ) we obtain δE ¼
0.01803ð32Þ from which, using Lüscher’s finite-size for-
mula [46], we find mπaππ ¼ −0.2816ð43Þ, where aπ is the
π-π scattering length. This result is close to the estimate

mπaLOππ ¼ − m2
π

8πf2π
¼ −0.2978ð23Þ from leading-order chiral

perturbation theory (ChPT) [47]. Here we have used the
values amπ ¼ 0.24360ð47Þ and afπ ¼ 0.08904ð19Þ from
our simulation. The difference between the values deduced
from δE and LO ChPT is expected to be due to higher-order
terms in ChPT, as well as to possible systematic effects.

4. Lattice results

Consider the time-dependent amplitude M̄AOBðt2; t1; 0Þ
defined in Eq. (21). We require t2 − t1 and t1 − 0 to be
sufficiently large to suppress the contamination from
excited states and t2 ≪ T to suppress around-the-world
effects. In practice we define Mmid

AOBðtÞ≡ M̄AOBðt; t2 ; 0Þ
(or if t is odd, then Mmid

AOBðtÞ≡ 1
2
½M̄AOBðt; t−12 ; 0Þ þ

M̄AOBðt; tþ1
2
; 0Þ�) and choose appropriate values for t to

control both the excited-state and around-the-world effects.
By studying the t dependence of Mmid

AOBðtÞ we determine
the local matrix element hAjOjBi and present the corre-
sponding results in Table II. In the table we present the
values of the K → π, π → π, K → ðπþπ0ÞI¼2 and
ðπþπ0ÞI¼2 → π matrix elements required for the analysis,
and in particular for the subtraction of the exponentially
growing contributions from low-lying states. Although in
this simulation mK < 2mπ , so that there are no exponen-
tially growing contributions from two-pion intermediate
states, we include below an explicit discussion of the
jðπþπ0ÞI¼2i state and the evaluation of the corresponding
matrix elements in preparation for simulations with
physical quark masses for which mK > 2mπ . In the final
two columns of Table II we present the Kl3 form factors
fþðsÞ, f−ðsÞ and f0ðsÞ, the pion form factors FπðsÞ, and
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the coefficient cðiÞs from the ratio cðiÞs ¼ hπjQi;qjKi
hπjs̄djKi . We

determine f0ðsmaxÞ with smax¼ðmK−mπÞ2 from both
hπþð0Þjs̄γtdjKþð0Þ and hπþð0Þjs̄djKþð0Þ and obtain con-
sistent results. The matrix element hπþðpÞjūγμdjπ0ð0Þi
yields consistent results for FπðsÞ from the spatial and
temporal polarization directions, although the former one is
much noisier.
For the πþπ0 contribution to the Z-exchange diagrams,

we determine the matrix element hπþð0Þjðūγtγ5u −
d̄γtγ5dÞjðπþπ0ÞI¼2ð0Þi ¼ i2.4930ð84Þ by performing the
isospin rotation ðπþπ0ÞI¼2 → ðπþπþÞI¼2 in Eq. (22). Here
the two-pions are in the ground state, i.e., at threshold.

E. Evaluation of the matrix element of the bilocal
operator for the W-W diagrams

In this section we discuss the evaluation of the matrix
element of the bilocal operator BWWðyÞ defined in Eq. (16).
The matrix element TWW for theW-W diagrams is given by

TWW ¼
Z

d4xhπþνν̄jTfOΔS¼1
ul ðxÞOΔS¼0

ul ðyÞgjKþi

− fu → cg: ð34Þ

As explained in Ref. [3], TWW can be written in terms of the
scalar amplitude FWWðΔ; sÞ and leptonic spinor product
ūðpνÞpKð1 − γ5Þvðpν̄Þ:

TWW ¼ iFWWðΔ; sÞ½ūðpνÞpKð1 − γ5Þvðpν̄Þ�; ð35Þ

where the variables Δ and s are defined in the paragraph
following Eq. (8). In practice one can obtain FWWðΔ; sÞ
through [3]

FWWðΔ; sÞ ¼ −i
Z

d4xHαβðx; yÞ
X
μ

cμTr

× ½Γαβðx; yÞγμð1þ γ5Þ�; ð36Þ

where the coefficient cμ is given by

cμ ¼
1

8

bμ
b · pK

where bμ ¼
1

4
Tr½γμpν̄pKð1 − γ5Þpν�:

ð37Þ

The hadronic and leptonic parts, Hαβðx; yÞ and Γαβðx; yÞ,
are defined by

Hαβðx;yÞ¼Z2
VhπþðpπÞjT½s̄γαð1− γ5ÞuðxÞūγβð1− γ5ÞdðyÞ�

× jKþðpKÞi−fu→ cg
Γαβðx;yÞ¼ γαð1− γ5ÞSlðx;yÞγβð1− γ5Þe−ipνxe−ipν̄y; ð38Þ

where Slðx; yÞ is the free lepton propagator for l ¼ e,
μ or τ.

1. Construction of the correlation function

Similarly to the calculation of the matrix elements
of local operators, we use Coulomb-gauge wall-source

TABLE II. Lattice results for the local matrix elements. The state jπþðpÞi denotes a πþ with momentum p ¼ jpπj where pπ given in
Eq. (13). For the matrix element hπþðpÞjs̄γμdjKþð0Þi, s ¼ ðmK − EπÞ2 − p2 whereas for hπþðpÞjūγμdjπ0ð0Þi, s ¼ ðEπ −mπÞ2 − p2.
Similarly, when the πþ;0 in the intermediate state is at rest, s ¼ smax ¼ ðmK −mπÞ2. The matrix elements hðπþπ0ÞI¼2ð0ÞjQ1;qjKþð0Þi
and hðπþπ0ÞI¼2ð0ÞjQ2;qjKþð0Þi are equal.

Matrix elements for the SD contribution

hπþðpÞjs̄γidjKþð0Þi −i0.06014ð77Þ fþðsÞ 0.993(3)
hπþðpÞjs̄γtdjKþð0Þi −0.7970ð14Þ f−ðsÞ −0.048ð12Þ

f0ðsÞ 0.993(3)
hπþð0Þjs̄γtdjKþð0Þi −0.7992ð15Þ f0ðsmaxÞ 1.006(3)

Matrix elements relevant for the contributions of low-lying intermediate states
W-W
hπ0ð0Þjs̄γtujKþð0Þi −0.7992ð15Þ f0ðsmaxÞ 1.006(3)
hπþðpÞjūγidjπ0ð0Þi −i0.05612ð62Þ FπðsÞ 0.971(11)
hπþðpÞjūγtdjπ0ð0Þi −0.6830ð15Þ FπðsÞ 0.986(2)

Z-exchange
hπþð0ÞjQ1;qjKþð0Þi 1.697ð87Þ × 10−4 cð1Þs 0.795ð41Þ × 10−4

hπþð0ÞjQ2;qjKþð0Þi 3.828ð98Þ × 10−4 cð2Þs 1.794ð46Þ × 10−4

hðπþπ0ÞI¼2ð0ÞjQi;qjKþð0Þi −i4.165ð18Þ × 10−4

hπþð0Þjūγtγ5u − d̄γtγ5djðπþπ0ÞI¼2ð0Þi i2.4930ð84Þ
Matrix element for the subtraction in the effective Hamiltonian
hπþð0Þjs̄djKþð0Þi 2.1335(58) f0ðsmaxÞ 1.007(2)
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interpolating operators to create the kaon in the initial state
and the pion in the final state. For the two weak operators
OΔS¼1

ql ðxÞ and OΔS¼0
ql ðyÞ, one is evaluated at a fixed point

which is used as the source for the internal quark lines
connected to that operator. The second operator acts as the
sink for all the propagators joined to it and is summed over
the spatial volume. To gain a higher precision from the time
translation average, we calculate the point source propa-
gators at all T time slices. We also exchange the source and
sink locations between the two weak operators and average
over both choices.

2. Lepton propagator with infinite time extent

A subtlety in the calculation of theW-W diagrams is the
inclusion of the lepton propagators, Slðx; yÞ. For the light
leptons l ¼ e, μ the round-the-world effects are significant
in our lattice calculation with temporal extent T ¼ 32. To
solve this problem, we first write the lepton propagator in
the spatial momentum-time mixed representation

SðTÞl ðp; tÞ ¼ 1

T

X
p4

Slðp; p4Þeip4t; p4 ¼
2π

T
n;

n ¼ 0; 1;…T − 1; ð39Þ

where Slðp; p4Þ is the lepton propagator in momentum
space. We then construct the propagator with infinite time
extent as

Sð∞Þ
l ðp; tÞ≡

Z
π

−π

dp4

2π
Slðp; p4Þeip4t: ð40Þ

Instead of using SðTÞl ðp; tÞ with periodic boundary con-
dition we use the time-truncated lepton propagator

S½T�l ðp; tÞ to avoid round-the-world effects

S½T�l ðp; tÞ≡
�
Sð∞Þ
l ðp; tÞ for − T=2 ≤ t < T=2

0 for t ≥ T=2 or t < −T=2
:

ð41Þ

Such a time-truncated lepton propagator is implemented
using an overlap fermion formulation. The detailed expres-

sion of S½T�l ðp; tÞ can be found in Appendix A.

3. Using twisted boundary conditions to insert momenta

In the present computation, the kaon is at rest, while the
pion, neutrino and antineutrino in the final state have
nonzero momenta as indicated by Eq. (13). We therefore
use twisted boundary conditions for the d quark to insert
the nonzero momentum pπ for the pion in the final state.
Spatial momentum conservation implies that in the process
Kþ → ðlþXÞ�ν → πþνν̄, the intermediate state ðlþXÞ� has
the nonzero momentum pK − pν. Here the superscript �

indicates that the particles are off-shell and X represents
hadrons or the vacuum. We use twisted boundary con-
ditions for the lepton field and periodic boundary condition
for internal up and charm quark fields. In this way, the
lepton lþ has momentum pl ¼ pK − pν þ 2π

L n, where
n ¼ ðn1; n2; n3Þ, ni ∈ f0; 1;…; L − 1g, and the hadronic
particles X have a total spatial momentum pX ¼ − 2π

L n. For
the intermediate ground state pl ¼ pK − pν and pX ¼ 0.

4. Exponentially growing unphysical terms

In the evaluation of integrals of matrix elements of
bilocal operators over a large, but finite Euclidean time
interval, there exist unphysical terms which grow expo-
nentially as the range of the time integration is increased.
Given the bilocal matrix element

R
d4xhπþνν̄jT ×

½OΔS¼1ðxÞOΔS¼0ð0Þ�jKþi, one can insert a complete set
of intermediate states between the two interpolating oper-
ators, OΔS¼1 and OΔS¼0. Integrating over an interval of
−Ta < x0 < Tb (Ta, Tb > 0) gives

Z
Tb

−Ta

dx0

Z
d3x⃗hπþνν̄jT½OΔS¼1ðxÞOΔS¼0ð0Þ�jKþi

¼
X
ns

hπþνν̄jOΔS¼1jnsihnsjOΔS¼0jKþi
Ens − EK

ð1 − eðEK−Ens ÞTbÞ

−
X
n

hπþνν̄jOΔS¼0jnihnjOΔS¼1jKþi
EK − En

ð1 − eðEK−EnÞTaÞ:

ð42Þ

The second and third lines of Eq. (42) give the second-order
weak matrix element together with the unwanted expo-
nential terms. For the intermediate states jni ¼ jlþνi and
jπ0lþνi, the factor eðEK−EnÞTa increases exponentially as
Ta increases. We have determined the hadronic matrix
elements hπþjs̄γμγ5dj0i and h0js̄γμγ5ujKþi from 2-point
correlation functions and hπþjūγμdjπ0i and hπ0js̄γμujKþi
from 3-point correlation functions (see Table II for the
results). Therefore we can remove these exponentially
growing terms directly. Atmπ ¼ 420 MeV, the exponential
terms from the states jni ¼ jππlþνi and j3πlþνi vanish at
large Ta. At the physical pion mass, although the unphys-
ical terms from jππlþνi and j3πlþνi grow exponentially
at large Ta, they are significantly suppressed by phase
space and are expected to be negligible in lattice QCD
calculations [3].

5. Double integration method

Since the point-source propagators are placed on each
time slice, we can adopt the method proposed in Ref. [36]
and perform the time integral over the time locations of
both OΔS¼1

ql and OΔS¼0
ql
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Xtb
t1¼ta

Xtb
t2¼ta

Z
d3xhπþνν̄jT½OΔS¼1

ql ðx; t1ÞOΔS¼0
ql ð0; t2Þ�jKþi

¼Tbox

Z
d3xhπþνν̄jOΔS¼1

ql ðx;0ÞOΔS¼0
ql ð0;0ÞjKþiþ

X
ns

hπþνν̄jOΔS¼1
ql ð0ÞjnsihnsjOΔS¼0

ql ð0ÞjKþi
Ens −EK

�
Tboxþ

eðEK−Ens ÞTbox −1

Ens −EK

�

þ
X
n

hπþνν̄jOΔS¼0
ql ð0ÞjnihnjOΔS¼1

ql ð0ÞjKþi
En−EK

�
Tboxþ

eðEK−EnÞTbox −1

En−EK

�
; ð43Þ

where the interval size Tbox ¼ tb − ta þ 1. Given the time
locations tK for the kaon interpolating operator and tπ for
the pion operator, ta and tb are required to satisfy tK ≪ ta
and tπ ≫ tb to guarantee ground-state dominance. In
practice, we find that for ta − tK ≥ 6 and tπ − tb ≥ 6, the
excited-state effects can safely be neglected. Therefore,
given tπ and tK , we can change Tbox in a range of
½1; tπ − tK − 11�. We can also increase the separation
between tπ and tK to increase the upper bound for Tbox.
On the other hand, tπ − tK should not be too large in order
to suppress the around-of-world effects. In our calculation,
the time extent of the lattice is T ¼ 32. We compute
propagators for both periodic and antiperiodic boundary
conditions in the temporal direction and use their average in
the calculation. This trick effectively doubles the temporal
extent of the lattice and suppresses round-the-world effects
to a negligible level when we choose the maximal value of
tπ − tK ¼ 30. For each tπ − tK separation, we shift the

whole system in the temporal direction and perform the
average over all time slices by using time translation
invariance. We find that such an averaging effectively
reduces the statistical uncertainty by a factor of about
1=

ffiffiffiffi
T

p
.

After we obtain the matrix element using the double-
integration method for various values of Tbox, we remove
the unphysical terms associated with the jlþνi and jπ0lþνi
intermediate states. We then fit the Tbox dependence of the
double-integrated matrix element to a linear function
b0 þ b1Tbox. The slope b1 yields the physical bilocal
matrix element.

6. Lattice results for the W-W diagrams

To show the time dependence of the W-W diagrams
explicitly, we define the unintegrated scalar amplitude
FWWðtÞ as a function of the variable t ¼ tΔS¼1 − tΔS¼0,
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FIG. 3. The scalar amplitude for the Type 1 diagram. In the left panel the unintegrated scalar amplitude FWWðtÞ is shown as a function
of t ¼ tΔS¼1 − tΔS¼0. The black circles, red squares and green diamonds show the contributions from each of the three leptons e, μ and τ
respectively. In the right panel, the integrated scalar amplitude is shown as a function of Tbox. The exponentially growing term has been
removed. For comparison, we also show the results for the muon before the subtraction of the unphysical exponentially growing term
(red triangles).
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where tΔS¼1 is the time at which the operator OΔS¼1
ql is

inserted and tΔS¼0 is the time of the insertion of OΔS¼0
ql :

FWWðtÞ ¼−i
Z

d3xHαβðx;yÞ
X
μ

cμTr½Γαβðx;yÞγμð1þ γ5Þ�;

ð44Þ
where x ¼ ðx; tΔS¼1Þ and y ¼ ðy; tΔS¼0Þ. Recalling
Eq. (36), the scalar amplitude FWWðΔ; sÞ is obtained by
integrating FWWðtÞ over the time separation t.
For the Type 1 diagram shown in Fig. 2, the correspond-

ing unintegrated scalar amplitude is shown in the left panel
of Fig. 3. For the time region in which tΔS¼1 ≪ tΔS¼0, this
amplitude is dominated by the contribution from ground
state, i.e., the jlþνi state. From among the three lepton
flavors l ¼ e, μ, τ, we observe the exponentially growing
time dependence for the muon. This is to be expected since
the muon mass is lighter than the initial kaon mass. For the
electron e, the exponentially growing behavior does not
appear due to the helicity suppression in the process of
Kþ → eþν → πþνν̄. For the τ flavor, since the intermediate
states are much heavier than the initial state, there are no
exponentially growing contributions.
We perform the double integration and show the matrix

element as a function of Tbox in the right panel of Fig. 3.
The data points marked by the red triangles show the
amplitude for the muon, which contains the exponentially
growing term. The red square points show the same
amplitude after the subtraction of the unphysical exponen-
tially growing terms. After removing the unphysical term,
the data is well described by a linear function and by
performing a fit we determine the scalar amplitude
FWWðΔ; sÞ for the three lepton flavors. The corresponding
results are shown in Table III. For comparison, we also
calculate the scalar amplitude including only the contribu-
tions from the ground jni and jnsi states, jlþνi &
jKþπþl−ν̄i respectively. This contribution to FWW is [3]

−fKfπ
2q2

q2 þm2
l
; where q2 ¼ ðpK − pνÞ2; ð45Þ

and fπ and fK are the pion and kaon decay constants. As
shown in Table III, the ground-state dominates the con-
tributions to the Type 1 diagram, and the effects of excited
intermediate states are very small (≲3%).
In contrast to the Type 1 diagram, even after the GIM

subtraction, the Type 2 diagram contains a logarithmic SD

(ultraviolet) divergence which needs to be removed as
explained in detail in Sec. IV. The unintegrated scalar
amplitude is shown in Fig. 4 as a function of tΔS¼1 − tΔS¼0.
By zooming into the plots, we can observe the exponen-
tially growing time dependence for the muon. This expo-
nential behavior is not very significant however, since now
the intermediate ground state is jπ0lþνi and its energy is
similar to mK. Nevertheless this unphysical term still
contributes a sizeable systematic effect and needs to be
subtracted. We therefore calculate the matrix elements
hπþνν̄jOΔS¼0

ul ð0Þjπ0lþνi and hπ0lþνjOΔS¼1
ul ð0ÞjKþi to

remove this unphysical term. For the Type 2 diagram,
we do not observe the exponentially growing behavior for
the electron. In general we would expect there to be no
helicity suppression in this case, since the intermediate
ground state is now semileptonic, rather than the leptonic
one for the Type I diagram. In our calculation, we use the
discrete lattice momenta −ð2π=LÞn for the intermediate
hadronic particles and momenta pK − pν þ ð2π=LÞn for
the intermediate lepton lþ. With such assignments, in the
intermediate ground state, the neutral pion carries zero
momentum and the helicity suppression still holds for the
electron. This is the reason why we do not observe an
exponentially growing term for the electron. The assign-
ment of the spatial momenta for the intermediate-state
particles is clearly not unique. Different assignments will
introduce different finite-size effects [35] and we will
discuss this topic later.

TABLE III. Lattice results, in lattice units, for the scalar amplitude from the W-W diagrams. The third and fifth
columns show the contributions from the ground states as explained in the text.

FWW Type 1 jlþνi & jKþπþl−ν̄i Type 2 jπ0lþνi
e −1.685ð47Þ × 10−2 −1.740ð6Þ × 10−2 1.123ð17Þ × 10−1 � � �
μ −1.818ð40Þ × 10−2 −1.822ð6Þ × 10−2 1.194ð18Þ × 10−1 1.869ð14Þ × 10−2

τ 1.491ð36Þ × 10−3 1.471ð5Þ × 10−3 4.690ð77Þ × 10−2 1.026ð3Þ × 10−3
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FIG. 4. Unintegrated scalar amplitude for the Type 2 diagram.
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The integrated scalar amplitude for the Type 2 diagram is
shown in Fig. 5. After removing the exponential unphysical
contributions and fitting the lattice data to a linear function
of Tbox, we determine the values of FWW and include them
in Table III. We also compute the contributions from the
lowest jπ0lþνi intermediate state and compare them with
the total result for the Type 2 diagram. For the muon the
contribution from jπ0μþνi is only 16% of the total con-
tribution. Significant contributions come from the excited
states, suggesting that the amplitude for Type 2 diagram
contains a large SD contribution. This SD contribution is
cut off by the unphysical lattice scale 1=a. We must
introduce a counter term to obtain the physical amplitude,
as explained in Sec. IV below.

F. The matrix element of the bilocal operator
for the Z-exchange diagrams

Examples of Z-exchange diagrams are given in Fig. 2.
We write the bilocal matrix element in the form

TZðpK;pπÞ¼
Z

d4xhπþνν̄jT½OW
u ðxÞOZ

lð0Þ�jKþi−fu→ cg

¼TZ
μ ðpK;pπÞ½ūðpνÞγμð1− γ5Þvðpν̄Þ�; ð46Þ

where OW
q and OZ

l are defined in Eq. (19). The hadronic
part of TZ is given by

TZ
μ ðpK;pπÞ ¼

Z
d4xhπþjT½OW

u ðxÞJZμ ð0Þ�jKþi − fu → cg:

ð47Þ
We separate TZ

μ into two parts: TZ
μ ¼ TZ;V

μ þ TZ;A
μ , corre-

sponding to the vector (V) and axial vector (A) components
of JZμ . The K → πZ� form factors are conventionally
defined by

TZ;i
μ ðpK;pπÞ ¼ iðFZ;i

þ ðsÞðpK þ pπÞμ þ FZ;i
− ðsÞðpK − pπÞμÞ;

i ¼ V; A; ð48Þ

where s ¼ −ðpK − pπÞ2.
Since the spinor product ūðpνÞq ð1 − γ5Þvðpν̄Þ vanishes

for massless neutrinos, only the form factors FZ;i
þ ðq2Þ

contribute to the decay amplitude. For the vector current,
the Ward-Takahashi identity guarantees

ðm2
K −m2

πÞFZ;V
þ ðsÞ ¼ −sFZ;V

− ðsÞ: ð49Þ

For the axial vector current, in order to determine FZ;A
þ ðsÞ

from TZ;A
μ ðpK;pπÞ, we need to compute the amplitude

TZ;A
μ ðpK;pπÞ for different choices of the polarization μ.

This requires that either the kaon in the initial state or the
pion in the final state (or both) carries a nonzero spatial
momentum.
Although we cannot determine FZ;i

þ ðsÞ directly from
TZ;i
μ ð0; 0Þ, where both kaon and pion are at rest, we still

calculate such matrix element for two reasons. First, in our
calculation we have used the local vector current rather than
the conserved vector current. Due to the violation of the
Ward-Takahashi identity, there will be a SD singularity
when the operator JZ;Vμ approaches the operator OW

q . This
SD contribution is independent of the kaon and pion
momenta pK and pπ . As a result, we can use TZ;V

μ ð0; 0Þ
to remove the SD divergence in TZ;V

μ ðpK;pπÞ. Secondly, for
the insertion of the axial vector current (i ¼ A), the matrix
element TZ;A

μ ð0; 0Þ provides the most accurate data we can
obtain for the Z-exchange diagrams. We define the scalar
function FZ;A

0 ðsÞ by

FZ;A
0 ðsÞ≡ FZ;A

þ ðsÞ þ s
m2

K −m2
π
FZ;A
− ðsÞ: ð50Þ

At pK ¼ 0 and pπ ¼ 0, we obtain from TZ;A
μ ð0; 0Þ the scalar

function of FZ;A
0 ðsmaxÞ, where the variable s takes its

maximal value of smax ¼ ðmK −mπÞ2. As we will argue
later, FZ;A

0 ðsmaxÞ gives a good approximation to FZ;i
þ ðsÞ at

s ¼ 0 [for the momentum choice in Eq. (13)].

1. Quark loops and disconnected diagrams

The operators OW
q defined in Eq. (19) can induce closed

quark loops through the contraction of u and c-quark loops.
Given each gauge configuration, the Nr components of the
random volume-source light and charm quark propagators,
which have already been used for the 3-point correlator, can
also be used for the 4-point correlator. In addition, in order
to be able to evaluate the disconnected diagrams in which
πOW

q K and JZμ form two separate loops, we have also
calculated 32 random volume-source propagators for the
strange quark. Thus we can perform a full calculation,
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FIG. 5. Integrated scalar amplitude for the Type 2 diagram. The
unphysical exponentially growing terms for the muon have been
subtracted.
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which includes all connected, self-loop and disconnected
diagrams.

2. Using chiral ward identities to remove
the unphysical terms

For the Z-exchange diagrams, we start by inserting a
complete set of intermediate states between the operators
OW

u and JZμ in Eq. (47). In order to obtain the physical result
we need to remove the exponentially growing terms arising
from the intermediate states whose energies are smaller
than the mass of the initial kaon. For the vector current
component of JZμ , the odd-parity intermediate states jπþi
and j3πi contain exponentially growing contributions [28].
The exponentially growing contribution from the three-
pion state can safely be neglected because of phase space
suppression (and in the present calculation it is absent since
mK < 3mπ). The unphysical contribution from the single-
pion state can be removed by adding to the weak
Hamiltonian HW ¼ OW

u −OW
c a term proportional to the

scalar density: H0
W ¼ HW − css̄d. The chiral Ward iden-

tities imply that the addition of the term proportional to the
scalar density does not change the on-shell matrix element
[28,36,37]. The coefficient cs can be determined by
requiring that

hπþð0ÞjHWð0Þ − css̄dð0ÞjKþð0Þi ¼ 0 ð51Þ

and our lattice results for cs are listed in Table II.
For the axial-vector current component of JZμ , the parity-

even state j2πi can produce an exponentially growing
unphysical term. In this case it is not possible to add a term
proportional to the pseudoscalar density (HW → H0

W ¼
HW − cps̄γ5d) in such a way as to remove the I ¼ 2

two-pion contribution. This is because the combination
of initial Kþ state and the pseudoscalar density s̄γ5d
cannot create an I ¼ 2 ππ state. Instead, as shown in
Table II, we have explicitly calculated the matrix
elements hðπþπ0ÞI¼2ð0ÞjQi;qjKþð0Þi and hπþð0Þjūγtγ5u −
d̄γtγ5djðπþπ0ÞI¼2ð0Þi and are therefore able to remove the
unphysical term from the j2πi intermediate state (if it
exists). For the current lattice calculation, sincemK < 2mπ ,
no removal of such an unphysical term is required.
Nevertheless the evaluation of these matrix elements of
local operators allows us to determine the contribution to
the Z-exchange diagrams from the ππ intermediate ground
state in preparation for future simulations at physical light-
quark masses.

3. The local vector current and the
short-distance divergence

If one uses the conserved vector current, then gauge
invariance implies that one can write TZ;V

μ ðpK;pπÞ as

TZ;V
μ ðpK;pπÞ ¼ i

�
−

s
m2

K −m2
π
ðpK þ pπÞμ þ ðpK − pπÞμ

�
× FZ;V

− ðsÞ: ð52Þ

The simplest choice of momenta for the K → πZ� tran-
sition is pK ¼ pπ ¼ 0, where pK and pπ are the spatial
momenta of the kaon in the initial state and the pion in the
final state. Such a choice of momenta is not very useful
however, since the kinematic factor − s

m2
K−m

2
π
ðpK þ pπÞμ þ

ðpK − pπÞμ is then equal to 0. As a consequence, the

transition amplitude TZ;V
μ ð0; 0Þ vanishes. However, by

using the local vector current instead of the conserved
one, this simple choice of momenta proves to be useful in
making a SD correction as we now explain.
With the local vector current we can no longer use the

Ward-Takahashi identity to obtain (52). The operator
product expansion of Qi;qðxÞJV loc

μ ð0Þ can be written in
the form

Qi;qðxÞJV loc
μ ð0Þ ≃ c1s̄γLμdþ c2s̄γLν ð∂2δμν − ∂μ∂νÞd

þ c3s̄γLν ∂μ∂νdþ � � � ð53Þ

where γLμ ≡ γμð1 − γ5Þ and for compactness of notation
we have suppressed the label i on the right-hand side.
Dimensional analysis shows that the coefficient c1 ∼ 1=x6

at small distances, leading to a 1=a2 quadratic divergence
after integration over x, while c2 and c3 both ∼1=x4
corresponding to a log a2 logarithmic divergence. All the
higher-dimension terms are accounted for by the ellipsis in
Eq. (53). It is the c2-term which is physical and the terms
with coefficients c1 and c3 appear because of the use of the
local vector current. By applying the GIM mechanism, i.e.,
subtracting the charm quark contribution (i ¼ c) from that
of the up quark (i ¼ u) we reduce the divergence in the
integrated correlation function from the term proportional
to c1 to a logarithmic one and remove the divergences from
the terms proportional to c2;3, leaving them finite. The
logarithmic divergence in the term proportional to c1 arises
from the contact term as x approaches 0 in Qi;qðxÞJV loc

μ ð0Þ.
In order to subtract this divergence we introduce a counter-
term XVs̄γLμd writing

TZ;V
μ ðpK;pπÞ ¼ ZVðTZ;V loc

μ ðpK;pπÞ
− XVhπþðpπÞjs̄γLμdð0ÞjKþðpKiÞ; ð54Þ

where

TZ;V loc
μ ðpK;pπÞ¼

Z
d4xhπþðpπÞjT½OW

u ðxÞJV loc
μ ð0Þ�jKþðpKÞi

−fu→cg; ð55Þ
and the superscript V loc indicates the insertion of the
local vector current. A natural condition which can be
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used to define and determine the coefficient XV is
TZ;V
μ ð0; 0Þ ¼ 0, i.e.,

TZ;V loc
μ ð0; 0Þ − XVhπþð0Þjs̄γμdð0ÞjKþð0Þi ¼ 0: ð56Þ

Once XV is determined, we obtain the form factor FZ;V
þ ðsÞ

for the choice of momenta in (13) with the contact term
removed using

FZ;V
þ ðsÞ ¼ FZ;V locþ ðsÞ − XVfþðsÞ; ð57Þ

where FZ;V locþ ðsÞ is obtained from

ZVT
Z;V loc
μ ðpK;pπÞ ¼ iðFZ;V locþ ðsÞðpK þ pπÞμ

þ FZ;V loc− ðsÞðpK − pπÞμÞ ð58Þ

and fþðsÞ is defined in Eq. (23). For the particular choice of
momenta given in Eq. (13) s ¼ 0 and the Ward-Takahashi
identity (49) implies that FZ;V

þ ðsÞ ¼ 0 at s ¼ 0. We will
show later that our lattice result for FZ;V

þ ðsÞ is indeed
consistent with 0 within the statistical errors. For other
values of s, FZ;V

þ ðsÞ does not vanish and the procedure
described in this section allows for its determination.
Note that the term proportional to c3 vanishes in the

continuum limit. Having used the GIM mechanism to
reduce the degree of divergence and subtracted the remain-
ing contact term by introducing the counterterm, we can
relate the conserved and local vector currents (JVcon

μ and
JV loc
μ respectively) by JVcon

μ ¼ ZVJ
V loc
μ up to lattice artifacts.

Since the artifacts vanish in the continuum limit, so does c3.

4. Single integration method

As explained in Sec. III E 5, when calculating the matrix
element for the W-W diagrams we have used the double
integration method. At large Tbox the method requires the
lattice data to be fit using a simple linear function.
However, the drawback of this method is that the lattice
data for small separations t2 − t1 of the two weak operators
are included only when the source-sink separation
tπ − tK ≫ Tbox. In fact, this data will accurately contribute
to the bilocal matrix element provided tπ − tK ≫ jt2 − t1j.
The smaller values of tπ − tK allowed by this less stringent
condition will give data with smaller errors. The single
integration method described in this section makes use of
this more accurate data, and are able to significantly
improve the precision for the Z-exchange diagrams. For
theW-W diagrams the lepton in the intermediate state is not
affected by the gauge noise and there would be no
improvement.
For the Z-exchange diagrams we adopt the single

integration method. Given the time locations of the kaon
and pion interpolating operators, tK and tπ respectively, we
determine the unintegrated matrix element using

TZ;i
μ ðtπ; tH; tJ; tKÞ ¼

4EπEK

NπNK
hϕπðtπÞOW

q ðtHÞJZ;iμ ðtJÞϕ†
KðtKÞi

× eEπðtπ−tJÞeEKðtJ−tKÞ: ð59Þ

By examining the numerical results for TZ;i
μ ðtπ; tH; tJ; tKÞ

as functions of tH and tJ, we conclude that for tπ − tH;J ≥ 6

and tH;J − tK ≥ 6, the effects from excited states can
be safely neglected (this is consistent with the corres-
ponding observations for the W-W diagrams). For such
time separations, by using time-translation invariance
TZ;i
μ ðtπ; tH; tJ; tKÞ only depends on the time difference

between tH and tJ. For fixed time separations t¼ tH− tJ
(but different locations of tJ) we fit the matrix elements
TZ;i
μ ðtπ; tH; tJ; tKÞ to a constant and obtain the average value

T̄Z;i
μ ðtπ; t; tKÞ. We then use these results for T̄Z;i

μ ðtπ; t; tKÞ, to
perform a second fit, this time over tπ and tK for each value
of t. In this way, we obtain the matrix element ¯̄TZ;i

μ ðtÞ,
which contains the information from all the lattice data
constrained by ftπ; tH; tJ; tKjtH − tJ ¼ t; tH;J − tK ≥ 6;
tπ − tH;J ≥ 6g. We then perform a single integration of
¯̄TZ;i
μ ðtÞ over the variable t in the range −Tbox ≤ t ≤ Tbox

and find the plateau for large Tbox, once the unphysical
terms growing exponentially with Tbox have been removed.
Since all the possible data for tH − tJ ¼ t have been used,
the single integration method decreases the statistical error
for the Z-exchange diagrams by 30%–40% when compared
to the double integration method.

5. Lattice results

We start by presenting the numerical results for the
vector current component of JZμ . The unintegrated matrix
elements ¯̄TZ;V loc

μ ðtÞ as a function of the time separation t ¼
tH − tJ are shown in the upper panel of Fig. 6. Since the
four-fermion operator OW

q is a linear combination of Q1;q

and Q2;q, we show the numerical results for each operator.

When the polarization index of the vector current JV loc
μ is a

spacial one, i.e., when μ ¼ i ¼ x, y or z, the matrix element
is suppressed by a factor of pπ;i=mK as shown in Eq. (52).
For this reason and in order to facilitate the comparison of
the matrix element at zero and nonzero pπ we plot the
matrix element with μ ¼ t. The black circle data points
show the lattice results for the momentum pK ¼ pπ ¼ 0;
the red square points show the results for pK ¼ 0 and with
pπ taking the nonzero value given in Eq. (13). As pπ is
small, it is not surprising that the black circle and red square
data points are very close to each other.
In the time region t ≪ 0, the dominant intermediate state

is the jπþi. Since this state is lighter than the initial kaon
there is an exponentially growing contribution as shown in
the upper panel of Fig. 6. We remove this unphysical
contribution by adding to the weak Hamiltonian a term
proportional to the scalar density css̄d, with the value of cs
given in Table II and show in the lower panel of Fig. 6 that
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after correction the lattice data does indeed converge to a
constant at t ≪ 0.
For both the vector and axial-vector components of the

weak current JZμ we have only calculated the contribution of
the disconnected diagrams with pK ¼ pπ ¼ 0. For the
vector current, the Ward identity implies that the amplitude
is zero in this case (i.e., the numerical results are simply
gauge noise) and so we do not include the contribution
from the disconnected diagrams in Fig. 6. For the axial
current the amplitude does not vanish for pK ¼ pπ ¼ 0 and
below we do include the contribution from the discon-
nected diagrams in Fig. 7 and the corresponding text.
For the axial-vector current component of JZμ it is not

possible to use the (partially) conserved current to avoid
having to make a subtraction of the short-distance diver-
gence, as was done for the vector current in Sec. III F 3. We
therefore use the local axial-vector current and follow the
general procedure for the subtraction of the SD divergence
using the RI/SMOM intermediate scheme, as explained in
detail in Sec. IV. The unintegrated matrix elements are
shown in Fig. 7. At t ≪ 0 the time dependence is
dominated by the two-pion state, whose energy Eππ ≈
2mπ with, in this simulation, mπ ¼ 420 MeV which is
larger than the initial kaon mass. Thus we do not observe
the exponentially growing t dependence.
In addition to the connected diagrams in Fig. 2, we also

calculate the disconnected diagrams and produce results
including all quark contractions. The summation of up,

down and strange quark loops vanish in the flavor SUð3Þ
limit. The remaining charm quark loop is suppressed due to
the heavy charm quark mass. So we expect that the absolute
size of the disconnected diagrams is small. This expectation
is confirmed by a comparison between disconnected data
points (the green diamond symbol in Fig. 7) and the
connected and self-loop ones (the black circle symbol).
Due their small size, although the disconnected diagrams
have much larger relative statistical errors, they do not
contribute a large uncertainty in the total decay amplitude.
Thus a complete lattice QCD calculation including all the
diagrams is practical.
The lattice results for the matrix elements of the bilocal

operators from the Z-exchange diagrams are summarized
in Table IV. The lattice data are shown in three columns for
the Qlat

1;q and Qlat
2;q operators and also for the combination

Clat
1 Q1;q þ Clat

2 Q2;q. Here Clat
1 ¼−0.2186 and Clat

2 ¼ 0.6424
are Wilson coefficients in the lattice regularization. They
can be related to the Wilson coefficients in the MS scheme

by a 2 × 2 conversion matrix Zlat→MS. The details will be
discussed in Sec. IV. In Table IV, starting at the top we first
show the matrix elements for the Kþð0Þ → πþð0Þ transi-
tion. For the vector-current component, these matrix
elements can be used to determine the coefficient XV of
the counterterm and to correct the SD divergence for the
Qi;qðxÞJZ;V loc

μ ð0Þ bilocal operator. For the axial vector-
current component, we can use these matrix elements to
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FIG. 6. The unintegrated matrix elements for the Z-exchange diagrams with the vector current component of JZμ . The vector current
polarization direction is chosen to be μ ¼ t. In the upper panel, the matrix elements

R
d3x⃗hπþðpπÞjT½HWðx⃗; tÞJV loc

μ¼tð0ÞjKþð0Þi (for the
Q1;q andQ2;q components) are shown as functions of t ¼ tH − tJ. The black circle data points show the lattice results for the momentum
mode pK ¼ pπ ¼ 0; the red square points show the results for pK ¼ 0 and with pπ ≠ 0 and taking the value in Eq. (13). The
exponentially growing time dependence can be seen at t ≪ 0. In the lower panel, the matrix elements are calculated using the modified
Hamiltonian H0

W ¼ HW − css̄d, so that the exponentially growing terms have been removed.
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determine FZ;A
0 ðsmaxÞ. The calculation of FZ;A

0 ðsmaxÞ proves
to be useful for our exploratory study as it provides
approximate information about FZ;A

þ ðsmaxÞ, see Eq. (50).
For the Kþð0Þ → πþð0Þ transition, we also include the

contributions from the disconnected diagrams in the cal-
culation of FZ;A

0 ðsmaxÞ; these data are labeled by the
subscript disc. This is not currently possible for the direct
evaluation of FZ;A;disc

þ ð0Þ, for which we need to use twisted

TABLE IV. Summary of the matrix elements of the bilocal operators and the form factors for the Z-exchange diagrams. The
momentum transfer s is given by s ¼ smax ¼ ðmK −mπÞ2 for the Kþð0Þ → πþð0Þ transition and s ¼ 0 for the Kþð0Þ → πþðpπÞwith pπ

given in Eq. (13).

Z-exchange diagrams

Kþð0Þ → πþð0Þ Q1 Q2 Clat
1 Q1 þ Clat

2 Q2

hπþð0ÞjHWJ
V loc
t jKþð0Þiconn 31.5ð1.8Þ × 10−4 13.5ð2.0Þ × 10−4 1.8ð1.5Þ × 10−4

XV defined by Eq. (56) −39.4ð2.2Þ × 10−4 −16.9ð2.5Þ × 10−4 −2.2ð1.9Þ × 10−4

hπþð0ÞjHWJ
Aloc
t jKþð0Þiconn 7.313ð41Þ × 10−2 −0.121ð22Þ × 10−2 −1.676ð19Þ × 10−2

FZ;A
0 ðsmaxÞ −9.202ð61Þ × 10−2 0.152ð28Þ × 10−2 2.109ð25Þ × 10−2

hπþð0ÞjHWJ
Aloc
t jKþð0Þidisc 11.1ð1.3Þ × 10−4 −3.7ð1.1Þ × 10−4 −4.8ð0.9Þ × 10−4

FZ;A;disc
0 ðsmaxÞ −13.9ð1.7Þ × 10−4 4.7ð1.4Þ × 10−4 6.0ð1.2Þ × 10−4

Kþð0Þ → πþðpπÞ
hπþðpπÞjHWJ

V loc
t jKþð0Þiconn 27.9ð1.8Þ × 10−4 15.0ð2.0Þ × 10−4 3.5ð1.6Þ × 10−4

hπþðpπÞjHWJ
V loc
i jKþð0Þiconn i · 3.4ð0.8Þ × 10−4 i · 1.5ð0.8Þ × 10−4 i · 0.2ð0.7Þ × 10−4

FZ;V locþ ð0Þ −37.3ð2.5Þ × 10−4 −19.1ð2.7Þ × 10−4 −4.1ð2.1Þ × 10−4

FZ;V locþ ð0Þ − XVfþð0Þ −1.8ð1.7Þ × 10−4 −2.4ð1.8Þ × 10−4 −1.9ð1.4Þ × 10−4

hπþðpπÞjHWJ
Aloc
t jKþð0Þiconn 7.276ð44Þ × 10−2 −0.141ð24Þ × 10−2 −1.681ð20Þ × 10−2

hπþðpπÞjHWJ
Aloc
i jKþð0Þiconn i · 0.600ð17Þ × 10−2 −i · 0.026ð16Þ × 10−2 −i · 0.148ð12Þ × 10−2

FZ;Alocþ ð0Þ ¼ FZ;Aloc
0 ð0Þ −9.158ð64Þ × 10−2 0.204ð41Þ × 10−2 2.133ð32Þ × 10−2

FZ;Aloc− ð0Þ 1.22ð27Þ × 10−2 −0.24ð24Þ × 10−2 −0.42ð18Þ × 10−2
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FIG. 7. Unintegrated matrix elements for the Z-exchange diagrams with the axial vector current component. The axial vector current
polarization direction is chosen to be μ ¼ t. At mπ ¼ 420 MeV, no exponentially growing term is observed at t ≪ 0. The black circle
data points show the lattice results for the momentum pK ¼ pπ ¼ 0; the red square points show the results for pK ¼ 0 and with pπ ≠ 0
and taking the value in Eq. (13). These results include only the connected and self-loop diagrams. For the disconnected diagrams, the
corresponding results are shown by the green diamond symbol. Although noisy, the disconnected contributions are much smaller than
the connected ones.
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boundary conditions. Next in Table IV we show the matrix
elements for the Kþð0Þ → πþðpÞ transition, where the
spatial momentum of the pion is given by Eq. (13). Due
to the nonzero momentum of the pion, we are able to obtain
the scalar function FZ;i

þ ð0Þ from these data. From Table IV
we obtain the following information.

(i) The contribution from the vector current FZ;V
þ ðsÞ

(which is proportional to s) is expected to be much
smaller than that from the axial vector current
FZ;A
þ ðsÞ (which is proportional to m2

c). This is
confirmed by our lattice data.

(ii) At the special momentum transfer s ¼ 0 we expect
that FZ;V

þ ð0Þ ¼ 0 because of the Ward-Takahashi
identity (49). This holds for the conserved vector
current or, as in the present case, by using the local
vector current and subtracting the SD counterterm.
We see from the table that after subtracting the
counterterm, FZ;V locþ ð0Þ−XVfþð0Þ is consistent with
zero within 1σ. We also see that FZ;V locþ ð0Þ itself is
significantly different from 0.

(iii) For the axial vector current, we observe that
FZ;A
0 ðsmaxÞ ≈ FZ;A

0 ð0Þ ¼ FZ;A
þ ð0Þ. Although we are

interested in FZ;A
þ ðsÞ, we conclude that the lattice

determination of FZ;A
0 ðsÞ can be used as a good

approximation for FZ;A
þ ðsÞ for small values of s since

FZ;A
− ðsÞ is much smaller than FZ;A

þ ðsÞ.
(iv) The disconnected diagrams have been evaluated for

the transition Kþð0Þ → πþð0Þ. The contribution
from these diagrams FZ;A;disc

0 ðsmaxÞ is about 3% of
that from the connected diagrams FZ;A

0 ðsmaxÞ. If we
accept that FZ;A

0 ðsÞ approximates FZ;A
þ ðsÞ, then the

disconnected diagrams only make a small contribu-
tion to the Z-exchange diagrams.

We end this section by estimating the contribution from
the lowest energy jðππÞI¼2i state to the Z-exchange
diagrams. Using the computed matrix elements Aππ→π ≡
hπþð0Þjūγtγ5u − d̄γtγ5djðπþπ0ÞI¼2ð0Þi and AK→ππ ≡
hðπþπ0ÞI¼2ð0ÞjQi;qjKþð0Þi given in Table II we construct
the ππ contribution as

TZ;A;ππ
μ¼t ðsmaxÞ ¼ ZAð−Tu

3ÞAππ→π
1

2Eππ

1

Eππ −mK

× ðClat
1 þ Clat

2 ÞAK→ππ; ð60Þ

where ZA ¼ ZV is the (axial) vector current renormalization
factor and Tu

3 ¼ 1
2
is the weak isospin associated with the

axial vector current. The minus sign corresponds to that
in the V − A structure of the weak Hamiltonian. We
finally determine the ππ contribution to the form factor
using FZ;A;ππ

0 ðsmaxÞ ¼ TZ;A;ππ
μ¼t ðsmaxÞ=ð−ðmK þmπÞÞ ¼

1.526ð10Þ × 10−3, which is only 7% of the FZ;A
0 ðsmaxÞ

given in Table IV, suggesting that the dominant contribu-
tion to the Z-exchange diagrams comes from higher excited

states and SD physics. Once simulations at physical quark
masses are performed, when the two-pion state contributes
exponentially growing contributions in Tbox which will
need to be subtracted, its contribution to FZ;A

þ will have to
be studied again.

IV. REMOVAL OF THE SHORT-DISTANCE
DIVERGENCE USING NONPERTURBATIVE

RENORMALIZATION

In this section we discuss the subtraction of the addi-
tional ultraviolet divergences which appear when the two
local operators which are the components of a bilocal
operator approach each other. In Sec. IVA we review the
theoretical background and in Sec. IV B we present the
numerical results for the subtraction constants.

A. Nonperturbative renormalization using
RI/SMOM scheme

In Sec. III F 3, for the vector current insertion we have
used the matrix element of the transition Kð0Þ → πð0Þ to
remove the SD divergence in the matrix element of the
bilocal operators. Here we describe a more general method
to remove the SD divergence, following the procedures
developed in Ref. [3].
Given a bare lattice bilocal operator fQlat

A Qlat
B glata , in order

to define and determine its SD component, we construct an
off-shell Green’s function

GAB
αβρσ ¼hsαðp1Þνρðp3Þ

�Z
d4xQAðxÞQBðyÞ

�
d̄βðp2Þν̄σðp4Þi

ð61Þ

where the fermionic fields s, d̄, ν and ν̄ carry the nonexcep-
tional Euclidean 4-momenta

p1 ¼ ðξ; ξ; 0; 0Þ; p2 ¼ ðξ; 0; ξ; 0Þ;
p3 ¼ ð0;−ξ; 0;−ξÞ; p4 ¼ ð0; 0;−ξ;−ξÞ: ð62Þ

The quark and lepton contractions contributing to the SD
divergence are shown in Fig. 8. We choose the external

FIG. 8. Left: SD divergent loop in W-W diagrams. Right: SD
divergent loop in Z-exchange diagrams.
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momenta pi to satisfy p2
i ≡ μ20 ¼ 2ξ2. The momentum

ploop flowing into the internal loop is given by ploop ¼
ðξ; 0; 0;−ξÞ forW-W diagrams and ploop ¼ ð0; ξ;−ξ; 0Þ for
Z-exchange diagrams.
For the Z-exchange diagrams the weak Hamiltonian is a

linear combination of two operators O1;q and O2;q which
mix under renormalization. The second operator however,
is either the local vector or axial vector current with a
multiplicative renormalization constant ZV . For the W-W
diagrams both the operators QA and QB, i.e., QΔS¼1

ql and
QΔS¼0

ql , renormalize multiplicatively. Nevertheless, in this
section we present a general discussion in which both QA
and QB mix with other operators and in the absence of
such mixing the corresponding renormalization matrices in
the formulas become numerical constants. In order to allow
the RI/SMOM normalization to be imposed at four-
momenta that can be held fixed in physical units in both
magnitude and direction when we later perform a con-
tinuum extrapolation, wewill use twisted external momenta
whose components are not necessarily integer multiples of
2π=L [48].
We perform the calculation in the Landau gauge.

Imposing the twisted boundary condition on the quark
field, qðxþ Lμ̂Þ ¼ eiθμqðxÞ, is equivalent to multiplying
the gauge field by a factor of eipμ :Uμ → U0

μ ¼ eipμUμ, with
θμ ¼ pμLðmod 2πÞ. We can consider this multiplication as
a global Uð1Þ rotation. Since p1 ≠ p2, we multiply the
gauge field by a different factor eipi;μ when calculating
the corresponding quark propagator. Calculating a zero-
momentum volume-source quark propagator on the rotated
gauge fields U0

μ naturally assigns the nonzero external
momentum pi for the external quark propagator. For the
Z-exchange diagram, we rotate the gauge fields with a
phase factor of eiploop;μ . Combining the point-source quark
propagators with and without this gauge rotation, we can
arrange that the internal loop can carry an appropriately
twisted momentum ploop. For the W-W diagram, the
momentum ploop is carried by the internal lepton field
while the internal quark propagators are calculated with
unrotated gauge fields. We treat the position x of one
operator as the source and the position y of the other
operator as the sink. The source x is treated as a fixed, point
source while the sink y is summed over the full space-time
volume after the other propagators connected to y have
been included. To improve the precision, we place the point
source at 32 different positions and then exploit translation-
invariance to average over these source locations.
When implementing the nonperturbative renormalization

as described above, we impose different (twisted) boundary
conditions within the same diagram for different fermion
propagators of the same flavor. We argue below that this
can be done consistently for connected diagrams evaluated
in the perturbative regime. This is in contrast to the use of
different boundary conditions for different portions of an

amplitude at low energies. For example, the effects of using
different boundary condition for the valence and sea quarks
require the study of an effective field theory and careful
consideration of possible on-shell intermediate states [49].
Our use of multiple boundary conditions is introduced to
allow specific external momenta and we now show that the
errors introduced by this approach fall exponentially with
the volume.
Because the usual RI/SMOM conditions are applied for

large nonexceptional Euclidean external momenta, the
amplitudes being studied are infrared safe and may be
represented by a standard, all-orders perturbative sum.
Further, we assume that the twist angles θμ are rational
multiples of 2π, θμ ¼ 2πðrμ=rÞ for five integers rμ, 0 ≤
μ ≤ 3 and r. For a quark-line-connected diagram of the
sort described above a sequence of twisted quark propa-
gators is introduced connecting the vertex at which the
twisted momentum enters to the vertex at which it exits so
that momentum will be conserved at each vertex of the
graph. If this same Green’s function were evaluated in a
much larger volume of side L0 ¼ rL, all of the momenta
would be integral multiples of 2π=L0 with no twisting
needed.
We now use the Poisson summation formula to argue

that these two Green’s functions must differ by terms which
vanish exponentially in the length L. In both cases we can
use momentum conservation to route the twisted external
momenta on the same path through the graph. The internal
momentum sums for both volumes then involve momenta
that are added to the twisted momentum, when present,
carried by each quark line. For the original volume L4, the
result depends on the arbitrary routing of the twisted
momentum. For the larger volume ðrLÞ4 the loop momenta
can be redefined to move the path followed within the
graph by the external momentum. Since there are no nearby
singularities for such an off-shell Euclidean amplitude, the
Poisson summation formula guarantees that these two sums
over discrete internal momenta, one with r4 more terms
than the other, will differ by terms which vanish exponen-
tially in the distance L [50].
In the next step we calculate the amputated vertex ΓAB

αβρσ
from the Green’s function through

ΓAB
αβρσ ¼ hS−1s ðp1Þiαα0 hS−1d ðp2Þiββ0 hS−1ν ðp3Þiρρ0

× hS−1ν̄ ðp4Þiσσ0GAB
α0β0ρ0σ0 ð63Þ

where S−1s;dðpiÞ stand for the inverse of the full strange and
down quark propagators and S−1ν;ν̄ðpiÞ for the inverse of free
neutrino propagators. Another amputated vertex Γ0

αβρσ can
be obtained from the Green’s function in Eq. (61) if the
bilocal operator product

R
d4xQlat

A ðxÞQlat
B ðyÞ is replaced

by a bare local operator Qlat
0 ðyÞ. At tree level, Γ0 is

simply given by Γ̂ ¼ ½γμð1 − γ5Þ�q ⊗ ½γμð1 − γ5Þ�ν, where
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the subscript q indicates the quark flavor space and ν the
neutrino flavor space. The color structure is not shown
explicitly in ½γμð1 − γ5Þ�q since at tree level it is trivial. We

use Γ̂ to construct the projector

P ¼ Γ̂†

Trs;c½Γ̂†Γ̂� ; ð64Þ

where Trs;c requires the trace over both the spin and
color indices. When the projector acts on Γ̂ it yields
Trs;c½PΓ̂� ¼ 1.
We use the large external momenta p2

i ¼ μ20 ≫ Λ2
QCD to

capture the SD contribution to the bilocal operator productR
d4xQlat

A ðxÞQlat
B ðyÞ and then relate this contribution to the

projection of the amputated Green function Γ0 of the local
operatorQlat

0 ðyÞ, where with the same external momenta we
require:

Trs;c½PΓAB� ¼ Xlat
ABðμ0; aÞTrs;c½PΓ0�: ð65Þ

Recall that the local operator is Q0 ¼ ðs̄dÞV−Aðν̄νÞV−A.
Using the coefficient Xlat

ABða; μ0Þ, we remove the SD diver-
gence by constructing the subtraction

R
d4xQlat

A ðxÞQlat
B ðyÞ−

Xlat
ABða; μ0ÞQlat

0 ðyÞ.
Following Ref. [3], we adopt the renormalization con-

dition

hfQRI
A QRI

B gRIμ0 ip2
i¼μ2

0
¼ hfQRI

A QRI
B glata ip2

i¼μ2
0
− XABðμ0; aÞ

× hQRI
0 ðμ0Þip2

i¼μ2
0
¼ 0; ð66Þ

to define the bilocal operator in the RI/SMOM scheme

fQRI
A QRI

B gRIμ0 ≡ fQRI
A QRI

B glata − XABðμ0; aÞQRI
0 ðμ0Þ: ð67Þ

The local operators in the RI/SMOM scheme QRI
i ðμ0Þ are

related to the bare lattice operators Qlat
i ðaÞ through the

renormalization relation QRI
i ðμ0Þ ¼ Zlat→RI

ij ðaμ0ÞQlat
j ðaÞ.

The angled brackets h� � �ip2
i¼μ2

0
in Eq. (66) indicate the

amputated Green’s function with the momentum assign-
ments in Eq. (62). Given the external momenta pi, we
impose the standard RI/SMOM renormalization condition
for local operators. Specifically, the amputated Green’s
function of the renormalized operator in the RI/SMOM
scheme QRI

i ðμ0Þ is required to be equal to the tree-level
amputated Green’s function at the scale μ0 and this
determines the matrix of renormalization constants
Zlat→RI
ij ðaμ0Þ. XABðμ0; aÞ defined in Eq. (66) is related to

Xlat
ABðμ0; aÞ defined in Eq. (65) by

XABðμ0; aÞ ¼
Zlat→RI
AC ðaμ0ÞZlat→RI

BD ðaμ0Þ
Zlat→RI
Q0

ðaμ0Þ
Xlat
CDðμ0; aÞ; ð68Þ

where it is understood that a sum is to be performed over
the operator types C and D which mix with A and B
respectively.
Once the renormalization condition (66) has been

specified, the bilocal operator fQRI
A QRI

B gRIμ0 is defined with
no ambiguity. The bilocal operator in the MS scheme,

fQMS
A QMS

B gMS
μ , is given in terms of bilocal and local RI

operators as shown in Eq. (6). By multiplying the Wilson

coefficient CMS
A ðμÞCMS

B ðμÞ, we have

CMS
A ðμÞCMS

B ðμÞfQMS
A QMS

B gMS
μ

¼ CRI
A ðμ0ÞCRI

B ðμ0ÞfQRI
A QRI

B gRIμ0
þ CMS

A ðμÞCMS
B ðμÞYABðμ; μ0ÞQRI

0 ðμ0Þ: ð69Þ

Here, for example, CRI
A ðμ0ÞQRI

A ðμ0Þ ¼ CMS
A ðμÞZRI→MS

AC ×

ðμ=μ0ÞQRI
C ðμ0Þ where ZRI→MSðμ=μ0Þ is the RI → MS con-

version matrix and we sum over all operators C which mix
with A. There is a similar expression for QB and all the
operators which mix with it. The parameter YABðμ; μ0Þ,
which is determined perturbatively, accounts for the differ-
ence between the bilocal operators in the MS and RI
schemes. We will discuss the determination of YABðμ; μ0Þ
in Sec. V E.
It is useful to write the MS bilocal operators in terms of

the bare lattice operators whose matrix elements are
computed nonperturbatively

CMS
A ðμÞCMS

B ðμÞfQMS
A QMS

B gMS
μ

¼ Clat
A ðaÞClat

B ðaÞðfQlat
A Qlat

B glata − Xlat
ABðμ0; aÞQlat

0 ðaÞÞ
þ CMS

A ðμÞCMS
B ðμÞYABðμ; μ0ÞZlat→RI

Q0
Qlat

0 ðaÞ: ð70Þ

where

Clat
A ðaÞQlat

A ðaÞ
¼ CMS

A ðμÞðZRI→MSðμ=μ0ÞZlat→RIðaμ0ÞÞACQlat
C ðaÞ; ð71Þ

and again there is a summation over all operators which
mix with A; a similar expression holds for QB.
We now consider the specific case of the Z-exchange

diagrams where QB is a vector or axial-vector current and
for QA we consider each of the two operators Q1q and Q2q

which mix under renormalization. (Here we use the
conventional operators Q1 and Q2 rather than the combi-
nations Q� ¼ Q1 �Q2 which belong to different repre-
sentations of SULð4Þ and do not mix under
renormalization.) The conversion matrix for these two

operators, ZRI→MSðμ=μ0Þ ¼ I þ ΔrRI→MS, has been given
by Ref. [51] at the scale μ ¼ μ0. For the entries of the
renormalization matrix Zlat→RIðaμ0Þ we take the values
from Ref. [36]. At the scale μ ¼ μ0 ¼ 2.15 GeV, the
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parameters used to determine Clat
1 and Clat

2 are given in
Table V. These are given by

Clat
i ðaÞ ¼

X
k;l¼1;2

CMS
k ðμÞZRI→MS

kl ðμ=mu0ÞZlat→RI
li ðaμ0Þ

ði ¼ 1; 2Þ: ð72Þ

The values for Clat
i quoted here are about 1.4% different

from the values used in Ref. [36], as in this paper we use a
3-loop formula for the strong coupling evolution while
Ref. [36] used a 2-loop formula.

B. Lattice results for the renormalization
of bilocal operators

The coefficients Xlat
ABðμ0; aÞ have been determined using

Eq. (65). From the full ensemble of 800 configurations, we
use one from every ten configurations to calculate the off-
shell Green’s function for both bilocal and local operators.
To study the scale dependence, we vary μ0 from 1 GeV to
4 GeV in steps of 0.25 GeVand the results are presented in
Table VI. For the Z-exchange diagram, we give the results
for Q1;q and Q2;q separately and also for the combination
Clat
1 Q1;q þ Clat

2 Q2;q. For the W-W diagrams, we write the
results for the three lepton flavors l ¼ e, μ, τ respectively.

V. PERTURBATIVE ELEMENTS IN THE
DETERMINATION OF THE

DECAY AMPLITUDE

The final elements which are required for our compu-
tation of the decay amplitude are the Wilson coefficients
and the subtraction constants YABðμ; μ0Þ which first
appeared in Eq. (6). The determination of the YAB is
necessarily perturbative since it requires a calculation in
the MS scheme. We outline their determination in Sec. V E
below with further details presented in Appendix B. The
determination of the Wilson coefficients is discussed in
Sec. V C.
An important aim of this paper is to calculate the decay

rate for the process Kþ → πþνν̄ without using perturbation
theory at the scale of mc and, as already discussed
extensively, this requires us to evaluate the matrix elements
of bilocal operators. The results are presented in Sec. VI
below. However, in order to compare these results with
those which would be obtained in the traditional way for
the unphysical quark masses used in our simulations, in this
section we integrate out the charm quark reducing the
bilocal operators to a local one and use perturbation theory
to obtain an estimate of the amplitude. We present the result
of this calculation in Sec. V D, while in Secs. VA and V B
we discuss the running of αsðμÞ and mcðμÞ which are two
important elements of the perturbative calculations. The
perturbative results obtained by integrating out the charm

TABLE VI. Results for Xlat
AB which are defined in Eq. (65). These results are given in units of 10−2.

Xlat
ABðμ0Þ from the Z-exchange diagrams Xlat

ABðμ0Þ from the W-W diagrams

μ0 [GeV] Q1 Q2 Clat
1 Q1 þ Clat

2 Q2 e μ τ

1.00 −6.659ð39Þ −1.671ð18Þ 0.382(12) 4.958(140) 5.481(155) 2.866(80)
1.25 −6.019ð32Þ −1.516ð14Þ 0.342(9) 4.697(115) 4.690(115) 2.613(63)
1.50 −5.379ð26Þ −1.365ð14Þ 0.299(10) 3.889(73) 3.878(72) 2.279(42)
1.75 −4.723ð22Þ −1.211ð12Þ 0.255(8) 3.304(48) 3.289(47) 2.030(29)
2.00 −4.112ð20Þ −1.061ð12Þ 0.217(7) 2.644(36) 2.679(36) 1.756(24)
2.25 −3.555ð19Þ −0.932ð12Þ 0.178(8) 2.215(28) 2.213(28) 1.506(19)
2.50 −3.045ð18Þ −0.815ð12Þ 0.142(8) 1.821(21) 1.818(21) 1.276(15)
2.75 −2.605ð17Þ −0.701ð12Þ 0.119(7) 1.492(17) 1.487(17) 1.074(12)
3.00 −2.229ð18Þ −0.601ð11Þ 0.101(7) 1.200(13) 1.203(13) 0.897(10)
3.25 −1.897ð19Þ −0.513ð11Þ 0.085(7) 0.969(9) 0.968(9) 0.737(7)
3.50 −1.596ð21Þ −0.441ð12Þ 0.066(8) 0.778(7) 0.777(7) 0.602(5)
3.75 −1.347ð23Þ −0.377ð13Þ 0.052(9) 0.620(6) 0.618(6) 0.486(5)
4.00 −1.130ð23Þ −0.327ð12Þ 0.037(8) 0.483(5) 0.483(5) 0.387(4)

TABLE V. Parameters relevant for the Z-exchange diagram. The Wilson coefficients in the MS scheme CMS
1;2 ðμÞ, the entries of the

RI → MS matching matrix ΔrRI→MSðμ; μ0Þ, the entries of the nonperturbative lat → RI operator renormalization matrix Zlat→RIðaμ0Þ
and the Wilson coefficients Clat

1;2ðaÞ, defined in Eq. (72), are evaluated at the scale μ ¼ μ0 ¼ 2.15 GeV.

CMS
1 CMS

2 Δr11 ¼ Δr22 Δr12 ¼ Δr21 Zlat→RI
11 ¼ Zlat→RI

22 Zlat→RI
12 ¼ Zlat→RI

21 Clat
1 Clat

2

−0.2911 1.1353 −6.482 × 10−2 7.429 × 10−3 0.5916 −0.05901 −0.2186 0.6424
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quark suggest that the contributions from the bilocal and
local operators are comparable.

A. Evolution of the strong coupling constant

The evolution of the strong coupling constant αs from the
scale of MZ to lower scales such as μc ≈mc has been
studied in detail in Ref. [11]. The resulting uncertainty in
αsðμcÞ makes only a negligible contribution to the total
uncertainty in Br½Kþ → πþνν̄�. In our calculation, we
evolve αs from αsðMZÞ to αsðμcÞ by solving the renorm-
alization group (RG) equation for αs numerically.
As the QCD perturbation theory calculation of the charm

quark contribution has been performed at NNLO [10,11],
we keep to this order and use the 3-loop RG formula for the
evolution of the running coupling constant

μ2
∂
∂μ2 as ¼ −β0a2s − β1a3s − β2a4s ; ð73Þ

where as ¼ αs=ð4πÞ and the coefficients βi can be found,
for example, in Ref. [52] (see [53] for a complete
discussion of the running of αs). Solving the RG equa-
tion (73) directly, we have

gðasðμ2ÞÞ − gðasðμ1ÞÞ ¼ log
μ22
μ21

; where

gðasÞ≡ 1

β0as
−

	
β2
1

β2
0

− 2 β2
β0



arctan

	
β1þ2β2asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β0β2−β21

p



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β0β2 − β21

p
−

β1
2β20

logðβ0a−2s þ β1a−1s þ β2Þ: ð74Þ

Using Eq. (74) we can evolve αs from high to low energy
scales following the path μ ¼ MZ → μb → μc.
When a flavor threshold μ ¼ μf is crossed, the matching

conditions relating αs with f and f − 1 active quark flavors
are nontrivial [11]. Using the NNLO matching conditions
given in Ref. [11] and choosing the 5 → 4 flavor threshold
to be at μb ¼ 5 GeV, we obtain

αsðμMSÞ ¼ 0.462ð11Þ; 0.304ð4Þ; 0.255ð3Þ; 0.230ð2Þ;
ð75Þ

for μMS ¼ 1; 2; 3; 4 GeV respectively. These results were
obtained using the PDG input parameters [53]:

αsðMZÞ ¼ 0.1185ð6Þ; MZ ¼ 91.1876ð21Þ GeV;
mbðmbÞ ¼ 4.18ð3Þ GeV: ð76Þ

In Ref. [11], the threshold scale μb was varied from
2.5 GeV to 10 GeV. It was found that this variation affects
the charm quark contribution at a level of only �0.2%
compared to the result obtained at μb ¼ 5 GeV.

B. Running of the charm quark mass

Due to the quadratic GIM mechanism, the charm
quark contribution to the Kþ → πþνν̄ decay amplitude is
proportional to the square of the mass of the charm quark.
Thus the running of the charm quark mass plays an
important role in the cancellation of the μMS scale depend-
ence in the combination of the local and bilocal
contributions.
At the scale μc ≈mc, the NNLO expression for the

charm quark mass mcðμcÞ is given by

m2
cðμcÞ ¼ κc

�
1þ αsðμcÞ

4π
ξð1Þc þ

�
αsðμcÞ
4π

�
2

ξð2Þc

�
m2

cðmcÞ;

ð77Þ

where κc ¼ ðαsðμcÞ=αsðmcÞÞ2425 and ξð1;2Þc are known coef-
ficients (see Eq. (88) in Ref. [11]). Here and below we use
mcðμÞ to represent the charm quark mass computed in the
MS scheme at the scale μ.
Because of the relatively fast running of αs at scales of

OðmcÞ, the coefficient κc makes a significant impact on
the evaluation of local and bilocal Green’s functions. For
example the value of κc at μc ¼ 3 GeV is about 40%
smaller than the value at μc ¼ 1 GeV. (Even if μc is varied
in the range of 2–4 GeV, κc still changes by 24%.)
Therefore we include the running of the charm quark mass
and the coefficient κc in our calculation. Recall that this
calculation is performed with an unphysically light charm-
quark mass. Using the input parameter mcð2GeVÞ ¼
863 MeV, we obtain mcðmcÞ ¼ 1.080 GeV to be com-
pared to the physical value mcðmcÞ ¼ 1.28� 0.025 GeV
[53]. The charm-quark contribution in our simulation will
therefore be suppressed due to the use of an unphysical
charm-quark mass.

C. Determination of the Wilson coefficients

In the determination of the Wilson coefficients in the MS
scheme we follow the procedure given in Ref. [11]. For the

Z-exchange diagrams CMS
1 ðμÞ and CMS

2 ðμÞ together with

the coefficient CMS
0;ZðμÞ, which is associated with the local

operator Q0, is written as a vector C⃗Z ¼ ðCþ; C−; C0;ZÞ.
Here C� ¼ C2 � C1. The evolution for C⃗Z can be deter-
mined using the equation

C⃗ZðμÞ ¼ U4ðμ; μbÞMðμbÞU5ðμb; μWÞC⃗ZðμWÞ ð78Þ

where C⃗ZðμWÞ indicate the Wilson coefficients at the scale
of μW ¼ OðMWÞ. (In practice, we take μW ¼ 80.0 GeV.)
The values of the coefficients C⃗ZðμWÞ are determined by
matching the Green’s functions in the full and the effec-
tive theory at μW using NNLO QCD perturbation theory.
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The evolution matrices U5ðμb; μWÞ, U4ðμ; μbÞ and the b-
quark threshold matching matrix MðμbÞ are also known
[11]. Thus the values for C⃗ZðμÞ at μ ¼ μc ¼ OðmcÞ can be

determined. At μ ¼ 2.15 GeV, we have CMS
1 ðμÞ ¼

−0.2911 and CMS
2 ðμÞ ¼ 1.1353. These values have been

used in Table V and Eq. (72) to determine the Wilson
coefficients Clat

1 ðaÞ and Clat
2 ðaÞ for the bare lattice

operators.
For the W-W diagram, the vector of Wilson coefficients

is constructed as C⃗WW ¼ ð1; C0;WWÞ. The Wilson coeffi-
cient for each two-quark-two-lepton operator does not run
because the anomalous dimension is zero. Thus it is simply
given by 1. The coefficient C0;WW accounts for the SD
contribution when the two local weak operators approach
each other and is nontrivial. It can be determined using a
renormalization group evolution equation, which takes a
similar form to Eq. (78).

D. Perturbative estimate of the decay amplitude

In this subsection we digress from the main calculation
and estimate the amplitude using the standard procedure of
integrating out the charm quark and using perturbation
theory. This will allow us to determine the difference
between our nonperturbative computation of long-distance
effects and the standard calculation.
Having determined C⃗ZðμÞ and C⃗WWðμÞ, the next step is

to evaluate the amputated Green’s function for the bilocal

operators to determine the coefficient rMS
AB ðμÞ defined by

hCMS
A QMS

A CMS
B QMS

B iMS ¼ CMS
A CMS

B rMS
AB hQMS

0 i: ð79Þ

By integrating out the charm quark field, the parameter

rMS
AB ðμÞ can be used to describe the bilocal contribution in
perturbation theory. At Oðα0sÞ one has the following

contributions to rMS
AB ðμÞ

mcðμÞ2
4π2

	
1 − ln μ2

m2
cðμÞ



× Nc þOðαsÞ; fromZ-exchange diagramswithQ1

mcðμÞ2
4π2

	
1 − ln μ2

m2
cðμÞ



þOðαsÞ; fromZ-exchange diagramswithQ2

mcðμÞ2
π2

	
5
4
þ ln μ2

m2
cðμÞ þ

xl ln xl
1−xl



þOðαsÞ; from W-W diagrams

ð80Þ

where we have exhibited the μ dependence of the charm
quark massmcðμÞ. Nc ¼ 3 is the number of QCD colors. In
theW-W diagram, the parameter xl ¼ m2

l=m
2
cðμÞ indicates

the non-zero lepton mass correction to the loop diagram.
For the electron and muon this correction can be neglected
given the current precision of the computations. Although

the OðαsÞ corrections to rMS
AB ðμÞ are not shown explicitly in

Eq. (80), they have been calculated and detailed formulas
can be found in Ref. [11]. These OðαsÞ corrections have
been included in our calculation.
Note that in renormalization group improved perturba-

tion theory, the Wilson coefficients C0;Z and C0;WW contain

large logarithms of the form log μ2

M2
W
. These contribute as a

LO effect of order Oðα−1s Þ. The bilocal contribution rMS
AB ðμÞ

given in Eq. (80) contributes as a NLO contribution of order
Oðα0sÞ. Both sets of Wilson coefficients C⃗Z and C⃗WW as

well as the parameter rMS
AB , have been calculated to NNLO

including the Oðα1sÞ corrections. The total charm quark
contribution can be written in the form

PPT
c ðμÞ ¼ 1

λ4
π2

M2
W
ðCMS

A ðμÞCMS
B ðμÞrMS

AB ðμÞ þ CMS
0 ðμÞÞ ð81Þ

and receives contributions from both the WW and
Z-exchange diagrams. We write PPT

c ðμÞ ¼ PZ
c ðμÞ þ

PWW
c ðμÞ where the superscripts WW and Z denote the

contributions from the WW and Z-exchange diagrams
respectively. We recall that for the WW diagrams one
has to average the contributions from the three intermediate
leptons. In Eq. (81) λ≡ jVusj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVudj2 þ jVusj2

p
andMW is

the mass of the W-boson. We use the values λ ¼
0.22537ð61Þ and MW ¼ 80.385ð15Þ GeV taken from the
PDG [53]. At the unphysical charm quark mass
mcð2 GeVÞ ¼ 863 MeV, PZ

c ðμÞ and PWW
c ðμÞ at MS scales

μ ¼ 1–4 GeV are shown in Fig. 9.
(i) In the left-hand panel we show the scale (μ)

dependence of the total contribution PPT
c ðμÞ at LO

(indicated by the black dashed curve), NLO (red
dash-dotted curve) and NNLO (green solid curve).
We see that by including higher-order QCD correc-
tions the scale dependence becomes milder.

(ii) In the middle panel, we split the total NNLO result
PPT
c ðμÞ into the W-W contribution PWW

c (indicated
by the black dashed curve) and the Z-exchange
contribution PZ

c (red dash-dotted curve). The W-W
diagrams dominate PPT

c with the Z-exchange dia-
grams only making a small contribution.

(iii) In the right-hand panel, we compare the total bilocal
contribution to PPT

c (indicated by the black dashed
curve) and the local contribution (red dash-dotted
curve) at various scales μ. Both contributions in-
clude NNLO corrections. At a scale μ ≈ 2 GeV, the
bilocal contribution is of similar size to the local one.
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We could also compile a figure similar to that shown in
Fig. 9 corresponding to the physical charm quark mass,
mc;phys. The main difference is that PPT

c would be enhanced
by a factor of ð mc;phys

mc;unphys
Þ2, where mc;unphys is the unphysical

mass used in this simulation.
In Fig. 9, the bilocal contribution is estimated using the

perturbation theory by integrating out the charm quark
field. We question whether perturbation theory works well
at the scale of μ ¼ OðmcÞ. We therefore replace the rMS

AB
term by the nonperturbative evaluation of the bilocal matrix
element together with a perturbative matching from RI/
SMOM scheme to MS scheme. The results are presented
in Sec. VI.

E. Determination of the YAB(μ;μ0)

The relation between the MS and RI/SMOM bilocal
operators takes the form given in Eq. (6) which we rewrite
here for the reader’s convenience:

fQMS
A QMS

B gMS
μ ¼ ZRI→MS

A ðμ=μ0ÞZRI→MS
B ðμ=μ0ÞfQAQBgRIμ0

þ YABðμ; μ0ÞQRI
0 ðμ0Þ; ð82Þ

where μ and μ0 are the MS and RI/SMOM renormali-
zation scales respectively. For compactness of notation, we
have written Eq. (82) as if there is no mixing of the

operators QA and QB with other operators. When, as in
the case of the Z-exchange diagrams, there is a mixing
then the renormalization constants become matrices,
e.g., ZAQA → ZACQC.
In order to determine YABðμ; μ0Þ we calculate the

amputated Green’s functions for both sides of Eq. (82)
at p2

i ¼ μ20 and impose the renormalization condition
Eq. (66) so that:

hfQMS
A QMS

B gMS
μ ip2

i¼μ2
0
¼ ZRI

q ðμ0Þ
ZMS
q ðμÞ

YABðμ; μ0ÞhQRI
0 ip2

i¼μ2
0
:

ð83Þ
Here ZRI

q and ZMS
q are the quark’s wave function renorm-

alization constant. In the Landau gauge and setting the
renormalization scales of both MS and RI/SMOM schemes

to be equal μ ¼ μ0, we have ZRI
q =ZMS

q ¼ 1þOðα2sÞ [54].
On the right-hand side of Eq. (83), the definition of
the RI/SMOM renormalization scheme implies that

hQRI
0 ip2

i¼μ2
0
¼ hQ0ið0Þp2

i¼μ2
0

, where the superscript (0) denotes

the tree-level amputated Green’s function.
We write YA;Bðμ;μ0Þ≡ YA;Bðμ;0Þ þΔYABðμ;μ0Þ, where

YA;Bðμ; 0Þ is exactly given by the rMS
AB ðμÞ discussed in

Sec. V D. We present the determination of the ΔYAB at
Oðα0sÞ in Appendix B and the results are given in Eqs. (B4),
(B7) and (B9).
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FIG. 9. Evaluation of the charm quark contribution PPT
c at the unphysical charm quark mass mcð2 GeVÞ ¼ 863 MeV following the

procedure given in Ref. [11]. In the left-hand panel, we show the scale (μ) dependence of total contribution PPT
c ðμÞ at the LO (black

dashed curve), NLO (red dash-dotted curve) and NNLO (green solid curve). In the middle panel, we show the NNLO result for the
PPT
c ðμÞ by splitting it into theW-W (PWW

c ) and Z-exchange (PZ
c ) contributions. In the right-hand panel, we compare the bilocal and local

contributions as a function of the scale μ; both include the NNLO corrections.
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In our analysis, we take the expression for rMS
AB ðμÞ from

Ref. [11], where it has been calculated at Oðα1sÞ. We
estimate ΔYABðμ; μ0Þ at Oðα0sÞ. As we will show later,

ΔYABðμ; μ0Þ is of comparable size to rMS
AB ðμÞ. Thus the

inclusion of the scale dependence of the charm quark mass
is important for the determination of both ΔYABðμ; μ0Þ and
rMS
AB ðμÞ. In rMS

AB ðμÞ, the running charm quark mass only
depends on the MS scale μ, while in ΔYABðμ; μ0Þ, the
charm quark mass also depends on the RI/SMOM scale μ0.
For simplicity, we choose μ ¼ μ0. Note that the mass
renormalization conversion factors from the RI/SMOM
scheme to the MS scheme have been calculated to two-loop
order. At μ ¼ μ0 ≥ 2 GeV these conversion factors only
deviate from 1 by a few percent [55]. We thus neglect the
RI/SMOM scale dependence and simply use the MS charm
quark mass from Eq. (77) for ΔYABðμ; μÞ.
In Fig. 10, we show the contributions to CMS

A CMS
B Δ

YABðμ; μ0Þ, CMS
A CMS

B rMS
AB ðμÞ and CMS

A CMS
B YABðμ; μ0Þ as a

function of μ ¼ μ0 from the W-W diagrams (left panel) and
the Z-exchange diagrams (right panel). Since the magnitude

of ΔYABðμ; μÞ is comparable to rMS
AB ðμÞ, it will be important

in future calculations to include theOðαsÞ correction and the
RI/SMOM scale dependence of the charm quark mass
running in ΔYABðμ; μ0Þ. Another observation from Fig. 10

is that the ln μ2

m2
c
dependence, present in each of the terms

ΔYABðμ; μÞ and rMS
AB ðμÞ, cancels atOðα0sÞ in the combination

rMS
AB ðμÞ þ ΔYABðμ; μÞ [see also Eq. (B12)].

VI. LATTICE RESULTS AND A DISCUSSION
OF SYSTEMATIC UNCERTAINTIES

In the previous sections we have discussed and com-
puted all the ingredients necessary to determine the decay
amplitude for the process Kþ → πþνν̄. Before presenting
our final result for the amplitude, we briefly summarize
how these ingredients are combined to obtain this result.
We started in Sec. III with a calculation of the matrix
elements of the local and bilocal lattice operators relevant
for the rare kaon decays. These computations are naturally
nonperturbative. In the determination of the matrix ele-
ments of bilocal operators new ultraviolet divergences
appear when the two local operators QA and QB which
comprise the bilocal operator approach each other. We
discuss the subtraction of these additional divergences
in Sec. IV, introducing and determining the subtraction
constants Xlat

ABðμ0; aÞ [see Eqs. (66) and (67)]. By sub-
tracting these divergences, we define and determine non-
perturbatively the matrix element of the bilocal operators
renormalised in the RI/SMOM scheme. Since Wilson
coefficients are generally calculated in the MS scheme,
we need to convert the RI/SMOM operators into those in
the MS scheme and this is necessarily a perturbative
calculation, which we describe in Sec. V. The RI → MS
conversion of the bilocal operators is characterized by
the constants YABðμ; μ0Þ [see Eq. (82)]. In this way we
obtain the matrix elements of the bilocal operators in the
MS scheme without “integrating out” the charm quark.
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FIG. 10. Contributions to ΔYABðμ; μ0Þ, rMS
AB ðμÞ and YABðμ; μ0Þ, multiplied by the corresponding Wilson Coefficients, from the W-W

diagrams (left panel) and Z-exchange diagrams (right panel). They are shown as a function of μ ¼ μ0.
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This matrix elements can be written generically in terms of
the individual ingredients as follows:

AMS
Bilocal ≡ hπþνν̄jfCMS

A QMS
A CMS

B QMS
B gMS

μ jKþi
¼ Clat

A Clat
B hπþνν̄jfQlat

A Qlat
B glata jKþi

− Clat
A Clat

B Xlat
ABðμ0; aÞhπþνν̄jQlat

0 jKþi
þ CMS

A CMS
B YABðμ; μ0Þhπþνν̄jQRI

0 jKþi
¼ i½F4ptðΔ; sÞ − 2Z−1

V Clat
A Clat

B Xlat
ABðμ0; aÞfþðsÞ

þ 2CMS
A CMS

B YABðμ; μ0ÞfþðsÞ�
× ½ūðpνÞpKð1 − γ5Þ�vðpν̄Þ�: ð84Þ

Depending on the choice of the operators QfA;Bg, Eq. (84)
represents contributions to the W-W or Z-exchange dia-
grams. The scalar amplitude F4ptðΔ; sÞ is given by
FWWðΔ; sÞ for W-W diagram and 2FZ;i

þ ðsÞ (i ¼ V, A)
for the Z-exchange diagram. The variables Δ and s are
defined in Eq. (8). The Kl3 form factor fþðsÞ is defined in
Eq. (23). The results for fþðsÞ, FWWðΔ; sÞ and FZ;i

þ ðsÞ have
been given in Tables II–IV respectively. The results for
Xlat
ABðμ0; aÞ in the range 1 GeV ≤ μ0 ≤ 4 GeV are listed in

Table VI and ZV ¼ ZA ¼ 0.7163ð14Þ. For the Z-exchange
diagrams in Table VI we also give the results with the cor-
responding Wilson coefficients (labeled Clat

1 Q1 þ Clat
2 Q2).

The results for YABðμ; μ0Þ for 1GeV ≤ μ ¼ μ0 ≤ 4GeV are
shown in Fig. 10.
It is convenient to define the ratio RðΔ; sÞ:

RðΔ; sÞ≡ F4ptðΔ; sÞ
2fþðsÞ

: ð85Þ

Since in this calculation we use a single choice of momenta
[see Eq. (13)], we are not able to determine the Δ and s
dependence of RðΔ; sÞ. Here we simply neglect this
momentum dependence.
The bilocal matrix element can be written as

AMS
Bilocal≃ i½RðΔ;sÞ−Z−1

V Clat
A Clat

B Xlat
ABðμ0;aÞþCMS

A CMS
B YAB�

× ½2fþðsÞūðpνÞpKð1− γ5Þvðpν̄Þ�; ð86Þ

where the ≃ symbol on the first line reminds us that the
momentum dependence of RðΔ; sÞ has been neglected. We

denote the sum of the AMS
Bilocal from the WW and Z-

exchange diagrams by AMS;TOT
Bilocal and combine it with the

contribution from the matrix element of the local operator

AMS
Local ¼ i

�
CMS
0;ZðμÞ þ

1

3

X
l;μ;τ

CMS
0;WWðμÞ

�

× ½2fþðsÞūðpνÞpKð1 − γ5Þvðpν̄Þ� ð87Þ

to obtain the total charm quark contributions to the decay

amplitude. It is conventional to relate the AMS;TOT
Bilocal and

AMS
Local to Pc through

AMS;TOT
Bilocal þAMS

Local

¼ λ4

π2
M2

WPc½2fþðsÞūðpνÞpKð1 − γ5Þvðpν̄Þ�: ð88Þ

We now separate Pc into two parts: the standard charm-
quark estimate PPT

c calculated using perturbation theory
[see Eq. (81)] and a difference between the full non-
perturbative lattice result and the perturbative estimate,
Pc − PPT

c

Pc − PPT
c ¼ 1

λ4
π2

M2
W
½RðΔ; sÞ − Z−1

V Clat
A Clat

B Xlat
ABðμ0; aÞ

þ CMS
A CMS

B ΔYABðμ; μ0Þ�: ð89Þ

In Fig. 11 we show the unrenormalized quantity
1
λ4

π2

M2
W
RðΔ; sÞ (gray band), the RI-renormalized quantity

1
λ4

π2

M2
W
½RðΔ;sÞ−Z−1

V Clat
A Clat

B Xlat
ABðμ0;aÞ� (red circle), the total

charm contribution Pc (blue diamond) and the difference
Pc − PPT

c (green square) as a function of μ ¼ μ0. From the
left to right, three panels show the results for the W-W
diagrams, the Z-exchange diagrams and their sum.
At scales μ ¼ μ0 ¼ 1, 2, 3, 4 GeV, we obtain respectively

Pc ¼ 0.2541ð13Þ; 0.2529ð13Þ; 0.2476ð13Þ; 0.2408ð13Þ;
Pc − PPT

c ¼ 0.0015ð13Þ; 0.0040ð13Þ; 0.0072ð13Þ; 0.0074ð13Þ: ð90Þ

As shown in Tables III and IV the statistical errors in the
unrenormalized bilocal matrix are about 1–2%. When these
uncertainties propagate to Pc, they only appear as sub-
percent effects, since in Pc the largest contribution comes
from the perturbation theory.

There is a curious cancellation evident in Fig. 11. The
figure shows that the contributions from each of the WW
and Z-exchange diagrams to Pc − PPT

c clearly deviate
from 0 due to non-perturbative effects. However, they have
the opposite sign and as a result there is a significant
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cancellation. For illustration, at μ ¼ μ0 ¼ 2 GeV, the
contribution to Pc − PPT

c from the WW diagram is
−2.99ð12Þ × 10−2 and from the Z-exchange diagram is
3.39ð6Þ × 10−2. The sum of the two contributions is about
10 times smaller than each contribution separately. It will
be very interesting to check whether such a cancellation
persists as the masses of the quarks are changed to their
physical values.

A. Systematic effects

Although the statistical errors are well under control, in
order to obtain a precise calculation of the long-distance
contribution to the Kþ → πþνν̄ decay amplitude, it is
important also to have a good understanding of the
systematic uncertainties. In this subsection we discuss
some of the principle sources of these uncertainties.

1. The RI/SMOM and MS scale dependence

As can be seen from Eq. (90), the systematic uncertainty
arising from the scale dependence is much larger than the
statistical error. There are two main sources of this scale
dependence. At small scales μ ¼ μ0 ≈ 1 GeV, we expect
that higher-order QCD corrections, which are not included
in our calculation of ΔYAB, will cause a sizeable effect. At
larger scales, μ ¼ μ0 ≈ 4 GeV say, we expect that lattice
artifacts might be significant. We quote the results for Pc

and PPT
c as

Pc ¼ 0.2529ð13Þð32Þ; Pc − PPT
c ¼ 0.0040ð13Þð32Þ

ð91Þ
where the central values correspond to the scale μ ¼
μ0 ¼ 2 GeV. The first error is statistical and the second
an estimate of the error implied by the residual scale
dependence of Pc, in the range 1 GeV < μ ¼ μ0 < 3 GeV.

2. Contributions from disconnected diagrams

The calculation of disconnected diagrams usually suffers
from large noise. This is also the case for the calculation of
the rare kaon decay form factors, where the uncertainty of
the disconnected diagrams is about 10%–30% while for the
connected diagrams, the uncertainty is at the level of few
percent. This can be seen from Table IV. Fortunately, the
size of the form factor from the disconnected diagrams,
FZ;A;disc
0 ðsmaxÞ ¼ 6.0ð1.2Þ × 10−4, is only a few percent of

that from the connected diagram. It only contributes to Pc
at the level of 0.4%. Here we should point out that since we
do not use twisted boundary conditions for disconnected
diagrams, we only calculate them with the mesons at rest,
pK ¼ pπ ¼ 0. We thus determine FZ;A;disc

0 ðsmaxÞ instead of
FZ;A;disc
þ ðsÞ. If we assume that FZ;A

0 ðsmaxÞ is a good
approximation to FZ;A

þ ðsÞ, then the disconnected diagrams
only contribute to Pc at a negligible level. Recall that at
s ¼ smax the vector current does not contribute to the
amplitude.
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FIG. 11. The unrenormalized lattice matrix elements 1
λ4

π2

M2
W
RðΔ; sÞ (indicated by the gray band), the RI-renormalized matrix elements

1
λ4

π2

M2
W
½RðΔ; sÞ − Z−1

V Clat
A Clat

B Xlat
ABðμ0; aÞ� (red circles), the total charm-quark contribution Pc (blue diamonds) and the difference Pc − PPT

c

(green squares) are shown as a function of μ ¼ μ0. From left to right, the three panels show the contribution of the W-W diagrams, the
Z-exchange diagram and the total, i.e., the sum of the two.
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3. Finite volume effects

As explained in Ref. [3], the main finite volume (FV)
effects in the lattice calculation of the Kþ → πþνν̄ decay
amplitude arise from the Kþ → πþπ0 → πþνν̄ process for
the Z-exchange diagrams and Kþ → π0lþν → πþνν̄ for
the W-W diagrams. The transitions Kþ → 3π → πþνν̄ and
Kþ → 2πlþν → πþνν̄ can be neglected due to significant
phase space suppression. We therefore exclude them from
our discussion.
For the transition Kþ → πþπ0, since the pion mass used

in this calculation is 420 MeV (so that mK < 2mπ), no
significant finite-volume effects are expected. Neverthe-
less, we have calculated two-pion scattering energy in the
isospin I ¼ 2 channel as well as the Kþ → πþπ0 and

πþπ0 → πþ transition amplitude. There are no expected
difficulties to evaluating the potentially large finite-volume
effects by using Lellouch-Lüscher formula when we repeat
the calculation at physical quark masses (and therefore with
mK > 2mπ) in the future.
Here we focus on the transition Kþ → π0lþν → πþνν̄

and denote the potentially large, i.e., non-exponential, FV
correction by Aπ0lþ

FV ¼AWWðLÞ−AWWð∞Þ, where AWWðLÞ
and AWWð∞Þ are the contributions to the amplitude from
the WW diagrams in finite and infinite volumes respec-
tively. The label π0lþ indicates that the correction comes
from the π0lþ intermediate state; see Fig. 2. The neutrino
plays no role here beyond determining the energy-momen-
tum of the π0lþ pair. Aπ0lþ

FV can be expressed as [3]

Aπ0lþ
FV ¼

�
1

L3

X
k⃗

Z
dk0
2π

− P
Z

d4k
ð2πÞ4

��
AKþ→π0
α ðpK; kÞ

1

k2 þm2
π
Aπ0→πþ
β ðk; pπÞ

�

×

�
ūðpνÞγαð1 − γ5Þ

iðP − =kÞ þml̄

ðP − kÞ2 þm2
l̄

γβð1 − γ5Þvðpν̄Þ
�
; ð92Þ

where k is the momentum carried by the intermediate π0

and P ¼ pK − pν is the total momentum flowing into the
π0 − lþ loop. AKþ→π0

α and Aπ0→πþ
β represent the transition

matrix elements indicated by the superscript and α, β are
the Lorentz indices of the weak currents.
The detailed steps needed to evaluate Aπ0lþ

FV are given in
Appendix C. Here we only discuss the results. For our
current ensemble, with mπ ¼ 420 MeV, only the lþ ¼ eþ
state can satisfy the on-shell condition and thus suffers from
the nonexponential FV corrections. Our estimate of the FV
correction to the scalar amplitude for the electron mode is
Fe
WWðLÞ − Fe

WWð∞Þ ¼ 1.528 × 10−2, which is about 14%
of the Fe

WWðLÞ as given in Table III. When this FV
correction propagates to Pc, it amounts approximately to
approximately a 2% contribution. After including this FV
correction, we write the results for Pc and Pc − PPT

c as

Pc ¼ 0.2529ð�13Þð�32Þð−45Þ;
Pc − PPT

c ¼ 0.0040ð�13Þð�32Þð−45Þ: ð93Þ

Since the calculations of the FV corrections require the
determination of AKþ→π0

α and Aπ0→πþ
β , which we can only

estimate at present, we choose not to decrease the central
values in Eq. (93) but to include the estimate of the FV
corrections in the uncertainty. In general, the FV correc-
tions depend on the lattice size L and how the momenta for
the intermediate pion and lepton are assigned and one needs
to examine them for each case. In the future, when
simulations are performed with physical quark masses, it
will be possible to use the calculated or measured values of

the Kl3 and pion form factors at the corresponding
momenta to determine the FV corrections reliably.

4. The momentum dependence

Using the effective Hamiltonian Heff;0 in Eq. (1) and the
definition of Pc in Eq. (88), one can write the Kþ → πþνν̄
decay amplitude as follows

AðKþ → πþνν̄Þ ¼ GFffiffiffi
2

p αλ5

2πsin2θW

X
l¼e;μ;τ

�
λt
λ5
XtðxtÞ þ

λc
λ
Pc

�

× 2fþðsÞūðpνÞpKð1− γ5Þvðpν̄Þ; ð94Þ

where XtðxtÞ and Pc are the top and charm quark
contributions, respectively and fþðsÞ is the Kl3 form
factor. Note that the charm quark contribution Pc generi-
cally depends on two variablesΔ and s. In Eq. (85) we have
taken the ratio between the bilocal matrix element and local
matrix element and assume this ratio does not have a
significant Δ and s dependence. As a consequence, Pc in
Eq. (94) is approximated by a constant. We now examine
under what circumstance this is a good approximation.
With this aim in mind, we write out the explicit Δ and s

dependence for AðKþ → πþνν̄Þ and Pc. Using the phase
space factor for three-body decays [53], the decay width for
Kþ → πþνν̄ can be written as

Γ½Kþ → πþνν̄� ¼ 1

210π4m3
K

Z
smax

0

dsΔmax

Z
dΩjAðΔ; sÞj2

ð95Þ
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where dΩ ¼ sin θdϕdθ is the element of solid angle of the
neutrino’s momentum in the center-of-mass frame of the νν̄
pair and θ indicates the angle between the momenta of the
pion and neutrino in the same frame. We then have

smax ¼ ðmK −mπÞ2;
Δmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

K þm2
π − sÞ2 − 4m2

Km
2
π

q
; Δ ¼ Δmax cos θ:

ð96Þ

The square of the amplitude jAðΔ; sÞj2 is given by

jAðΔ; sÞj2 ∝
��

Imλt
λ5

XtðxtÞ
�

2

þ
�
Reλc
λ

PcðΔ; sÞ þ
Reλt
λ5

XtðxtÞ
�

2
�

× 4fþðsÞ2½Δ2
max − Δ2�; ð97Þ

where the factor Δ2
max − Δ2 arises from the relation

jūðpνÞpKð1 − γ5Þvðpν̄Þj2 ¼ Δ2
max − Δ2.

Assuming that the Δ and s dependence in PcðΔ; sÞ is
mild we perform a Taylor expansion writing

PcðΔ; sÞ ¼ Pcð0; 0Þ þ bΔ
Δ
m2

K
þ bs

s
m2

K
þ � � � : ð98Þ

Using this simple expansion as an input, the branching ratio
of Kþ → πþνν̄ is proportional to

Br½Kþ → πþνν̄� ∝ 1þ 0.071b2Δ þ 0.202bs: ð99Þ

Here, we have used XtðxtÞ ¼ 1.481, Pcð0; 0Þ ¼ 0.404,
Imλt ¼ 1.51 × 10−4, Reλt ¼ −3.20 × 10−4 [9], λ ¼
0.22537 and the PDG values for mK and mπ [53]. We
also make the approximation that Reλc ≃ −λ and
fþðsÞ ≃ 1. If jbΔj < 0.37 and jbsj < 0.05, then the momen-
tum dependence only amounts for a subpercent effect.
Of course, since the present simulation was performed at

a single choice of ðs;ΔÞ we are unable to estimate the size
of the parameters bs and bΔ. Nevertheless, the above
discussion will be useful in our future studies (see
Sec. VII) in which we will determine these parameters
and use them to inform our choice of kinematics for
simulations at physical quark masses.

VII. CONCLUSIONS AND FUTURE PROSPECTS

In this paper we have presented an exploratory lattice
QCD calculation of the long-distance contribution to the
Kþ → πþνν̄ decay amplitude with a pion mass of mπ ¼
420 MeV and with a charm quark of mass mMS

c ð2 GeVÞ ¼
863 MeV. The main results have previously been reported
in Ref. [1]. In this longer version we give the details
explaining how the bilocal hadronic matrix elements are

evaluated and how the three main technical difficulties can
be overcome. These are

(i) the treatment of the additional ultraviolet divergen-
ces which arise in second order perturbation theory
when two local operators approach each other;

(ii) the subtraction of the unphysical terms which appear
in Euclidean space and which grow exponentially
with the temporal extent of the region of integration
over the separation between the two local operators;

(iii) the correction for potentially large, i.e., nonexpo-
nential, finite-volume effects.

By using 800 gauge configurations, the statistical uncer-
tainty of the lattice result for Pc is reduced to sub-percent
level. We also make an analysis of the systematic errors,
which gives us some guidance on how to control these
uncertainties in future calculations. A curious feature of our
results is that there is a very significant cancellation
between the contributions from the WW and Z-exchange
diagrams to Pc − PPT

c , see Fig. 11 and the related dis-
cussion. It will be very important and interesting to see if
such a cancellation persists as the masses of the quarks are
changed towards their physical values in the future sim-
ulations discussed below.
Because of the unphysical quark masses used in this

simulation, it is premature to compare our current lattice
result with perturbative calculations [9] and the estimate of
LD effects from Ref. [2]. The technique presented in this
work can readily be generalized to a future realistic
calculation. Such a simulation requires both a small lattice
spacing to accommodate a physically heavy charm quark,
and a large volume to accommodate physically light pions.
We foresee that within four years adequate resources will
become available to make such a calculation possible with
controlled systematic errors.
We end the discussion with our more immediate plans.

We are currently performing a calculation with a lighter
pion mass, mπ ¼ 170 MeV, on a 323 × 64 ensemble. This
will help us to control the uncertainty from the unphysical
pion mass of 420 MeV which we are currently using and
provide information about the ðΔ; sÞ momentum depend-
ence since the allowed momentum region will be larger.
To include the physical charm quark mass, a fine lattice

spacing is required. We are planning to use a 643 × 128
ensemble with an inverse lattice spacing of 1=a ¼
2.38 GeV and with physical values for the light, strange
and charm quark masses. As mentioned above, accurate
results with a complete systematic error budget should be
available within three to four years, which matches well
with the experimental schedule to measure precisely the
Kþ → πþνν̄ branching ratio.
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APPENDIX A: FREE LEPTON PROPAGATOR
USING THE OVERLAP FORMALISM

The internal lepton is treated as an overlap fermion in
this calculation. We employ the overlap quark action from
Refs. [56,57], with the Dirac operator defined as

Dð0Þ ¼ ρð1þ γ5sgn½HWð−ρÞ�Þ; HW ¼ γ5DW

DðmÞ ¼
�
1 −

m
2ρ

�
Dð0Þ þm; ðA1Þ

where DW is the Wilson Dirac operator. Here we set the
Wilson parameter r ¼ 1. The parameter ρ introduced into
the overlap fermion action is equivalent to the five-dimen-
sional domain wall height M5 in the domain wall fermion
action. m is the lepton mass.
It is useful to write the propagator of the free overlap

fermion in momentum space

SðpÞ ¼ 1

2

ðρ − m
2
ÞX†ðpÞ þ ðρþ m

2
ÞωðpÞ

ðρ2 þ m2

4
ÞωðpÞ þ ðρ2 − m2

4
ÞbðpÞ ; ðA2Þ

where

XðpÞ ¼ i
X
μ

γμ sinpμ þ r
X
μ

ð1 − cospμÞ − ρ

bðpÞ ¼ r
X
μ

ð1 − cospμÞ − ρ

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
μ

sin2pμ þ
�
r
X
μ

ð1 − cospμÞ − ρ

�
2

s
: ðA3Þ

When 0 < ρ < 2r there is no pole at p4 ¼ π þ iE, since

bðpÞ ¼
�
rð1þ coshEÞ þ r

X
i

ð1 − cospiÞ − ρ

�
> 0

ðA4Þ
and the constraint ωðpÞ þ bðpÞ ¼ 0 (corresponding to the
massless case) cannot be satisfied. Thus the fermion

doubling problem is solved and the correct spectrum of
massless fermions is obtained in the range 0 < ρ < 2r. We
therefore only need to consider the pole at p ¼ ðp; iEaÞ,
which satisfies the relation

X
μ

sin2pμ ¼ −
ρ2m2

ðρ2 þm2=4Þ2 b
2ðpÞ≡ −m̄2b2ðpÞ: ðA5Þ

We next perform the Fourier transform in the time
direction and convert the propagator to the momentum-
time representation

Sðp; tÞ ¼
Z

π

−π

dp4

2π
Sðp; p4Þeip4t: ðA6Þ

Here the integral
R
π
−π

dp4

2π is used to obtain the propagator
with infinite time extension. Sðp; tÞ can be determined
using Cauchy integration. Note that the square root in ωðpÞ
brings in two branch cuts, one from a starting pointþiEb to
þi∞ and the other from −iEb to −i∞, where p ¼ ðp; iEbÞ
is the zero of ωðpÞ. So the contour of the Cauchy integral
should exclude these branch cuts as shown in Fig. 12. For
t > 0 we have

Z
π

−π

dp4

2π
fðp4Þ ¼ iresffgp4¼iEa

þ
Z þi∞þϵ

þiEbþϵ

dp4

2π
fðp4Þ

−
Z þi∞−ϵ

þiEb−ϵ

dp4

2π
fðp4Þ; ðA7Þ

with fðp4Þ ¼ Sðp; p4Þeip4t. In the first term on the right-
hand side resffgp4¼iEa

is the residue of fðp4Þ at the pole
p4 ¼ iEa. For t < 0, we can choose the contour along the
branch cut −iEb to −i∞ to determine Sðp; tÞ.

-π, i 0

-π, i ∞ π, i ∞

π, i 0

(0, i E
a
)

(0, i E
b
)

line 1

2

3

45

6

7

overlap fermion, contour integral

FIG. 12. Line 1 is the contour of the integral on the left-hand
side of Eq. (A7) for p ¼ 0. For t > 0, we close the contour in the
upper-half plane picking up the residue of the pole at p4 ¼ iEa
and the contributions from the cut starting at ð0; iEBÞ leading to
the three contributions on the right-hand side of Eq. (A7).
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The propagator Sðp; tÞ can be written in two parts: the
residue of the pole at p4 ¼ �iEa, Saðp; tÞ, and the
contribution from the branch cuts, Sbðp; tÞ. We first focus
on the contribution from the pole and find

Saðp; tÞ ¼
CðsgnðtÞ sinhEaγt − i

P
i sinpiγiÞ þM

2E
e−Eajtj;

ðA8Þ
with

coshEa ¼
m̄2rðρ − r − r

P
ið1 − cospiÞÞ þ U

1 − m̄2r2

E ¼ sinhEa

ρ

�
ρ2 þm2

4

�
U

ωðp; iEaÞ

U2 ¼ m̄2

�
ρ − r − r

X
i
ð1 − cospiÞ

�
2

þ ð1 − m̄2r2Þ
�
1þ

X
i

sin2pi

�

C ¼ 1 −
m
2ρ

M ¼ m
ρþm=2

ωðp; iEaÞ: ðA9Þ

In order to achieve OðaÞ improvement the propagator is
modified as follows:

Ŝðp; tÞ ¼
�
1 −

Dð0Þ
2ρ

�
Sðp; tÞ ¼ 1

C
Sðp; tÞ − 1

2ρ −m
:

ðA10Þ
This modification cancels the coefficient C in Sðp; tÞ. The
mass term M and 1=ð2ρ −mÞ do not contribute to this
calculation because of the V − A structure of the two weak
operators. We therefore write the modified propagator
Ŝaðp; tÞ as

Ŝaðp; tÞ ∼
sgnðtÞ sinhEaγt − i

P
i sinpiγi

2E
e−Eajtj

¼ sinhEa

E
sgnðtÞ sinhEaγt − i

P
i sinpiγi

2 sinhEa
e−Eajtj:

ðA11Þ
We define the wave function normalization factor by Zl ¼
sinhEa

E jp¼0. As the lepton mass approaches 0, Zl → 1. For

large lepton masses, e.g., when l ¼ τ, we multiply Ŝaðp; tÞ
by Z−1

l in order to make the propagator have a closer form
to the continuum one. Another subtlety is that at p ¼ 0, the

energy Ea deviates from the input mass parameter m. For
ρ ¼ r ¼ 1, we have

m ¼ 2 tan h
Ea

2

���
p¼0

: ðA12Þ

We tune the parameter m for each lepton, e, μ and τ, to
ensure that the pole mass Ea at p ¼ 0 takes the physical
value of the mass of the lepton.
The branch-cut contribution is suppressed at large t. Its

integral representation is

Sbðp; tÞ¼
Z

∞

Eb

dE
2π

ðρ−m=2Þðρ2þm2=4ÞωsinhE
ðρ2þm2=4Þ2ω2þðρ2−m2=4Þ2b2 e

−Ejtj:

ðA13Þ

APPENDIX B: EVALUATION OF RI→MS
CONVERSION FOR THE BILOCAL

OPERATOR: YABðμ;μ0Þ
In this Appendix we evaluate the amputated Green’s

function in Eq. (63) using naive dimensional regularization
(NDR) with a fully anticommuting γ5. The external
momentum pi are given by Eq. (62). Since the external
legs are amputated, atOðα0sÞ only the momentum p ¼ ploop

enters as a parameter in the 4-momentum integral.
For the W-W diagram, we have

ΓWWðpÞ ¼ ΓWW
u ðpÞ − ΓWW

c ðpÞ where ðB1Þ

ΓWW
q ðpÞ≡ με

Z
dDk
ð2πÞD γLμSqð−kÞγLν ⊗ γLμSlðkþ pÞγLν ;

ðB2Þ
D is the number of space-time dimensions, ε ¼ 4 −D and
the factor με ensures that ΓWW

q has the correct dimensions.
In the integrand on the right-hand side of Eq. (B2) SqðkÞ ¼

1

i=kþmq
is the quark propagator with q ¼ u, c and SlðkÞ ¼

1

i=kþml
is the lepton propagator. The gamma matrix γLμ (γRμ ) is

defined as γLμ ≡ γμð1 − γ5Þ (γRμ ≡ γμð1þ γ5Þ).
As a result of the GIM cancellation in Eq. (B1), ΓWWðpÞ

is logarithmically divergent (ΓWW
u and ΓWW

c are separately
quadratically divergent). The standard way to evaluate ΓWW

q

requires the use of the γ matrix algebra in the D dimension.
However, if we perform the subtraction ΔΓWW ≡
ΓWWðpÞ − ΓWWð0Þ then ΔΓWW is a finite quantity. We
can then let D → 4 and calculate ΔΓWW directly using the
4-dimensional γ-matrix algebra.
The conversion term YWW

AB ðμ; μ0Þ is given by

YWW
AB ðμ; μ0Þ ¼ με

Z
dDk
ð2πÞD

Tr½γLμSuð−kÞγLν γRρ �Tr½γLμSlðkþ pÞγLν γRρ �
Tr½γLμ γRρ �Tr½γLμ γRρ �

− fu → cg; ðB3Þ
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where μ20 ¼ p2
i . Here we retain our general notation with

the operators denoted by A and B on the left-hand side, but
with the specific operators for the W-W diagrams included
on the right-hand side [see Eq. (18)].

At zero external momentum YWW
AB ðμ; 0Þ ¼ rWW

AB ðμÞ,
where rWW

AB ðμÞ is given by Eq. (80). The difference between
YWW
AB ðμ; μ0Þ and YWW

AB ðμ; 0Þ is finite and we evaluate it at
order Oðα0sÞ:

ΔYWW
AB ðμ; μ0Þ≡ YWW

AB ðμ; μ0Þ − YWW
AB ðμ; 0Þ

¼ 16½ðI1ð0; ml; pÞ − I1ðmc;ml; pÞÞ − ðI1ð0; ml; 0Þ − I1ðmc;ml; 0ÞÞ�; ðB4Þ

where p2 ¼ μ20 and

I1ðm1; m2; pÞ≡ 1

16π2

Z
1

0

dxðΔ − AÞ ln Δ
μ2

; ðB5Þ

x is a Feynman parameter, Δ ¼ xð1 − xÞp2 þ xm2
1 þ ð1 − xÞm2

2 and A ¼ 2xðx − 1Þp2 − xm2
1 − ð1 − xÞm2

2.
For the Z-exchange diagram with the insertion of the axial vector current, we evaluate the amputated Green’s function

writing

ΓZ;A ¼ ΓZ;A
u − ΓZ;A

c

ΓZ;A
q ¼

8<
:

qAμε
R

dDk
ð2πÞD γ

L
μSqðkþ pÞγνγ5SqðkÞγLμ ⊗ γLν ; for theQ2 operator

−qAμε
R

dDk
ð2πÞD Tr½γLμSqðkþ pÞγνγ5SqðkÞ�γLμ ⊗ γLν ; for theQ1 operator

ðB6Þ

where qA ¼ −Tu
3 ¼ − 1

2
and Tu

3 is the weak isospin for the up-type quarks.
Performing the projection and evaluating ΔYZ;A

AB ≡ YZ;A
AB ðμ; μ0Þ − YZ;A

AB ðμ; 0Þ, we find

ΔYZ;A
AB ¼

�
2qA½ðI2ð0; pÞ − I2ðmc; pÞÞ þ I2ðmc; 0Þ�; for theQ2 operator

2qANc½ðI2ð0; pÞ − I2ðmc; pÞÞ þ I2ðmc; 0Þ�; for theQ1 operator
ðB7Þ

where

I2ðm;pÞ ¼ 1

16π2

Z
1

0

dx½3xð1 − xÞp2 þ 4m2� ln xð1 − xÞp2 þm2

μ2
: ðB8Þ

For the insertion of the vector current, we can simply replace γνγ5 → γν and qA → qV ¼ Tu
3 − 2Qem;u sin2 θW in Eq. (B6),

where Qem;u is the electric charge for up-type quarks and θW is the Weinberg angle. We have

ΔYZ;V
AB ðμ; μ0Þ ¼

�−2qV ½ðI3ð0; pÞ − I3ðmc; pÞÞ þ I3ðmc; 0Þ�; for theQ2 operator

−2qVNc½ðI3ð0; pÞ − I3ðmc; pÞÞ þ I3ðmc; 0Þ�; for theQ1 operator
ðB9Þ

where

I3ðm;pÞ ¼ 1

16π2

Z
1

0

dx3xð1 − xÞp2 ln
xð1 − xÞp2 þm2

μ2
: ðB10Þ

Note that the contributions to ΔYAB are finite and log μ2 cancels in each of the expressions in Eqs. (B4), (B7) and (B9) at
lowest order.
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At large RI/SMOM scales, we have

ΔYWW
AB ðμ;μ0Þ ⟶

μ2
0
≫m2

c m2
c

π2

�
−
xl lnxl
1− xl

− ln
μ20
m2

c

�

ΔYZ;A
AB ðμ;μ0Þ⟶

μ2
0
≫m2

c m2
c

4π2

�
−
5

4
þ ln

μ20
m2

c

�
; for theQ2 operator

ΔYZ;V
AB ðμ;μ0Þ⟶

μ2
0
≫m2

c
qV

3

8

m2
c

π2
; for theQ2 operator: ðB11Þ

For the Z-exchange diagram, the results for theQ1 operator
are obtained by simply multiplying those for the Q2

operator in Eq. (B11) by a factor of Nc.
Combining ΔYABðμ; μ0Þ with rMS

AB ðμÞ and taking μ0 ¼ μ
we have

YWW
AB ðμ; μ0Þjμ¼μ0

⟶
μ2
0
≫m2

c 5

4

m2
c

π2

YZ;A
AB ðμ; μ0Þjμ¼μ0

⟶
μ2
0
≫m2

c
−

1

16

m2
c

π2
; for theQ2 operator

YZ;V
AB ðμ; μ0Þjμ¼μ0

⟶
μ2
0
≫m2

c
qV

3

8

m2
c

π2
; for theQ2 operator:

ðB12Þ

APPENDIX C: FINITE VOLUME EFFECTS IN
THE W-W DIAGRAMS

We rewrite the expression in Eq. (92) in a more general
form:

IFV ¼ IðLÞ − Ið∞Þ ¼
�
1

L3

X
k⃗

Z
dk4
2π

− P
Z

d4k
ð2πÞ4

�

×
fðk0;kÞ

ðk2 þm2
1ÞððP − kÞ2 þm2

2Þ
; ðC1Þ

where P ¼ pK − pν, m1 ¼ mπ and m2 ¼ ml̄ in our cal-
culation. For the moving frame (P ≠ 0) and nonidentical
particles (m1 ≠ m2), the finite volume correction can be
written as

IFV ¼ 1

2E�
X
lm

f�lmðp�ÞcPlmðp�Þ ðC2Þ

where the superscript � indicates the center-of-mass frame.
The energy E� is the total energy in the center-of-mass
frame, satisfying E�2 ¼ P2

0 − P2, where the Minkowski and

Euclidean energies, P0 and P4 respectively, are related
by P0 ¼ −iP4. The momentum p� satisfies the on-shell
condition E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p�2p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p�2p
. The Lorentz

boost factor γ is given by γ ≡ P0=E�. Under the Lorentz
transformation from the moving frame to the center-of-
mass frame, the function fðkÞ changes as fðkÞ → f�ðk�Þ.
The potentially large finite volume effects appear when the
two particles in the intermediate state are both on-shell. In
this case, the function fðkÞ corresponds to the on-shell
physical transition and thus is Lorentz invariant:
fðkÞ ¼ f�ðk�Þ. In Eq. (C2) f�lmðk�Þ is coefficient in the
partial wave expansion of the function f�ðk�Þ:

f�ðk�Þ ¼
X
lm

f�lmðk�Þk�lYlmðΩk� Þ; k� ≡ jk�j ¼ p�: ðC3Þ

The function cPlmðp�Þ is given by [58,59]

cPlmðp�Þ ¼ 1

γ

�
1

L3

X
k∈2π

Ln

− P
Z

d3k
ð2πÞ3

� jk̂jlYlmðΩk̂Þ
jk̂j2 − p�2 ; ðC4Þ

where the momentum k̂ is defined as

k̂ ¼ γ−1
�
kk −

P
2

�
1þm2

1 −m2
2

E�2

��
þ k⊥;

kk ¼
k · P
jPj2 P; k⊥ ¼ k − kk: ðC5Þ

The subscripts k and ⊥ refer to parallel to and
perpendicular to P respectively. Each of the two terms
in Eq. (C4) is separately ultraviolet divergent but the
difference is convergent. The divergence can be regulated
by introducing an exponential factor eαðp�2−jk̂j2Þ with α > 0
to the summand/integrand in Eq. (C4). By using the heat
kernel method proposed by Lüscher [60], one can evaluate
cPlmðp�Þ in the limit of α → 0þ.
Once cPlmðp�Þ is determined, the remaining task is to

evaluate f�lmðk�Þ. The scalar amplitude fðkÞ is defined
from the transition amplitude

AKþ→π0lþν ¼ iAKþ→π0
α ðpK; kÞAπ0→πþ

β ðk; pπÞūðpνÞ
× γαð1 − γ5ÞðP − =kÞγβð1 − γ5Þvðpν̄Þ

¼ ifðkÞūðpνÞpKð1 − γ5Þvðpν̄Þ: ðC6Þ

The scalar amplitude fðkÞ is then obtained fromAKþ→π0lþν
through the projection

fðkÞ ¼ Tr½=AKþ→π0ð1 − γ5ÞðP − =kÞ=Aπ0→πþð1 − γ5Þpν̄pKð1 − γ5Þpν�
Tr½pKð1 − γ5Þpν̄pKð1 − γ5Þpν�

: ðC7Þ
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We now make the following approximations: AKþ→π0
α ðpK; kÞ ≃ iðpK þ kÞα and Aπ0→πþ

β ðk; pπÞ ≃ iðpπ þ kÞβ, which
correspond to setting the Kl3 and pion form-factors to 1. (In future simulations with physical quark masses these
approximations can be relaxed by using the measured or computed form factors at the corresponding momentum transfers.)
After performing the Lorentz boost, we have

f�ðk�Þ ¼ −2Tr½ðp�
K þ =k�ÞðP� − =k�Þðp�

π þ =k�Þð1 − γ5Þp�̄
νp

�
Kð1 − γ5Þp�

ν�
Tr½p�

Kð1 − γ5Þp�̄
νp

�
Kð1 − γ5Þp�

ν�
: ðC8Þ

Finally, after performing the partial wave expansion for f�ðk�Þ, the finite volume corrections are given by Eq. (C2).
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