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We study the density of states method as well as reweighting to explore the low temperature phase
diagram of QCD at finite baryon chemical potential. We use four flavors of staggered quarks, a tree-level
Symanzik-improved gauge action, and four stout smearing steps on lattices with Ns ¼ 4, 6, 8 and
Nt ¼ 6–16. We compare our results to that of the phase quenched ensemble and also determine the pion
and nucleon masses. In the density of states approach, we apply pion condensate or gauge action density
fixing. We find that the density of states method performs similarly to reweighting. At T ≈ 100 MeV,
we find an indication of the onset of the quark number density at around μ=mN ∼ 0.16–0.18 on 64 lattices
at β ¼ 2.9.
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I. INTRODUCTION

Understanding the phase diagram of QCD is important
for high energy physics, nuclear physics and astrophysics
as well. Lattice QCD provides reliable information about
QCD in nonperturbative regions and was used e.g., to
determine the nature of the chiral phase transition at zero
density, which was found to be an analytic crossover [1].
Applying lattice QCD to finite baryon density, however, is
hindered by the so-called sign problem. The introduction of
nonzero baryon chemical potential makes the Boltzmann
factor appearing in the path integral complex, and thus the
standard Monte Carlo algorithm based on importance
sampling cannot be applied. To circumvent this problem,
several methods have been devised. However, these meth-
ods seem to have a limited range of applicability in their
present status. For a review, see Refs. [2–9].
In this paper, we study the density of states method

(DoS), which was proposed in Ref. [10] for the three-
dimensional Ising model. Briefly, the method advises the
calculation of the histogram of the energy by using con-
strained simulations. Using the results of these constrained

simulations, one can then build the histogram and use it to
calculate the expectation values of other observables as
well. We will discuss the method in detail in Sec. II. Soon
after its proposal, it was applied for models with complex
actions [11] and also to finite density QCD at infinite gauge
coupling in Ref. [12]. Later, the method was used to gain
information on the phase structure of QCD at finite gauge
couplings. Reference [13] studied the flavor number
dependence of the results with this method at zero chemical
potential. In Ref. [14], the method was used in four-flavor
staggered QCD mainly at 44, 64 lattices at various quark
masses, using the Wilson(/plaquette) action, while Ref. [15]
used the method for two flavors of p4-improved staggered
quarks at 163 × 4 lattices. However, both works used certain
approximations.
Besides studying QCD, the method was used and

thoroughly investigated in other models like compact
QED [16], random matrix models [17–20], Z(N) spin
models [21–23], SU(2) and U(1) models [24], two-color
heavy-quark QCD [25], the SU(3) model with static color
charges [26], etc. In recent years, new improvements, like
the LLR algorithm [24] and the functional fit approach [22]
have been developed. The former uses an iterative pro-
cedure, while the latter a sequence of one-parameter fits to
reduce the statistical error of the histogram.
In our present work, we employ the DoS for QCD with

Nf ¼ 4 flavors of staggered quarks. Besides applying
it in its standard form without any approximations, we
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investigate also the possibility of improving the results
based on insights from the expected low temperature
behavior of QCD.
It has been known for a long time (see e.g., Ref. [27])

that in zero temperature QCD at finite baryon chemical
potential (QCDB), the quark number density should be
zero until the quark chemical potential (μ) reaches the first
excitation energy, MN=3 − EB. Here, MN is the mass of
the lightest baryon, the nucleon, and EB is the binding
energy of nuclear matter. Early attempts to reproduce this
phenomenological expectation have revealed that the
onset is at a lower chemical potential, around mπ=2
[28]. It is also believed that the sign problem becomes
severe if μ goes beyond mπ=2. In order to clarify this
conflict, several attempts have been made [29–35]. These
works used either reweighting from μ ¼ 0 or the quenched
or the phase quenched approximations. However, the
phase quenched theory is equivalent to QCD at finite
isospin chemical potential (QCDI) [36,37], while the
quenched theory is the zero-flavor limit of this. The onset
at μ ¼ mπ=2 can then be interpreted as the consequence of
pion condensation in QCDI . In other words, by doing a
phase quenched simulation at μ > mπ=2, the ground state
of the phase quenched theory is very different from the
ground state of the full theory, since in the former case
pion condensation takes place above mπ=2 while in the
full theory no pion condensation should occur. Thus, in
this case, one generates unimportant configurations when
one uses the phase quenched ensemble as the “source”
ensemble for reweighting to “target” ensemble QCD at
baryon chemical potential. To overcome this difficulty, we
mention a particular idea, that was proposed in random
matrix theory (RMT) [20], where the situation is very
similar to the case of QCD. Reference [20] states that
doing constrained simulations and suppressing the pion
condensation reduces the overlap problem and makes the
sign problem milder in RMT. We investigate whether
similar improvements can cure the problems in QCD, and
we focus primarily on the low temperature region of the
phase diagram.
The organization of the paper is as follows. In Sec. II,

we first review the density of states method in general
(Sec. II A), then discuss the method applied for QCD and
also give the definitions of the lattice actions and observ-
ables we use (Secs. II B and II C). In Sec. III, we present
our numerical results regarding the density of states method
and compare it to the results of reweighting from the phase
quenched theory. Section IV contains the conclusions.

II. DENSITY OF STATES METHOD

A. Formulation of the method

Suppose we have an arbitrary quantum field theory with
quantum fieldsΦ and action S½Φ�. Then, in the path integral
formalism, the partition function is

Z ¼
Z

DΦe−S½Φ�; ð1Þ

where all fields are symbolized with Φ in this compact
notation. So, in the case of QCD, we include gauge and
fermion fields in Φ as well. Now, we can insert a real
Gaussian integral in the path integral since it changes only
the overall normalization of the integral

Z ¼
Z

DΦe−S½Φ�N
Z

dxe−
γΩ
2
ðQ½Φ�−xÞ2 ; ð2Þ

where we parametrized the Gaussian with γ and x and Ω is
the 4-volume of the system. N ∝

ffiffiffiffiffiffi
γΩ

p
is an irrelevant

normalization factor, and the operator Q can be any
operator of the theory. Interchanging the order of integra-
tions, we can write

Z ¼
Z

dx
Z

DΦNe−S½Φ�−γΩ
2
ðQ½Φ�−xÞ2 : ð3Þ

Then, if Q is chosen to be the energy and γ → ∞, the
Gaussian approximates a Dirac-δ, and the second integral
gives what is conventionally called in condensed matter
physics the density of states. The partition function then
naturally shows up as the integral of the density of states
over all possible values of the energy. It is also common to
call the second integral of Eq. (3) the density of states for a
finite value of γ and any operator Q.
Naturally, when doing Monte Carlo simulations, we use

a finite value of γ, and one can think of the exponent of the
Gaussian as a potential term added to the action. This term
then constrains the value of Q close to the minimum of that
potential, which is likely to be near x, when γ is large
enough.
For our purposes, we need to be even more general to

include a reweighting factor in the method to use it for
nonreal actions. We can write expf−S½Φ�g ¼ w½Φ�g½Φ�,
where we isolate a positive part g½Φ�, that can be used for
Monte Carlo simulations. Then, the definition of the
density of states is

ρðxÞ ¼
Z

DΦg½Φ�e−γΩ
2
ðQ½Φ�−xÞ2 : ð4Þ

Expectation values can then be written as

hOi ¼ 1

Z

Z
DΦe−S½Φ�O½Φ�

¼
R
DΦO½Φ�w½Φ�g½Φ� R dxe−

γΩ
2
ðQ½Φ�−xÞ2R

DΦw½Φ�g½Φ� R dxe−
γΩ
2
ðQ½Φ�−xÞ2

¼
R
dxρðxÞhOwixR
dxρðxÞhwix

; ð5Þ
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where the expectation value with the subscript x refers to
the expectation value in the constrained ensemble with that
specific x value, according to

hAix ¼
1

ρðxÞ
Z

DΦA½Φ�g½Φ�e−γΩ
2
ðQ½Φ�−xÞ2 ð6Þ

for an operator A. As one can observe, ρðxÞ is the partition
function in the constrained ensemble with weight g½Φ�. As
was mentioned above, in the limit γ → ∞, ρðxÞ measures
the histogram of the operator Q. Direct measurement of
the histogram would be very challenging as rarely visited
bins will have very bad signal-to-noise ratio [the statistical
errors are proportional to

ffiffiffiffiffiffiffiffiffi
ρðxÞp

]. Using finite γ means a
smearing of the histogram on the scale 1=γ. For a large
enough value of γ, ρðxÞ will have a maximum (or several
maxima) around the expectation value of Q without the
fixing term and quickly decays around that. We can,
however, measure ρðxÞ also through its logarithmic
derivative

∂
∂x ln ρðxÞ ¼ hγΩðQ − xÞix ð7Þ

by carrying out simulations at various x values. Using this
method, we get ρðxÞ with exponentially reduced errors as
compared to the direct measurement of the histogram.

B. Lattice actions and observables

The system we are interested in is QCD at finite chemical
potential using Nf flavors of staggered fermions, defined
by the partition function

ZB ¼
Z

DUe−Sg½U� detð=DðμÞ þmÞNf=4; ð8Þ

where μ is one-third of the baryon chemical potential μB
and Sg½U� is the tree-level Symanzik-improved gauge
action using four smearing steps with ρ ¼ 0.125. [For
simplicity, the lattice spacing a was set to 1 in the notations
of this and the next two sections. The subscript in Eq. (8)
refers to the ensemble in which the partition function or the
expectation value is calculated; i.e., here, B refers to the fact
that a nonzero μB is used.] The gauge observables we
are interested in are the gauge action, the spatial and
temporal plaquette averages, and the spatial average of the
Polyakov loop

hPiB ¼ 1

N3
s

�X
n
LðnÞ

�
B

¼ 1

N3
s

�X
n
Tr

YNt−1

n4¼0

U4ðn; n4Þ
�

B

: ð9Þ

The Dirac matrix MðμÞ ¼ =DðμÞ þm satisfies the γ5-
Hermiticity,

Mð−μÞ ¼ γ5MðμÞþγ5; ð10Þ
where for the staggered operator the γ5 matrix is repre-
sented by η5 ¼ ð−1Þnxþnyþnzþnt, where the nis are the lattice
site indices. From among the fermionic observables, we
study the quark number density and the chiral condensate
density, defined as

hniB ¼ T
V
∂ lnZB

∂μ ¼ T
V

Nf

4

�∂ ln detMðμÞ
∂μ

�
B
;

hψ̄ψiB ¼ T
V
∂ lnZB

∂m ; ð11Þ

respectively. The quark number density needs no renorm-
alization, while the chiral condensate should be renormal-
ized, both multiplicatively and additively. However, in the
present paper, we do not carry out the continuum limit;
thus, we do not need to carry out the renormalization.
As was mentioned earlier, we cannot directly simulate

the theory defined by Eq. (8) with the Hybrid Monte Carlo
algorithm (HMC). Thus, for generating configurations,
we need to change either the algorithm or the integration
measure and in this latter case use reweighting in the
DoS formulation. We proceed with this latter option and
choose the phase quenched ensemble for generating con-
figurations. The phase quenched partition function can be
written as

ZIðλ¼ 0Þ

≡
Z

DUe−Sg½U�jdetð=DðμÞ þmÞjNf=4

¼
Z

DUe−Sg½U� detðð=DðμÞ þmÞ†ð=DðμÞ þmÞÞNf=8

¼
Z

DUe−Sg½U� detð=DðþμÞ þmÞNf=8 detð=Dð−μÞ þmÞNf=8;

ð12Þ

where, for the last equality, γ5-Hermiticity [Eq. (10)] was
used. According to the last line of Eq. (12), the phase
quenched theory is equivalent to the theory with Nf=2
flavors having þμ and Nf=2 flavors having −μ chemical
potentials, i.e., to QCD at isospin chemical potential.
However, the above integration measure is not strictly
positive; it can be zero as well [38].
Therefore, in Monte Carlo simulations, we use the

following partition function [39],

ZIðλÞ ¼
Z

DUe−Sg½U� detð=Dðτ3μÞ þmþ iλη5τ2ÞNf=8

¼
Z

DUe−Sg½U� detðM†ðμÞMðμÞ þ λ2ÞNf=8; ð13Þ
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where we have included a “pion source” λ, which renders
the determinant strictly positive. Here, the τi denotes the
Pauli matrices acting in flavor space, and η5ðxÞ is the
“staggered γ5” defined earlier. The flavor off-diagonal term
comes from the introduction of the λψ̄η5τ2ψ term in the
action before integrating out fermions, where ψ̄η5τ2ψ is
proportional to the operator of the pion condensate. Due to
nonzero λ, this off-diagonal term explicitly breaks the
subset of chiral symmetry, that remained after the intro-
duction of the isospin chemical potential. The expectation
values calculated in the above ensemble are denoted as
h:iI;λ. The probability density of Eq. (13) is used for the
HMC simulations both when generating configurations for
reweighting to QCDB and in the density of states method
as well, completed with a constraining factor in this latter
case (see below).
In order to study the effect of explicit isospin symmetry

breaking on the theory and properly define the pion
condensate in QCD with baryon chemical potential, we
introduce

ZBðλÞ ¼
Z

DUe−Sg½U� detð=DðμÞ þmþ iλη5τ2ÞNf=8

¼
Z

DUe−Sg½U� detðM†ð−μÞMðμÞ þ λ2ÞNf=8; ð14Þ

which is the partition function of QCD at baryon chemical
potential with explicit isospin symmetry breaking, due to
finite λ. This theory is referred to as QCDB;λ. With the help
of Eqs. (13) and (14), the pion condensate operators of
QCDI;λ and QCDB;λ are

hπiI;λ ¼
T
V
∂ lnZIðλÞ

∂λ
¼ T

V

Nf

8
2λhTrðMðμÞ†MðμÞ þ λ2Þ−1iI;λ; ð15Þ

hπiB;λ ¼
T
V
∂ lnZBðλÞ

∂λ
¼ T

V

Nf

8
2λhTrðMð−μÞ†MðμÞ þ λ2Þ−1iB;λ; ð16Þ

respectively. Somewhat surprisingly, these two operators
differ from each other. This is just a simple consequence
of integrating out fermions. Similarly, other observables
that are derived with the help of the determinants differ
from each other in QCDB;λ and QCDI;λ. Besides the pion
condensate, we study here the behavior of the quark
number density in QCDB;λ, which is defined as

hniB;λ ¼
T
V
∂ lnZBðλÞ

∂μ
¼ T

V

Nf

8

�∂ ln detðMð−μÞ†MðμÞ þ λ2Þ
∂μ

�
B;λ

: ð17Þ

C. Choosing the operator to constrain

Aswas discussed in Sec. II, the physics of the system to be
studied can give useful hints as to what operators could be
useful to include in the fixing term. In particular, inQCDB, the
Silver Blaze phenomenon indicates that at low temperatures
the vacuum state should persist until the quark chemical
potential hits roughly the third of the nucleon mass. In the
phase quenched (or QCDI;λ) simulation, however, configu-
rations with large pion condensate will occur when μ is over
half of the pionmass. Their contribution in the observable has
to cancel out eventually, and this may require huge statistics.
By naive reweighting from QCDI;λ, one cannot really avoid
these configurations. Fixing the pion condensate to values
near zero, however, could help suppress the occurrence
of such undesirable configurations. Moreover, according to
the results that will be presented later, there is a nonzero
correlation between the pion condensate and the gauge action
density (see Fig. 5), which poses the idea of testing the DoS
with fixing the latter alone as well. Therefore, in this study,
we have applied the DoS formulation with fixing the pion
condensate or the gauge action density. The implementation
of the fixing for thegauge action density is straightforward, so
we turn to the pion condensate.
As was mentioned, the operators for measuring the pion

condensate in QCDB;λ and QCDI;λ differ: hπiI;λ is real,
while hπiB;λ is complex in general, which makes the latter
more complicated to constrain. Here, we do not elaborate
on this question and continue with constraining the pion
condensate of QCDI;λ.
Usually, traces in lattice QCD are calculated stochasti-

cally, according to

TrA ≈
1

Nv

XNv

i¼1

ηðiÞ†AηðiÞ; with
1

Nv

XNv

i¼1

ηðiÞ�j ηðiÞk ≈ δjk;

ð18Þ

where j and k label the components of the noise vector ηðiÞ
and Nv denotes the number of noise vectors. Applying
this formula for the pion condensate would be very
expensive, if one would like to use it to reach reasonable
precision when calculating the action for the accept/reject
steps. We can overcome this problem with the help of the
Npf complex scalar fields (also called pseudofermion
fields) that are used in the calculation of the determinant.
The determinant of Eq. (13) is represented with these fields
in the following way:

detðM†ðμÞMðμÞþλ2ÞNf=8

∝
Z YNpf

j¼1

Dϕ†
jDϕjexp

�
−
XNpf

j¼1

ϕ†
jðM†ðμÞMðμÞþλ2Þ−

Nf
8Npfϕj

�
:

ð19Þ
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Usually, the ϕj scalar fields are refreshed at the beginning
of each trajectory in the HMC algorithm, as they appear
only quadratically and can thus be conveniently generated
with the above distribution. We can use Eq. (19) to give
another expression for the pion condensate:

hπϕiI;λ
¼ T

V

∂ lnZI;ϕðλÞ
∂λ

¼ T
V

�
Nf

8Npf
2λ

XNpf

j¼1

ϕ†
jðMðμÞ†MðμÞ þ λ2Þ−

Nfþ8Npf
8Npf ϕj

�
I;λ

:

ð20Þ
Note that in Eq. (20) ZI;ϕðλÞ is equivalent to ZIðλÞ

[Eq. (13)], the only difference being that the determinant is
represented with pseudofermion fields in the former case.
We can now include this operator in the constraining term
of Eq. (3). In this case, the pseudofermionic fields no longer
appear quadratically; thus, a refreshment at the beginning
of each trajectory using the heatbath is no longer possible.
We use them as dynamical fields in the HMC evolution.
We note that the operators from (15) and (20) do not give

explicitly the same result on a given configuration, only do
so when the number of noise vectors and the number of
pseudofermions goes to infinity.

D. Reweighting

Before presenting the results, we briefly overview here
the reweighting formulas which we use in the DoS and for
comparison as well. For calculating the expectation value of
an operator O in QCDB, we use the following formulas:

ZB ¼ hwBiI;λZIðλÞ; hOiB ¼ hOwBiI;λ
hwBiI;λ

: ð21Þ

Here, ZB and ZIðλÞ are given by Eqs. (8) and (13),
respectively, and wB denotes the weight. The logarithm
of this weight is given by

lnwB ¼ Nf

4

�
ln detMðμÞ− 1

2
ln detðMðμ0Þ†Mðμ0Þ þ λ2Þ

�
:

ð22Þ
μ0 denotes the chemical potential, where simulations are
carried out and μ is the chemical potential we reweight to.
Since detMðμÞ is complex, its logarithm is defined only up
to an additive 2kπi term, where k is an integer. When
Nf ≠ 4, this means that the weight is not defined unam-
biguously. One possibility is to choose the appropriate k by
demanding the weight to be a continuous function of μ
along the positive real axis [40]; we note, however, that
the correctness of this procedure and more generally the
rooting procedure with and without μ is still, to some
extent, under investigation [41,42]. Nevertheless, the above

ambiguity does not affect our reweighting in the afore-
mentioned case, because we use Nf ¼ 4 in this paper.
But besides that, as was mentioned in Sec. II B, we also

reweight to QCDB;λ at finite λ [Eq. (14)]. We have various
considerations for doing this. First, we would like to
calculate the pion condensate in QCD at finite baryon
chemical potential [Eq. (16)], which can be nonzero on
average at a finite lattice only when one includes the
explicit breaking with λ. Second, we would like to see
whether the effect of the explicit breaking in QCDB;λ can
make any difference when we carry out the λ → 0 extrapo-
lation as compared to reweighting directly to λ ¼ 0. When
reweighting to QCDB;λ at finite λ, the logarithm of the
weight becomes

lnwB;λ ¼
Nf

8
ðln detðMð−μÞ†MðμÞ þ λ2Þ

− ln detðMðμ0Þ†Mðμ0Þ þ λ2ÞÞ: ð23Þ
Thus, in this case, the above-mentioned ambiguity holds
on; hence, we use the continuity of the weights as a
function of λ and μ to choose the appropriate Riemann
sheet. This can be done, however, only if one knows
the analytical dependence of the determinant on μ and λ.
The former is known in the λ ¼ 0 case, due to the
so-called reduction formula [40]. Regarding the λ depend-
ence, we calculated the eigenvalues of Mð−μÞ†MðμÞ and
used these with λ2 shifted to obtain the determinant.
For determining the appropriate Riemann surface of
ln detðMð−μÞ†MðμÞ þ λ2Þ, we fixed the imaginary part
of ln detðMð−μÞ†MðμÞÞ comparing it to 2 ln detMðμÞ—
the latter obtained by the reduction formula—and then used
the same 2kπi term when we calculated with λ via

ln det ðMð−μÞ†MðμÞ þ λ2Þ ¼
X
i

Lnððξi þ λ2ÞÞ þ 2kπi;

ð24Þ

where the ξis are the eigenvalues of Mð−μÞ†MðμÞ and
2kπi ¼ 2Im ln detMðμÞ − Im

P
iLnξi, where Ln is the

logarithm with the imaginary part in between ð−π; πÞ.
One can then use similar formulas as in Eq. (21), but with
the weights of Eq. (23), namely

ZBðλÞ ¼ hwB;λiI;λZIðλÞ; hOiB;λ ¼
hOwB;λiI;λ
hwB;λiI;λ

: ð25Þ

This procedure is quite expensive—the computational cost
is OððN3

sNtÞ3Þ; thus, we carried it out only on our smallest
lattices.
In the DoS formulation, we used the weights of Eq. (22)

or Eq. (23) in the integrals of Eq. (5), when we calculated
the expectation value of an observable O, hOiB or hOiB;λ,
respectively. Moreover, by setting the weights to 1 in
Eq. (5), one can calculate hOiI;λ or hOiI by using
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lnwI ¼
Nf

4

�
ln j detMðμÞj − 1

2
ln detðMðμ0Þ†Mðμ0Þ þ λ2Þ

�
: ð26Þ

hOiI denotes the expectation value of the operator O in QCDI, which is identical to the phase quenched ensemble. Using a
leading order expansion for the weights of Eq. (26) (cf. Ref. [43]), one can rewrite lnwB as

lnwB ¼ ln

�
detMðμÞNf=4

j detMðμ0ÞjNf=4

j detMðμ0ÞjNf=4

detðMðμ0Þ†Mðμ0Þ þ λ2ÞNf=8

�

¼ Nf

4
ln

�
detMðμÞ

ln j detMðμ0Þj
�
þ Nf

8
ln

�
detðMðμ0Þ†Mðμ0Þ þ λ2 − λ2wÞjλ2w¼λ2

detðMðμ0Þ†Mðμ0Þ þ λ2Þ
�

¼ Nf

4
ln

�
detMðμÞ

ln j detMðμ0Þj
�
−
Nf

8

�∂ ln detðMðμ0Þ†Mðμ0Þ þ λ2Þ
∂λ

λ

2
þOðλ4Þ

�

¼ Nf

4
ln

�
detMðμÞ

ln j detMðμ0Þj
�
−
λ

2

V
T
π þOðλ4Þ; ð27Þ

where π is the pion condensate operator in QCDI;λ

[cf. Eq. (15)]. In Eq. (27), we introduced the parameter
λw and performed Taylor expansion in it. On one hand, this
formula shows—at least to leading order in λ—that when
one reweights from QCDI;λ to QCDB, apart from the phase,
a large pion condensate suppresses the weight. On the other
hand, the above formula would be practically useful as
well, because estimating the weight by measuring the pion
condensate is computationally much cheaper than calculat-
ing detðMðμ0Þ†Mðμ0Þ þ λ2Þ. However, unfortunately, we
found that when one reaches the pion condensation region,
the formula is no longer reliable and it overestimates the
actual weights (cf. Ref. [44]). Whether the next term in the
Taylor expansion improves the behavior or not is left for
further study; i.e., we calculate detðMðμ0Þ†Mðμ0Þ þ λ2Þ
directly by Gauss elimination in the following.
We note here that one can take into account the fixing

term with the help of reweighting as well, according to

ZB ¼
�
wB exp

�
γΩ
2

ðQ − xÞ2
��

x
ρðxÞ;

hOiB ¼ hOwB exp fγΩ2 ðQ − xÞ2gix
hwB exp fγΩ2 ðQ − xÞ2gix

; ð28Þ

whereQ is the fixed operator, Ω is the lattice volume, and γ
is a parameter that controls the width of the Gaussian. ρðxÞ
is given by Eq. (4) applied for QCD, with the Φ fields
corresponding to the link variables and g chosen to be the
integrand of ZIðλÞ [see Eq. (13)]. The identities of Eq. (28)
are valid for all x. Although the exponential factor in the
expectation values seems to be quite problematic—since
there is a volume factor in the exponent—we investigate
whether the distribution of Q − x can be narrow enough to
compensate the large γΩ=2 factor. We refer to this approach
as direct reweighting from the constrained ensemble in the

following. If the fluctuation of the exponent could be made
small and ZB as well as hOiB would not depend on x (at
least, for a wide enough interval), then the method may
provide reasonable results without integration in x.
Using this formalism [Eqs. (4)–(7)], we can do simu-

lations based on importance sampling in the constrained
ensemble, and with the help of those results, we can recover
the expectation values in the original ensemble, defined
by Eq. (1).
Since the partition sum can be written as ZB ¼

Trðexpf−ðH − μNÞ=TgÞ and the Hamiltonian H com-
mutes with the particle number operator N, ZB is a sum
of positive numbers ZB ¼ P

n;N expf−ðEn − μNÞ=Tg. As
a consistency or reliability criteria, we demand the DoS as
well as reweighting to provide a positive ZB within at least
two standard deviations. Every observable will inherit the
relative error of ZB, and thus if the measured ZB is not
positive within a few standard deviations, then even the
magnitude of ZB is unclear, and thus the results will be
unreliable.

III. RESULTS

A. Simulation details

We performed simulations with Nf ¼ 4 flavors of
staggered fermions, on 43 × ð8; 12; 16Þ; 63 × ð6; 8; 12Þ
lattices. We used the following quark mass and β pairs
in the simulations: for Ns ¼ 4, ðma; βÞ ¼ fð0.05; 2.9Þ;
ð0.02; 2.74Þg was set, and for Ns ¼ 6, ðma; βÞ ¼
fð0.05; 2.9Þ; ð0.02; 2.9Þg was set. We used several λa
and γ values at some simulation points to see their effect
on the results. In order to determine the lattice spacing
using w0 [45], the pion and nucleon masses, we used
Nt ¼ 24 and Nt ¼ 32 lattices. The results and the simu-
lation parameters for these runs are summarized in Table I.
We also checked that the simulation points are in the
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confinement region. The Polyakov loop was small in our
simulations also at finite μa. We estimated the pseudoc-
ritical βc on a 163 × 6 lattice by calculating the renormal-
ized chiral susceptibility (by subtracting the chiral
susceptibility measured on a 163 × 32 lattice and multi-
plying by the square of the quark mass). At mπ ≈
335 MeV, we found βc to be around ∼3.36, which
corresponds to Tc ∼ 137 MeV. For the larger mπ, using
the same lattice sizes, we found Tc to be in the range
130–160 MeV. Since the lattices are quite coarse, we
applied four stout smearing steps using ρ ¼ 0.125 to reduce
the finite lattice spacing effects. Finite volume effects are
expected to be moderate on the lattices with quark mass
ma ¼ 0.02 (mπaNs ∼ 2.3) and somewhat smaller on latti-
ces at ma ¼ 0.05 (mπaNs ≳ 3).

B. Fixing πϕ

In this section, we present the DoS results that were
obtained by constraining the pion condensate, πϕ [Eq. (20)].
We achieve this as was discussed at the end of Sec. II C,
and we used Npf ¼ 1 pseudofermion fields in most of our
simulations. We note that by using only one pseudofermion

field, in the range x ∈ ½−0.18; 0.18�, where x refers to the
value at which onewould like to constrain πϕ, the simulations
have a tendency to get “stuck” and even break down because
of very large HMC forces, if the time step is too large. With a
sufficiently small time step, where the acceptance ratio is
larger than ∼0.9, no such problems occur. No such problem
was found byusingmore than one pseudofermion field, but in
these cases the simulation is more expensive.
It is important to recall that πϕ does not give the same

result as the pion condensate calculated with the help of
noise vectors [Eqs. (15) and (18)]; they are equal only in
the limit as the number of pseudofermions as well as the
number of noise vectors goes to infinity. hπϕix and hπiI;x
are shown in Fig. 1 using Npf ¼ 1, 2, 3 in the constrained
simulations. After carrying out the x integration according
to Eq. (5), we get back the pion condensate of the
unconstrained simulation in QCDI;λ, where the pion con-
densate is measured with the operator in Eq. (15).
We emphasize again that both operators for the pion

condensate in QCDI;λ are real and positive definite at
finite λ. Therefore, one cannot constrain πϕ to zero or
negative values but can push it closer to zero e.g., by

FIG. 1. The expectation values for the pion condensate in the constrained ensembles using noise vectors (hπiI;x) and with the help of
pseudofermions (hπϕix), left and right panels, respectively. The simulations were carried out by constraining πϕ using Npf ¼ 1, 2, 3.

TABLE I. Summary of zero temperature runs to determine the pion and nucleon mass and the lattice spacing. We
note that the results and errors for the nucleon mass are quite indefinite. At small quark masses, the relative error for
the staggered nucleon correlator grows exponentially with time measured in lattice units; therefore, using the
accumulated statistics, the effective mass plateau is only faintly recognized.

Ns Nt β ma λa a (fm) mπa mπ (MeV) mNa mN (MeV)

4 32 2.74 0.02 0.0 0.33565(6) 0.571(1) 335.7(6) 1.73(11) 1017(65)
4 32 2.74 0.02 0.004 0.576(3)
4 32 2.9 0.05 0.0 0.32876(2) 0.728(1) 437.0(6) 2.03(8) 1218(48)
4 32 2.9 0.05 0.01 0.730(3)
6 24 2.9 0.02 0.0 0.33048(2) 0.381(1) 227.5(7) 1.66(15) 1009(90)
6 32 2.9 0.05 0.0 0.33304(4) 0.565(1) 334.8(7) 1.76(7) 1055(17)
6 32 2.9 0.20 0.0 0.34044(3) 1.077(1) 624.2(7) 2.34(3) 1356(18)
16 32 2.9 0.02 0.0 0.33080(3) 0.359(2) 214.2(3)
16 32 2.9 0.05 0.0 0.33329(3) 0.555(1) 328.6(6)
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writing a negative x in the fixing term. We found that it is
more efficient to proceed this way, rather than decreasing
the width of the Gaussian of the fixing term when using a
small positive x or x ¼ 0, because a smaller width (larger γ)
results in larger forces and slows down the simulation at
other values of x as well. The DoS setup is validated at
μ ¼ 0 by fixing πϕ and calculating the full DoS integrals
and ensuring that we obtain results consistent with simu-
lations using no fixing.
After this technical detour, we present results obtained

by the method. In Fig. 2, we show the expectation value of
the real part of the weights as a function of the pion
condensate for various chemical potentials. (See also the
left panel of Fig. 6 for a similar plot in the case of gauge
action fixed simulations.) As one can see, the decay of the
weights as a function of the pion condensate can be well
described by an exponential.

In Fig. 3, we plot various quantities as a function of x for
two chemical potential values, below and above mπ=2.
Note that at the larger chemical potential, the peak of ρðxÞ
shifts to larger x values, while the average weights are much
smaller there, since the falloff of the weights is steeper at
larger μa (see also Fig. 2).
In the DoS integral, the position of the peak of hwBixρðxÞ

determines which region of x gives the largest contribution
to ZB. The shift of the peak position is determined by the
decay of the weights as well as that of ρðxÞ. Since the decay
of ρðxÞ does not depend significantly on μ, based on the μ
dependence of the weights (Fig. 2), it is expected that the
shift of the peak is larger as μ is increased. This is the
motivation to try to include this shift manually by cutting
the DoS integrals in Eq. (5). In order to analyze the effect
of omitting configurations with larger pion condensate,
we cut the integrals in the nominator and in the denom-
inator at the same x value and define OB;cutðxcÞ as the ratio
of the two cut values, i.e.,

OB;cutðxcÞ ¼
R
xc
−∞ dxρðxÞhOwBixR
xc
−∞ dxρðxÞhwBix

: ð29Þ

The obtained cut results, however, depend on the value
where one cuts the DoS integrals. Since no plateau is visible
before the pion condensate starts sharply rising (see Fig. 3),
one cannot really select a correct, unique value among the
possibilities. Thus, the cut results are ambiguous.
This can be understood by noting that in the range where

hπiI;x is really small the value of hOiB;cutðxcÞ (where O is
an arbitrary operator) is predominantly determined by the
value of the integrands at xc, as ρðxÞ is strongly rising in

FIG. 3. Results obtained by constraining the pion condensate πϕ, at μ below and above mπ=2, left and right panels, respectively. The
simulations were on 43 × 8 lattices at β ¼ 2.9; ma ¼ 0.05; λa ¼ 0.01 giving T ≈ 75 MeV. On the horizontal axis, x refers to the fixing
value, used in the constraining term. The black squares show the density of states, ρðxÞ, multiplied by an irrelevant C constant for
visibility. With filled red circles, we show the pion condensate in the constrained ensembles. hRewBix refers to the expectation value of
the real part of the weights in these ensembles. a3nB;cutðxÞ is the quark number density calculated with the DoS method, as a function
of the upper limit (x) of the integrals used in this calculation, defined in Eq. (29). At μ=mπ < 0.5, a3nB;cutðxÞ is consistent with zero;
therefore, it is not shown in the left panel. a3ψ̄ψB;cutðxÞ is the (unrenormalized) chiral condensate as a function of the upper limit of the
DoS integrals.

FIG. 2. The expectation value of the real part of the weight as a
function of the expectation value of the pion condensate hπiI;x, in
simulations with fixing πϕ for λ ¼ 0.01 and several μ values.

G. ENDRŐDI et al. PHYS. REV. D 98, 074508 (2018)

074508-8



this region. In other words, in the range in question, for any
observable, one gets

R
xc dxρðxÞhOwBixR
xc dxρðxÞhwBix

≈
hOwBixc
hwBixc

; ð30Þ

which is an estimate for hOiB;xc, the expectation value of
the O operator in QCDB with constraint characterized by
xc. Of course, hOiB;xc can depend on xc, even though hπiI;xc
and hπϕixc are small.
To overcome the xc dependence, one could try to carry

out another type of reweighting which was introduced in
Eq. (28). We found that in the range of low x (x≲ −0.2),
where the pion condensate fluctuates less, reweighting with
the modified weights of Eq. (28) including the exponential
factor is manageable. However, this does not eliminate the
x dependence. The results at μ < mπ=2 (see the chiral
condensate in the upper panel of Fig. 3) also suggest that in
order to have an x-independent, correct expectation value
one has to include the configurations with large pion
condensate.
In the next section, we show that, since the gauge action

and the pion condensate are slightly correlated, fixing the
gauge action also fixes the pion condensate, which has a
similar effect on the average weights. This allows much
cheaper simulations (using the gauge action fixing) to be
carried out with similar results; we therefore concentrate on
those in the following.

C. Fixing the gauge action density

We now turn to the study of the case when we use the
gauge action density as the fixed quantity. As an illus-
tration, Fig. 4 shows the histogram of the gauge action
density and the expectation value of the real part of the
weights as well as the pion condensate on the constrained
ensemble characterized by x, the value at which sg is
constrained. Figure 4 shows that by constraining the gauge
action density to smaller values the pion condensate also
becomes small and simultaneously the real part of the
weights increases.

The imaginary part of hwBix fluctuates around zero at
all x. The correlation between the gauge action density and
the pion condensate in QCDI;λ is also shown in Fig. 5.
Although the correlation is weak in the interval of x in
which ρ ∼Oð1Þ, one can reach configurations with low
pion condensate below x ∼ 13.5. Similarly to the pion
condensate fixing, the real part of the expectation value of
the weights as a function of the pion condensate can be
described with an exponential with a strongly μ-dependent
slope; see the left panel of Fig. 6. On the right panel of
Fig. 6, we show the x dependence of the average weights
for several volumes.
Analyzing the cut DoS integral results [defined in the

previous section in Eq. (29)] in the case of fixing sg affirms
that when μ is large (μ > mπ=2) the x dependence of the
operator dominates the final results for the expectation
values and one cannot choose a unique cut value, because
these depend on x. Moreover, in this case, the cut results
could lead to physically problematic results. For example,
the Polyakov loop gets enhanced at low x, which suggests

FIG. 4. DoS results in the case of sg fixing at μ=mπ ≈ 0.44 and at ≈0.87 (left and right panels, respectively). The real part of the
weights goes to zero, as the pion condensate increases. As μ is greater, this happens at a lower x.

FIG. 5. The pion condensate as a function of the gauge action
density on individual configurations at 43 × 8, μ=mπ ≈ 0.87,
T ≈ 74 MeV, mπ ≈ 336 MeV, and λa ¼ 0.004. Shown are the
cases when we constrained the gauge action density to integer
and half-integer values (black squares) together with the results
obtained from a direct simulation of QCDI;λ (red circles).
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that on that configurations the (approximate) Z(3) sym-
metry gets broken. The results for the pion condensate of
QCDB;λ shows in Fig. 7 that as λ goes to zero πB;cutðxÞ also
goes to zero at all x even at a larger chemical potential as
well—although with large errors. This indicates that
πB;cutðxÞ is dominated on these lattices by a contribution
from the explicit breaking due to finite λa.
As in the case of constraining the pion condensate, the

findings discussed in the previous paragraph suggest that
the configurations with well-behaving weights are not the
appropriate configurations to reproduce the expected phys-
ics at low temperature. Thus, we abandon the idea of
cutting the integrals by hand, and in the following, we will
analyze the results by calculating the full DoS integrals.
As was mentioned above, we demand that the DoS

as well as reweighting should provide a positive ZB.
Therefore, we try to collect enough configurations to
satisfy this criteria at least to a 2 sigma level, which is
called our reliability condition. Since in the case of the DoS

ZB ¼ ZI;λ

R
dxhwBixρðxÞ, while in the case of reweighting

ZB ¼ ZI;λhwBiI;λ, we demand
R
dxhRewBixρðxÞ > 0 and

hRewBiI;λ > 0 to hold at 2 sigma, respectively for DoS and
for reweighting from QCDI;λ. The positive constant factor
ZI;λ does not modify the reliability criteria. Furthermore,
we expect

R
dxhImwBixρðxÞ ¼ 0 and hImwBiI;λ ¼ 0 to

hold, respectively for DoS and for reweighting.
In Fig. 8, we show the results for the quark number

density obtained by the DoS as well as reweighting from
QCDI;λ for the 43 × 8 ensembles. Accumulating around
Oð104Þ configurations at the points where ρðxÞ is Oð1Þ, we
found that the DoS method is reliable up to μa ∼ 0.40—
and, indeed, gives zero quark number density within
errors—on 43 × 8 at pion mass mπ ≈ 336 MeV. At the
finer 43 × 8 lattice with β ¼ 2.9 and pion mass
mπ ≈ 437 MeV, μa ∼ 0.45 can be reached with similar
statistics. These correspond to μ=mπ ∼ 0.7 and 0.62,
respectively, or μ=mN ∼ 0.22…0.23. Thus, we can reach

FIG. 6. Left: The average weight as a function of the pion condensate in simulations with sg fixing for several μ and λ values as
indicated. Right: The average weight as a function of the fixing parameter x for several different spatial volumes.

FIG. 7. Results for hπiB;λðxÞ as a function the upper limit of the DoS integrals in the case of sg fixing for two different μ values.
Different colors refer to different target ensembles characterized by λa in the reweighting. When calculating the full integrals, hπiB;λ is
about 2.4 times larger (with huge errors) than the value when cutting the integrals at e.g., 0. However, both the full integral DoS results
and the cut integral results extrapolate to zero in λa.
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considerably higher μa values than mπa=2 at these
small lattices.
Two comments are in order. First, the highest reliably

reachable μa value certainly depends on the accumulated
statistics. We will elaborate more on this later. Second,
strictly speaking, the pion condensation region of QCDI
starts at mπ=2 only at zero temperature, and it can bend
toward higher chemical potentials as the temperature
increases. Therefore, to have a reliable comparison, it is

important to locate the aμðπÞc value, where the pion con-
densation sets in at the given temperature.
In order to determine this, we carried out simulations at

different λa values at several chemical potentials and
studied the λa to zero limit. This extrapolation, however,

is not satisfactory to determine precisely aμðπÞc . Following
Refs. [46,47], we also tried to fit the results by the
appropriate formula of chiral perturbation theory [47],
but these fits were rather unreliable, probably due to the
fact that the volume is not large enough. Alternatively, one

can obtain aμðπÞc ðTÞ directly from the lattice simulations
with the help of the spectral representation for the pion
condensate [43,48]. To obtain this, the singular values of
the Dirac operator, ξn, which are the eigenvalues of
M†ðμÞMðμÞ, have to be calculated. Although this approach
is valid again if the volume is large enough, following
Refs. [43,44,49], one can define πðimprÞ according to

hπiI;λ ¼
T
V

Nf

8
2λhTrðM†ðμÞMðμÞ þ λ2Þ−1iI;λ

¼ T
V

Nf

8
2λ

�X
n
ðξ2n þ λ2Þ−1

�
I;λ

⟶
V→∞Nf

4

�Z
dξρðξÞλðξ2 þ λ2Þ−1

�
I;λ

⟶
λ→0 Nfπ

8
hρð0ÞiI;λ→0

≡ hπðimprÞiI;λ→0; ð31Þ

where the spectral density ρðξÞ is defined as

ρðξÞ ¼ lim
V→∞

T
V

X
n

δðξ − ξnÞ: ð32Þ

In the integral over ξ, ρðξÞ is multiplied by a representation
of the Dirac-δ distribution; thus, by taking the λ → 0
limit, one arrives at Nfπρð0Þ=8, which is the improved
operator. Therefore, it is enough to determine the lowest
200–300 singular values; build a histogram for the inte-
grated spectral density,

NðξÞ ¼
Z

ξ

0

ρðξ0Þdξ0; ð33Þ

and take the ξ → 0 limit of a3hNðξÞiI;λ=ξ, which after being
multiplied by π=2 gives the improved pion condensate.
Unfortunately, the approach at Ns ¼ 4 again cannot be
applied probably due to the small volume, but it seems to
provide reasonable results at Ns ¼ 6 (see Fig. 9, right
panel). Figure 9 justifies that we are in the pion condensed
phase on 64, at β ¼ 2.9, ma ¼ 0.05 above μ > mπ=2.
In order to test how the limit of the reliable application of

DoS or reweighting changes as we decrease the temper-
ature, we performed simulations at larger temporal sizes,
namely atNt ¼ 12 andNt ¼ 16. We found that, although at
43 × 12, β ¼ 2.74, ma ¼ 0.02, μa ¼ 0.34ðμ=mπ ≈ 0.6Þ,
ReZB > 0 can be satisfied to ∼9 sigma level by using
around 1800 configurations at each x, we cannot reach even
positive ZB at the 1 sigma level at μa ¼ 0.38ðμ=mπ ≈ 0.67Þ
using around 5000–6000 configurations. Estimating the
number of needed configurations using the scaling of
absolute errors as the inverse square root of configurations
at different x suggests that more than 105 further configu-
rations are needed at each x, where ρðxÞ ∼Oð1Þ; however,
note that this estimate becomes increasingly unreliable as
the relative error of ZB gets larger, such that a 1 sigma shift

FIG. 8. Results obtained by constraining the gauge action density at 43 × 8, amπ=2 ¼ 0.2855ð5Þ. The band in the left panel is obtained
by reweighting from the quark chemical potential μ0 of QCDI;λ to μ ≠ μ0 of QCDB when calculating the DoS integrals.

APPLYING CONSTRAINED SIMULATIONS FOR LOW … PHYS. REV. D 98, 074508 (2018)

074508-11



in the average can result in an estimate several orders of
magnitude larger.
We accumulated Oð103Þ configurations at 43 × 16,

ma ¼ 0.02, and using these, we found that the 2 sigma–
level condition ReZB > 0 spoils also in the range
μa ∼ 0.30…0.36ðμ=mπ ≈ 0.53…0.63Þ.
It is worth it to emphasize that the positiveness of ReZB

can be satisfied using much fewer configurations at smaller
chemical potential. In this parameter range, the fluctuations
of the observable might dominate the statistical error of an
expectation value (depending on the observable). This is
relevant especially below μ ¼ mπ=2, as the phase quenched
theory also shows a Silver Blaze behavior and thus
reweighting has very little effect.
In Fig. 10, we show an estimation for the number of

configurations needed to measure ZB with the higher
precision of 1% accuracy on a 43 × 8 lattice at β ¼ 2.9
and m ¼ 0.05. One observes that the number of configu-
rations needed increases rapidly with increasing μ. In the
small x region where the weight average is larger, this is
approximately constant but increases at least exponentially
with x in the region close to the maximum of ρðxÞ (which is

in the region 15 ≤ xmax ≤ 16 for the parameters used in the
plot). A precise calculation of observables at large chemical
potentials and small temperatures using this method is thus
not within the reach of current computational capabilities
even on very small lattices.
We also estimated the performance of direct reweighting

(without introducing a fixing term in the action) for the
43 × 8 lattice using β ¼ 2.9 and m ¼ 0.05. We observe a
similar behavior: we fail to satisfy the ReZB > 0 criterion at
the 2 sigma level around μ=mπ ≈ 0.76 even after collecting
∼1.2 × 105 configurations. The density is consistent with
zero for the chemical potentials where the positiveness of
ZB is satisfied.
Apart from the overlap and the sign problem, we

mention a further limitation to safely reaching μ ∼mN=3
on small lattices. As one might notice in Fig. 9, the pion
condensate starts decreasing around μ=mπ ∼ 1.4 (at
λa ¼ 0.01). This is a saturation effect [39]; the isospin
density is close to half-filling at these chemical potentials.
Far from the continuum, μ ¼ mN=3 might get close to this
region where saturation effects dominate the physics,
further complicating the issues of reweighting.
At Ns ¼ Nt ¼ 6, β ¼ 2.9, and ma ¼ 0.05, the

ReZB > 0 criterion is valid at more than 2 sigma until
the chemical potential range μ=mN ∼ 0.2…0.22; see
Fig. 11. However, unlike the case of Ns ¼ 4, it is found
that at the last chemical potential at which the condition
ReZB > 0 is satisfied more than 2 sigma, i.e., at μa ¼ 0.34,
the quark number density a3hniB becomes nonzero at the
∼5 sigma level. This chemical potential corresponds to
μ=mπ ∼ 0.60 (μ=mN ∼ 0.20). At the same lattice size at
T ≈ 100 MeV, but at a smaller quark mass ma ¼ 0.02, the
reliability condition spoils at μ=mN ∼ 0.17 (μ=mπ ∼ 0.76),
so it clearly does not follow a scaling behavior related tomπ

(Fig. 11). If that were the case, based on ðmπaÞ2 ∝ ma, one
would find the breakdown of the reliability condition
around μ=mN ∼ 0.14 (which gives μ=mπ ∼ 0.61). For these
simulations, at ma ¼ 0.05, μa ¼ 0.34, we accumulated
4000–5000 configurations at 20 values of x, and at
ma ¼ 0.02, μa ¼ 0.28, we accumulated around 3000–
4000 configurations. Indications of the onset were found

FIG. 9. The pion condensate of QCDI;λ measured at several λa as a function of μa for 43 × 8 and 64 lattices.

FIG. 10. Number of configurations needed for 1% accuracy
measurement of ZB, measured on a 43 × 8 lattice at β ¼ 2.9;
m ¼ 0.05; NF ¼ 4 at various μ and λ values as indicated.
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at around μ=mN ∼ 0.18 at ma ¼ 0.05 and at around
μ=mN ∼ 0.16 at ma ¼ 0.02.
Although to carry out the reweighting at larger chemical

potentials would require many orders of magnitude higher
statistics, our current results give an indication that the
transition line of the nuclear onset is bent to lower chemical
potentials at increasing temperatures.

IV. CONCLUSIONS

In this paper, we have studied the density of states
method and direct reweighting to explore nonzero baryon
chemical potential in QCD. We have included a “fixing
term” in the action of QCD at finite isospin chemical
potential, which restricts the values of a chosen operator.
Our investigations are in the cold and dense region of the
phase diagram where we sought to observe the Silver Blaze
phenomenon.
In the DoS method, the final results were obtained after

calculating the appropriate integrals and normalizing them
according to Eq. (5). When applied at nonzero baryon
chemical potential, nonreal weights wB must be included.
In order to classify the results of reweighting as reliable, we
have applied the criterion ReZB > 0 to at least 2 sigma level.
We have tested the fixing of the gauge action as well as

the fixing of the pion condensate (πϕ of QCDI;λ) and have
observed that the results in the two cases behave similarly.
When the pion condensate is constrained to be small, the
weight factors wB are larger. Constraining the gauge action
to a small value lowers the pion condensate. As a
consequence, the weights become larger in this case as
well. Practically, it is more economical to use the gauge
action fixing as the simulations are much cheaper.
One of the main motivations at the beginning of this

work was to investigate whether the DoS integrals receive
mainly contributions from configurations that have a low
pion condensate. The results revealed that at the parameter
range we used the region of small as well as large pion

condensate also contributes to the final results at finite
baryon chemical potential. Although we have indeed
observed that the weight factor strongly depends on the
pion condensate, the shift in the peak of ρðxÞhwBix is
moderate on small lattices. At larger volumes, the weights
decay faster, but ρðxÞ also becomes narrower, which results
in a negligible shift of the peak position. We have inves-
tigated whether one can improve the situation by cutting the
integrals over xmanually and only allow configurations with
a small pion condensate to contribute, as suggested in
Ref. [20]. Although this way well-behaving weights can
be obtained even at μ > mπ=2, there is no such region of the
upper limit of the integrals in which the cut observables are
constant. Therefore, we conclude that cutting the DoS
integrals is not a viable procedure to determine the expect-
ation values of the studied observables.
The sign problem becomes severe around μ ≈mπ=2.

We have estimated the number of configurations one needs
in order to overcome the sign problem slightly over this
value. This number grows very quickly with the chemical
potential, such that one cannot go deep into the μ > mπ=2
region even on very small lattices. However, at 64, β ¼ 2.9,
T ≈ 100 MeV, we have managed to apply the DoS method
with reweighting classified to be reliable and found
indications of the baryonic onset at this temperature.
This observation would imply that at higher temperatures
the baryonic onset happens at lower chemical potentials
than the zero temperature critical chemical potential
μ ≈mN=3.
Finally, we note that both the DoS and direct reweighting

from QCDI;λ provide results consistent with our expect-
ations as long as they are classified as reliable.
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